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Abstract

A major challenge in using diffusion models is aligning outputs with user-defined
conditions. Existing conditional generation methods fall into two major categories:
classifier-based guidance, which requires differentiable target models and gradient-
based correction; and classifier-free guidance, which embeds conditions directly
into the diffusion model but demands expensive joint training and architectural
coupling. In this work, we introduce a third paradigm: DISCrete nOise (DISCO)
guidance, which replaces the continuous conditional correction term with a finite
codebook of discrete noise vectors sampled from a Gaussian prior. Conditional
generation is reformulated as a code selection task, and we train prediction net-
work to choose the optimal code given the intermediate diffusion state and the
conditioning input. Our approach is differentiability-free, and training-efficient,
avoiding the gradient computation and architectural redundancy of prior methods.
Empirical results demonstrate that DISCO achieves competitive controllability
while substantially reducing resource demands, positioning it as a scalable and
effective alternative for conditional diffusion generation. Code is available at
https://github.com/dailongquan/disco.

1 Introduction

Diffusion models [4, 8] have achieved impressive success across diverse domains [11, 25, 47, 51],
scaling to billions of samples [27] and establishing themselves as foundational generative models.
They are particularly effective for conditional generation tasks [1, 13, 32, 44, 46] and support a
wide range of downstream applications [26, 38, 39, 30, 40, 31]. Consequently, the challenge of
conditional generation—tailoring outputs to satisfy user-defined constraints such as labels, attributes,
or spatiotemporal cues—is becoming increasingly critical.

Conditional generation in diffusion models typically follows one of two paradigms: classifier-based
guidance[10] and classifier-free guidance[15]. Both require training a dedicated model tailored
to each conditioning signal. More recently, training-free guidance, a subclass of classifier-based
methods, has emerged. These approaches leverage off-the-shelf, differentiable target predictors—such
as classifiers, loss functions, or energy functions—to steer generation without additional training.
The predictor evaluates sample quality and provides gradients to guide the diffusion process toward
desired outputs.

Classifier-based guidance[10] trains a noise-conditional classifier to estimate the class probability
pθ(c|zt). Training-free guidance[1, 13, 32, 44, 46] builds on this idea from an energy-based perspec-
tive [46], using pretrained target networks—such as depth or segmentation models—to approximate
pθ(c|zt) without training a dedicated classifier. While these predictors still require pretraining, their
decoupling from the diffusion model reduces overall computational cost. A key limitation, however,
is that these approaches require differentiable predictors, as guidance relies on computing the gradient
∇zt log p(zt|c) to apply conditional corrections during sampling.

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Classifier-free guidance[15] removes the need for an external classifier by interpolating between the
score estimates of a conditional diffusion model and its jointly trained unconditional counterpart
to form a conditional correction term. This approach relies on conditioning mechanisms [48] that
adapt an unconditional model into a conditional one. A major advantage of classifier-free guidance
is its ability to generate outputs more faithfully aligned with the conditioning input [18]. However,
this comes at the cost of increased training complexity: the conditional branch modifies features
throughout the diffusion model, requiring the full model to be loaded during training. In contrast,
classifier-based methods allow the conditional network to be trained independently.

In this paper, we propose a third approach: DISCrete nOise (DISCO) guidance, which overcomes
key limitations of existing methods. Both classifier-based and classifier-free methods aim to estimate
a conditional correction term ∆(zt, c), which transforms the zero-mean Gaussian noise used in
unconditional denoising into a non-zero-mean noise for conditional denoising. Our insight is that,
under certain conditions, this non-zero-mean noise can be effectively approximated using a finite
codebook of discrete vectors, pre-sampled from a Gaussian distribution. This reframes conditional
generation as a code selection problem: given the current diffusion state zt and conditioning input c,
the model selects an optimal code from the codebook. To realize this, we introduce a discrete noise
prediction network that learns to perform this selection efficiently and effectively. In summary, the
contribution of our DISCO are that:

Differentiability-Free: Our discrete noise prediction network directly selects the optimal code to
substitute for the non-zero-mean Gaussian noise, avoiding the need to compute gradients of
the target predictor as required in classifier-based guidance.

Training Efficiency: Training the discrete noise prediction network does not require loading or
fine-tuning the diffusion model, significantly reducing computational overhead. This is
because both inputs—zt and c—as well as the discrete code indices can be precomputed.

Alignment Improved: Our method explicitly trains the prediction network to select control noise,
providing direct supervision for controllability. In contrast, classifier-based guidance relies
on auxiliary classification loss, which does not directly align with the diffusion process.

2 Related Work

Classifier-based guidance has primarily focused on training-free approaches, where an independently
trained classifier is used to guide the diffusion process during inference without modifying the
diffusion model itself. In contrast, classifier-free guidance relies on learned conditioning, typically by
integrating an auxiliary conditional network into the diffusion model during training. In this section,
we briefly review both categories to contextualize our proposed DISCO method, which introduces a
third paradigm for conditional generation that is distinct from both classifier-based and classifier-free
approaches.

Classifier-based guidance was introduced by Dhariwal and Nichol [10], who trained a time-
dependent classifier to approximate the posterior log pt(c|zt) using a pre-trained diffusion model.
Later works estimate the gradient ∇zt

log pt(c|zt) at inference using pre-trained predictors. Chung
et al. [6] applied Tweedie’s formula to linear inverse problems, which was extended to broader
conditional generation by Chung et al. [7], Yu et al. [46], Bansal et al. [1], and Wang et al. [37]. Song
et al. [32] reduced bias via multiple samples from a noisy Gaussian prior. Zhu et al. [52] introduced
manifold projection, later refined by He et al. [13] with an autoencoder enforcing guidance in the
tangent space. Yang et al. [43] further improved this by mitigating manifold drift without strong
assumptions. Despite these advances, classifier-based guidance fails when the target predictor is
non-differentiable.

Classifier-free guidance extends the conditional processing capabilities of diffusion models by
modifying the architecture to directly incorporate conditioning information. ControlNet [48] proposes
to utilize the trainable copy of the UNet encoder in the diffusion model to encode extra condition
signals into latent representations and then apply zero convolution to inject into the backbone of
the UNet in diffusion modal. However, ControlNet is a single-modality framework and requires a
separate model for each modality. To address this, unified ControlNet-like models [17, 18, 20, 29,
22, 49, 50, 34] are proposed to handle diverse control signals by inject multi-modality into original
diffusion model. Despite their flexibility, these models are typically resource-intensive to train.
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3 Preliminaries

In this section, we delve into two fundamental theorems that theoretically guarantee the practicality
of our discrete noise guidance approach.
Theorem 1. Let n ≥ 2 denote the ambient dimension, and let θ = ∠(µ, ϵ) be the angle between

the mean vector µ and a random vector ϵ ∼ N (µ, I). Then, υ = cos2 θ =
(

⟨µ,ϵ⟩
∥µ∥·∥ϵ∥

)2

follows the
non-central beta distribution:

υ ∼ Beta (α, β; λ) . (1)
where α = 1

2 , β = n−1
2 , and λ = ∥µ∥2. Let 2F1 (a, b; c; z) be a Gaussian hypergeometric function.

The expectation of cos2 θ is given by

E[υ] =
α+ λ

α+ β + λ
· 2F1

(
1, α+ 1;α+ β + 1;

1

1 + λ

)
· 1

α+ β
. (2)

This theorem can be leveraged to assess whether a vector ϵ is statistically consistent with being drawn
from N (µ, I). Specifically, one can evaluate its cumulative probability under the above distribution
p = P (υ ≤ cos2 ∠(µ, ϵ)), where υ ∼ Beta (α, β; λ). A large p-value suggests that the observed
angle is likely under the assumed distribution. Thus, we have the following definition:
Definition 1. Under the setup described above, we consider that a vector ϵ is likely to be sampled

from N (µ, I) if
(

⟨µ,ϵ⟩
∥µ∥·∥ϵ∥

)2

> E[υ]. Equivalently, if the angle between µ and ϵ satisfies ∠(µ, ϵ) <

arccos
(√

E[υ]
)
, we regard ϵ as being drawn from N (µ, I).

Let K ≥ 1 be the number of independent random samples. We consider independent random vectors
CK
n =

{
ε(1), ε(2), . . . , ε(K)

}
sampled from N (0, I) in the n-dimensional space, and let µ ∈ Rn be

a vector. For each i = 1, . . . ,K, θi = ∠(µ, ϵ(i)) is defiend as the angle between µ and ϵi. Thus
υi = cos2 θi be independent sampled from the non-central beta distribution (1).

The maximum of {υi} is given by νK = max1≤i≤K υi. As K → ∞, the typical maximum of the
cosine square similarity νK is a value bK such that: P(νK ≈ bK) → 1. When the sample size K
becomes large, the typical maximum refers to the value that the maximum is most likely to take. It is
not exactly the expected value, nor is it concerned with rare extreme fluctuations; rather, it describes
where the maximum tends to be most of the time. We use it to describe how similar the random set
CK
n is to µ and have the following theorem to estimate the typical maximum νCK

n
.

Theorem 2. Under the setup described above, let {υi}Ki=1 be K samples drawn from the non-central
beta distribution Beta (α, β; λ). When n is moderately large and K is not too small, the typical
maximum νCK

n
is approximately the same:

νCK
n

≈ 2 logK

n
(3)

This theorem reveals that in high-dimensional spaces with large n, any two vectors are nearly
orthogonal as the typical maximum of approaches 1. To increase the similarity between two vectors,
we must decrease the dimension n and increase the number of samples K. Since each υi measures
the cosine square similarity between ε(K) and µ, the typical maximum νC describes how the set C
can approach µ. Thus, under the setup described above, the definition in the following is reasonable.
Definition 2. If νCK

n
> 0.15nE[υ], we say the set CK

n can provide a sample for the distribution
N (µ, I) and say argminϵ(i)∈CK

n
cos2 ∠(µ, ϵ(i)) as the sample.

4 DISCO

In this section, we introduce DISCO, a method for conditional generation using diffusion models.
We begin by showing that conditional generation can be achieved by sampling noise from a non-zero-
mean Gaussian distribution. Next, we demonstrate that this sampling process can be replaced by
selecting discrete codes from a predefined codebook. This insight implies that accurately predicting
the correct discrete code based on the input condition enables effective conditional generation. To
realize this, we describe how to train a network that predicts these discrete codes from intermediate
diffusion states and the conditioning input.
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4.1 Non-zero-mean Gaussian Distribution for Conditional Generation

To derive conditional diffusion models, Dhariwal and Nichol [10] introduced classifier guidance,
which modifies the score ϵθ(zt, c) ≈ −σt∇zt

log p(zt|c) by adding the gradient of the log-likelihood
from a classifier model pθ(c|zt), which is proportional to exp(E(zt, c)), as shown below:

ϵ̃θ(zt, c) = ϵθ(zt, c)−wσt∇zt log pθ(c|zt) = ϵθ(zt, c) + −wσt∇zt log E(zt, c)︸ ︷︷ ︸
Conditional Correction ∆(zt,c)

, (4)

where w is a parameter controlling the strength of the classifier guidance. The modified score ϵ̃θ(zt, c)
is then used in place of ϵθ(zt, c) when sampling from the diffusion model, resulting in approximate
samples from the distribution: p̃θ(zt|c) ∝ pθ(zt|c)pθ(c|zt)w. This approach effectively increases
the probability of data where the classifier pθ(c|zt) assigns high likelihood to the correct conditions.

Since classifier guidance relies on gradients from an image classifier, Ho and Salimans [15] aim to
remove the need for the classifier and introduce classifier-free guidance. This approach modifies
ϵθ(zt, c) in a way that produces the same effect as classifier guidance but without using a classifier.
They train an unconditional denoising diffusion model pθ(z), parameterized by ϵθ(zt, c = ∅), along
with the conditional model pθ(z|c), parameterized by ϵθ(zt, c), where ∅ denotes the absence of
the class identifier c. Sampling is then carried out using the following linear combination of the
conditional and unconditional score estimates:

ϵ̃θ(zt, c) = ϵθ(zt, c) + w(ϵθ(zt, c)− ϵθ(zt,∅))︸ ︷︷ ︸
Conditional Correction ∆(zt,c)

(5)

The DDPM denoising step [16] for conditional generation thus becomes

zt−1 =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵ̃θ(zt, c)

)
+ ρtϵ

′, ϵ′ ∼ N (0, I)

=
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, c)

)
+ ρtϵ, ϵ ∼ N (µ(zt, c), I)

(6)

where µ(zt, c) = − 1−αt√
αt

√
1−ᾱt

∆(zt, c) and the last term ϵ is sampled from a non-zero-mean
Gaussian distirbution N (µ(zt, c), I).

4.2 Discrete Noise for Conditional Generation

Equation (6) shows that in conditional DDPM sampling, noise is drawn from a non-zero-mean
Gaussian distribution. We propose replacing this noise with a code selected from a fixed codebook
CK
n = ε(1), . . . , ε(K), where each code ε(k) is independently sampled from N (0, I) and remains

unchanged during training and inference. The core idea is that an appropriate code from this set can
serve as an effective discrete approximation of the non-zero-mean Gaussia noise, enabling a simple
codebook lookup in place of continuous sampling.

Theorem 1 provides a criterion for selecting a good substitute for Gaussian noise. It shows that the
squared cosine similarity between µ and ϵ ∼ N (µ, I) follows a non-central beta distribution. If
there exists a code ϵ(i) ∈ CK

n whose squared cosine similarity with µ(zt, c) exceeds the expected
value E[υ] of this distribution, then ϵ(i) can be considered a valid substitute under Definition 1.

Theorem 2 evaluates whether the codebook CK
n can provide such a substitute. It defines the typical

maximum similarity νCK
n

between µ(zt, c) and the codes in CK
n as in Equation (3). If νCK

n
> E[υ],

the codebook is deemed sufficient to approximate samples from the target non-zero-mean Gaussian
distribution N (µ(zt, c), I).

Since the latent space of SD 1.5 has size 4096 = 4 × 64 × 64, the dimensionality of the noise
ϵ in Equation (6) is also 4096. According to Theorem 2, in such high-dimensional spaces, a
predefined codebook CK

n cannot provide a good approximation to samples from a non-zero-mean
Gaussian distribution, as most vectors tend to be nearly orthogonal. To address this, we divide
ϵ into 256 blocks {ϵi}256i=1, each of size 4 × 4 × 4, so that ϵ = cat({ϵi}), and each block has
dimensionality 64. In this configuration, the expected value of Beta(0.5, 31.5;λ) is 0.0278, with
λ = ∥µi∥2 ≈ 256 based on empirical statistics. For a predefined codebook C4096

64 with 4096
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“A close-up of a capybara
standing on a sandy or

rocky terrain."

TFG

“A coastal scene at sunset,
featuring a lighthouse

situated on sea."

EMControl

“A young man is playing
the trumpet outdoors in

an urban setting."

ControlNet

“A close-up of a fluffy
gray kitten sitting on
an orange blanket."

AnyControl

Figure 1: Conditional Generation with Discrete Noise. The first two rows present the text prompt and
the corresponding conditioning input. The third row shows the outputs generated using continuous
noise. The final row displays the results generated using discrete noise. The results demonstrate that
our method maintains generation quality without degradation.

vectors sampled from a 64-dimensional standard Gaussian, the typical maximum squared cosine
similarity is 0.263. Since this exceeds the expected similarity from the non-zero-mean distribution,
we conclude that C4096

64 is sufficient to approximate samples from N (µi(zt, c), I), where ∥µi∥ ≈ 16,
and µ(zt, c) = cat({µi(zt, c)}). This enables us to reformulate Equation (6) as follows:

zt−1 =
1

√
αt

(
zt −

1− αt√
1− ᾱt

ϵθ(zt, c)

)
+ ρtcat({ϵi}),

ϵi = ε(ki), ki = argmax1≤j≤4096 cos
2 ∠(µi(zt, c), ε

(j))

(7)

To validate our approach, we replace the non-zero-mean Gaussian noise used in TFG [44], EMCon-
trol [37], ControlNet [48], and AnyControl [34] with our proposed discrete noise. The evaluated
algorithms are categorized into two types: classifier-based guidance methods (e.g., TFG and EMCon-
trol) and classifier-free guidance methods (e.g., ControlNet and AnyControl). We apply Equations (4)
and (5) to compute the conditional correction, followed by Equation (7) to perform conditional gener-
ation with discrete noise. The results are presented in Figure 1, where the third row shows outputs
generated using the original methods, and the fourth row displays the results with our approach. The
comparable visual quality confirms the effectiveness of our substitution strategy.

4.3 Conditional Control by Discrete Noise Guidance

Both classifier guidance and classifier-free guidance estimate the condition term ∆(zt, c) based
on the intermediate state zt and the condition c. In the previous section, we discretized the noise
ϵ ∼ N (µ(zt, c), I) and validated its effectiveness. Building on this, we propose training a network
that directly predicts the discrete noise code from c and xt, thereby enabling explicit control over the
generation process. Notably, this approach differs fundamentally from prior methods, as it predicts
the discrete control noise rather than the condition term ∆(zt, c) itself.

4.3.1 Discrete Noise Predication

In this subsection, we describe how the discrete noise indices {ki}256i=1 is predicted from the interme-
diate features zt = cat({zt,i}256i=1) and the conditioning input c, where each zt,i is a 4× 4× 4 block
of the intermediate state zt. We adopt the Diffusion Transformer (DiT) [21] as our backbone, which
integrates time-step conditioning into a standard encoder-only transformer [36] and employs rotary
positional embeddings [33] for spatial encoding.
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"A gray kitten and a golden
retriever puppy sit together"

Sketch

"An car parked under a tree
with large green leaves."

Canny Edge

"A winding path leading to
small cottages."

M-LSD
"A young woman is standing

outside a cozy café"

HED

"Two young women are
standing back-to-back"

Skeleton

"A serene and cozy indoor
scene featuring a cat."

Location
"A church with twin towers

stands by a calm river."

Depth

"A small, fluffy bird with a
warm brown plumage"

Normal

"A minimalist and serene
interior scene."

Segmentation

Figure 2: Conditional Generation with Diverse Conditions via Discrete Noise. Discrete noise enables
seamless integration of various conditions into diffusion models. To demonstrate its versatility, we
showcase ten diverse applications: Sketch, Canny Edge, MLSD, HED, Skeleton, Location, Depth,
Normal, and Segmentation.

We adopt a BERT-style training scheme [9] for our DiT model. Specifically, we formulate the training
as a discrete noise index completion task: a subset of the input discrete noise indices is randomly
masked, and the model is trained to recover the missing indices {ki}i∈M using the condition c,
the intermediate state zt, and the unmasked indices {ki}i∈M , where M denotes the set of masked
positions. Unlike traditional Transformers that operate solely on discrete token sequences, our model
uses a hybrid input that combines discrete indices with continuous visual features.

The hybrid inputs to DiT consist of condition c, the intermediate state zt, and unmasked discrete noise
indices {ki}i∈M . For each masked index, we replace its original codebook index with a special index
[MASK]. Conditioned on the unmasked indices, intermediate features {zt,i}256i=1, and condition c,
the Transformer is trained to estimate the likelihood of the indices at the masked positions:

P ({ki}i∈M |{ki}i∈M , {zt,i}256i=1, c) =
∏
i∈M

P (ki|{ki}i∈M , {zt,i}256i=1, c) (8)

The model is optimized by minimizing the softmax cross-entropy loss between the predicted proba-
bilities and the ground-truth indices. During the inference time, the model starts with the intermediate
features zt = cat({zt,i}256i=1) and the conditioning input c and the discrete noise indices all filled with
[MASK]. The predicted discrete noise indices are generated by the hybrid-transformer.

4.3.2 Training Dataset Preparation

Training the discrete noise prediction network requires data pairs (zt,i, ki) for a given condition c. A
straightforward approach is to use intermediate states zt = cat({zt,i}256i=1) and corresponding discrete
noise indices {ki}256i=1 generated by an existing conditional method such as FreeDoM [46]. However,
this method inherits the limitations of the underlying generation model, potentially compromising
data quality. Instead, we adopt a reconstruction-based strategy. Given c, we define the energy
function in Equation (4) as E(zt, c) = ∥z0|t − c∥2, where z0|t = (zt −

√
1− ᾱtϵθ(zt, c))/

√
ᾱt.

This formulation frames conditional denoising as reconstructing z0 from noisy input zt. By applying
Equation (7) during reconstruction, we obtain training pairs (zt,i, ki). Structural cues (e.g., depth or
edge maps) extracted from the reconstructed image z0 are then used as conditioning inputs.
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Table 1: Quantitative Comparison for Controllable Generation Under Different Conditions. The best
results are highlighted in bold. We use FID, CLIP, and CLIP-Ac to evaluate generation quality, and
MSE, SSIM, mIoU, and mAP to assess controllability. A dash “–” indicates that the method does not
provide a publicly available model for evaluation.

Method Depth Canny HED M-LSD Segmentation Normal Skeleton Location Sketch

FI
D
↓

UGD - - - - 25.1856 - - - -
FreeControl 24.9604 17.9107 17.4471 - 30.8189 28.9317 34.7962 - -
ControlNet 19.8064 18.9211 16.1678 21.5897 20.3947 29.5817 26.1679 29.6951 24.0166
T2I-Adapter 20.2817 24.8351 - - - - 24.9437 - -
AnyControl 18.6452 19.3719 - - 19.3647 - 25.7867 - -

DISCO 18.0431 21.3836 15.7542 22.0951 21.1360 27.4390 25.5083 28.8875 23.6784

C
L

IP
↑

UGD - - - - 0.2916 - - - -
FreeControl 0.3017 0.3214 0.3039 - 0.3045 0.3043 0.3016 - -
ControlNet 0.3061 0.3085 0.3008 0.2915 0.2997 0.2987 0.3011 0.2917 0.3023
T2I-Adapter 0.2990 0.3045 - - - - 0.3111 - -
AnyControl 0.3063 0.3032 - - 0.3069 - 0.3089 - -

DISCO 0.2952 0.3329 0.3035 0.2951 0.3189 0.2943 0.2920 0.2968 0.3106

C
L

IP
-a

c
↑

UGD - - - - 5.3704 - - - -
FreeControl 5.0129 5.0010 5.0048 - 5.0520 5.0704 5.4050 - -
ControlNet 5.0973 5.1213 5.1683 5.2763 5.3920 5.2437 5.2956 5.2737 5.0048
T2I-Adapter 5.3498 5.1650 - - - - 5.4802 - -
AnyControl 5.1342 5.0485 - - 4.9362 - 4.8970 - -

DISCO 5.4225 5.4264 5.4575 5.4341 5.3905 5.4284 5.4794 5.3977 5.4730
MSE↓ SSIM↑ SSIM↑ SSIM↑ mIoU↑ MSE↓ mAP↑ mAP↑ SSIM↑

C
on

tr
ol

la
bi

lit
y UGD - - - - 0.6843 - - - -

FreeControl 99.3874 0.4679 0.6159 - 0.7005 0.3569 0.5262 - -
ControlNet 87.3678 0.4754 0.4836 0.7447 0.4428 0.3572 0.4332 0.3092 0.5262
T2I-Adapter 89.8904 0.4786 - - - - 0.5283 - -
AnyControl 88.9634 0.5083 - - 0.3382 - 0.3764 - -

DISCO 86.6756 0.4412 0.4752 0.7793 0.3916 0.3443 0.4043 0.2563 0.6118

5 Experiment

This section presents a comprehensive quantitative and qualitative evaluation of our method, em-
phasizing its training efficiency and enhanced alignment performance. Additionally, we include an
analysis of how dimensionality and codebook size influence the final results.

5.1 Training Details & Efficiency

Unlike ControlNet-style methods [34, 45, 48], our discrete noise prediction network does not require
loading a frozen Stable Diffusion backbone into GPU memory, which significantly improves training
efficiency. Our training process completes in 3 days on a single NVIDIA RTX 3090 (24GB). In
contrast, ControlNet [48], IP-Adapter [45], and AnyControl [34] require an A6000 GPU (48GB) and
3+ days for training, according to our experiments.

We train the discrete noise prediction network for 35 epochs with a batch size of 32, using the Adam
optimizer with a learning rate of 1× 10−5. During training, both input images and condition maps
are resized to 512× 512. We utilize approximately 118,000 images from the COCO2017 dataset [19]
across all conditioning types. For human pose estimation, we use a subset of about 6,500 images
specifically selected from the “person” category.

5.2 Conditional Generation

DISCO effectively integrates diverse conditioning inputs directly into the image generation process
of diffusion models, enabling precise and flexible control over outputs. To demonstrate this capa-
bility, we present ten single-condition examples in Figure 2, covering a wide range of modalities,
including Canny edge [2], MLSD [12], HED [41], Skeleton [3], Location [24], Depth [42], Nor-
mal [35], and Segmentation [5]. These examples highlight the versatility and robustness of DISCO in
accommodating a broad spectrum of visual conditions.
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Condition UGD FreeCtrl ControlNet T2I-Adapter AnyControl Ours

Figure 3: Qualitative Comparison for Controllable Generation under Different Conditions: We
compare our method with five other approaches. Among them, UGD and FreeCtrl belong to the
classifier-based guidance category, while ControlNet, T2I-Adapter, and AnyControl are part of
the classifier-free guidance category. The results demonstrate that our method is competitive with
state-of-the-art techniques.

5.3 Qualitative and Quantitative Comparison

In this section, we present both qualitative and quantitative comparisons to demonstrate the control-
lability of DISCO. It is important to note that not all baseline methods provide publicly available
implementations for handling all types of conditions, such as Depth, Canny, HED, M-LSD, Segmen-
tation, Normal, Skeleton, Location, and Sketch. For conditions that are not supported by a given
method, we leave the corresponding entries blank.

For a thorough quantitative evaluation, we adopt several metrics, including FID [14], CLIP Score [23],
and CLIP Aesthetic Score [28] to assess generation quality. To measure condition controllability, we
use SSIM, mAP, MSE, mIoU. As shown in Table 1, our method consistently outperforms existing
approaches across various conditions. These results demonstrate that DISCO effectively handles
diverse conditioning inputs while producing high-quality, coherent outputs aligned with both textual
prompts and constraints. Overall, DISCO achieves superior performance on most metrics, validating
its advantage over prior methods.

Figure 3 shows examples of DISCO handling various conditions, demonstrating its ability to generate
high-quality results that accurately follow the spatial constraints imposed by the conditioned inputs.
The prompts for the six rows are: “a stone hut perched on a rugged, rocky outcrop”, “a chipmunk
perched on a weathered concrete surface”, “a majestic lion with full mane is captured in raw”, “a
young woman sitting on a wooden dock by the water”, and “a small, curious kitten sitting on a
wooden windowsill”. As illustrated, the generated outputs effectively fulfill the requirements of both
the textual prompts and visual conditions.
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Table 2: Quantitative comparison with state-of-the-art methods on multiple conditioning modalities.
Higher values indicate better performance. DISCO achieves the best results across all conditions.

Depth Canny HED MLSD Seg Normal Skeleton Location Sketch
UGD - - - - 0.12 - - - -
FreeControl 0.10 0.13 0.30 - 0.11 0.34 0.11 - -
ControlNet 0.21 0.28 0.33 0.42 0.23 0.27 0.14 0.37 0.41
T2I-Adapter 0.22 0.11 - - - - 0.25 - -
AnyControl 0.18 0.17 - - 0.24 - 0.19 - -
DISCO (Ours) 0.29 0.31 0.37 0.58 0.30 0.39 0.31 0.63 0.59

Condition

Condition

K = 16

n = 4

K = 256

n = 16

K = 1024

n = 64

K = 4096

n = 256

K = 65536

n = 1024

K = 131072

n = 2048

Figure 4: Conditional Generation Quality with Different Dimensionalities n and Codebook Sizes K.
In the first row, we fix n = 64 and vary K to examine its effect on conditional generation, using the
prompt “stormtrooper behind a lectern.” In the second row, we fix K = 4096 and vary n, with the
prompt “a fluffy white Samoyed dog sitting gracefully on a lush, green lawn.”

5.4 User Study

In this section, we conducted a user study to further validate the effectiveness of our method, the
results of which are summarized in Table 2. For each conditioning type, we randomly selected 50
images. The outputs from different methods were presented to the participants in a random order to
avoid positional bias. Participants were then asked to select the best result based on three criteria:
realism, consistency with the text prompt, and consistency with the input condition.

Each participant answered three formal questions per condition, plus one validation question, resulting
in a total of 28 questions. Responses that failed the validation question were excluded from the
subsequent analysis. To compute the final aggregate score, we employed a weighted scoring scheme
across the three criteria: realism (30%), text alignment (30%), and condition alignment (40%).

We invited volunteers from our research group, which comprises nearly 100 students, to participate
in the study. In total, we collected 76 questionnaires. After filtering out responses that failed the
validation check, 72 were considered valid for the final evaluation.As shown in Table 2, our method
DISCO achieves the best performance across all nine control conditions, significantly outperforming
existing approaches.

5.5 Study for Dimensionality and Codebook Size

DISCO is built on the assumption that a predefined codebook CK
n , constructed from a zero-mean

Gaussian distribution, can effectively approximate samples from a non-zero-mean Gaussian distribu-
tion. This assumption relies on the existence of at least one code vector in the codebook that is closely
aligned in direction with the target mean—i.e., the angle between the selected code vector and the
mean of the non-zero-mean Gaussian distribution is small to act as a reliable proxy for conditional
generation. Theorem 2 guarantees that this assumption holds when the dimension n is moderately
large and the codebook size K is not too small (i.e., n = 64, K = 4096). Here, we analyze how
varying the values of n and K impacts the performance of conditional generation.
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In the first row of Figure 4, we fix n and vary K. When K is small, the generated outputs fail to
align with the conditional input, as the typical maximum of cosine square similarity νCK

n
is close to 0,

meaning the codebook cannot approximate samples from the non-zero-mean Gaussian. When K is
very large, νCK

n
approaches 1, causing the selected code vector to converge with the mean, reducing

randomness in sampling and thereby decreasing output quality. In the second row of Figure 4, we
fix K and vary n. With small n, νCK

n
approaches 1, leading to degraded quality. With large n, νCK

n

approaches 0, causing the codebook to fail in aligning with the target mean and making conditional
control ineffective. We thus conclude that our method is robust for conditional generation only when
n and K are within appropriate ranges, and not at their extreme values.

The configuration (n = 64 = 4× 4× 4,K = 4096) is not the only viable option for discrete noise
control. Alternatives such as (n = 16 = 2×2×4,K = 32) and (n = 256 = 8×8×4,K = 65536)
are also feasible, as defined in Definition 2. However, we exclude these due to training efficiency
concerns. For example, n = 16 requires the discrete noise prediction network to predict 1024 indices,
increasing DiT’s computational cost by 16× compared to the n = 64 setting, which requires only
256 predictions. Conversely, a larger codebook size of K = 65536 significantly raises memory and
computational demands relative to K = 4096. Thus, we adopt (n = 64,K = 4096) as a balanced
and efficient choice.

6 Conclusion

In this paper, we present two key findings: (1) conditional generation in diffusion models can be refor-
mulated as sampling noise from a non-zero-mean Gaussian distribution; and (2) this distribution can
be approximated by selecting noise vectors from a predefined codebook, constructed from standard
Gaussian samples, which serve as discrete proxies for conditional guidance. Based on this discrete
conditional generation perspective, we propose a novel approach—discrete noise prediction—which
differs fundamentally from both classifier-based and classifier-free guidance. Specifically, we employ
DiT to transform the input (zt,i, c) into a noise index ki, indicating the selected entry in the codebook.
Experimental results demonstrate the superiority and adaptability of DISCO.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state DISCO’s contributions and scope.
Claims align with theoretical (Section 3) and experimental results (Section 5).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: The paper does not include the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the proof in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We offer an exhaustive discussion of our DISCO approach in Section 4, where
the theoretical underpinnings and procedural details are laid out. Additionally, experimental
setups and their configurations are elaborated upon in Section 5, providing clarity on how
the method’s effectiveness is empirically validated, enabling others to replicate the results
with the described methodology and datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our intention is to make the code publicly available as open source once our
paper is accepted. However, preparing the code for open source involves extensive work to
facilitate the reproduction of our results by the readers. Currently, our focus is entirely on
the preparation of the paper, which leaves us with limited time to concurrently undertake the
necessary steps to ready the code for open source distribution.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 5.1, we detail our experimental setup, including data splits, hyper-
parameters, and their selection process. Upon acceptance of the paper, we will release the
code, which will include all the detailed settings necessary for replication of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We consider that error bars are not essential for our comparative analysis, as
the focus is on qualitative and quantitative metrics that sufficiently validate the method’s
performance.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our training and inference processes were carried out on a 3090 GPU, as
specified in Section 5.1, including details on the type of compute resources used.
Guidelines:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have meticulously adhered to the NeurIPS Code of Ethics in all aspects of
our work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: We introduce a conditional generation method for Stable Diffusion. Therefore,
both potential positive societal impacts and negative societal impacts of the work performed
are inherently addressed by the Stable Diffusion framework,
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We propose a conditional generation approach for Stable Diffusion, with all
required safeguards naturally incorporated within the Stable Diffusion framework.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We utilize publicly available datasets, such as COCO2017, and cite the original
sources in the paper, respecting their licenses and terms of use.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology of this research does not involve large language models
(LLMs) as important, original, or non-standard elements. The DISCO method relies on
diffusion models without LLM usage in its methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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