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ABSTRACT

Interactive Imitation Learning deals with training a novice policy from expert
demonstrations in an online fashion. The established DAgger algorithm trains a
robust novice policy by alternating between interacting with the environment and
retraining of the network. Many variants thereof exist, that differ in the method of
discerning whether to allow the novice to act or return control to the expert. We
propose the use of stochastic reachtubes - common in verification of dynamical
systems - as a novel method for estimating the necessity of expert intervention.
Our approach does not require fine-tuning of decision thresholds per environment
and effectively reduces the number of expert interventions, especially when com-
pared with related approaches that make use of a doubt classification model.

1 INTRODUCTION

Imitation learning (IL) offers a practical framework for training autonomous agents by mimicking
expert behavior. While supervised methods such as behavioral cloning Pomerleau (1988) are simple
to implement, they suffer from compounding errors due to covariate shift: the trained policy may
visit states at test time that deviate from the expert’s distribution, where it is likely to perform poorly.
To mitigate this, interactive imitation learning algorithms have been proposed, most notably DAg-
ger Ross et al. (2011), which reduces covariate shift by iteratively collecting data from the policy’s
own rollouts while querying the expert for corrective actions.

Despite their effectiveness, DAgger-style approaches raise practical concerns in real-world systems,
where expert interventions can be expensive, time-consuming, or safety-critical. SafeDAgger Zhang
& Cho (2017) addresses this by introducing a safety (or ”doubt”) model to predict when the policy
is likely to deviate from the expert, allowing the system to fall back to the expert only when neces-
sary. LazyDAgger Hoque et al. (2021) further reduces unnecessary switching by adding a hysteresis
mechanism and injecting noise into expert actions to encourage policy robustness. However, both
approaches rely on a learned classification model, which may introduce additional difficulties during
training.

In this paper, we introduce TubeDAgger, a novel interactive imitation learning algorithm that uses
stochastic reachability analysis for creating a decision boundary that is independent of the learner’s
experience. TubeDAgger constructs a stochastic reach-tube before the start of training, and dele-
gates control to the expert only when the experienced states exceed a specified safety threshold in
relation to the reachable set. This leads to fewer expert interventions while maintaining strong pol-
icy performance. Intuitively speaking, a learning model can remain in control - even if it is acting
differently than the expert - as long as it is experiencing a familiar trajectory of observations.

The contributions of our work are as follows:

• We introduce TubeDAgger, a new interactive imitation learning algorithm that uses stochas-
tic reachtubes to reduce the number of expert interventions.

• We demonstrate that TubeDAgger eliminates the need for training and maintaining a sepa-
rate doubt classification model, simplifying training while maintaining safety guarantees.

• We empirically evaluate TubeDAgger across multiple locomotion tasks, demonstrating sig-
nificant reductions in expert intervention frequency while maintaining task performance.
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1. Collect Expert 
Trajectories

3. Train Agent

?

Query expert when
reachtube is violated

2. Construct 
reachtube

(optional)
check for intersection
with unsafe regions!

Figure 1: A schematic of the TubeDAgger approach which encompasses initial collection of expert
trajectories, construction of a reachtube, and employing it as a decision boundary in place of the
doubt model of LazyDAgger.

Figure 1 shows a schematic of our proposed approach. First, expert demonstrations are collected.
They are then used to construct a stochastic reachtube. Optionally, a check for intersection with
known unsafe states can be performed, prompting the collection of more expert data if unsuccessful.
The reachtube is then used as a decision boundary for expert interventions.

The remainder of this paper is organized as follows: Section 2 provides necessary background on
reachability analysis and interactive imitation learning. Section 3 details our TubeDAgger algorithm
and its implementation. Section 4 describes our experimental setup and results. Section 5 discusses
related work in imitation learning and safety-critical control. Finally, Section 6 concludes with
discussions on limitations and future work.

2 BACKGROUND

2.1 INTERACTIVE IMITATION LEARNING

SafeDAgger. In the original DAgger framework Ross & Bagnell (2010), the training process grad-
ually shifts control from the expert to the novice policy. Initially, actions are exclusively taken by
the expert, and over time, the probability of using the novice policy increases linearly. However, a
significant drawback of this approach is the potential for the novice to suggest unsafe or catastrophic
actions – especially in the early stages of training when it is poorly trained. SafeDAgger Zhang &
Cho (2017) addresses this safety concern by constraining the novice to act only when it is sufficiently
close to the expert. Specifically, it introduces a mechanism to assess whether the novice’s predicted
action π̂(s) – at state s – is within a certain distance τm of the expert’s action π∗(s). Formally,
equation 1 should hold at all times for the novice behavior to be considered safe. For measuring the
distance, typically the ℓ2 norm is used denoted by ||.||2.

||π̂(s)− π∗(s)||2 < τm (1)

In practice, a separate safety (or ”doubt”) model is trained to predict whether the novice policy, given
a particular state, will produce an action that lies within the predefined threshold τm of the expert’s
action. At runtime, this doubt model serves as a gatekeeper: if the predicted deviation between the
novice and expert exceeds τm, control is retained by the expert; otherwise, the novice is allowed to
act. After collecting a batch of trajectories – including both policy-executed and expert-controlled
segments – SafeDAgger performs the following training steps:

• The policy is updated via supervised learning on all states labeled by the expert, including
those collected with noisy expert actions.

• The doubt model is trained as a binary classifier to predict whether the expert would be
needed in a given state, using the collected trajectories and corresponding labels (policy vs.
expert control).
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The approach reduces the risk of unsafe behavior while still enabling data collection from the novice.
By enforcing this margin-based constraint, SafeDAgger achieves a better trade-off between safety
and exploration compared to the original DAgger formulation.

LazyDAgger. LazyDAgger Hoque et al. (2021) is an extension of SafeDAgger that aims to reduce
the frequency of context switches between the expert and the novice during data collection. Frequent
switching can lead to unstable behavior, reduced training signal quality, and increased dependence
on the expert. LazyDAgger introduces two key modifications to address these issues:

• Hysteresis via dual thresholds: Unlike SafeDAgger, which relies on a single threshold for
the uncertainty predicted by a doubt model, LazyDAgger introduces two separate thresh-
olds: a high threshold τh and a low threshold τl, with τh > τl. These thresholds implement
a hysteresis mechanism for control switching.
Control is handed over to the expert when the predicted uncertainty exceeds τh, and it is
only returned to the policy once the uncertainty falls below τl. This prevents rapid switch-
ing near the threshold boundary and results in more stable control delegation.

• Noise injection in expert actions: To improve the robustness and generalization of the
learned policy, LazyDAgger injects noise into the expert’s actions during data collection.
This encourages the collection of more diverse trajectories and exposes the policy to a wider
range of states, helping it to learn more effectively beyond deterministic expert behavior.

These modifications enable LazyDAgger to reduce the number of expert interventions required while
improving data efficiency and policy robustness.

2.2 STOCHASTIC REACH-TUBE VERIFICATION OF DYNAMICAL SYSTEMS

Lagrangian reachability is a powerful technique for analyzing the evolution of dynamical systems
under uncertainty. It constructs over-approximations of all states a system can reach over a finite
time horizon by propagating sets of initial conditions through the dynamics. In the stochastic setting,
these methods quantify uncertainty by incorporating probabilistic models of noise and disturbances,
making them well-suited for verification and safety analysis from robotics to autonomous systems.

Stochastic Lagrangian Reachability (SLR) Gruenbacher et al. (2020) computes tight probabilistic
reach-tubes for nonlinear systems by solving global optimization problems over disturbance real-
izations. These tubes serve as formal guarantees: they bound the probability that the system will
remain within or exit a target set over time. In contrast to grid-based approaches like Hamilton-
Jacobi reachability, which suffer from the curse of dimensionality, Lagrangian methods are more
scalable and can be applied to higher-dimensional systems. Furthermore, they support both over-
and under-approximations of reach-avoid sets, which are crucial in applications ranging from the
traditional collision avoidance and spacecraft docking Gleason et al. (2017), to the emerging field of
neural-network-control verification.

GoTube. GoTube Gruenbacher et al. (2022) is a recent approach that brings Lagrangian reachabil-
ity to deep learning pipelines. It constructs stochastic reach-tubes for black-box models, including
neural network policies, by propagating probabilistic input distributions through nonlinear dynamics
and learned components. GoTube achieves this by combining Lipschitz bounds, Gaussian approxi-
mations, and randomized smoothing techniques to efficiently estimate forward reachable sets under
uncertainty.

Unlike traditional verification tools that require full system linearization or access to gradients, Go-
Tube is designed to work with non-differentiable or opaque policies, making it highly practical for
modern learning-based systems. It outputs tubes that contain the probabilistic future behavior of the
system with a prescribed confidence level, enabling anticipatory safety decisions. As such, GoTube
enables robust planning and control under uncertainty, and it is as a consequence particularly attrac-
tive for use in safety-critical learning pipelines. In this work, we leverage GoTube to construct a
tube bounding states visited by a learned expert policy. We leverage this knowledge of typical states
visited by the expert, by incorporating it into an interactive imitation learning loop to identify states
visited by the novice requiring expert intervention.
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Formally, stochastic reach-tube verification constructs a probabilistic enclosure around a system’s
possible trajectories over time, providing statistical guarantees on system behavior. Given an initial
set of states B0, the method generates a bounding tube, a sequence of bounding sets that stochasti-
cally encapsulates all potential states with a predefined confidence level 1− γ with 1 > γ > 0. The
core of this approach relies on computing the maximum perturbation δt at each timestep:

δt ≥ max
x∈B0

||χ(t, x)− χ(t, x0)|| = max
x∈B0

dt(x) (2)

where xt is the system state at time t, starting from the initial point x ∈ B0 with being the ball
containing all initial states centered at x0. The key challenge is ensuring the resulting bounding
tube remains tight, avoiding over-approximation, while maintaining conservativeness within a de-
sired confidence interval. To achieve this, stochastic reach-tube methods leverage Lipschitz continu-
ity. Traditional interval-based techniques compute worst-case Lipschitz constants, leading to overly
conservative bounds. Instead, stochastic Lipschitz caps are derived by bounding the local Lipschitz
constants with a quantile-based stochastic lower bound ∆λx,V . The radius of each stochastic cap is
computed as in equation 3.

rx =
−λx +

√
λ2
x + 4 ·∆λx,V · (µ · m̄t,V − dt(x))

2 ·∆λx,V
(3)

where V is the set of sampled traces, m̄t,V is the maximum perturbation of those at time t, and µ is
the tightness factor controlling the tube’s balance between conservativeness and accuracy. The al-
gorithm iteratively expands the set of sampled trajectories, refining the stochastic caps until the total
surface coverage achieves the desired confidence level γ. Convergence of the method is guaranteed
by Theorem 2 of Gruenbacher et al. (2022). Equation 4 states accordingly, that for every γ, there
exists an N = |V | such that the probability of any sample exceeding the true maximum perturbation
m∗

t is smaller than γ.

∀γ ∈ (0, 1),∃N ∈ N s.t. Pr(µ · m̄j,V ≤ m∗
j ) ≥ 1− γ (4)

This ensures the algorithm terminates with a valid bounding tube, even under stochastic pertur-
bations. Unlike deterministic reachability methods, which suffer from wrapping effects and com-
pounding over-approximation errors, stochastic reach-tube verification maintains stability over long
time horizons by statistically bounding perturbations at each time step independently. The result is a
scalable, probabilistically sound verification approach that supports high-dimensional, continuous-
time systems. The approach particularly allows verifying systems governed by nonlinear ordinary
differential equations (ODEs) and controlled by neural networks.

Safety during interaction with the environment when training the novice policy was the main con-
cern that led to the development of many DAgger variants. The stochastic reach-tube verification
approach outlined above can be used to classify the safety of a state and/or action. This means
that we can replace the doubt model found in SafeDAgger with a Lagrangian reach-tube that was
computed from expert trajectories beforehand. We call the resulting algorithm TubeDAgger. The
advantage of this approach is that the criterion does not require any tuning of environment-dependent
thresholds, given a reasonably tight reach-tube was computed beforehand.

3 TUBEDAGGER

We will now introduce TubeDAgger, a novel interactive imitation learning algorithm based on
LazyDAgger, that employs stochastic reachtubes for the switching between autonomous and ex-
pert control. For this, we first compute a reachtube from a dataset of expert trajectories using an
existing reachability tool. We then deploy a novice policy alongside an expert to learn from the
experts’ demonstrations. In order to achieve a robust novice policy, we allow the novice to take
control from the expert when the current state is deemed safe. We consider a state to be safe if it is
well inside the reachtube (a more formal definition of this requirement follows below).
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Algorithm 1 TubeDAgger
Require: Expert policy: π∗(a|s), novice policy: π̂θ(a|s), intervention thresholds β+, β−, dataset

of expert trajectories D, reach-tube for expert: (C,R,A), noise strength σ2

while not converged do
s0 ← Initialize environment state
Mode← Autonomous
for t = 0 to T do

if Mode = Supervisor or ||At(st − ct)
⊤||2 > rtβ+ then

a∗t = π∗(st)
D ← D ∪ {(st, a∗t )}
st+1 ← Execute ã∗t ∼ N (a∗t , σ

2I)
if ||At(st − ct)

⊤||2 r−1
t < β− then

Mode← Autonomous
else

Mode← Supervisor
end if

else
st+1 ← Execute π̂θ(st)

end if
end for
θ ← argminθ E(st,π̂(st))∼D [L (π∗ (st) , π̂ (st, θ))]

end while

We compute the tube for bounding observations using the GoTube Gruenbacher et al. (2022) pack-
age available on GitHub. With GoTube, we can generate a reach-tube given the expert controller
and system. The tube contains information about what sequence of states the expert is likely to visit.
When a state is outside the tube, it can be considered unsafe. We use this as the criterion for expert
intervention in LazyDAgger. We assume that the closer a state is to the center of the tube, the more
confident is the expert about successfully controlling the system. Therefore, we introduce a safety
margin and hand back control to the expert when the distance of the current state to the tube center is
larger than β+ times the tube radius. Note that the tube criterion fully replaces the need for a doubt
prediction model like in LazyDAgger.

The tube is given as a sequence of (c, r, A, τ)t where τ is the time elapses since the episode start
and c and A are the center of the tube and A the metric defining the bounding ellipsoid at that time,
respectively. Together, they can be used to check states for inclusion in the ellipsoid defined by
using the affine transformation described by the metric and center. The current state st is mapped
to the unit circle using the inverse transformation of the ellipsoid At(st − ct). If the transformed
state lies within the unit ball, the state before transformation is included in the ellipsoid tube. States
that lie outside of the tube are considered unsafe and require training. In this case, the expert action
is computed and executed. Samples with states that violate the safety condition are appended to
the dataset. Algorithm 1 outlines the TubeDAgger approach. After T steps in the environment, the
novice policy is trained using the aggregated dataset. The loss function used is the mean squared
error between expert action and novice prediction.

3.1 LIMITATIONS

One noteworthy limitation of TubeDAgger is that it requires knowledge of the temporal alignment of
the system within a trajectory. Specifically, we need to know which ct, At and rt correspond to the
current state st. Future work will explore dynamic time alignment methods, such as particle filtering,
and assess the method’s scalability to more complex robotic platforms and real-world domains.

It is also important to note, that the benefits discussed in this paper depend a lot on the quality of the
reach-tube that is constructed beforehand. If the tube is too narrow, the algorithm will deteriorate to
behavioral cloning; if it is too conservative, the training process will converge prematurely resulting
in a sub-optimal novice policy. Computing a reach-tube for high-dimensional systems can be com-
putationally expensive depending on the algorithm used. However, the tube needs to be computed
only once - before the start of the imitation learning.

5
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Figure 2: Reachtube for a 2D navigation toy example. The agent start on the right has to reach the
goal position on the left while avoiding the gray walls. Left: The tube is depicted in purple; yellow
and green respectively show the 0.7 and 0.2 boundaries used by TubeDAgger. Right: Reward curves
for the imitator evaluation reward (blue) and the reward achieved by the combined imitator-expert
agent (orange).

4 EXPERIMENTS

4.1 2D NAVIGATION TOY EXAMPLE

In order to demonstrate how TubeDAgger works in practice, we devised a simple 2D navigation toy
example depicted in figure 2. Here, the task is to navigate from the starting position on the right to
the goal position on the left – without crashing into the walls. We trained an expert policy RTRRL
Lemmel & Grosu (2025) and then computed the reachtube from collected evaluation rollouts. Sub-
sequently, we trained a novice policy using TubeDAgger. The reward curves that resulted from the
training process are decpicted in figure 2 on the right. The straight orange line on the top shows how
safety is ensured at all times during data collection using the combined imitator-expert agent.

4.2 MUJOCO PHYSICS SIMULATION

We further test our TubeDAgger approach empirically, on a set of continuous control tasks com-
monly known as Mujoco environments. MuJoCo (Multi-Joint dynamics with Contact) is a fast,
accurate physics engine for simulating multi-body systems, widely used in robotics, biomechanics,
and reinforcement learning (RL). It supports customizable environments with realistic physical in-
teractions and is a go-to tool for RL research. Brax is a lightweight reimplementation of MuJoCo
in JAX, designed for fast, GPU/TPU-accelerated simulations. It offers similar environments and is
optimized for scalable RL training and differentiation. Brax also provides reference implemenations
of state-of-the-art reinforcement learning algorithm, and tuned hyperparameters for every environ-
ment facilitating training of expert policies. We use the environments included in the brax package
for the evaluation of TubeDAgger in simulation. The environments are: inverted pendulum,
inverted double pendulum, ant, and halfcheetah. We trained an expert policy for each
environment using the provided PPO implementation.

We implemented a wrapper for expert policies to be used by GoTube, to compute a reach-tube en-
capsulating typical observations. Additionally, we constructed a second kind of tube with additional
dimensions for the action added. The hyperparameter setting we used for all tasks were: γ = 0.2,
µ = 1.0, ellipsoids=True, radius= 0.01 and batch size= 512. Figure 5 shows plots of the first two
system dimensions for some of the generated tubes.

Having computed the necessary tubes, we ran imitation learning experiments with our TubeDAgger
algorithm, using both sets of tubes described above. We also recorded experiments with LazyDAg-
ger as a baseline. For all, we ran 5 runs using different thresholds in each environment. The results
are shown in Figures 7, 8 and 9.
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Figure 3: Boxplots showing the validation rewards for 5 runs each of LazyDAgger and TubeDAg-
ger with different lower and upper thresholds for the action distance. Top row shows results for
LazyDAgger and bottom row for TubeDAgger. When comparing to the LazyDAgger results above,
we can see that TubeDAgger is more robust to the choice of threshold.

Figure 4: Boxplots showing the percentage of novice actions at the end of training for 5 runs each
with different lower and upper thresholds. The top row shows LazyDAgger and the bottom row
TubeDAgger results. Again, we can see improved robustness to hyperparameter choice when com-
pared to LazyDAgger.
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ant halfcheetah

Figure 5: Reach-tubes generated by GoTube. The plots show the first two dimensions of the respec-
tive system as x- and y-axes with the z-axis denoting time.

Table 1 shows the validation rewards achieved by the trained novice policies in comparison to the
expert policies. The reported numbers are for the best thresholds found during the hyperparameter
sweep. Tables 3 and 4 in the Appendix show the complete results.

Finally, we depict the highest percentage of policy actions in Figure 10 as a boxplot, and as line plots
for two selected environments in Figure 11. We further show the number of context switches for
LazyDAgger vs TubeDAgger in table 6. These figures are from models trained with bounds (0.1, 1)
and (0.5, 0.8) for LazyDAgger und TubeDAgger respectively. Especially for the inverted pendulum
environment, the number of context switches was reduced drastically.

LazyDAgger EnsembleDAgger TubeDAgger
Environment
ant 8013.46±103.36 8065.50±38.69 7739.51±139.28
halfcheetah 10197.03±403.71 10789.82±111.25 9134.71±732.20
inverted double pendulum 8651.46±615.54 8665.62±503.88 9359.60±377.46
inverted pendulum 1000.00±0.00 1000.00±0.00 1000.00±0.00

Table 1: Comparison of evaluation rewards across algorithms for different environments. Given are
the median reward and standard deviation for five runs each of the best respective hyperparameter
configuration. It has to be noted that EnsembleDAgger used 5× the number of parameters.

5 RELATED WORK

5.1 INTERACTIVE IMITATION LEARNING

DAgger provides formal guarantees on policy performance but requires significant expert super-
vision. Various extensions of DAgger have been proposed, including SafeDAgger Zhang & Cho
(2017), which uses a safety predictor to reduce expert queries, and EnsembleDAgger Menda et al.

LazyDAgger EnsembleDAgger TubeDAgger
Environment
ant 242.00±200.98 219.80±54.88 186.50±34.85
halfcheetah 536.20±357.23 109.20±131.45 84.00±4.24
inverted double pendulum 2327.20±1214.42 0.00±0.00 0.00±0.00
inverted pendulum 1426.40±221.35 283.60±58.03 31.60±14.52

Table 2: Supervisor burden as in Hoque et al. (2021) with cost for switching and per step assumed
as 1 and 0.1 respectively.

8
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(2019), which leverages uncertainty estimates from model ensembles to guide expert intervention.
Interactive learning methods reduce the burden on experts by querying them selectively. LazyDAg-
ger Hoque et al. (2021) introduced a doubt-based intervention mechanism that requests expert feed-
back only when the learner’s confidence falls below a threshold, requiring a separate doubt classi-
fication model. Similarly, DART Laskey et al. (2017) adds noise during expert demonstrations to
better cover states where the learner might make mistakes.

Active learning approaches further minimize expert interactions by querying only the most infor-
mative states. CEIL Cheng et al. (2018) employs importance sampling to focus expert feedback on
difficult states. HG-DAgger Kelly et al. (2019) uses human gaze data to identify critical states re-
quiring expert attention. Our work differs from these approaches by leveraging reachability analysis
rather than classification or uncertainty measures to determine when expert intervention is necessary.

Safety guarantees are crucial in robotics and autonomous systems. Risk-Sensitive Generative Ad-
verserial Imitation Learning Lacotte et al. (2019) optimizes policies considering the risk of constraint
violations. SafetyNet Vitelli et al. (2022) uses neural networks to predict and avoid unsafe actions.
Recently, a shielding approach based on control-barrier functions and inverse reinforcement learn-
ing was introduced, that aims at resampling actions in order to find a safe continuation Yang et al.
(2024). Another recent approach called RACER Dai et al. (2024) incorporates language models to
generate recovery plans in robotics applications. Our work combines elements from these safety-
critical approaches with interactive imitation learning.

5.2 REACHABILITY ANALYSIS AND STOCHASTIC REACHTUBES

Reachability analysis computes the set of states a system can reach over time. Deterministic reach-
ability has been extensively studied for verification of hybrid systems Althoff (2015), but is often
too conservative for practical use in uncertain environments. Stochastic reachability extends this
concept to systems with probabilistic dynamics Summers & Lygeros (2010). Stochastic reachtubes
represent the probability distribution of future states given the current state and action. Recent
work has developed computationally efficient methods for approximating these tubes, including ap-
proaches based on Hamilton-Jacobi reachability analysis Bansal et al. (2017), Gaussian processes
Jackson et al. (2020), and neural network surrogates Hashemi et al. (2023). Our TubeDAgger al-
gorithm builds upon these advances, using stochastic reachtubes to make informed decisions about
when expert intervention is necessary.

5.3 LEARNING WITH MINIMAL EXPERT SUPERVISION

Several approaches aim to minimize expert supervision in learning complex behaviors. Methods like
TAMER Knox & Stone (2009) and COACH MacGlashan et al. (2017) incorporate human feedback
into the learning process. One-shot imitation learning Duan et al. (2017) attempts to generalize from
a single demonstration. Semi-supervised approaches like PLATO Kahn et al. (2017) combine small
amounts of expert data with larger unlabeled datasets.

Most closely related to our work is LazyDAgger Hoque et al. (2021), which selectively requests ex-
pert intervention. However, LazyDAgger relies on a doubt classification model that must be trained
alongside the policy, potentially introducing additional complexity and failure modes. TubeDAgger
addresses this limitation by replacing the doubt classifier with stochastic reachtubes, providing a
more principled approach to determining when expert intervention is necessary while maintaining
theoretical guarantees on policy performance.

6 CONCLUSIONS

We introduced TubeDAgger, an interactive imitation learning algorithm that leverages stochastic
reach-tube verification to determine safe regions for novice control. Unlike previous methods that
rely on manually tuned doubt models or distance thresholds, TubeDAgger uses precomputed reach-
tubes to define safety regions with probabilistic guarantees, making it more principled and gener-
alizable. Our results on simulated Mujoco environments demonstrate that TubeDAgger achieves
comparable or better performance than LazyDAgger while requiring fewer expert interventions.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 HARDWARE

All experiments were run on a NVIDIA RTX A6000 GPU. Each imitation learning run took up to
15 minutes and a total of around 1000 runs were made for this work. Time needed for computing
the reach-tubes ranged from ten minutes to three hours, depending on the number of dimensions of
the system.

A.2 PARAMETER SWEEP RESULTS

B A DETAILED DESCRIPTION OF GOTUBE
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Table 3: Validation reward for LazyDAgger with different thresholds (β−, β+).
env name ant halfcheetah humanoid
distance expert

(0.1, 1) 8017.84±118.03 9676.12±513.90 2275.57±2603.89
(0.1, 0.5) 7962.76±79.77 9560.95±741.55 683.50±235.85
(0.5, 1) 5884.67±706.56 8645.16±515.87 588.51±202.57
(1, 3) 5473.15±1174.49 7975.40±1018.68 3606.54±3754.95
(2, 5) 5241.45±1344.84 5536.32±1373.67 2807.24±2064.10

env name humanoidstandup inverted double pendu-
lum

inverted pendulum

distance expert

(0.1, 1) 30707.32±9085.59 8863.28±488.98 1000.00±0.00
(0.1, 0.5) 24749.00±2776.67 8953.03±372.75 1000.00±0.00
(0.5, 1) 24186.32±3263.30 2692.36±732.63 1000.00±0.00
(1, 3) 27576.50±7418.80 1927.51±2130.59 709.83±467.23
(2, 5) 31118.04±4171.12 267.88±113.42 23.64±9.68

Table 4: Validation reward for TubeDAgger with different thresholds (β−, β+) where the tube was
only computed for the observations.

env name ant halfcheetah humanoid
tube

(0.9, 1) 4319.88±4066.52 -340.44±8029.05 1347.41±3892.09
(0.5, 0.8) 7763.23±231.48 7338.22±1207.44 6225.94±4050.18
(0.8, 1) 7754.41±72.98 4365.11±1190.94 5564.08±3123.07
(0.7, 0.9) 7896.50±128.21 5191.67±970.89 4750.66±3614.40

env name humanoidstandup inverted double pendulum inverted pendulum
tube

(0.9, 1) 18475.72±18429.99 5576.68±4593.79 510.85±515.63
(0.5, 0.8) 37125.20±902.68 9081.94±383.73 1000.00±0.00
(0.8, 1) 34638.83±3405.72 9084.03±378.35 1000.00±0.00
(0.7, 0.9) 35822.89±2461.51 9082.89±382.14 1000.00±0.00

Parameter Name Value
γ 0.2
µ 1.0
ellipsoids True
radius 0.1
batch size 512

Table 8: GoTube hyperparameter set-
tings used for generating reachtubes.

The sequence of (ct, rt, At) is computed using the Go-
Tube algorithm. The algorithm starts from a ball of ini-
tial states defined by center point c0 and radius r0 (Note
that since it starts from a ball A0 is the unit matrix). It
proceeds by iteratively sampling a batch of initial states
from the surface of the ball, and requesting expert roll-
outs. For each step, an ellipsoid - defined by matrix At

together with a radius rt and center ct - is chosen in a
way, that ensures that all the states St reachable by the
expert are contained with probability 1− γ. Specifically,
At is computed from the set of states by rotating using
PCA components and then scaling the data points; At represents the combined transformation that
makes all the states lie within the unit circle. We refer to the original GoTube paper for details on
how the target probability is guaranteed. It can happen that the probability can not be met with the
initial set of trajectories, in which case another batch of expert trajectories is requested.

Table 8 shows the hyperparamters that were used for computing the reachtubes used in this work.
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Table 5: Validation reward for TubeDAgger with different thresholds (β−, β+) where the action was
included in the tube.

env name ant halfcheetah humanoid
tube

(0.9, 1) -764.86±329.67 -855.54±3362.10 -1384.55±1546.98
(0.5, 0.8) 7916.78±182.73 9217.55±746.29 3234.53±1942.81
(0.8, 1) 8041.32±45.40 8894.91±856.02 5104.33±4109.95
(0.7, 0.9) 7936.43±113.75 9327.90±381.18 2751.54±3738.62

env name humanoidstandup inverted double pendulum inverted pendulum
tube

(0.9, 1) 11182.78±9494.46 281.59±151.54 21.70±7.44
(0.5, 0.8) 37447.19±2266.80 9081.94±383.73 1000.00±0.00
(0.8, 1) 36009.31±1381.47 9081.94±383.73 1000.00±0.00
(0.7, 0.9) 33010.53±7481.98 9081.94±383.73 1000.00±0.00

LazyDAgger EnsembleDAgger TubeDAgger
env name

ant 171.50±186.61 235.00±27.63 10.00±6.16
halfcheetah 316.00±151.09 66.00±34.01 30.50±7.20
humanoid 602.00±19.07 NaN 49.00±4.87
humanoidstandup 643.00±125.40 NaN 61.00±2.55
inverted double pendulum 118.00±186.12 188.00±1.58 0.00±0.00
inverted pendulum 94.00±202.12 155.00±22.92 0.00±0.00
pusher NaN 323.00±7.77 NaN
reacher NaN nan±nan NaN

Table 6: The number of context switches until solved.

LazyDAgger EnsembleDAgger TubeDAgger
env name

ant 0.00±7.08 1.00±0.89 2.00±1.44
halfcheetah 1.00±5.58 0.00±0.89 3.50±4.47
humanoid 1.00±15.69 NaN 1.00±0.84
humanoidstandup 0.00±2.38 NaN 0.00±0.44
inverted double pendulum 1.00±3.79 0.00±0.00 0.00±0.00
inverted pendulum 2.00±4.12 1.00±1.14 0.00±0.00
pusher NaN 0.00±0.00 NaN
reacher NaN nan±nan NaN

Table 7: The total number of expert actions until solved.
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Figure 6: A plot as created by GoTube that shows the reach-tube’s normalized volume over time
and the first two system variables. Green crosses show the sample with the largest distance (over all
dimensions) to the center at this step in time.

B.1 SAFETY GUARANTEES

After training an imitator, we can also compute a reachtube for the resulting policy. We then can
check for containment in the initial tube to obtain a safety guarantee. If the time-indexed sequence
of sets - that cover all possible imitator traces with probability p - are all contained within the
corresponding sets of the initial tube, then the tube is as safe as the expert policy with probability p.

Formally, if T π = {Tπ
0 , T

π
1 , . . . , T

π
K} is the time-indexed sequence of sets (the reachtube) for the

imitator policy π, such that

Pr
(
xπ
j ∈ Tπ

j ∀j = 0, . . . ,K
)
≥ p,

and if the expert (reference) tube is T E =
{
TE
0 , TE

1 , . . . , TE
K

}
, then the safety guarantee can be

stated as:

If ∀j ∈ {0, . . . ,K} : Tπ
j ⊆ TE

j , then T π is as safe as T E with probability p,

i.e.,

[
∀j : Tπ

j ⊆ TE
j and Pr

(
xπ
j ∈ Tπ

j ∀j
)
≥ p

]
=⇒ imitator as safe as expert with probability p.

C ADDITIONAL RESULTS
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Figure 7: Boxplots showing the validation rewards for 5 runs each of LazyDAgger with different
lower and upper thresholds for the action distance.

Figure 8: Boxplots showing the validation rewards for 5 runs each of TubeDAgger with different
lower and upper thresholds for the distance from the tube center. When comparing to the LazyDAg-
ger results above, we can see that TubeDAgger is more robust to the choice of threshold.

Figure 9: Boxplots showing the validation rewards for 5 runs each of TubeDAgger with different
lower and upper thresholds for the distance from the tube center. When comparing to the LazyDAg-
ger results above, we can see that TubeDAgger is more robust to the choice of threshold.
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Figure 10: Boxplots showing the percentage of novice actions at the end of training for 5 runs
each with different lower and upper thresholds. The top row shows LazyDAgger and the bottom
row TubeDAgger results. Again, we can see improved robustness to hyperparameter choice when
compared to LazyDAgger.

Figure 11: The mean percentage of novice actions aggregated over all our runs.
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