
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TUBEDAGGER: REDUCING THE NUMBER OF EXPERT
INTERVENTIONS WITH STOCHASTIC REACH-TUBES

Anonymous authors
Paper under double-blind review

ABSTRACT

Interactive Imitation Learning deals with training a novice policy from expert
demonstrations in an online fashion. The established DAgger algorithm trains a
robust novice policy by alternating between interacting with the environment and
retraining of the network. Many variants thereof exist, that differ in the method of
discerning whether to allow the novice to act or return control to the expert. We
propose the use of stochastic reachtubes - common in verification of dynamical
systems - as a novel method for estimating the necessity of expert intervention.
Our approach does not require fine-tuning of decision thresholds per environment
and effectively reduces the number of expert interventions, especially when com-
pared with related approaches that make use of a doubt classification model.

1 INTRODUCTION

Imitation learning (IL) offers a practical framework for training autonomous agents by mimicking
expert behavior. While supervised methods such as behavioral cloning Pomerleau (1988) are simple
to implement, they suffer from compounding errors due to covariate shift: the trained policy may
visit states at test time that deviate from the expert’s distribution, where it is likely to perform poorly.
To mitigate this, interactive imitation learning algorithms have been proposed, most notably DAg-
ger Ross et al. (2011), which reduces covariate shift by iteratively collecting data from the policy’s
own rollouts while querying the expert for corrective actions.

Despite their effectiveness, DAgger-style approaches raise practical concerns in real-world systems,
where expert interventions can be expensive, time-consuming, or safety-critical. SafeDAgger Zhang
& Cho (2017) addresses this by introducing a safety (or ”doubt”) model to predict when the policy
is likely to deviate from the expert, allowing the system to fall back to the expert only when neces-
sary. LazyDAgger Hoque et al. (2021) further reduces unnecessary switching by adding a hysteresis
mechanism and injecting noise into expert actions to encourage policy robustness. However, both
approaches rely on a learned classification model, which may introduce additional difficulties during
training.

In this paper, we introduce TubeDAgger, a novel interactive imitation learning algorithm that uses
stochastic reachability analysis for creating a decision boundary that is independent of the learner’s
experience. TubeDAgger constructs a stochastic reach-tube before the start of training, and dele-
gates control to the expert only when the experienced states exceed a specified safety threshold in
relation to the reachable set. This leads to fewer expert interventions while maintaining strong pol-
icy performance. Intuitively speaking, a learning model can remain in control - even if it is acting
differently than the expert - as long as it is experiencing a familiar trajectory of observations.

The contributions of our work are as follows:

• We introduce TubeDAgger, a new interactive imitation learning algorithm that uses stochas-
tic reachtubes to reduce the number of expert interventions.

• We demonstrate that TubeDAgger eliminates the need for training and maintaining a sepa-
rate doubt classification model, simplifying training while maintaining safety guarantees.

• We empirically evaluate TubeDAgger across multiple locomotion tasks, demonstrating sig-
nificant reductions in expert intervention frequency while maintaining task performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1. Collect Expert
Trajectories

3. Train Agent

?

Query expert when
reachtube is violated

2. Construct
reachtube

(optional)
check for intersection
with unsafe regions!

Figure 1: A schematic of the TubeDAgger approach which encompasses initial collection of expert
trajectories, construction of a reachtube, and employing it as a decision boundary in place of the
doubt model of LazyDAgger.

Figure 1 shows a schematic of our proposed approach. First, expert demonstrations are collected.
They are then used to construct a stochastic reachtube. Optionally, a check for intersection with
known unsafe states can be performed, prompting the collection of more expert data if unsuccessful.
The reachtube is then used as a decision boundary for expert interventions.

The remainder of this paper is organized as follows: Section 2 provides necessary background on
reachability analysis and interactive imitation learning. Section 3 details our TubeDAgger algorithm
and its implementation. Section 4 describes our experimental setup and results. Section 5 discusses
related work in imitation learning and safety-critical control. Finally, Section 6 concludes with
discussions on limitations and future work.

2 BACKGROUND

2.1 INTERACTIVE IMITATION LEARNING

SafeDAgger. In the original DAgger framework Ross & Bagnell (2010), the training process grad-
ually shifts control from the expert to the novice policy. Initially, actions are exclusively taken by
the expert, and over time, the probability of using the novice policy increases linearly. However, a
significant drawback of this approach is the potential for the novice to suggest unsafe or catastrophic
actions – especially in the early stages of training when it is poorly trained. SafeDAgger Zhang &
Cho (2017) addresses this safety concern by constraining the novice to act only when it is sufficiently
close to the expert. Specifically, it introduces a mechanism to assess whether the novice’s predicted
action π̂(s) – at state s – is within a certain distance τm of the expert’s action π∗(s). Formally,
equation 1 should hold at all times for the novice behavior to be considered safe. For measuring the
distance, typically the ℓ2 norm is used denoted by ||.||2.

||π̂(s)− π∗(s)||2 < τm (1)

In practice, a separate safety (or ”doubt”) model is trained to predict whether the novice policy, given
a particular state, will produce an action that lies within the predefined threshold τm of the expert’s
action. At runtime, this doubt model serves as a gatekeeper: if the predicted deviation between the
novice and expert exceeds τm, control is retained by the expert; otherwise, the novice is allowed to
act. After collecting a batch of trajectories – including both policy-executed and expert-controlled
segments – SafeDAgger performs the following training steps:

• The policy is updated via supervised learning on all states labeled by the expert, including
those collected with noisy expert actions.

• The doubt model is trained as a binary classifier to predict whether the expert would be
needed in a given state, using the collected trajectories and corresponding labels (policy vs.
expert control).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The approach reduces the risk of unsafe behavior while still enabling data collection from the novice.
By enforcing this margin-based constraint, SafeDAgger achieves a better trade-off between safety
and exploration compared to the original DAgger formulation.

LazyDAgger. LazyDAgger Hoque et al. (2021) is an extension of SafeDAgger that aims to reduce
the frequency of context switches between the expert and the novice during data collection. Frequent
switching can lead to unstable behavior, reduced training signal quality, and increased dependence
on the expert. LazyDAgger introduces two key modifications to address these issues:

• Hysteresis via dual thresholds: Unlike SafeDAgger, which relies on a single threshold for
the uncertainty predicted by a doubt model, LazyDAgger introduces two separate thresh-
olds: a high threshold τh and a low threshold τl, with τh > τl. These thresholds implement
a hysteresis mechanism for control switching.
Control is handed over to the expert when the predicted uncertainty exceeds τh, and it is
only returned to the policy once the uncertainty falls below τl. This prevents rapid switch-
ing near the threshold boundary and results in more stable control delegation.

• Noise injection in expert actions: To improve the robustness and generalization of the
learned policy, LazyDAgger injects noise into the expert’s actions during data collection.
This encourages the collection of more diverse trajectories and exposes the policy to a wider
range of states, helping it to learn more effectively beyond deterministic expert behavior.

These modifications enable LazyDAgger to reduce the number of expert interventions required while
improving data efficiency and policy robustness.

2.2 STOCHASTIC REACH-TUBE VERIFICATION OF DYNAMICAL SYSTEMS

Lagrangian reachability is a powerful technique for analyzing the evolution of dynamical systems
under uncertainty. It constructs over-approximations of all states a system can reach over a finite
time horizon by propagating sets of initial conditions through the dynamics. In the stochastic setting,
these methods quantify uncertainty by incorporating probabilistic models of noise and disturbances,
making them well-suited for verification and safety analysis from robotics to autonomous systems.

Stochastic Lagrangian Reachability (SLR) Gruenbacher et al. (2020) computes tight probabilistic
reach-tubes for nonlinear systems by solving global optimization problems over disturbance real-
izations. These tubes serve as formal guarantees: they bound the probability that the system will
remain within or exit a target set over time. In contrast to grid-based approaches like Hamilton-
Jacobi reachability, which suffer from the curse of dimensionality, Lagrangian methods are more
scalable and can be applied to higher-dimensional systems. Furthermore, they support both over-
and under-approximations of reach-avoid sets, which are crucial in applications ranging from the
traditional collision avoidance and spacecraft docking Gleason et al. (2017), to the emerging field of
neural-network-control verification.

GoTube. GoTube Gruenbacher et al. (2022) is a recent approach that brings Lagrangian reachabil-
ity to deep learning pipelines. It constructs stochastic reach-tubes for black-box models, including
neural network policies, by propagating probabilistic input distributions through nonlinear dynamics
and learned components. GoTube achieves this by combining Lipschitz bounds, Gaussian approxi-
mations, and randomized smoothing techniques to efficiently estimate forward reachable sets under
uncertainty.

Unlike traditional verification tools that require full system linearization or access to gradients, Go-
Tube is designed to work with non-differentiable or opaque policies, making it highly practical for
modern learning-based systems. It outputs tubes that contain the probabilistic future behavior of the
system with a prescribed confidence level, enabling anticipatory safety decisions. As such, GoTube
enables robust planning and control under uncertainty, and it is as a consequence particularly attrac-
tive for use in safety-critical learning pipelines. In this work, we leverage GoTube to construct a
tube bounding states visited by a learned expert policy. We leverage this knowledge of typical states
visited by the expert, by incorporating it into an interactive imitation learning loop to identify states
visited by the novice requiring expert intervention.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Formally, stochastic reach-tube verification constructs a probabilistic enclosure around a system’s
possible trajectories over time, providing statistical guarantees on system behavior. Given an initial
set of states B0, the method generates a bounding tube, a sequence of bounding sets that stochasti-
cally encapsulates all potential states with a predefined confidence level 1− γ with 1 > γ > 0. The
core of this approach relies on computing the maximum perturbation δt at each timestep:

δt ≥ max
x∈B0

||χ(t, x)− χ(t, x0)|| = max
x∈B0

dt(x) (2)

where xt is the system state at time t, starting from the initial point x ∈ B0 with being the ball
containing all initial states centered at x0. The key challenge is ensuring the resulting bounding
tube remains tight, avoiding over-approximation, while maintaining conservativeness within a de-
sired confidence interval. To achieve this, stochastic reach-tube methods leverage Lipschitz continu-
ity. Traditional interval-based techniques compute worst-case Lipschitz constants, leading to overly
conservative bounds. Instead, stochastic Lipschitz caps are derived by bounding the local Lipschitz
constants with a quantile-based stochastic lower bound ∆λx,V . The radius of each stochastic cap is
computed as in equation 3.

rx =
−λx +

√
λ2
x + 4 ·∆λx,V · (µ · m̄t,V − dt(x))

2 ·∆λx,V
(3)

where V is the set of sampled traces, m̄t,V is the maximum perturbation of those at time t, and µ is
the tightness factor controlling the tube’s balance between conservativeness and accuracy. The al-
gorithm iteratively expands the set of sampled trajectories, refining the stochastic caps until the total
surface coverage achieves the desired confidence level γ. Convergence of the method is guaranteed
by Theorem 2 of Gruenbacher et al. (2022). Equation 4 states accordingly, that for every γ, there
exists an N = |V | such that the probability of any sample exceeding the true maximum perturbation
m∗

t is smaller than γ.

∀γ ∈ (0, 1),∃N ∈ N s.t. Pr(µ · m̄j,V ≤ m∗
j) ≥ 1− γ (4)

This ensures the algorithm terminates with a valid bounding tube, even under stochastic pertur-
bations. Unlike deterministic reachability methods, which suffer from wrapping effects and com-
pounding over-approximation errors, stochastic reach-tube verification maintains stability over long
time horizons by statistically bounding perturbations at each time step independently. The result is a
scalable, probabilistically sound verification approach that supports high-dimensional, continuous-
time systems. The approach particularly allows verifying systems governed by nonlinear ordinary
differential equations (ODEs) and controlled by neural networks.

Safety during interaction with the environment when training the novice policy was the main con-
cern that led to the development of many DAgger variants. The stochastic reach-tube verification
approach outlined above can be used to classify the safety of a state and/or action. This means
that we can replace the doubt model found in SafeDAgger with a Lagrangian reach-tube that was
computed from expert trajectories beforehand. We call the resulting algorithm TubeDAgger. The
advantage of this approach is that the criterion does not require any tuning of environment-dependent
thresholds, given a reasonably tight reach-tube was computed beforehand.

3 TUBEDAGGER

We will now introduce TubeDAgger, a novel interactive imitation learning algorithm based on
LazyDAgger, that employs stochastic reachtubes for the switching between autonomous and ex-
pert control. For this, we first compute a reachtube from a dataset of expert trajectories using an
existing reachability tool. We then deploy a novice policy alongside an expert to learn from the
experts’ demonstrations. In order to achieve a robust novice policy, we allow the novice to take
control from the expert when the current state is deemed safe. We consider a state to be safe if it is
well inside the reachtube (a more formal definition of this requirement follows below).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 TubeDAgger
Require: Expert policy: π∗(a|s), novice policy: π̂θ(a|s), intervention thresholds β+, β−, dataset

of expert trajectories D, reach-tube for expert: (C,R,A), noise strength σ2

while not converged do
s0 ← Initialize environment state
Mode← Autonomous
for t = 0 to T do

if Mode = Supervisor or ||At(st − ct)
⊤||2 > rtβ+ then

a∗t = π∗(st)
D ← D ∪ {(st, a∗t)}
st+1 ← Execute ã∗t ∼ N (a∗t , σ

2I)
if ||At(st − ct)

⊤||2 r−1
t < β− then

Mode← Autonomous
else

Mode← Supervisor
end if

else
st+1 ← Execute π̂θ(st)

end if
end for
θ ← argminθ E(st,π̂(st))∼D [L (π∗ (st) , π̂ (st, θ))]

end while

We compute the tube for bounding observations using the GoTube Gruenbacher et al. (2022) pack-
age available on GitHub. With GoTube, we can generate a reach-tube given the expert controller
and system. The tube contains information about what sequence of states the expert is likely to visit.
When a state is outside the tube, it can be considered unsafe. We use this as the criterion for expert
intervention in LazyDAgger. We assume that the closer a state is to the center of the tube, the more
confident is the expert about successfully controlling the system. Therefore, we introduce a safety
margin and hand back control to the expert when the distance of the current state to the tube center is
larger than β+ times the tube radius. Note that the tube criterion fully replaces the need for a doubt
prediction model like in LazyDAgger.

The tube is given as a sequence of (c, r, A, τ)t where τ is the time elapses since the episode start
and c and A are the center of the tube and A the metric defining the bounding ellipsoid at that time,
respectively. Together, they can be used to check states for inclusion in the ellipsoid defined by
using the affine transformation described by the metric and center. The current state st is mapped
to the unit circle using the inverse transformation of the ellipsoid At(st − ct). If the transformed
state lies within the unit ball, the state before transformation is included in the ellipsoid tube. States
that lie outside of the tube are considered unsafe and require training. In this case, the expert action
is computed and executed. Samples with states that violate the safety condition are appended to
the dataset. Algorithm 1 outlines the TubeDAgger approach. After T steps in the environment, the
novice policy is trained using the aggregated dataset. The loss function used is the mean squared
error between expert action and novice prediction.

3.1 LIMITATIONS

One noteworthy limitation of TubeDAgger is that it requires knowledge of the temporal alignment of
the system within a trajectory. Specifically, we need to know which ct, At and rt correspond to the
current state st. Future work will explore dynamic time alignment methods, such as particle filtering,
and assess the method’s scalability to more complex robotic platforms and real-world domains.

It is also important to note, that the benefits discussed in this paper depend a lot on the quality of the
reach-tube that is constructed beforehand. If the tube is too narrow, the algorithm will deteriorate to
behavioral cloning; if it is too conservative, the training process will converge prematurely resulting
in a sub-optimal novice policy. Computing a reach-tube for high-dimensional systems can be com-
putationally expensive depending on the algorithm used. However, the tube needs to be computed
only once - before the start of the imitation learning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

Figure 2: Reachtube for a 2D navigation toy example. The agent start on the right has to reach the
goal position on the left while avoiding the gray walls. Left: The tube is depicted in purple; yellow
and green respectively show the 0.7 and 0.2 boundaries used by TubeDAgger. Right: Reward curves
for the imitator evaluation reward (blue) and the reward achieved by the combined imitator-expert
agent (orange).

4 EXPERIMENTS

4.1 2D NAVIGATION TOY EXAMPLE

In order to demonstrate how TubeDAgger works in practice, we devised a simple 2D navigation toy
example depicted in figure 2. Here, the task is to navigate from the starting position on the right to
the goal position on the left – without crashing into the walls. We trained an expert policy RTRRL
Lemmel & Grosu (2025) and then computed the reachtube from collected evaluation rollouts. Sub-
sequently, we trained a novice policy using TubeDAgger. The reward curves that resulted from the
training process are decpicted in figure 2 on the right. The straight orange line on the top shows how
safety is ensured at all times during data collection using the combined imitator-expert agent.

4.2 MUJOCO PHYSICS SIMULATION

We further test our TubeDAgger approach empirically, on a set of continuous control tasks com-
monly known as Mujoco environments. MuJoCo (Multi-Joint dynamics with Contact) is a fast,
accurate physics engine for simulating multi-body systems, widely used in robotics, biomechanics,
and reinforcement learning (RL). It supports customizable environments with realistic physical in-
teractions and is a go-to tool for RL research. Brax is a lightweight reimplementation of MuJoCo
in JAX, designed for fast, GPU/TPU-accelerated simulations. It offers similar environments and is
optimized for scalable RL training and differentiation. Brax also provides reference implemenations
of state-of-the-art reinforcement learning algorithm, and tuned hyperparameters for every environ-
ment facilitating training of expert policies. We use the environments included in the brax package
for the evaluation of TubeDAgger in simulation. The environments are: inverted pendulum,
inverted double pendulum, ant, and halfcheetah. We trained an expert policy for each
environment using the provided PPO implementation.

We implemented a wrapper for expert policies to be used by GoTube, to compute a reach-tube en-
capsulating typical observations. Additionally, we constructed a second kind of tube with additional
dimensions for the action added. The hyperparameter setting we used for all tasks were: γ = 0.2,
µ = 1.0, ellipsoids=True, radius= 0.01 and batch size= 512. Figure 5 shows plots of the first two
system dimensions for some of the generated tubes.

Having computed the necessary tubes, we ran imitation learning experiments with our TubeDAgger
algorithm, using both sets of tubes described above. We also recorded experiments with LazyDAg-
ger as a baseline. For all, we ran 5 runs using different thresholds in each environment. The results
are shown in Figures 7, 8 and 9.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Boxplots showing the validation rewards for 5 runs each of LazyDAgger and TubeDAg-
ger with different lower and upper thresholds for the action distance. Top row shows results for
LazyDAgger and bottom row for TubeDAgger. When comparing to the LazyDAgger results above,
we can see that TubeDAgger is more robust to the choice of threshold.

Figure 4: Boxplots showing the percentage of novice actions at the end of training for 5 runs each
with different lower and upper thresholds. The top row shows LazyDAgger and the bottom row
TubeDAgger results. Again, we can see improved robustness to hyperparameter choice when com-
pared to LazyDAgger.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ant halfcheetah

Figure 5: Reach-tubes generated by GoTube. The plots show the first two dimensions of the respec-
tive system as x- and y-axes with the z-axis denoting time.

Table 1 shows the validation rewards achieved by the trained novice policies in comparison to the
expert policies. The reported numbers are for the best thresholds found during the hyperparameter
sweep. Tables 3 and 4 in the Appendix show the complete results.

Finally, we depict the highest percentage of policy actions in Figure 10 as a boxplot, and as line plots
for two selected environments in Figure 11. We further show the number of context switches for
LazyDAgger vs TubeDAgger in table 6. These figures are from models trained with bounds (0.1, 1)
and (0.5, 0.8) for LazyDAgger und TubeDAgger respectively. Especially for the inverted pendulum
environment, the number of context switches was reduced drastically.

LazyDAgger EnsembleDAgger TubeDAgger
Environment
ant 8013.46±103.36 8065.50±38.69 7739.51±139.28
halfcheetah 10197.03±403.71 10789.82±111.25 9134.71±732.20
inverted double pendulum 8651.46±615.54 8665.62±503.88 9359.60±377.46
inverted pendulum 1000.00±0.00 1000.00±0.00 1000.00±0.00

Table 1: Comparison of evaluation rewards across algorithms for different environments. Given are
the median reward and standard deviation for five runs each of the best respective hyperparameter
configuration. It has to be noted that EnsembleDAgger used 5× the number of parameters.

5 RELATED WORK

5.1 INTERACTIVE IMITATION LEARNING

DAgger provides formal guarantees on policy performance but requires significant expert super-
vision. Various extensions of DAgger have been proposed, including SafeDAgger Zhang & Cho
(2017), which uses a safety predictor to reduce expert queries, and EnsembleDAgger Menda et al.

LazyDAgger EnsembleDAgger TubeDAgger
Environment
ant 242.00±200.98 219.80±54.88 186.50±34.85
halfcheetah 536.20±357.23 109.20±131.45 84.00±4.24
inverted double pendulum 2327.20±1214.42 0.00±0.00 0.00±0.00
inverted pendulum 1426.40±221.35 283.60±58.03 31.60±14.52

Table 2: Supervisor burden as in Hoque et al. (2021) with cost for switching and per step assumed
as 1 and 0.1 respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(2019), which leverages uncertainty estimates from model ensembles to guide expert intervention.
Interactive learning methods reduce the burden on experts by querying them selectively. LazyDAg-
ger Hoque et al. (2021) introduced a doubt-based intervention mechanism that requests expert feed-
back only when the learner’s confidence falls below a threshold, requiring a separate doubt classi-
fication model. Similarly, DART Laskey et al. (2017) adds noise during expert demonstrations to
better cover states where the learner might make mistakes.

Active learning approaches further minimize expert interactions by querying only the most infor-
mative states. CEIL Cheng et al. (2018) employs importance sampling to focus expert feedback on
difficult states. HG-DAgger Kelly et al. (2019) uses human gaze data to identify critical states re-
quiring expert attention. Our work differs from these approaches by leveraging reachability analysis
rather than classification or uncertainty measures to determine when expert intervention is necessary.

Safety guarantees are crucial in robotics and autonomous systems. Risk-Sensitive Generative Ad-
verserial Imitation Learning Lacotte et al. (2019) optimizes policies considering the risk of constraint
violations. SafetyNet Vitelli et al. (2022) uses neural networks to predict and avoid unsafe actions.
Recently, a shielding approach based on control-barrier functions and inverse reinforcement learn-
ing was introduced, that aims at resampling actions in order to find a safe continuation Yang et al.
(2024). Another recent approach called RACER Dai et al. (2024) incorporates language models to
generate recovery plans in robotics applications. Our work combines elements from these safety-
critical approaches with interactive imitation learning.

5.2 REACHABILITY ANALYSIS AND STOCHASTIC REACHTUBES

Reachability analysis computes the set of states a system can reach over time. Deterministic reach-
ability has been extensively studied for verification of hybrid systems Althoff (2015), but is often
too conservative for practical use in uncertain environments. Stochastic reachability extends this
concept to systems with probabilistic dynamics Summers & Lygeros (2010). Stochastic reachtubes
represent the probability distribution of future states given the current state and action. Recent
work has developed computationally efficient methods for approximating these tubes, including ap-
proaches based on Hamilton-Jacobi reachability analysis Bansal et al. (2017), Gaussian processes
Jackson et al. (2020), and neural network surrogates Hashemi et al. (2023). Our TubeDAgger al-
gorithm builds upon these advances, using stochastic reachtubes to make informed decisions about
when expert intervention is necessary.

5.3 LEARNING WITH MINIMAL EXPERT SUPERVISION

Several approaches aim to minimize expert supervision in learning complex behaviors. Methods like
TAMER Knox & Stone (2009) and COACH MacGlashan et al. (2017) incorporate human feedback
into the learning process. One-shot imitation learning Duan et al. (2017) attempts to generalize from
a single demonstration. Semi-supervised approaches like PLATO Kahn et al. (2017) combine small
amounts of expert data with larger unlabeled datasets.

Most closely related to our work is LazyDAgger Hoque et al. (2021), which selectively requests ex-
pert intervention. However, LazyDAgger relies on a doubt classification model that must be trained
alongside the policy, potentially introducing additional complexity and failure modes. TubeDAgger
addresses this limitation by replacing the doubt classifier with stochastic reachtubes, providing a
more principled approach to determining when expert intervention is necessary while maintaining
theoretical guarantees on policy performance.

6 CONCLUSIONS

We introduced TubeDAgger, an interactive imitation learning algorithm that leverages stochastic
reach-tube verification to determine safe regions for novice control. Unlike previous methods that
rely on manually tuned doubt models or distance thresholds, TubeDAgger uses precomputed reach-
tubes to define safety regions with probabilistic guarantees, making it more principled and gener-
alizable. Our results on simulated Mujoco environments demonstrate that TubeDAgger achieves
comparable or better performance than LazyDAgger while requiring fewer expert interventions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Matthias Althoff. An Introduction to CORA 2015. In Goran Frehse and Matthias Althoff (eds.),
1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems,
ARCH@CPSWeek 2014, Berlin, Germany, April 14, 2014 / ARCH@CPSWeek 2015, Seattle, WA,
USA, April 13, 2015, volume 34 of EPiC Series in Computing, pp. 120–151. EasyChair, 2015.
doi: 10.29007/ZBKV.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J. Tomlin. Hamilton-Jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pp. 2242–2253, December 2017. doi: 10.1109/CDC.2017.8263977.

Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast Policy Learning through
Imitation and Reinforcement, May 2018.

Yinpei Dai, Jayjun Lee, Nima Fazeli, and Joyce Chai. RACER: Rich Language-Guided Failure
Recovery Policies for Imitation Learning, September 2024.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-Shot Imitation Learning. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Joseph D. Gleason, Abraham P. Vinod, and Meeko M. K. Oishi. Underapproximation of reach-avoid
sets for discrete-time stochastic systems via Lagrangian methods. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pp. 4283–4290, December 2017. doi: 10.1109/
CDC.2017.8264291.

Sophie Gruenbacher, Jacek Cyranka, Mathias Lechner, Md. Ariful Islam, Scott A. Smolka, and Radu
Grosu. Lagrangian Reachtubes: The Next Generation. 2020 59th IEEE Conference on Decision
and Control (CDC), pp. 1556–1563, December 2020. doi: 10.1109/CDC42340.2020.9304042.

Sophie A. Gruenbacher, Mathias Lechner, Ramin Hasani, Daniela Rus, Thomas A. Henzinger,
Scott A. Smolka, and Radu Grosu. GoTube: Scalable Statistical Verification of Continuous-
Depth Models. Proceedings of the AAAI Conference on Artificial Intelligence, 36(6):6755–6764,
June 2022. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v36i6.20631.

Navid Hashemi, Xin Qin, Lars Lindemann, and Jyotirmoy V. Deshmukh. Data-Driven Reach-
ability Analysis of Stochastic Dynamical Systems with Conformal Inference. In 2023 62nd
IEEE Conference on Decision and Control (CDC), pp. 3102–3109, December 2023. doi:
10.1109/CDC49753.2023.10384213.

Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S. Brown, Daniel Seita,
Brijen Thananjeyan, Ellen Novoseller, and Ken Goldberg. LazyDAgger: Reducing Context
Switching in Interactive Imitation Learning, July 2021.

John Jackson, Luca Laurenti, Eric Frew, and Morteza Lahijanian. Safety Verification of Unknown
Dynamical Systems via Gaussian Process Regression. In 2020 59th IEEE Conference on Decision
and Control (CDC), pp. 860–866, December 2020. doi: 10.1109/CDC42340.2020.9303814.

Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. PLATO: Policy Learning using
Adaptive Trajectory Optimization, February 2017.

Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. HG-
DAgger: Interactive Imitation Learning with Human Experts. 2019 International Conference on
Robotics and Automation (ICRA), pp. 8077–8083, May 2019. doi: 10.1109/ICRA.2019.8793698.

W. Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The
TAMER framework. In Proceedings of the Fifth International Conference on Knowledge Cap-
ture, K-CAP ’09, pp. 9–16, New York, NY, USA, September 2009. Association for Computing
Machinery. ISBN 978-1-60558-658-8. doi: 10.1145/1597735.1597738.

Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, and Marco Pavone. Risk-Sensitive
Generative Adversarial Imitation Learning. In Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, pp. 2154–2163. PMLR, April 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and Ken Goldberg. DART: Noise Injection
for Robust Imitation Learning. In Proceedings of the 1st Annual Conference on Robot Learning,
pp. 143–156. PMLR, October 2017.

Julian Lemmel and Radu Grosu. Real-Time Recurrent Reinforcement Learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 39(17):18189–18197, April 2025. ISSN 2374-3468.
doi: 10.1609/aaai.v39i17.34001.

James MacGlashan, Mark K. Ho, Robert Loftin, Bei Peng, Guan Wang, David L. Roberts,
Matthew E. Taylor, and Michael L. Littman. Interactive Learning from Policy-Dependent Hu-
man Feedback. In Proceedings of the 34th International Conference on Machine Learning, pp.
2285–2294. PMLR, July 2017.

Kunal Menda, Katherine Driggs-Campbell, and Mykel J. Kochenderfer. EnsembleDAgger: A
Bayesian Approach to Safe Imitation Learning. 2019 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pp. 5041–5048, November 2019. doi: 10.1109/IROS40897.
2019.8968287.

Dean A. Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network. In Advances in
Neural Information Processing Systems, volume 1. Morgan-Kaufmann, 1988.

Stephane Ross and Drew Bagnell. Efficient Reductions for Imitation Learning. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 661–668.
JMLR Workshop and Conference Proceedings, March 2010.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A Reduction of Imitation Learning and Struc-
tured Prediction to No-Regret Online Learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pp. 627–635. JMLR Workshop and Confer-
ence Proceedings, June 2011.

Sean Summers and John Lygeros. Verification of discrete time stochastic hybrid systems: A stochas-
tic reach-avoid decision problem. Automatica, 46(12):1951–1961, December 2010. ISSN 0005-
1098. doi: 10.1016/j.automatica.2010.08.006.

Matt Vitelli, Yan Chang, Yawei Ye, Ana Ferreira, Maciej Wołczyk, Błażej Osiński, Moritz Nien-
dorf, Hugo Grimmett, Qiangui Huang, Ashesh Jain, and Peter Ondruska. SafetyNet: Safe
Planning for Real-World Self-Driving Vehicles Using Machine-Learned Policies. In 2022 In-
ternational Conference on Robotics and Automation (ICRA), pp. 897–904, May 2022. doi:
10.1109/ICRA46639.2022.9811576.

Yue Yang, Letian Chen, Zulfiqar Zaidi, Sanne van Waveren, Arjun Krishna, and Matthew Gombo-
lay. Enhancing Safety in Learning from Demonstration Algorithms via Control Barrier Function
Shielding. In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot In-
teraction, HRI ’24, pp. 820–829, New York, NY, USA, March 2024. Association for Computing
Machinery. ISBN 979-8-4007-0322-5. doi: 10.1145/3610977.3635002.

Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for end-to-end simulated driv-
ing. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp.
2891–2897, San Francisco, California, USA, February 2017. AAAI Press.

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 HARDWARE

All experiments were run on a NVIDIA RTX A6000 GPU. Each imitation learning run took up to
15 minutes and a total of around 1000 runs were made for this work. Time needed for computing
the reach-tubes ranged from ten minutes to three hours, depending on the number of dimensions of
the system.

A.2 PARAMETER SWEEP RESULTS

B A DETAILED DESCRIPTION OF GOTUBE

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 3: Validation reward for LazyDAgger with different thresholds (β−, β+).
env name ant halfcheetah humanoid
distance expert

(0.1, 1) 8017.84±118.03 9676.12±513.90 2275.57±2603.89
(0.1, 0.5) 7962.76±79.77 9560.95±741.55 683.50±235.85
(0.5, 1) 5884.67±706.56 8645.16±515.87 588.51±202.57
(1, 3) 5473.15±1174.49 7975.40±1018.68 3606.54±3754.95
(2, 5) 5241.45±1344.84 5536.32±1373.67 2807.24±2064.10

env name humanoidstandup inverted double pendu-
lum

inverted pendulum

distance expert

(0.1, 1) 30707.32±9085.59 8863.28±488.98 1000.00±0.00
(0.1, 0.5) 24749.00±2776.67 8953.03±372.75 1000.00±0.00
(0.5, 1) 24186.32±3263.30 2692.36±732.63 1000.00±0.00
(1, 3) 27576.50±7418.80 1927.51±2130.59 709.83±467.23
(2, 5) 31118.04±4171.12 267.88±113.42 23.64±9.68

Table 4: Validation reward for TubeDAgger with different thresholds (β−, β+) where the tube was
only computed for the observations.

env name ant halfcheetah humanoid
tube

(0.9, 1) 4319.88±4066.52 -340.44±8029.05 1347.41±3892.09
(0.5, 0.8) 7763.23±231.48 7338.22±1207.44 6225.94±4050.18
(0.8, 1) 7754.41±72.98 4365.11±1190.94 5564.08±3123.07
(0.7, 0.9) 7896.50±128.21 5191.67±970.89 4750.66±3614.40

env name humanoidstandup inverted double pendulum inverted pendulum
tube

(0.9, 1) 18475.72±18429.99 5576.68±4593.79 510.85±515.63
(0.5, 0.8) 37125.20±902.68 9081.94±383.73 1000.00±0.00
(0.8, 1) 34638.83±3405.72 9084.03±378.35 1000.00±0.00
(0.7, 0.9) 35822.89±2461.51 9082.89±382.14 1000.00±0.00

Parameter Name Value
γ 0.2
µ 1.0
ellipsoids True
radius 0.1
batch size 512

Table 8: GoTube hyperparameter set-
tings used for generating reachtubes.

The sequence of (ct, rt, At) is computed using the Go-
Tube algorithm. The algorithm starts from a ball of ini-
tial states defined by center point c0 and radius r0 (Note
that since it starts from a ball A0 is the unit matrix). It
proceeds by iteratively sampling a batch of initial states
from the surface of the ball, and requesting expert roll-
outs. For each step, an ellipsoid - defined by matrix At

together with a radius rt and center ct - is chosen in a
way, that ensures that all the states St reachable by the
expert are contained with probability 1− γ. Specifically,
At is computed from the set of states by rotating using
PCA components and then scaling the data points; At represents the combined transformation that
makes all the states lie within the unit circle. We refer to the original GoTube paper for details on
how the target probability is guaranteed. It can happen that the probability can not be met with the
initial set of trajectories, in which case another batch of expert trajectories is requested.

Table 8 shows the hyperparamters that were used for computing the reachtubes used in this work.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Validation reward for TubeDAgger with different thresholds (β−, β+) where the action was
included in the tube.

env name ant halfcheetah humanoid
tube

(0.9, 1) -764.86±329.67 -855.54±3362.10 -1384.55±1546.98
(0.5, 0.8) 7916.78±182.73 9217.55±746.29 3234.53±1942.81
(0.8, 1) 8041.32±45.40 8894.91±856.02 5104.33±4109.95
(0.7, 0.9) 7936.43±113.75 9327.90±381.18 2751.54±3738.62

env name humanoidstandup inverted double pendulum inverted pendulum
tube

(0.9, 1) 11182.78±9494.46 281.59±151.54 21.70±7.44
(0.5, 0.8) 37447.19±2266.80 9081.94±383.73 1000.00±0.00
(0.8, 1) 36009.31±1381.47 9081.94±383.73 1000.00±0.00
(0.7, 0.9) 33010.53±7481.98 9081.94±383.73 1000.00±0.00

LazyDAgger EnsembleDAgger TubeDAgger
env name

ant 171.50±186.61 235.00±27.63 10.00±6.16
halfcheetah 316.00±151.09 66.00±34.01 30.50±7.20
humanoid 602.00±19.07 NaN 49.00±4.87
humanoidstandup 643.00±125.40 NaN 61.00±2.55
inverted double pendulum 118.00±186.12 188.00±1.58 0.00±0.00
inverted pendulum 94.00±202.12 155.00±22.92 0.00±0.00
pusher NaN 323.00±7.77 NaN
reacher NaN nan±nan NaN

Table 6: The number of context switches until solved.

LazyDAgger EnsembleDAgger TubeDAgger
env name

ant 0.00±7.08 1.00±0.89 2.00±1.44
halfcheetah 1.00±5.58 0.00±0.89 3.50±4.47
humanoid 1.00±15.69 NaN 1.00±0.84
humanoidstandup 0.00±2.38 NaN 0.00±0.44
inverted double pendulum 1.00±3.79 0.00±0.00 0.00±0.00
inverted pendulum 2.00±4.12 1.00±1.14 0.00±0.00
pusher NaN 0.00±0.00 NaN
reacher NaN nan±nan NaN

Table 7: The total number of expert actions until solved.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 6: A plot as created by GoTube that shows the reach-tube’s normalized volume over time
and the first two system variables. Green crosses show the sample with the largest distance (over all
dimensions) to the center at this step in time.

B.1 SAFETY GUARANTEES

After training an imitator, we can also compute a reachtube for the resulting policy. We then can
check for containment in the initial tube to obtain a safety guarantee. If the time-indexed sequence
of sets - that cover all possible imitator traces with probability p - are all contained within the
corresponding sets of the initial tube, then the tube is as safe as the expert policy with probability p.

Formally, if T π = {Tπ
0 , T

π
1 , . . . , T

π
K} is the time-indexed sequence of sets (the reachtube) for the

imitator policy π, such that

Pr
(
xπ
j ∈ Tπ

j ∀j = 0, . . . ,K
)
≥ p,

and if the expert (reference) tube is T E =
{
TE
0 , TE

1 , . . . , TE
K

}
, then the safety guarantee can be

stated as:

If ∀j ∈ {0, . . . ,K} : Tπ
j ⊆ TE

j , then T π is as safe as T E with probability p,

i.e.,

[
∀j : Tπ

j ⊆ TE
j and Pr

(
xπ
j ∈ Tπ

j ∀j
)
≥ p

]
=⇒ imitator as safe as expert with probability p.

C ADDITIONAL RESULTS

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Boxplots showing the validation rewards for 5 runs each of LazyDAgger with different
lower and upper thresholds for the action distance.

Figure 8: Boxplots showing the validation rewards for 5 runs each of TubeDAgger with different
lower and upper thresholds for the distance from the tube center. When comparing to the LazyDAg-
ger results above, we can see that TubeDAgger is more robust to the choice of threshold.

Figure 9: Boxplots showing the validation rewards for 5 runs each of TubeDAgger with different
lower and upper thresholds for the distance from the tube center. When comparing to the LazyDAg-
ger results above, we can see that TubeDAgger is more robust to the choice of threshold.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 10: Boxplots showing the percentage of novice actions at the end of training for 5 runs
each with different lower and upper thresholds. The top row shows LazyDAgger and the bottom
row TubeDAgger results. Again, we can see improved robustness to hyperparameter choice when
compared to LazyDAgger.

Figure 11: The mean percentage of novice actions aggregated over all our runs.

16

	Introduction
	Background
	Interactive Imitation Learning
	Stochastic Reach-Tube Verification of Dynamical Systems

	TubeDAgger
	Limitations

	Experiments
	2D Navigation Toy Example
	Mujoco Physics Simulation

	Related Work
	Interactive Imitation Learning
	Reachability Analysis and Stochastic Reachtubes
	Learning with Minimal Expert Supervision

	Conclusions
	Technical Appendices and Supplementary Material
	Hardware
	Parameter Sweep Results

	A detailed description of GoTube
	Safety Guarantees

	Additional Results

