
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MAD: Move AI Decompiler to Improve Transparency and
Auditability on Non-Open-Source Blockchain Smart Contract

ABSTRACT
The vision of Web3 is to improve user control over data and assets,
but one challenge that complicates this vision is the prevalence
of non-transparent, scam-prone applications and vulnerable smart
contracts that put web3 users at risk. While code audits are one
solution to this problem, the lack of smart contracts source code on
many blockchain platforms, such as Sui, hinders the ease of audit-
ing. A promising approach to this issue is the use of a decompiler
to reverse-engineer smart contract bytecode. However, existing
decompilers for Sui produce code that is difficult to understand
and cannot be directly recompiled. To address this, we developed
the Move AI Decompiler (MAD), a Large Language Model (LLM)-
powered web application that decompiles smart contract bytecodes
on Sui into logically correct, human-readable, and re-compilable
source code. MAD empowers developers to understand and audit
contracts easily and independently.

Our evaluation shows that MAD produces logically correct code
that successfully passes original unit tests and achieves a 66.7%
recompilation success rate on real-world smart contracts. Addition-
ally, in a user study involving 12 developers, MAD significantly
reduced the auditing workload compared to using traditional de-
compilers. Participants found MAD’s outputs comparable to the
original source code, simplifying the process of smart contract logic
comprehension and auditing. Despite some limitations, such as
occasional hallucinations and compile errors, MAD still provides
significant improvements over traditional decompilers.

MAD has practical implications for blockchain smart contract
transparency, auditing, and education. It empowers users to review
and audit non-open-source smart contracts, fostering trust and
accountability. Additionally, MAD’s approach could potentially
extend to other smart contract languages, like Solidity, promoting
transparency across various blockchains.

CCS CONCEPTS
• Human-centered computing → User interface toolkits; •
Software and its engineering→ Software reverse engineering;
• Computing methodologies → Natural language generation.

KEYWORDS
Web3, Smart Contract, Auditing Tools, Large Language Models

1 INTRODUCTION
Web3, also referred to as the decentralized web, represents a sig-
nificant shift in the evolution of the internet [20, 22]. Unlike ear-
lier versions—Web1, which focused on static content, and Web2,
which emphasized user-generated content and platforms—Web3
introduces decentralization, prioritizing user autonomy and own-
ership through blockchain technology [38]. A central element of
Web3 is the use of smart contracts [29], which are self-executing,
algorithmic-based agreements that automatically enforce terms.
Smart contracts enable automated, trustless transactions, fostering

the decentralized nature of Web3 ecosystems. This transition marks
a major restructuring of internet architecture, shifting control from
centralized entities to individuals and decentralized networks [37].

Nevertheless, the increased autonomy and control that Web3
grants to its users also demands that they take on greater account-
ability for their decisions within this decentralized ecosystem.Web3
has witnessed significant instances of fraud and vulnerabilities
[5, 29], leading to substantial financial losses [7]. Notably, in the
first half of 2024, over $1 billion in assets were lost in Web3-related
cryptocurrencies, with phishing attacks (n = 150) and smart con-
tract vulnerabilities (n = 105) being the most frequent causes [7].
In the absence of centralized regulators or platforms to verify con-
tract security, one viable path is to empower users to audit smart
contracts independently. By enabling users and communities to
perform these audits, Web3 not only strengthens the transparency
and accountability of decentralized applications but also reduces
reliance on third-party authorities for security verification [1]. In-
dependent auditing ensures that the decentralized ethos is upheld
while mitigating risks inherent in open, trustless environments.

Unfortunately, on emerging blockchain platforms like Sui [28],
smart contracts are published as bytecode, and their source code
is not always open-source. This creates several potential risks, for
example, the following are some real-world case studies:

(1) A user falls victim to phishing, losing 7 million USD worth
of assets in a fake NFT whitelist register application.

(2) Developers deploy tokens while retaining minting rights
within the smart contract, enabling the token to be minted
indefinitely, leading to unexpected inflation.

(3) Decentralized exchanges contain unexpected backdoors,
allowing users to withdraw assets deposited by other users.

If the smart contract source code were accessible, the aforemen-
tioned risks could be easily identified. However, these contracts
are not open-source, and even if the source code is available on
platforms like GitHub, users cannot be certain that it is the contract
deployed on the blockchain. This underscores the critical need for
transparency in smart contracts within the Web3 space. There is a
need for a effective, easy-to-use application that allows users to
independently audit the logic of non-open source smart contracts,
improve transparency, and promote algorithmic accountability
in the Web3 ecosystem. Our paper seeks to address this gap.

Our study developed and evaluated the Move AI Decompiler
(MAD). MAD is a Large Language Model (LLM) powered web appli-
cation that converts Sui Move smart contract bytecode into easily
readable and re-compilable source code, enabling developers to
understand and audit non-open-source smart contracts on Sui.

We summarized our main contribution as follows:
(1) Developed and evaluated MAD, an LLM-powered decom-

piler that generates logically accurate, human-readable, and
re-compilable Move code from bytecode. Achieved a 66.7%
recompilation success rate, promoting transparency and
ease of auditing for non-open-source smart contracts.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(2) Conducted a user study with 12 developers, demonstrating
that MAD’s output has similar workloads to working with
source code and has a significantly lower reading workload
compared to existing machine-based decompiler.

(3) The user study provided insights that highlight MAD’s prac-
tical implications in promoting transparency and trust in
Web3, addressing security concerns, and facilitating con-
tract auditing.

2 BACKGROUND AND RELATEDWORK
2.1 The Move Programming Language
In the current blockchain ecosystem, Solidity [36] remains the pre-
dominant language for smart contract development [22]. However,
it is also prone to vulnerabilities such as reentrancy attacks and inte-
ger overflows [39], which have been exploited by malicious actors,
leading to significant financial losses [5, 7, 29]. In response to these
security concerns, several new blockchain platforms have chosen
to develop new domain-specific languages aimed at addressing the
shortcomings of Solidity. For instance, emerging blockchains like
Sui [28], Aptos [10], Diem [27], and Movement [14] have adopted
the Move language [3] for smart contract development.

Move language [3], originally developed for Meta’s Diem (for-
merly Libra) project [27], was designed to address many vulner-
abilities found in Solidity by incorporating several key features.
Specifically, Move offers the following advantages to enhance secu-
rity and prevent common vulnerabilities:

Resource Management and Safety: Unlike Solidity, which
lacks built-in resource management and requires developers to pre-
vent issues like reentrancy attacks or resource leakage manually
[39], Move treats assets as first-class resources. It enforces strict
rules through its type system to prevent accidental creation, du-
plication, or destruction of assets. For instance, when an object
is passed by value to a function in Move, it becomes frozen and
cannot be reused unless explicitly handled. This mechanism elimi-
nates vulnerabilities such as reentrancy attacks by ensuring that
resources are managed safely and predictably.

Static Verification and Error Detection: Solidity often relies
on external tools to catch errors and security vulnerabilities, which
means issues may only be discovered at runtime [39]. In contrast,
Move employs a strong static type system and allows for formal
verification during compilation. This ensures that potential errors
and vulnerabilities are detected early in the development process,
reducing the chances of runtime security risks.

Despite the significant advantages offered by the Move language
over Solidity, Move remains relatively immature and lacks com-
prehensive learning resources. The novel paradigms introduced
by Move present a learning curve for developers unfamiliar with
its structure and conventions, potentially leading to logical errors
and, consequently, security vulnerabilities such as access control
issues. Therefore, code reviews and safety checks are essential for
thoroughly evaluating Move smart contracts to ensure they are free
from logical flaws and other security risks.

Furthermore, Move contracts can still conceal malicious com-
ponents, including phishing mechanisms, hidden backdoors, and
other logic designed to disadvantage general users.

Additionally, in theMove ecosystem,most contracts are not open-
source. Taking Sui Move as an example, over three-quarters of the
top Sui projects on DefiLLama [8] have not provided their source
code. Similarly, almost none of the Coin and NFT projects on Sui [31,
32] have provided source code. This lack of transparency makes
it extremely difficult for the public to audit deployed Move smart
contracts. Consequently, users are unable to verify the security and
reliability of these contracts, hindering their ability to use them
with confidence.

2.2 Decompiler on Move Language
To address the limited open-source availability of Move contracts
in the Sui ecosystem, the Revela Decompiler [30] and Move Dis-
assembler [17] were developed. However, despite their potential,
both tools have two limitations that discourage users.

Firstly, like other decompilers, it can only generate variable
names such as v0, v1, and v2, as illustrated in Figure 1. The missing
variable names make it difficult for users to perform thorough code
reviews on decompiled contracts as it is hard to interpret.

Figure 1: Example illustrated how Revela’s output would
yield errors when re-compile with Sui Move compiler.

Second, the output from Revela and Move Disassembler can-
not be directly recompiled due to the complex rules of the Move
compiler. For example, Revela struggles with managing ownership
constraints, preventing the access of an object while it is being
mutated within the same line, and handling frozen objects, as illus-
trated in the code comments in Figure 1. These issues stem from
the Move language’s strict resource and ownership rules, which are
challenging to decompile accurately. The inability to recompile the
decompiled code hinders further verification of security properties
and the detection of potential vulnerabilities, such as running unit
tests to assess whether the smart contract, when interacting with
other deployed contracts, could introduce potential vulnerabilities.

To address this issue, an effective decompiler that allows users
to inspect the source code of smart contracts easily and produce
re-compilable code is needed. This raises our first research question:
RQ1: Can we decompile Move bytecodes into code that is logically
equivalent to the original, and can it be successfully recompiled?
By investigating RQ1, we aim to determine whether it is feasible

to generate decompiled code that maintains the original logic and
functionality, thereby enhancing transparency and trust in the Sui
Move ecosystem.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MAD: Move AI Decompiler to Improve Transparency and Auditability on Non-Open-Source Blockchain Smart Contract

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.3 AI Augmented Decompiler
Decompilers can never fully reconstruct the original developer-
written code [25]. Vital elements such as comments, variable names,
and types, which significantly contribute to program comprehen-
sion [11, 15], are typically absent from decompiler output.

Recent research has explored the use of artificial intelligence (AI)
and machine learning, particularly Large Language Models (LLMs),
to augment decompiler output [25, 26, 35] to make it easier to read
and ready to compile. LLMs like OpenAI’s GPT-4 have demonstrated
remarkable capabilities in code understanding and generation, even
with minimal task-specific training data [4]. For instance, [26] fine-
tuned GPT-4o to significantly outperform traditional decompilation
tools on C language, achieving a 74.3% re-executability rate on the
HumanEval benchmark [6]. These results indicate that LLMs can
enhance the effectiveness of decompilation by generating more
comprehensible and executable code.

However, AI-augmented decompilers have primarily focused on
mainstream programming languages like C [6, 25, 26, 35], which
have extensive data for training and evaluation. Their success de-
pends on large labeled datasets, making them less suitable for newer,
domain-specific smart contract languages like Move that lack train-
ing data. The scarcity of Move code limits the effectiveness of
traditional fine-tuning methods that require substantial training
data. Recognizing these limitations, it becomes essential to explore
alternative approaches that do not heavily rely on large, labeled
datasets.

One promising avenue is leveraging the prompt engineering
[23, 24] and few-shot learning [4] capabilities of LLMs. Due to their
extensive pre-training on vast amounts of text data—including code
from various programming languages—LLMs can generalize to new
tasks with limited examples in the prompt [4, 34]. This adaptability
makes them particularly well-suited for decompiling emerging
domain-specific languages like Move. By employing LLMs in this
context, we aim to overcome the data scarcity issue and enhance
both the readability and executability of decompiled Move code.

It is particularly noteworthy that since the Sui mainnet was
launched in May 2023, some LLMs don’t have any training data
about Sui Move, for example, GPT-4-1106-preview only have data
until April 2023. This raises a very interesting research question:

RQ2: How stable are LLMs in decompiling Sui Move, and how
does their pre-trained knowledge of Move affect their ability to

generate re-compilable Move code?

By investigating this question, we aim to examine how LLMs’
prior knowledge influences their ability to decompile domain-specific
languages like Move. Additionally, our research seeks to generalize
these findings to other domain-specific smart contract languages,
ultimately fostering greater transparency and the ease of au-
ditability of smart contracts across various Web3 ecosystems.

2.4 Expectancy Theory and Auditing
Expectancy Theory [21, 33] is a motivational theory that explains
the decision-making process individuals use to pursue certain ac-
tions based on the expectation of desired outcomes. The theory
suggests that individuals are motivated to act around three key
components:

• Expectancy: The belief that one’s effort will lead to the
desired level of performance.

• Instrumentality: The belief that achieving the perfor-
mance will lead to specific outcomes or rewards.

• Valence: The value or importance the individual places on
the expected reward.

In the context of smart contract auditing, Expectancy refers to the
users’ belief that they will be able to understand the code effectively.
When faced with non-open-source contracts or the limitations of
decompilers like Revela, this belief is weakened, reducing their
motivation to engage. Instrumentality reflects how users perceive
their efforts will result in desirable outcomes, such as detecting
vulnerabilities or increasing contract security. Valence, on the other
hand, refers to the value users place on these outcomes—how im-
portant it is to them to ensure transparency, security, and fairness
in smart contracts.

MAD directly addresses these concerns by generating human-
readable and recompilable code, increasing users’ expectancy of
successfully understanding the smart contract logic. As a result,
users are more likely to perceive their auditing efforts as instrumen-
tal in achieving meaningful, secure results. The higher the Valence
users assign to these outcomes—whether it’s protecting their assets
or contributing to a more secure ecosystem—the more motivated
they are to use tools like MAD to audit contracts thoroughly.

Thus, our third research question (RQ3) seeks to explore how
Web3 users perceive the outputs of the MAD decompiler:
RQ3: How do Web3 users perceive the output of MAD Decompiler,

and how do they intend to use it?
By addressing RQ3, we aim to understand whether the MAD en-

hances users’ ability to comprehend smart contracts and promotes
greater trust and transparency in the Web3 ecosystem.

3 DEVELOPMENT OF MOVE AI DECOMPILER
MAD leverages the outputs of the Revela Decompiler and the Move
Disassembler with prompt engineering techniques to feed into large
language models (LLMs), aiming to generate human-readable and
re-compilable code.

Intuitively, one might consider feeding the entire output from
Revela directly into the LLMs and instructing them to generate the
complete code. However, this approach is not feasible in practice.
We observed that LLMs struggle to handle long code inputs and
often omit parts of the code by summarizing them as comments
(see Figure 6 in appendix) or even hallucinations [2] like omitting
or inventing functions. Therefore, it is necessary to process the
code in smaller chunks to achieve the desired output.

In our approach, we split the chunk on a per-function basis; then,
the input is fed into the LLM using a carefully engineered prompt.
We construct our prompt into the following components:

(1) Domain-specific knowledge: We input specific knowl-
edge of Sui Move into the LLM, including language features,
syntax, variable mutation, and object ownership. We also
provide instructions on errors commonly encountered in
Revela’s output, guiding the LLM to fix these issues during
conversion.

(2) Should and should not instructions: These instructions
emphasize the LLM’s taskwhile avoiding commonmistakes,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

such as ensuring output is well-formatted, using clear vari-
able names, including all necessary type annotations, and
should not having hallucinations.

(3) Few-shot examples: By providing function code for the
input with Revela decompiler, along with the output of
the original source code, the LLM is trained to understand
the expected input and output format and the syntax of
Sui Move. We deliberately selected 17 diverse examples to
ensure coverage of the most common scenarios.

Our prompt, after times of iteration, contained 36,120 characters
after stringified. With this well-crafted prompt, we ensured that
the model could learn various aspects of the Move language and
provided enough examples for it to output well-formed Move code.
Our full prompt is available at 1. At the time of development, we only
had access to GPT-4 with a knowledge cut-off date of April 2024,
which did not train on any data about the Move language with Sui.
Although we also attempted fine-tuning with GPT-3.5-turbo, which
is the only model we can fine-tune with at the time, the results
were suboptimal, as the model was more prone to hallucinations.

We developed both the frontend and backend of MAD using
Next.js and Vercel. By utilizing Vercel’s Edge Functions, MAD effi-
ciently processes function chunk decompilation requests in parallel,
enhancing overall speed. Users with an API key or wallet on Sui
can easily decompile smart contracts by providing the contract ID
through the MAD web application. The anonymous platform link
is 2, and the anonymous source code can be found at 3.

4 SYSTEM EVALUATION METHODS
To validate the effectiveness of MAD, we created a comprehensive
evaluation framework that assesses its performance on both exam-
ples with unit tests and real-world smart contracts. This approach
tests MAD’s ability to handle varying levels of complexity, ensuring
reliability in practical applications. The full list of packages we used
to evaluate and the evaluation script is available at our GitHub.

When evaluating, the OpenAI API’s temperature parameter is set
to 0, and the seed is set to “123” to ensure the best reproducibility.

4.1 Evaluation on Examples with Unit Test
We first verified that our pipeline could decompile Move bytecodes
into logically equivalent source code that can be successfully recom-
piled, executed, and pass unit tests.We utilized 10 example packages
with unit tests from Sui Move’s official repositories version 1.22.0 4.
These examples provide a known baseline for assessing the func-
tionality and correctness of the decompiled code.We deployed these
smart contracts, used MAD to decompile them, and then checked
whether the decompiled code could be recompiled and pass the
unit tests in the original source code.

4.2 Evaluation on Real-world Contracts
To further evaluate MAD in real-world settings, we decompiled the
top 30 real-world smart contracts without third-party dependencies,

1https://reurl.cc/MjmyjW
2https://move-ai-decompiler.vercel.app/decompile?api_key=WWW25
3https://github.com/anonymousStars/MAD_WWW
4https://github.com/MystenLabs/sui/tree/c490f3a19447d17c96cd664729ad39fef32b7230/
examples/move

selected from Sui Explorer 5. The exclusion of dependencies was
necessary to focus on the contracts themselves, as dependencies add
extra complexity to the evaluation pipeline. The contracts chosen
represent a diverse set of categories, including gaming, decentral-
ized exchanges and marketplace, Non-Fungible Tokens (NFTs), .etc.

5 SYSTEM EVALUATION RESULTS
5.1 Result on Examples with Unit Test (RQ1)
The results from our evaluation of smart contracts with unit tests
show that 60% of the 10 example contracts decompiled by the MAD
Decompiler usingGPT-4o-2024-08-06were able to be recompiled and
pass unit-test successfully without anymodification. The remaining
40% of contracts were logically correct but encountered some Move
language rule check errors inherited from Revela’s output, such as
using variables after they are frozen. After manually addressing
these issues, the unit tests for those contracts also passed 6.

These results indicate that MAD is capable of generating code
that is logically equivalent to the original source code. However,
even though MAD does fix some issues for Move language rules
from Revela’s output, minor modifications may sometimes be nec-
essary to ensure successful recompilation and execution.

5.2 Results on Real-world Contracts (RQ2)
In the evaluation of real-world contracts, we observed that MAD,
utilizing GPT-4o-2024-08-06 (with training data until October
2023), successfully generated outputs that can be recompiled in
66.7% of cases. In comparison, GPT-4-1106-preview (with training
data until April 2023) and GPT-4-0125-preview (with training data
until December 2023) both achieved a recompilation success rate of
53.3%. This indicates that the pre-trained knowledge of the model
doesn’t influence its decompilation performance, but larger models
might perform better on this task. Although all versions generated
logically sound code, errors related to Move language rule checks
were observed. Furthermore, we identified some hallucinations. For
example, the model incorrectly substituted a custom vector range-
checking function with a built-in vector function instead of using
the internal function defined in the smart contract. The full output
and error of these models can be found in our GitHub 7.

These findings suggest that whileMAD enables LLMs to generate
logically correct Move code, some syntax errors and hallucinations
are still unavoidable, especially in complex real-world contracts.
However, the results are good enough to enhance transparency,
allowing users to examine the logic of the contracts themselves.
Therefore, we conducted a user study to evaluate this aspect.

6 USER STUDY DESIGN
The ability of MAD to generate decompiled code that is both logi-
cally correct and human-readable positions it as a valuable tool for
users looking to audit closed-source smart contracts. To investigate
its potential further, we invited 12 web3 users with different levels
of experience in Sui Move language development to participate in
our user study. Our study was approved by the IRB.

5https://suivision.xyz/packages, data extracted on September 20
6The decompiled contract for unit test can be found at https://github.com/
anonymousStars/MAD_WWW/tree/main/unit_test_gpt-4o_decompiled
7https://github.com/anonymousStars/MAD_WWW/blob/main/evaluation.ipynb

4

https://reurl.cc/MjmyjW
https://move-ai-decompiler.vercel.app/decompile?api_key=WWW25
https://github.com/anonymousStars/MAD_WWW
https://github.com/MystenLabs/sui/tree/c490f3a19447d17c96cd664729ad39fef32b7230/examples/move
https://github.com/MystenLabs/sui/tree/c490f3a19447d17c96cd664729ad39fef32b7230/examples/move
https://suivision.xyz/packages
https://github.com/anonymousStars/MAD_WWW/tree/main/unit_test_gpt-4o_decompiled
https://github.com/anonymousStars/MAD_WWW/tree/main/unit_test_gpt-4o_decompiled
https://github.com/anonymousStars/MAD_WWW/blob/main/evaluation.ipynb

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MAD: Move AI Decompiler to Improve Transparency and Auditability on Non-Open-Source Blockchain Smart Contract

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

6.1 90 minutes user study for code reading (P)
7 participants engaged in a 90-minute session where they worked
on a code comprehension task and a 15-minute vulnerabilities de-
tection session for a smart contract related to a staking and voting
campaign 8. The smart contract was created by an experienced
Move developer and included 6 critical vulnerabilities such as ac-
cess control, function visibility, and backdoor function. These vul-
nerabilities were inspired by real-world examples of security flaws
that have been observed in deployed Sui Move smart contracts.

Participants were randomly assigned to use either Revela (n =
3) or the MAD (n = 4) for the code comprehension task within the
same interface; they answered questions such as “Explain the logic
of function X,” during which their completion times were measured.
Following this, they engaged in a 15-minute vulnerability detec-
tion task, where the number of vulnerabilities they identified was
recorded. After completing the tasks, participants reviewed the cor-
rect answers in the vulnerability detection task, code in alternative
conditions, and original human-written source code. Then, they
participated in a semi-structured interview, during which they filled
out the NASA-TLX survey and explored the MAD web applications.
The interface screenshot of the experiment is at Figure 8.

6.2 30 minutes Quick Interview (Q)
Additionally, 5 highly experienced Sui Move developers took part
in a shorter, 30-minute study. They used the MAD to decompile
their own smart contracts, reviewed the decompiled contract code,
and compared the output from Revela, MAD, and their own source
code. After that, they completed the NASA-TLX survey along with
a semi-structured interview.

6.3 Measures of readability
We used a 7-point Linkert scale for the NASA Task Load Index
(NASA-TLX) [12, 13] to enable participants to evaluate their overall
workload while performing code reading and bug-catching tasks
under various conditions. NASA-TLX is a widely adopted tool for
assessing perceived workload across six dimensions: mental de-
mand, physical demand, temporal demand, effort, performance,
and frustration. This provides a comprehensive measure of both
cognitive and physical strain experienced during a task, offering a
deeper insight into task difficulty and workload [12, 13].

Participants in 90 minutes study group (P) were randomly as-
signed either decompiled code produced by Revela or by the MAD,
followed by code comprehension and vulnerability detection tasks.
We compared their task finish time between different conditions.
After completing the tasks, they were asked whether they thought
the code (MAD or Revela’s output) they engaged with was human-
written source code or not. Then, they complete the NASA-TLX
questionnaire for their assigned condition. Theywere then prompted
to consider whether their NASA-TLX scores might differ under al-
ternative conditions or when reading the human-written code.

As for the Quick Interview Group (Q), participants were asked
to evaluate the workload of using Revela, MAD, and source code
when auditing Move contract code with NASA-TLX with their own
deployed smart contract.

8The code is available at https://reurl.cc/93AR3a

6.4 Semi-structured interview
During the completion of NASA-TLX, we engaged participants in
discussions to understand the rationale behind their choices. For
instance, we asked questions like, "You rated Revela higher than
MAD on Mental Demand—could you explain why?"

After completing the NASA-TLX, we asked participants open-
ended questions to gain further insights into the potential, limita-
tions, and concerns of MAD. These questions included:

(1) What are your overall thoughts on MAD?
(2) How and why you might use MAD in the future?
(3) Do you have any concerns about MAD?
(4) How would you feel if the smart contract you deployed was

being decompiled by others by MAD?
We applied a thematic analysis [9] approach to analyze the inter-

view transcripts, focusing on extracting insights from participant
responses. As suggested by [16], thematic analysis is well-suited
for understanding participant perspectives in exploratory studies.
Given the qualitative nature of this analysis, agreement scores were
not deemed necessary, as the primary goal was to capture a wide
range of user insights without the need for multiple coders.

6.5 Other Informal Conversations
The authors also engaged in informal discussions with severalWeb3
project leaders and managers at in-person events or by message to
gather their opinions on MAD. In particular, we asked about con-
cerns raised by participants in semi-structured interview sessions.

7 USER STUDY RESULTS (RQ3)
7.1 Perception of Decompiled Code
When asked, all 3 participants in the Revela condition consider the
code is not human-written source code, whereas 75% (3 out of 4) of
participants in the MAD condition believed the code they read was
source code 9. This suggests that MAD’s decompiled code feels like
actual source code to the participants.

7.2 Comparative Analysis of NASA-TLX Scores
The result of NASA-TLX is shown at Figure 2. Statistical analyses
showed significant higher workload in all dimensions between Rev-
ela and the other two conditions (all p < .01), with no significant
differences between MAD and original source code. This suggests
that MAD provides a reading and auditing workload comparable to
the source code. The Cronbach’s Alpha for the NASA-TLX scores
across all dimensions was 0.843, indicating good internal consis-
tency. The detail of the statistical analysis results is at Appendix A.

7.3 User Interview Result on NASA-TLX
7.3.1 Mental, Physical, Temporal Demand and Effort. All partici-
pants considered that MAD’s variable names were easier to under-
stand compared to Revela’s, requiring less mental effort. Addition-
ally, because the variable names were more intuitive, there was
less need for scrolling around, reducing the physical demand. The
ease of comprehension also lowered temporal pressure, making the
9We believe the one participant in the MAD group who thought it was not human-
written source code misunderstood the question, as he found some bugs in the code
and assumed it must have been AI-generated because of these bugs.

5

https://reurl.cc/93AR3a

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 2: NASA-TLX results for users across Revela, MAD,
and Source Code condition. Lower is better.

overall effort lighter. Two participants from the 90-minute group (P)
even foundMAD’s format and variable choices easier to understand
than the original source code itself. For example, as illustrated in
Figure 3, one participant noted that MAD’s use of the variable name
“exist” was clearer than the source code’s “is_in_leaderboard”.

Figure 3: Example output illustrated the difference between
Revela, MAD, and Source Code’s output.

However, in the quick interview group (Q), participants men-
tioned that after decompiling their own contracts, MAD’s output
was not as polished as the original source code. This gap was due
to the absence of developer-written comments and advanced Move
language features such as Macros [18], which define reusable code
snippets, and Method Syntax [19], which allows functions to be
invoked directly from variables. These elements are optimized dur-
ing compilation but not reflected in the decompiled output. Despite
this, participants felt that these differences only lead to a more
redundant structure but do not hinder readability or auditing.

These results indicate that MAD can effectively generate smart
contract code that closely resembles the original source code, mak-
ing it readable and suitable for auditing the underlying logic.

7.3.2 Frustration Level. Compared to the source code or MAD’s
code, participants generally felt more frustration when reading
code from Revela. The lack of variable names was especially dis-
couraging, making it harder for users to audit smart contract codes.
One participant even admitted during the interview that they al-
most wanted to give up the experiment while working with the
Revela condition. In contrast, participants reading under the MAD
condition found it much more intuitive and easy to read, just like
reading the original source code.

7.3.3 Performance. For the performance dimension in NASA-TLX,
all participants perceived their code comprehension and auditing
performance to be better in the MAD or Source Code conditions

than in the Revela condition. However, for actual performance, we
found the number of identified vulnerabilities in the MAD (M = 2.00,
SD = 0.82) and Revela (M = 1.33, SD = 1.53) conditions did not differ
in a statistically significant manner (t(5) = 0.76, p = .48). Additionally,
within a 15-minute time limit, there were 6 vulnerabilities in total,
and no participant was able to identify more than half of them.

Additionally, the time spent on function comprehension task
showed a similar pattern, with MAD (M = 291.75, SD = 157.86)
requiring less time than Revela (M = 450.33, SD = 182.40). However,
this difference was not statistically significant (t(5) = 1.24, p = .27),
and both conditions took a considerable amount of time.

Notably, after the task, when users viewed the task answers, all
participants completed checking and validating all six vulnerabili-
ties within 3 minutes because the answers were directly commented
on where the vulnerabilities appeared. The results indicate that
while MAD’s code is indeed easier to read, users may still need
more time or additional assistance to effectively identify vulnera-
bilities in smart contract code. We will discuss more about this in
the future work discussion section 8.3.2.

7.4 Semi-Structured Interview Results
We asked participants open-ended questions to gain further insights
into the potential, limitations, and concerns of MAD.

7.4.1 Usefulness of MAD. All participants found MAD to be a
highly useful tool. Many praised its ability to generate decompiled
code that closely resembled the original source code, making it eas-
ier to read and understand. For example, P1mentioned that MAD’s
output was "quite readable and comparable to source code," which
improved their ability to analyze already deployed smart contracts.
Similarly, Q1 appreciated how MAD made the decompiled code
"much more readable," which helped them better understand the
code structure.

The ability to analyze non-open-source contracts was a signif-
icant advantage noted by participants. P4 expressed that MAD
would be useful for examining non-open-source projects, meme
coins, and decentralized applications to ensure safety before invest-
ing. P7 highlighted that they could use MAD for auditing purposes,
such as decompiling contracts to identify bugs in projects they are
considering for investment. Q2 pointed out that MAD would be
valuable for analyzing specific cases on the network, especially
when they have no direct access to the code or its authors.

Moreover, MAD was also appreciated for development purposes.
P6 saw value in using MAD to check other people’s code and in-
corporate relevant sections into their own projects. Q5 highlighted
that MADmade it easier to understand and debug non-open-source
contracts by revealing the internal logic more clearly.

Several participants emphasized MAD’s usefulness in the ed-
ucational context. P2 mentioned that MAD could be a tool for
learning purposes, allowing them to learn from well-known pro-
duction smart contracts and improve their own development skills.
P3 saw MAD as helpful for reverse engineering and learning from
other developers’ code, aiding in debugging and enhancing their
own smart contracts. Q4 echoed this sentiment, noting that MAD
would be highly beneficial for understanding other protocols’ code,
especially for developers new to Move programming.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MAD: Move AI Decompiler to Improve Transparency and Auditability on Non-Open-Source Blockchain Smart Contract

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

7.4.2 Concerns About MAD. While participants generally appreci-
ate MAD, some concerns were raised about its potential misuse. P5
was worried that MAD could make any project effectively open-
source, which could be seen as a threat by developers who want
to keep their code private. They also noted that attackers might
use MAD to decompile smart contracts and find vulnerabilities.
P6 similarly expressed concerns about competitors using MAD to
clone proprietary contracts, highlighting the risk of intellectual
property theft. P5 also noted that the ease of access to code could
pose risks, particularly if attackers use the decompiled code to
exploit vulnerabilities.

Other participants were concerned about the accuracy of MAD’s
decompilation. P1 mentioned that while they had not encountered
major issues yet, they were still cautious about the possibility of
“hallucinations, such as incorrect or made-up code”, which could
erode their trust in the tool.

Despite these concerns, many participants valued the trans-
parency MAD offers. P3 stated that transparency is essential in
blockchain, as it allows everyone to verify that no malicious actions
are being hidden in smart contracts.

7.4.3 Concerns About Their Own Code Being Decompiled. Partic-
ipants had mixed feelings about someone else decompiling their
own code by MAD.

Several participants were comfortable with it, as they valued
transparency and openness principles of Blockchain. P3 expressed
no concerns, explaining that if their code was free of vulnerabilities,
they had nothing to worry about. P4 said they were fine with
their code being decompiled, as it aligned with the open nature of
blockchain technology. Q1 shared a similar view, stating that they
preferred open-source practices and saw transparency as key to
blockchain’s philosophy.

Moreover, Some participants, such as Q3, were indifferent to
having their code decompiled because their smart contracts were
already open-source. Q4 also welcomed the idea, mentioning that
decompiling their code couldmake it easier for others to understand,
audit, and even learn from it.

However, a few participants expressed discomfort with the idea
of their code being decompiled. P5 admitted they would feel uneasy
if their non-open-source code were decompiled, fearing that it could
expose their project to risks if vulnerabilities were discovered. P6
also raised concerns about competitors potentially cloning their
proprietary contracts using MAD, which could lead to intellectual
property theft.

Q2 and Q5 noted that all on-chain code is public, meaning de-
termined individuals can reverse engineer it with enough effort.
They explained that MAD simply streamlines this common pro-
cess, making code more accessible for analysis, which aligns with
blockchain’s open nature. Q5 added that developers should expect
contracts to be open sourced and analyzed once deployed, viewing
decompilation as part of the norm rather than a major issue.

In summary, while some participants had concerns about MAD’s
potential misuse, most were supportive of the transparency it brings
to the blockchain space. Many embraced the idea of their code being
decompiled as part of maintaining a transparent Web3 ecosystem.

7.5 Insights from Discussion withWeb3 Projects
We engaged in informal discussions with several Web3 project
leaders and managers about the concerns raised from our interview
result at subsubsection 7.4.2 and 7.4.3.

It’s worthmentioning that during these conversations, one project
leader emphasized how their team had used MAD to accelerate
the integration of external smart contracts, particularly when veri-
fying the correctness of complex logic, saving weeks of research
time. This demonstrates MAD’s potential to simplify integration
processes in Web3 projects, offering algorithmic transparency and
promoting both technical efficiency and operational benefits.

7.5.1 Concerns about Exposing Vulnerabilities. Regarding the con-
cern that MADmight expose vulnerabilities in their smart contracts,
project leaders and managers generally expressed confidence. Many
highlighted that their contracts had undergone professional secu-
rity audits, which serve as a strong endorsement of the contract’s
security. They pointed out that if a hacker possessed the capabil-
ity to find vulnerabilities that these audit teams missed, such a
hacker would likely be able to reverse-engineer the contract logic
regardless of the availability of tools like MAD.

When asked directly about the concerns of people decompil-
ing their contracts, one owner viewed the contracts as effectively
open-source once deployed on the blockchain. Their reasoning was
that, by being accessible on the blockchain, anyone with enough
knowledge could theoretically extract the contract’s logic, regard-
less of MAD’s existence. Thus, MAD merely speeds up a process
that would otherwise take considerable time and expertise.

7.5.2 Concerns about Competitors Cloning Contracts. As for con-
cerns related to competitors potentially cloning their smart con-
tracts using MAD, project owners expressed that merely decom-
piling the smart contract does not provide a significant advantage.
They emphasized that a successful Web3 project relies on much
more than its contract alone. Other critical factors include frontend
development, backend infrastructure, marketing, and the liquidity
value provided to the project. In sum, they noted that contracts
are just one part of a much larger, complex system that cannot be
easily replicated without significant effort and investment.

Regarding intellectual property issues, one project owner men-
tioned that their close-sourced smart contract was protected under
a Business Source License (BUSL), meaning that even others decom-
piled it, it still have legal protection. Nevertheless, upon further in-
vestigation, we found no explicit BUSL declaration for their project.
Since the legal issues of the use of decompiled code is outside the
scope of this paper, we will not discuss this matter further.

8 DISCUSSION
Our study highlights the promising potential of MAD as an AI-
powered decompiler for improving transparency and auditability
in the Web3 ecosystem. By addressing the non-transparent issues
posed by non-open-source smart contracts, MAD enables web3
developers to independently audit blockchain contracts. This signif-
icantly enhances users’ ability to detect vulnerabilities and ensures
the integrity of Web3 applications.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

8.1 Practical Implications
The practical implications of using LLMs to decompile smart con-
tracts extend beyond code readability. By offering a decompila-
tion solution that translates bytecode into logically equivalent and
human-readable code, MAD makes blockchain auditing more ac-
cessible. This is crucial in the context of blockchain financial and
security applications, where trust and transparency are paramount.
Our findings indicate that participants have less workload in un-
derstanding the code decompiled by MAD compared to existing
decompilers like Revela. This suggests that tools like MAD can
empower Web3 developers, along with other users, to identify po-
tential risks more easily before engaging with smart contracts.

Moreover, MAD’s application in real-world use cases, such as
auditing closed-source contracts, introduces a powerful tool for
preventing exploitation and fraud. By empowering the developer
community to inspect the logic in smart contracts, MAD promotes
a more transparent and auditable ecosystem where malicious code
is more easily detected. This can help Web3 users avoid vulnerable
smart contracts, such as phishing, backdoors, and unfair logic.

In addition to improving transparency, MAD has the potential
to be a developer education tool. As noted by several participants,
MAD could be used to reverse-engineer non-open-source contracts
for learning and development purposes. This educational value
offers an opportunity for developers, particularly those new to the
Move language, to learn from real-world production codes.

Another key implication is MAD’s potential generalizability
to other domain-specific smart contract languages, regardless of
whether the LLM has been trained with knowledge related to those
languages or whether training data is available. With the right
prompt engineering technique, the same pipeline used in MAD can
be adapted to decompile other languages such as Solidity and Rust.
This approach would extend AI-powered decompilation, enhancing
transparency and auditability across various Web3 ecosystems.

8.2 Limitations
Despite its advantages, MAD still has limitations. Our study identi-
fied some minor LLM hallucinations in MAD’s decompiled code,
such as incorrect function substitutions. While these hallucinations
did not significantly hinder comprehension, they may limit the
tool’s effectiveness in complex contracts.

Furthermore, although MAD addresses some errors from the
Revela decompiler input related to syntax and resource constraints
in Move, manual intervention is still needed to ensure that decom-
piled code complies with Move’s strict compiler rules and can be
successfully recompiled.

8.3 Future Directions
8.3.1 Improving Support for Advanced Move Language Features.
Our future work involves enhancing the decompiler’s ability to han-
dle advanced Move language features, such as macros and method
syntax, to increase its accuracy and utility in real-world scenar-
ios. Fine-tuning new LLMs such as GPT-4o specifically for Move
and improving the integration of Move-specific knowledge into
the decompilation process could further reduce hallucinations and
improve the decompiled output’s accuracy.

Figure 4: Screenshot of current MAD interface, where users
can chat with a AI chatbot about potential vulnerabilities

8.3.2 Enhancing AI and Community Collaboration in Vulnerability
Detection. Our study showed that within a 15-minute time limit,
participants with Move development experience were only able to
identify fewer than half of the six critical vulnerabilities embedded
in the smart contracts. Nevertheless, after being shown the task an-
swers, all participants were able to check, validate, and understand
all six vulnerabilities within three minutes. These findings suggest
that while MAD’s decompiled code is indeed easier to read, devel-
opers may still need additional assistance to effectively identify
vulnerabilities in the decompiled code.

This raises an important opportunity: enabling AI and communi-
ties to identify potential vulnerabilities and allowing users to make
the final judgment on these findings. To explore this further, we
have already integrated an AI-powered chatbot and a community
forum into the MAD web application, as shown in Figure 4 and
Figure 7 in Appendix B. The AI-powered chatbot feature enables
developers or even non-technical users to discuss the vulnerabilities
of a given non-open-source smart contract with AI. Meanwhile,
the community forum allows users to discuss specific contracts,
collaboratively point out vulnerabilities, and share audit reports.

In our preliminary tests with this functionality, we found that AI
was able to identify most of the vulnerabilities with carefully crafted
prompts, but it also generated several false alarms. Therefore, our
future work will focus on improving the collaboration between
humans and AI, reducing false positives, and encouraging users
to share audit results at the community forum. This exploration
aims to enhance the role of AI as an auditing assistant while ensur-
ing that human oversight remains central to the auditing process.
By fostering collaboration between humans, AI, and the commu-
nity, we hope to further streamline the process of identifying and
addressing vulnerabilities in Web3 smart contracts.

REFERENCES
[1] Shubhani Aggarwal, Rajat Chaudhary, Gagangeet Singh Aujla, Neeraj Kumar,

Kim-Kwang Raymond Choo, and Albert Y Zomaya. 2019. Blockchain for smart
communities: Applications, challenges and opportunities. Journal of Network
and Computer Applications 144 (2019), 13–48.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MAD: Move AI Decompiler to Improve Transparency and Auditability on Non-Open-Source Blockchain Smart Contract

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[2] Gernot Beutel, Eline Geerits, and Jan T Kielstein. 2023. Artificial hallucination:
GPT on LSD? Critical Care 27, 1 (2023), 148.

[3] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd
Nowacki, Alistair Pott, Shaz Qadeer, Dario Russi Rain, Stephane Sezer, et al.
2019. Move: A language with programmable resources. Libra Assoc (2019), 1.

[4] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[5] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A
survey on ethereum systems security: Vulnerabilities, attacks, and defenses. ACM
Computing Surveys (CSUR) 53, 3 (2020), 1–43.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
CoRR abs/2107.03374 (2021). arXiv preprint arXiv:2107.03374 (2021).

[7] James Coker. 2024. Over $1bn in Cryptocurrency Lost to Web3 Cyber Incidents
in 2024 - Infosecurity Magazine. https://www.infosecurity-magazine.com/news/
crypto-lost-web3-cyber-incidents/. (Accessed on 10/07/2024).

[8] DefiLlama. 2024. Sui Protocol Rankings. https://defillama.com/chain/Sui. (Ac-
cessed on 10/09/2024).

[9] Jennifer Fereday and Eimear Muir-Cochrane. 2006. Demonstrating rigor using
thematic analysis: A hybrid approach of inductive and deductive coding and
theme development. International journal of qualitative methods 5, 1 (2006),
80–92.

[10] Aptos Foundation. 2021. Aptos Whitepaper: Safe, Scalable, and Upgradeable
Web3 Infrastructure. https://aptosfoundation.org/whitepaper#view-whitepaper-
pdf. (Accessed on 10/09/2024).

[11] Edward M Gellenbeck and Curtis R Cook. 1991. An investigation of procedure
and variable names as beacons during program comprehension. (1991).

[12] SGHart. 1988. Development of NASA-TLX (Task Load Index): Results of empirical
and theoretical research. Human mental workload/Elsevier (1988).

[13] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, 904–908.

[14] Movement Labs. 2024. Movement: A Network of High-Throughput Fast-
Finality Move-based Rollups Secured by Ethereum. https://movementlabs.xyz/
whitepaper/movement-whitepaper_en.pdf.

[15] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name? A Study of Identifiers. In 14th IEEE international conference on program
comprehension (ICPC’06). IEEE, 3–12.

[16] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
inter-rater reliability in qualitative research: Norms and guidelines for CSCW
and HCI practice. Proceedings of the ACM on human-computer interaction 3,
CSCW (2019), 1–23.

[17] MystenLabs. 06. sui/external-crates/move/crates/move-disassembler at main ·
MystenLabs/sui. https://github.com/MystenLabs/sui/tree/main/external-crates/
move/crates/move-disassembler. (Accessed on 10/13/2024).

[18] MystenLabs. 2024. Macro Functions - The Move Reference. https://move-
book.com/reference/functions/macros.html.

[19] MystenLabs. 2024. Method Syntax - The Move Reference. https://move-book.
com/reference/method-syntax.html.

[20] Keshab Nath, Sourish Dhar, and Subhash Basishtha. 2014. Web 1.0 to Web 3.0-
Evolution of the Web and its various challenges. In 2014 International Conference
on Reliability Optimization and Information Technology (ICROIT). IEEE, 86–89.

[21] Lyman W Porter and Edward E Lawler. 1968. Managerial attitudes and perfor-
mance. (No Title) (1968).

[22] Partha Pratim Ray. 2023. Web3: A comprehensive review on background, tech-
nologies, applications, zero-trust architectures, challenges and future directions.
Internet of Things and Cyber-Physical Systems 3 (2023), 213–248.

[23] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A systematic survey of prompt engineering in large
language models: Techniques and applications. arXiv:2402.07927.

[24] Sander Schulhoff, Michael Ilie, Nishant Balepur, Konstantine Kahadze, Amanda
Liu, Chenglei Si, Yinheng Li, Aayush Gupta, HyoJung Han, Sevien Schulhoff,
et al. 2024. The Prompt Report: A Systematic Survey of Prompting Techniques.
arXiv:2406.06608.

[25] Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey Loginov.
2018. Evolving exact decompilation. InWorkshop on Binary Analysis Research
(BAR).

[26] Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. 2024. LLM4Decompile: Decom-
piling Binary Code with Large Language Models. arXiv preprint arXiv:2403.05286
(2024).

[27] Libra Team. 2020. The Libra Blockchain. https://diem-developers-components.
netlify.app/papers/the-diem-blockchain/2020-05-26.pdf.

[28] The MystenLabs Team. 2021. The Sui Smart Contracts Platform. https://docs.sui.
io/paper/sui.pdf.

[29] Anna Vacca, Andrea Di Sorbo, Corrado A Visaggio, and Gerardo Canfora. 2021.
A systematic literature review of blockchain and smart contract development:
Techniques, tools, and open challenges. Journal of Systems and Software 174

(2021), 110891.
[30] Verichains. 02. verichains/revela: Decompiler for Move smart contracts. https:

//github.com/verichains/revela. (Accessed on 10/07/2024).
[31] Sui Vision. 2024. Sui Coin List. https://suivision.xyz/coins.
[32] Sui Vision. 2024. Sui NFT Dashboard. https://suivision.xyz/nfts. (Accessed on

10/09/2024).
[33] Victor H Vroom. 1964. Work and motivation. John Willey & Sons (1964).
[34] YaqingWang, Quanming Yao, James T Kwok, and Lionel MNi. 2020. Generalizing

from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

[35] Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu, Shuai Wang, Qiyi Tang,
Sen Nie, and Shi Wu. 2023. Refining decompiled c code with large language
models. arXiv preprint arXiv:2310.06530 (2023).

[36] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[37] Dirk A Zetzsche, Douglas W Arner, and Ross P Buckley. 2020. Decentralized
finance. Journal of Financial Regulation 6, 2 (2020), 172–203.

[38] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
2018. Blockchain challenges and opportunities: A survey. International journal
of web and grid services 14, 4 (2018), 352–375.

[39] Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia,
Yang Feng, Zhenyu Chen, and Baowen Xu. 2019. Smart contract development:
Challenges and opportunities. IEEE transactions on software engineering 47, 10
(2019), 2084–2106.

A DATA ANALYSIS DETAIL RESULTS
The analysis aimed to compare the perceived workload of partic-
ipants using three different code versions: Revela, MAD, and the
Source Code. The NASA Task Load Index (NASA-TLX) scores were
collected across six dimensions: Mental Demand, Physical Demand,
Temporal Demand, Effort, Performance, and Frustration Level.

A.1 Comparison of NASA-TLX Scores
One-way ANOVA tests were conducted for each dimension to
determine if there were significant differences among the three
conditions. The results indicated significant differences across all
dimensions (all p < .001). Post-hoc Tukey’s HSD tests revealed that
both MAD and Source Code conditions had significantly lower
workload scores compared to the Revela condition, while there
were no significant differences between the MAD and Source Code
conditions.

A.1.1 Mental Demand. Participants reported lowermental demand
when using MAD (M = 2.41, SD = 1.44) and Source Code (M = 1.92,
SD = 1.24) compared to Revela (M = 5.75, SD = 1.29). The ANOVA
showed a significant effect of the code version on mental demand,
(F(2, 69) = 29.61, p < .001). Post-hoc tests confirmed that both MAD
and Source Code scores were significantly lower than Revela (both
p < .001), with no significant difference between MAD and Source
Code (p = .63).

A.1.2 Physical Demand. Participants reported lower physical de-
mand when using MAD (M = 2.00, SD = 1.27) and Source Code (M
= 2.08, SD = 1.00) compared to Revela (M = 4.5, SD = 1.29) (F(2, 69)
= 16.66, p < .001). Post-hoc analyses showed significant differences
between Revela and the other two conditions (both p < .001), with
no significant difference between MAD and Source Code (p = .98).

A.1.3 Temporal Demand. Temporal demand scores were lower for
MAD (M = 2.00, SD = 1.21) and Source Code (M = 2.41, SD = 1.72)
than for Revela (M = 5.58, SD = 1.24), (F(2, 69) = 23.10, p < .001).
The post-hoc tests indicated significant differences between Revela
and the other conditions (both p < .001), but not between MAD and
Source Code (p = .75).

9

https://www.infosecurity-magazine.com/news/crypto-lost-web3-cyber-incidents/
https://www.infosecurity-magazine.com/news/crypto-lost-web3-cyber-incidents/
https://defillama.com/chain/Sui
https://aptosfoundation.org/whitepaper##view-whitepaper-pdf
https://aptosfoundation.org/whitepaper##view-whitepaper-pdf
https://movementlabs.xyz/whitepaper/movement-whitepaper_en.pdf
https://movementlabs.xyz/whitepaper/movement-whitepaper_en.pdf
https://github.com/MystenLabs/sui/tree/main/external-crates/move/crates/move-disassembler
https://github.com/MystenLabs/sui/tree/main/external-crates/move/crates/move-disassembler
https://move-book.com/reference/functions/macros.html
https://move-book.com/reference/functions/macros.html
https://move-book.com/reference/method-syntax.html
https://move-book.com/reference/method-syntax.html
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf
https://docs.sui.io/paper/sui.pdf
https://docs.sui.io/paper/sui.pdf
https://github.com/verichains/revela
https://github.com/verichains/revela
https://suivision.xyz/coins
https://suivision.xyz/nfts

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 7: Screenshot of the community forum, users can post
their audit report here to point out where is the vulnerabili-
ties to look into. Also users can vote to put spam messages
down.

Figure 8: The screenshot of the experiment interface, where
users engaged with the task of coding understanding and
vulnerability catching.

A.1.4 Effort. Effort required was significantly less for MAD (M =
2.08, SD = 1.71) and Source Code (M = 2.41, SD = 1.73) compared
to Revela (M = 5.25, SD = 1.71), (F(2, 69) = 14.97, p < .001). Post-
hoc comparisons showed significant reductions in effort for MAD
and Source Code versus Revela (both p < .001), with no significant
difference between MAD and Source Code (p = .86).

A.1.5 Performance. Performance scores were lower (indicating
better perceived performance) for MAD (M = 2.08, SD = 1.24) and
Source Code (M = 1.75, SD = 0.97) than for Revela (M = 4.33, SD

= 2.02), F(2, 33) = 10.89, p = .0002. Post-hoc comparisons showed
significant differences between Revela and the Source Code (p <
.001) and MAD (p = .002) condition, while no significant difference
was found between MAD and Source Code (p = .85).

A.1.6 Frustration Level. Participants experienced less frustration
with MAD (M = 2.00, SD = 0.85) and Source Code (M = 1.67, SD =
0.78) compared to Revela (M = 5.42, SD = 1.73), (F(2, 69) = 35.85, p <
.001). Post-hoc analyses indicated significant differences between
Revela and the other conditions (both p < .001), but not between
MAD and Source Code (p = .78).

B ADDITIONAL FIGURES

Figure 5: The screenshot of the interface of Move AI Decom-
piler, where users can inspect different version of the code.

Figure 6: GPT’s output if we send the whole smart contract
code in the prompt and ask it to output the beautified ver-
sion. We can see the function implementation is omitted and
replaced with comments.

10

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND RELATED WORK
	2.1 The Move Programming Language
	2.2 Decompiler on Move Language
	2.3 AI Augmented Decompiler
	2.4 Expectancy Theory and Auditing

	3 Development of Move AI Decompiler
	4 System Evaluation Methods
	4.1 Evaluation on Examples with Unit Test
	4.2 Evaluation on Real-world Contracts

	5 System Evaluation Results
	5.1 Result on Examples with Unit Test (RQ1)
	5.2 Results on Real-world Contracts (RQ2)

	6 User Study Design
	6.1 90 minutes user study for code reading (P)
	6.2 30 minutes Quick Interview (Q)
	6.3 Measures of readability
	6.4 Semi-structured interview
	6.5 Other Informal Conversations

	7 User Study Results (RQ3)
	7.1 Perception of Decompiled Code
	7.2 Comparative Analysis of NASA-TLX Scores
	7.3 User Interview Result on NASA-TLX
	7.4 Semi-Structured Interview Results
	7.5 Insights from Discussion with Web3 Projects

	8 DISCUSSION
	8.1 Practical Implications
	8.2 Limitations
	8.3 Future Directions

	References
	A Data Analysis Detail Results
	A.1 Comparison of NASA-TLX Scores

	B Additional Figures

