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ABSTRACT

Adapting large language models (LLMs) using smaller proxy models has been
shown to improve training efficiency, where the LLMs remain frozen while the
proxies are tuned on top. However, this approach typically requires access to the
output probability distributions of LLMs, which are often inaccessible or unsta-
ble. To address this limitation, we propose KNOWPROXY, a knowledge-guided
proxy framework in which the proxy is trained with textual knowledge rather than
probability distributions. Specifically, we first elicit textual knowledge and rea-
soning from frozen LLMs through prompting, and then the proxy model learns to
adapt this reasoning to target task distributions. We evaluate KNOWPROXY on di-
verse reasoning benchmarks with different fine-tuning scenarios. Comprehensive
results show that KNOWPROXY achieves competitive or even better performance
without direct access to probability distributions, thereby providing a scalable and
versatile alternative to traditional fine-tuning.1

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance across a variety of NLP
tasks (OpenAI et al., 2024; Team et al., 2024; Grattafiori et al., 2024). To ensure that such LLM be-
haviors align with human intentions and the specific requirements of downstream tasks, fine-tuning
plays a crucial role. However, their computational demands make direct fine-tuning of these LLMs
resource-intensive and often impractical for many cases (Zhao et al., 2024; Miles et al., 2024).
Moreover, when dealing with proprietary LLMs, which are frequently closed-source and inaccessi-
ble, direct modification becomes impossible.

One promising approach to this limitation is to train smaller proxy language models on top of the
outputs from LLMs (Liu et al., 2024; Ormazabal et al., 2023). For example, proxy-tuning (Liu et al.,
2024) adjusts LLM’s outputs through a lightweight proxy that reweights its probability distributions.
Similarly, CombLM (Ormazabal et al., 2023) trains a smaller model separately and combines its pre-
dictive distribution with those of the LLM. Despite their effectiveness, these approaches share two
critical limitations: (i) they assume access to the full probability distributions and a shared vocabu-
lary between LLMs and proxies, restricting applicability to black-box LLMs that provide only tex-
tual outputs. (ii) recent studies show that LLM-generated probability distributions are often unstable
and unreliable (Atil et al., 2024; Gu et al., 2024), which can degrade downstream performance.

To overcome these limitations, we propose KNOWPROXY, a knowledge-guided proxy framework
for adapting LLMs without relying on their probability distributions. Instead of accessing predic-
tive probabilities, KNOWPROXY elicits textual knowledge and reasoning from frozen LLMs through
prompting. A lightweight proxy model is then optimized on the elicited knowledge together with
the input query, learning to map LLM-derived reasoning and knowledge into the target task distri-
bution. This design enables adaptation even for proprietary black-box LLMs, while also mitigating
instability by avoiding reliance on probability distributions.

A remaining challenge for proxy-based adaptation is the additional inference cost introduced by
always involving the proxy model. To address this, KNOWPROXY incorporates a dynamic routing
mechanism that adaptively determines when the proxy is required. Specifically, we elicit uncertainty
scores for the LLM’s generated reasoning and knowledge, and use these scores to decide whether

1Our code and data are available at https://anonymous.4open.science/r/knowproxy-FC79
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to invoke the proxy model. In this way, KNOWPROXY maintains efficiency by selectively engaging
the lightweight model only when the LLM’s outputs are deemed unreliable.

We evaluate KNOWPROXY on a diverse set of reasoning benchmarks under multiple configura-
tions. Experimental results show that KNOWPROXY consistently outperforms existing proxy-based
methods, achieving superior accuracy and robustness while requiring no direct access to probability
distributions. Notably, it delivers strong performance even in black-box settings where conventional
fine-tuning is infeasible. In summary, the contributions of this work include the followings:

◦ We introduce KNOWPROXY, a novel proxy-based fine-tuning framework that adapts LLMs
through textual knowledge and reasoning rather than probability distributions, enabling appli-
cability to black-box settings.

◦ We integrate a dynamic routing mechanism into KNOWPROXY, which adaptively activates the
proxy model only when necessary, thereby enhancing efficiency while preserving accuracy.

◦ We demonstrate that KNOWPROXY outperforms proxy-based methods and achieves comparable
performance with the direct fine-tuning, highlighting its practical value in fine-tuning scenarios.

2 RELATED WORKS

2.1 FINE-TUNING LARGE LANGUAGE MODELS BY PROXY

As billion-scale LLMs increasingly dominate applications and research communities, fine-tuning
them has become even more challenging—even with parameter-efficient methods such as low-rank
adaptation (LoRA) (Hu et al., 2022) and adapters (Houlsby et al., 2019). To address these challenges,
an alternative line of work has investigated proxy-based approaches, where smaller language models
(i.e., proxy) are trained on the outputs of frozen LLMs to adapt them to the target domain (Liu et al.,
2024; Ormazabal et al., 2023). For instance, CombLM (Ormazabal et al., 2023) trains a separate
smaller model and combines its predictive distribution with that of the LLM. Similarly, proxy-tuning
(Liu et al., 2024) employs a lightweight model to reweight the predictive distributions of LLMs.
However, these methods require access to the probability distributions of LLMs and assume a shared
vocabulary space between the LLMs and the smaller model.

Compared to these methods, KNOWPROXY has distinct properties. Instead of relying on the proba-
bility distributions of LLMs, KNOWPROXY leverages the textual knowledge and reasoning elicited
from frozen LLMs. This design makes it directly applicable to black-box settings, where only text
outputs are available. Moreover, by shifting from probability distributions to textual representations,
KNOWPROXY avoids the instability and unreliability issues often observed in LLM-generated dis-
tributions (Atil et al., 2024; Gu et al., 2024). The proxy model is thus trained to internalize and
adapt reasoning expressed in text, yielding more stable and transferable performance across tasks.
Finally, KNOWPROXY integrates an adaptive routing mechanism, ensuring that the proxy is invoked
only when additional reasoning is required, thereby improving both efficiency and robustness.

2.2 ELICITING UNCERTAINTY FROM LANGUAGE MODELS

Assessing the confidence (or uncertainty) elicited from LLMs is crucial for improving the factuality
of their responses and enhancing the quality of generated text (Geng et al., 2024). Previous studies
have primarily extracted uncertainty from the output probabilities (Mielke et al., 2022; Kuhn et al.,
2023; Duan et al., 2024). However, this approach faces applicability constraints, as it cannot be
applied to black-box models whose internal probabilities are inaccessible. To address this limitation,
several studies have proposed prompting-based methods to compute uncertainty scores directly from
LLM textual outputs—applicable to both open-source and API-based models—showing that these
scores correlate well with model performance and output quality (Tian et al., 2023; Xiong et al.,
2024; Dong et al., 2024).

Building on these studies, we use elicited uncertainty scores primarily for adaptive routing. Unlike
prior proxy-based methods that always invoke the proxy model, KNOWPROXY selectively engages
it only when the LLM’s outputs are judged uncertain or unreliable, thereby reducing inference over-
head while maintaining robustness. Moreover, whereas previous work has considered uncertainty
only at the prediction level, our design estimates uncertainty for each piece of elicited knowledge,
allowing finer-grained routing decisions and more stable adaptation.
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(a) Concept (b) Training (c) Inference

Figure 1: Conceptual illustration of KNOWPROXY. (a) A smaller proxy model is trained using
textual knowledge generated by LLMs to better capture the target task distribution. (b) During
training, knowledge is elicited from LLMs via prompting and incorporated as an auxiliary input
to the proxy. (c) At inference, KNOWPROXY utilizes multiple confidence scores from LLMs to
perform dynamic routing, thereby balancing efficiency and accuracy.

3 KNOWPROXY: KNOWLEDGE-GUIDED PROXY

We introduce KNOWPROXY, a framework that adapts LLMs using smaller proxy models based on
textual knowledge and reasoning elicited from frozen LLMs. We first outline the problem setup of
the LLM adaptation (§3.1), then describe how we elicit textual knowledge and reasoning from LLMs
and train proxy models to align these representations with target task distributions (§3.2). Finally,
we present an adaptive routing mechanism that reduces inference overhead by selectively invoking
the proxy model only when needed (§3.3). Figure 1 illustrates the workflow of KNOWPROXY.

3.1 PRELIMINARIES AND PROBLEM FORMULATION

We first revisit the traditional fine-tuning and define the problem setup in our method.

Direct Fine-tuning. A straightforward way to train LLMs is to perform direct fine-tuning using
a supervised objective defined over a training dataset D = {(xi, yi)}N−1

i=0 , where N denotes the
dataset size. The fine-tuning objective is formulated as:

min
θ

−E(x,y)∼D [log πθ(y | x)] (1)

Here, πθ denotes the language modeling function of the LLM parameterized by θ. However, directly
fine-tuning θ is often impractical due to two major challenges: (1) the massive scale of θ, which
renders optimization computationally prohibitive, and (2) the restricted accessibility of θ in black-
box LLMs, where the underlying parameters are not exposed.

Proxy-based Fine-tuning. To overcome these challenges, proxy-based fine-tuning approaches
have been proposed, in which a smaller, accessible model µϕ, parameterized by ϕ, serves as a
proxy for the fine-tuned LLM (Ormazabal et al., 2023; Liu et al., 2024). The training objective is
reformulated as:

min
ϕ

−E(x,y)∼D [logµϕ(y | x)πθ(y | x)] (2)

By optimizing the smaller model µϕ on the dataset using the predictive distributions provided by the
LLM, this approach effectively performs fine-tuning through the proxy without requiring access to
the LLM’s parameters.

However, this approach has two key limitations rooted in its reliance on probability distributions:
(i) it requires access to the predictive distributions of LLMs, which are often unavailable, and (ii)
even when accessible, these distributions are frequently unstable (Atil et al., 2024; Gu et al., 2024).
To address this, we reformulate proxy-based fine-tuning to leverage textual knowledge generated
by LLMs, making it applicable even in black-box scenarios. Given an input x, the LLM generates

3
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knowledge k according to πθ(k | x), where k denotes textual knowledge or reasoning extracted
from the model. This leads to the following knowledge-guided objective:

min
ϕ

−E(x,y)∼D [logµϕ(y | x, k)] where k ∼ πθ(k|x)

Here, k represents the generated textual knowledge that provides additional context for solving
the query x. This reformulation enables effective fine-tuning through proxies without relying on
the LLM’s predictive distributions. Moreover, because the proxy model directly learns to leverage
knowledge generated by the LLM, it can internalize this information in a more stable and controlled
manner. In the following sections, we describe how textual knowledge is elicited from LLMs and
how the proxy model is trained to align this knowledge and reasoning to target tasks.

3.2 ADAPTATION WITH KNOWLEDGE-GUIDED PROXY

Knowledge and Reasoning Generation. To optimize the reformulated training objective
(Eq. equation 9), KNOWPROXY begins by eliciting textual knowledge for the training dataset D.
In this work, we define knowledge as the relevant cues required to solve a given problem, such as
underlying principles (Cai et al., 2024), reasoning steps (Wei et al., 2022), or relevant facts (Park
et al., 2024). This knowledge is obtained through knowledge-eliciting prompts to LLMs. Along
with the knowledge, we also extract a confidence score for each piece, which serves as an estimate
of its reliability and allows weighting according to its expected correctness. This process can be
formally represented as follows:

k, c = πθ(Pk, x) (3)
Here, Pk denotes the knowledge-eliciting prompt (see Appendix §B.3 for the complete list of
prompts), while k and c ∈ [0, 1] represent the extracted textual knowledge and its associated con-
fidence score for solving the given query x. Importantly, rather than relying on a single output,
we generate multiple knowledge–confidence pairs. This design captures the diversity of potential
reasoning paths and mitigates the risk of over-reliance on any individual extraction.

However, the knowledge generated by LLMs is not always reliable for solving the given query, as
it may contain hallucinations or irrelevant information. To mitigate this issue, we apply a filtering
process to the generated knowledge, defined as follows:

k = {ki | (ki, ci) ∈ K, ci > α} , (4)

Here, K denotes the set of knowledge–confidence pairs for the given query, and α is a prede-
fined threshold that specifies the minimum confidence level required to retain knowledge. Af-
ter applying this filtering process, we construct the knowledge-augmented training dataset DK =
{(xi, ki, yi)}N−1

i=0 , where each training instance (xi, ki, yi) consists of the original input xi, the
corresponding filtered knowledge set ki, and the target output yi.

Proxy Optimization with Generated Knowledge. Based on the knowledge-augmented dataset,
we train a smaller language model to align the reasoning and knowledge elicited from LLMs with the
target task distributions. Given a query x and its associated knowledge k, we construct an augmented
input by concatenating x and k, and train the proxy model µϕ with a standard supervised objective.
This training procedure enables the proxy to map LLM-derived reasoning into task-specific outputs,
thereby adapting the frozen LLM to downstream requirements. Further details on the knowledge
adaptation process are provided in Appendix A.

3.3 ADAPTIVE REASONING IN KNOWPROXY

Although adapting smaller models to fine-tune LLMs through proxies is effective, it introduces ad-
ditional inference costs for every query. A more efficient strategy is to invoke the proxy model
only when necessary—specifically, when the LLM alone is unlikely to produce a correct output.
To achieve this, we incorporate a dynamic routing mechanism into the inference phase of KNOW-
PROXY.

Confidence Elicitation To implement the dynamic routing process, we first obtain the LLM’s
prediction for the given query along with its associated confidence score Cprediction. We efficiently
achieve this by augmenting the knowledge-eliciting prompt Pk (Eq. equation 3) with instructions to

4
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elicit both the prediction and its confidence. For the routing decision, we incorporate not only the
prediction confidence but also the confidence scores of the generated knowledge. This is because the
reliability of the generated knowledge provides additional insight into whether the LLM’s reasoning
is sound; low-confidence knowledge may indicate uncertainty or hallucination, signaling the need
to invoke the small model for improved accuracy. We thus derive the final confidence scores as
follows:

Cfinal = Cknowledge · Cprediction, where Cknowledge =

K∏
k=1

ck (5)

Here, K denotes the predefined number of generated knowledge instances. Since multiple pieces
of knowledge are elicited for each query, we aggregate their confidence scores to obtain a single
reliability measure2. Note that, when aggregating the final confidence score, we include all confi-
dence scores—even those from filtered knowledge—in order to capture the LLM’s comprehensive
understanding of the given query.

Adaptive Reasoning Paths KNOWPROXY determines whether to rely directly on the LLM’s pre-
diction or to engage the proxy model trained to leverage generated knowledge. If the aggregated
confidence score (Eq. equation 5) exceeds a predefined threshold, the system outputs the LLM’s
prediction as the final answer without invoking the proxy. Conversely, if the confidence score falls
below the threshold, KNOWPROXY activates the proxy model, which incorporates the generated
knowledge to refine the prediction. This decision process can be formalized as follows:

y =

{
πθ(y|x), if Cfinal ≥ τ

µϕ(y | x, k ∼ πθ(k|x)), if Cfinal < τ
(6)

Here, τ denotes the predefined threshold. Through this adaptive reasoning path, KNOWPROXY
dynamically balances computational efficiency and prediction accuracy by invoking the proxy model
only when the LLM’s prediction is deemed unreliable. This design ensures that inference remains
efficient while maintaining accurate predictions across diverse queries.

4 EXPERIMENTS

In this section, we evaluate KNOWPROXY to verify its efficacy on fine-tuning scenarios. Specifically,
we aim to answer the following research questions:

◦ Does KNOWPROXY achieve performance comparable to existing proxy-based methods?
◦ Is KNOWPROXY effective across diverse fine-tuning scenarios, including black-box LLMs?
◦ Can KNOWPROXY effectively reduce the additional costs introduced by proxy-based training?

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate KNOWPROXY on a broad suite of complex reasoning benchmarks, includ-
ing OpenBookQA (Bhakthavatsalam et al., 2021), ARC-Challenge (Mihaylov et al., 2018), Com-
monsenseQA (Talmor et al., 2019), QASC (Khot et al., 2020), PhysicalIQA (Bisk et al., 2019),
SocialIQA (Sap et al., 2019), Winogrande (Sakaguchi et al., 2019), BoolQ (Clark et al., 2019), and
StrategyQA (Geva et al., 2021). We also include distinct benchmarks such as TruthfulQA (Lin
et al., 2022), and ScienceQA (Lu et al., 2022). Further details on these datasets are provided in
Appendix B.1.

Baselines. We primarily compare KNOWPROXY with recent proxy-based approaches, including
CombLM (Ormazabal et al., 2023) and Proxy-tuning (Liu et al., 2024). We also include BBox-
Adapter (Sun et al., 2024), which, while not a proxy-based method, trains a smaller evaluation
model to select better answers from multiple samples generated by the LLM. This provides a com-
plementary baseline, as it adapts LLM outputs through answer selection rather than distributional
alignment. In addition, we evaluate against established reasoning-based approaches, i.e., Self-talk
(Shwartz et al., 2020), Zero-shot-CoT (Kojima et al., 2022), and Plan-and-Solve (Wang et al., 2023).

2In Section 4, we demonstrate that our confidence aggregation strategy yields more reliable estimates than
existing confidence elicitation methods.
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Method OBQA ARCh PIQA CSQA QASC SIQA WNGR StrategyQA BoolQ Avg.

Fine-tuning LLM 82.2 76.2 87.7 79.5 82.9 80.5 87.3 71.5 86.9 81.6
Fine-tuning SLM 73.2 60.9 80.3 72.0 68.0 74.9 75.4 66.5 85.4 73.0

Advanced Zero-shot Reasoning (Frozen LLM)
Zero-shot 72.2 68.6 75.8 67.7 75.9 65.3 53.6 60.9 78.3 68.7
Self-Talk 74.8 74.2 75.9 72.3 80.5 67.0 54.6 57.6 78.5 70.6
Chain-of-Thought 77.6 80.0 75.6 73.1 79.0 68.6 57.8 69.0 76.7 73.1
Plan-and-Solve 76.6 75.3 74.3 73.7 79.8 66.4 58.2 66.8 73.9 71.7

Proxy-based Training (Frozen LLM + SLM)
Proxy-tuning 77.2 69.6 80.1 70.8 69.9 72.6 65.7 64.6 76.2 71.9
CombLM 78.6 72.6 81.1 72.5 76.9 73.7 69.3 67.2 76.8 74.3
BBox-Adapter 76.2 68.6 73.8 73.3 73.8 72.7 53.7 69.0 70.5 70.2
KNOWPROXY (ours) 80.2 75.2 83.4 75.0 78.1 76.3 77.8 72.9 85.1 78.2

Table 1: Evaluation results for test accuracy (%) on nine reasoning benchmarks. The best and
second-best results are highlighted in boldface and underlined, respectively. In these experiments,
we use Llama-3.2 (3B) as the frozen LLM and Llama-3.2 (1B) as the smaller proxy (SLM).

Backbone. To demonstrate the applicability of KNOWPROXY across diverse LLMs, we evalu-
ate it on two categories: API-based models (ChatGPT (GPT-3.5-turbo)) and open-source mod-
els (i.e.,Llama-3.2-3B-Instruct3, Mistral-7B-Instruct-v0.24, and Llama-2-13B-Chat (Touvron et al.,
2023). Furthermore, to showcase the adaptability of KNOWPROXY, we conduct experiments us-
ing various small models, such as Llama-3.2-1B-Instruct5, LaMini-GPT-774M (Wu et al., 2024),
Qwen2.5-0.5B-Instruct (Qwen et al., 2025), and Pythia family (Biderman et al., 2023), covering a
range of model sizes and model families. The experimental details are provided in Appendix B.

4.2 MAIN RESULTS

To validate the effectiveness of our approach, we first compare KNOWPROXY with existing proxy-
based methods that adapt LLMs by redistributing their predictive distributions through lightweight
models (e.g., Proxy-tuning, CombLM) or by generating adapted responses via multi-step beam
search, where candidate responses are ranked by small models (e.g., BBox-Adapter). As shown
in Table 1, KNOWPROXY consistently outperforms these methods across all reasoning benchmarks
by a substantial margin. Notably, KNOWPROXY even achieves accuracy comparable to direct fine-
tuning of LLMs on several tasks (e.g., OpenBookQA, ARC-Challenge, StrategyQA, and BoolQ)—a
performance level not previously attained by proxy-based approaches. Additionally, we observe that
KNOWPROXY is effective even on domain-specific tasks, including generative tasks. More detailed
results can be found in the Appendix C.1.

We further observe that existing proxy-based methods sometimes underperform even the zero-shot
reasoning capabilities of LLMs on certain benchmarks (e.g., QASC and BoolQ), likely due to the
instability of LLM probability distributions. In contrast, KNOWPROXY delivers substantial im-
provements on these tasks, indicating that proxies trained on textual representations provide greater
robustness and reliability than distribution-based approaches.

4.3 GENERAL APPLICABILITY TO ARCHITECTURES AND SCALES

Applicability across LLM architectures and scales. To demonstrate the broad applicability of
KNOWPROXY (i.e., its model-agnostic nature), we evaluate its indirect fine-tuning effectiveness
across diverse scenarios, including quantized LLMs (Llama-2 (13B))6 and API-based black-box
LLMs (ChatGPT). As shown in Table 2, KNOWPROXY consistently enhances performance across
all benchmarks, regardless of the underlying LLM’s capabilities. Notably, KNOWPROXY achieves
significant performance gains even with black-box models (e.g., ChatGPT). These results highlight
the plug-and-play nature of KNOWPROXY, which can effectively enhance both computationally
demanding open-source models and black-box models with inaccessible internal parameters. By

3https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
4https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
5https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
6We follow setup from (Dettmers et al., 2023).
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LLM Approach OBQA ARCh PIQA CSQA StrategyQA QASC SIQA Avg.

Mistral (7B)
Fine-tuning 87.2 74.5 88.4 82.9 72.9 81.5 79.8 81.0
Zero-shot 72.6 72.1 75.7 70.4 42.8 65.9 69.6 67.0
KNOWPROXY 81.0 73.8 84.3 74.5 69.4 75.8 77.4 76.6

Llama 2 (13B)
(4-bit quantized)

Fine-tuning 84.6 73.8 87.8 82.0 70.7 78.6 81.7 79.9
Zero-shot 61.0 56.3 72.6 53.3 55.0 52.9 48.6 57.1
KNOWPROXY 75.0 63.9 81.3 75.4 71.2 71.3 75.6 73.4

ChatGPT
(gpt-3.5-turbo)

Zero-shot 78.8 81.2 82.8 76.3 68.1 79.0 72.3 76.9
BBox-Adapter 79.2 83.3 88.3 77.7 73.8 80.0 73.2 79.4
KNOWPROXY 85.0 83.9 87.2 78.1 74.7 80.2 77.0 80.9

Table 2: Evaluation results for test accuracy (%) with diverse backbone LLMs. The best results are
highlighted in boldface. Here, we use Llama-3.2 (1B) as the proxy.

Model Approach OBQA ARCh PIQA CSQA StrategyQA QASC SIQA Avg.

Llama 3.2 (3B) Fine-tuning 82.2 76.2 87.7 79.5 71.5 82.9 80.5 80.1
Zero-shot 72.2 68.6 75.8 67.7 60.9 75.9 65.3 69.5

w/ Llama 3.2 (1B) 80.2 75.2 83.4 75.0 72.9 78.1 76.3 77.3
w/ LaMini-GPT (0.7B) KNOWPROXY 74.6 75.2 78.7 72.5 67.7 78.0 71.9 74.1
w/ Qwen 2.5 (0.5B) 76.2 75.3 79.9 72.8 69.4 78.4 73.9 75.1

Table 3: Evaluation results for test accuracy (%) with diverse small language models. The best
results are highlighted in boldface. Here, we use Llama-3.2 (3B) as the frozen LLM.

seamlessly integrating a smaller language model, KNOWPROXY provides a robust mechanism for
indirect fine-tuning across a wide range of LLMs.

Applicability across proxy choices. We further analyze the general applicability of KNOW-
PROXY using a diverse set of smaller language models, with the results presented in Table 3. The
experimental results demonstrate that KNOWPROXY consistently enhances the zero-shot perfor-
mance of LLMs across all smaller models. Moreover, we observe that the performance gains of
LLMs are proportional to the capability of the smaller model (see Appendix C.2 for more details).
Notably, through these results, along with additional analysis on the scalability of small models
(Appendix C.3), KNOWPROXY demonstrates the practical adaptability of proxies, aligning with the
characteristics of scaling laws (Kaplan et al., 2020) under environments restricted to small models.

4.4 COMPONENT ANALYSIS IN KNOWPROXY

Method OBQA PIQA StrategyQA SIQA

KNOWPROXY 85.0 87.2 74.7 77.0
w/o routing 82.0 87.2 74.7 76.8
w/o filtering 85.0 86.2 72.1 76.0
w/o adaptation 80.6 85.1 59.4 75.3

Table 4: Ablation of KNOWPROXY. We use Chat-
GPT as the LLM and Llama-3.2 (1B) as the proxy.

Ablation study. We conduct an ablation
study to assess the contribution of each compo-
nent in KNOWPROXY to downstream task per-
formance, with results summarized in Table 4.
Our analysis considers the following variants:
(i) w/o routing: Removes the dynamic rout-
ing mechanism, such that the proxy model is
invoked for all inputs regardless of the LLM’s
confidence. (ii) w/o filtering: Omits the filter-
ing process during knowledge generation, allowing all elicited knowledge to be used. (iii) w/o
adaptation: Excludes the training of the proxy model on LLM-generated knowledge; instead, the
proxy is trained only on the original inputs, and the generated knowledge is incorporated solely at
inference time.

The results demonstrate that removing the filtering and adaptation processes from KNOWPROXY
substantially degrades performance on downstream tasks, underscoring the importance of both com-
ponents. In particular, knowledge adaptation is critical, as its removal causes the largest performance
drop (81.0 to 75.1 average). By contrast, excluding routing inference results in only a marginal de-
crease (81.0 to 80.2 average), indicating that our routing design—introduced primarily to enable
efficient inference—does not compromise accuracy. This outcome confirms that the mechanism

7
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achieves its intended purpose: routing only the more difficult queries to the proxy model, while
easier cases are effectively handled by the LLM alone, thereby preserving accuracy while reducing
inference overhead.

(a) PIQA (b) CSQA

(c) StrategyQA (d) QASC

Figure 2: Confidence comparison between our
method and baselines.

Routing reliability. We further analyze the
reliability of the routing mechanism under the
proposed uncertainty measure. For routing to
be reliable in the proxy framework, the sam-
ples directed to the LLM (rather than the proxy)
should be those that the LLM can solve eas-
ily. To examine this property, we evaluate the
performance of the routed samples handled by
the LLM. Specifically, we compare two un-
certainty metrics: the previous approach Tian
et al. (2023), which relies on a single confi-
dence score derived from the LLMs, and our
proposed approach, which aggregates confi-
dence scores across all generated knowledge.
As shown in Figure 2, our method achieves
higher performance as the confidence thresh-
old increases, demonstrating its ability to distinguish easier cases that the LLM can solve reli-
ably. In contrast, the baseline measure yields almost flat performance across different confidence
thresholds, suggesting that a single prediction-level confidence does not provide meaningful guid-
ance for routing. These results highlight that aggregating uncertainty across generated knowl-
edge enables more effective confidence estimation and, in turn, more reliable routing decisions.

(b) OBQA
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(a) StrategyQA

Figure 3: Performance across the differ-
ent number of generated knowledge.

Number of Knowledge. Since the effectiveness of
KNOWPROXY hinges on the amount of knowledge it elic-
its, we analyze how varying the number of generated
knowledge instances influences performance. As shown
in Figure 3, leveraging knowledge consistently improves
results compared to the zero-shot LLM baseline, confirm-
ing its importance in adaptation. However, increasing the
number of knowledge instances does not always yield ad-
ditional gains and may even lead to performance degra-
dation due to noisy or redundant reasoning, suggesting
that generating a moderate number of knowledge pieces
provides the most reliable improvements.

4.5 TRADE-OFF OF PROXY ROUTING

To further validate the dynamic routing, we explore the balance between performance and the fre-
quency of proxy model invocation in Figure 4. Unlike prior methods that rely on the small model
for every input, KNOWPROXY selectively invokes the proxy only when needed. Our results show
that even with fewer proxy invocations, the framework maintains or improves performance across
tasks, reaching accuracy levels competitive with direct fine-tuning of LLMs. This demonstrates that
routing based on uncertainty not only improves efficiency by reducing unnecessary proxy use but
also preserves accuracy, underscoring the benefit of training proxies on LLM-generated knowledge
rather than redistributing predictive distributions. Additionally, We observe that KNOWPROXY,
which leverages textual knowledge, is more memory-efficient than the LoRA approach during train-
ing. The detailed analysis can be found in Appendix C.4.

4.6 TRANSFERABILITY ACROSS DIVERSE LLMS

One notable advantage of KNOWPROXY is that it decouples the proxy model from the backbone
LLM, allowing them to be swapped independently. This flexibility enables seamless replacement of
the backbone LLM with newer models without requiring retraining of the proxy. To empirically val-
idate this property, we conduct experiments by pairing a target LLM (ChatGPT) with proxy models
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(a) StrategyQA (b) OBQA (c) PIQA (d) CSQA

Fine-tuned 
LLMs

Fine-tuned LLMs Fine-tuned LLMs Fine-tuned LLMs

Zero-shot LLMsZero-shot LLMsZero-shot LLMs
Zero-shot LLMs

Figure 4: Comparison of inference cost and performance according to confidence thresholds.

Method Trained Knowledge OBQA ARCh PIQA CSQA StrategyQA QASC Avg.

Zero-shot - 78.8 81.2 82.8 76.3 68.1 79.0 77.7
ChatGPT 85.0 83.9 87.2 78.1 74.7 80.2 81.5

KNOWPROXY Llama 3.2 81.0 83.5 85.1 76.7 69.9 78.4 79.1
Mistral-v0.2 82.2 84.3 86.1 76.4 71.6 80.2 80.1

Table 5: Evaluation results for test accuracy (%). In these experiments, we train the small language
models on different generated knowledge other than the target LLMs (i.e., ChatGPT).

that were trained on different LLMs. As shown in Table 4.6, these cross-trained proxies maintain
strong performance when transferred to ChatGPT, despite being optimized with other LLMs. This
demonstrates that the proxy learns to leverage elicited textual knowledge in a model-agnostic way,
with language itself serving as the universal interface between LLMs and proxy models.

4.7 ANALYSIS OF REASONING GAINS FROM KNOWPROXY

% %

%%

Figure 5: Confusion matrix com-
paring reasoning generated by the
LLM and KNOWPROXY.

KNOWPROXY adaptively combines the outputs of the LLM
with those of the trained proxy model to generate the final rea-
soning. To examine how the proxy contributes beyond the
LLM alone, we construct a confusion matrix based on the
reasoning produced by the LLM and by KNOWPROXY (i.e.,
the LLM integrated with the fine-tuned proxy model). As
shown in Figure 5, KNOWPROXY successfully corrects 38.7%
of the reasoning that is incorrect when generated by the LLM.
Notably, it achieves a 5.5% higher rate of correct reasoning
(10.9%) compared to incorrect reasoning (5.4%). These re-
sults highlight that KNOWPROXY effectively adapts LLMs by
training a smaller model to leverage the elicited knowledge,
thereby improving reasoning quality over the base LLM.

5 CONCLUSIONS

We have proposed KNOWPROXY, a novel framework for adapting LLMs through proxy models
guided by elicited textual knowledge. Unlike prior approaches that have relied on predictive distri-
butions, KNOWPROXY has leveraged knowledge expressed in natural language, making it broadly
applicable across a wide range of LLMs, including black-box models that have only provided tex-
tual outputs. We have extensively evaluated the method across diverse benchmarks and training
setups, including black-box LLMs, quantized LLMs with varying scales. The results have demon-
strated that KNOWPROXY has consistently outperformed existing proxy-based approaches and even
achieved performance comparable to direct fine-tuning. Our analysis has confirmed that the adaptive
reasoning mechanism in KNOWPROXY has effectively balanced accuracy with efficiency, highlight-
ing its promise as a promising alternative to direct fine-tuning.
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A PROOF FOR KNOWLEDGE ADAPTATION

We define knowledge-augmented training datasets as DK = {(xi, ki, yi)}N−1
i=0 . Using the con-

structed dataset DK, we train a small model µϕ(y | x, k) parameterized by ϕ, to leverage the model-
generated knowledge for the given target domains. The process by which the small language model
predicts answers by leveraging knowledge from the large language model can be formulated as
follows:

π′(y | x) ≥ µϕ(y | x, k)πθ(k | x), (7)

where π′(y | x) =
∑
kall

µϕ(y | x, ka)πθ(ka | x), kall ∼ πθ(k|x).

By applying the empirical loss function on the dataset D, we can derive equation 8 as follows:

−ED[log π
′(y | x)] ≤ −ED[logµϕ(y | x, k)]− ED[log πθ(k | x)]. (8)

Therefore, our knowledge-guide objective function is as follows:

min−ED[log π
′(y | x)] ≤ min

ϕ
−ED[logµϕ(y | x, k)] + min

θ
−ED[log πθ(k | x)],

where π′(y | x) =
∑
kall

µϕ(y | x, ka)πθ(ka | x), kall ∼ πθ(k|x).

Here, based on previous studies (Prystawski et al., 2023; Gekhman et al., 2024) and empirical ob-
servations (Table 4), we assume as follows.

min
ϕ

−E(x,y)∼D [logµϕ(y | x, k′)] ≤ min
ϕ

−E(x,y)∼D [logµϕ(y | x, k)] ,

where k′ = {ki | (ki, ci) ∈ K, ci > α} .

∴ LKNOWPROXY = min
ϕ

−E(x,y)∼D [logµϕ(y | x, k′)] . (9)

B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

OpenBookQA (Bhakthavatsalam et al., 2021) is a multiple-choice question-answering dataset on
elementary science, designed to assess a model’s commonsense knowledge.

ARC-Challenge (Mihaylov et al., 2018) is a multiple-choice question-answering dataset consisting
of scientific questions that are difficult to solve using either a retrieval-based algorithm or a word
co-occurrence algorithm, designed to evaluate a model’s complex reasoning ability.

CommonsenseQA (Talmor et al., 2019) is a multiple-choice question-answering dataset designed
to evaluate a model’s commonsense knowledge across common world scenarios.

QASC (Khot et al., 2020) is a multiple-choice question-answering dataset in grade school science,
designed to evaluate the multi-hop reasoning ability of models.

SocialIQA (Sap et al., 2019) is a multiple-choice question-answering dataset designed to measure a
model’s social and emotional intelligence.

ScienceQA (Lu et al., 2022) is a multi-modal dataset designed for question-answering in the sci-
ence domain, which is accompanied by annotated answers, lectures, and explanations. The dataset
contains approximately 21,000 multi-modal questions. Following the experimental setting of (Sun
et al., 2024), we exclude questions requiring image input and then randomly sample 2,000 questions
for training and 500 for testing from the original train and test splits.

PhysicalIQA (Bisk et al., 2019) is a binary question-answering dataset designed to evaluate a
model’s physical commonsense reasoning ability.

Winogrande (Sakaguchi et al., 2019) is a binary question-answering dataset designed to assess a
model’s commonsense knowledge by evaluating its ability to solve paired instances of coreference
resolution.
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BoolQ (Clark et al., 2019) is a binary question-answering dataset designed to assess a model’s
comprehensive reasoning ability using knowledge-intensive contexts and their associated questions.

StrategyQA (Geva et al., 2021) is a binary question-answering dataset designed to evaluate the
ability of models to perform implicit multi-hop reasoning.

TruthfulQA (Lin et al., 2022) is a widely used generative dataset to evaluate a model’s response
quality in terms of truthfulness, factuality, and accuracy. The original dataset consists only of a test
set. For evaluation, following the experimental setting of (Sun et al., 2024), we randomly select 100
samples to construct a test set and utilize the remaining samples as a train set.

The statistics of the datasets are provided in Table 6.

Dataset Answer type # of train data # of test data
OpenBookQA Multiple-choice 4,957 500
ARC-Challenge Multiple-choice 1,119 299
CommonsenseQA Multiple-choice 9,741 1,221
QASC Multiple-choice 8,134 926
SocialIQA Multiple-choice 33,410 1,954
ScienceQA Multiple-choice 2,000 500
PhysicalIQA Binary-choice 16,113 1,838
Winogrande Binary-choice 40,398 1,267
BoolQ Binary (True/False) 9,427 3,270
StrategyQA Binary (True/False) 2,061 229
TruthfulQA Open-ended text 717 100

Table 6: Dataset descriptions and statistics.

B.2 IMPLEMENTATION

We implement KNOWPROXY on Huggingface Transformers and PyTorch, and conduct all our ex-
periments on two NVIDIA RTX A6000 GPUs. We fine-tune all models with LoRA in float32
mixed-precision, except for the Llama-2-13B-Chat model trained with QLoRA, and inference all
open-sourced models in bfloat16 mixed-precision for efficiency. The hyperparameter settings for
training KNOWPROXY and baselines are described in Table 7.

Hyperparameter Value
Epoch 6
Batch size 16
Maximum input length 512
Optimizer Adam
β1 0.9
β2 0.999
Learning rate 2e-4
Learning rate scheduling Cosine decay
Weight decay 0.0
Warmup steps 0.0
LoRA rank 64
LoRA alpha 8
LoRA dropout 0.1

Table 7: Hyperparameter settings for training.

B.3 KNOWLEDGE-ELICITING PROMPT TEMPLATE

We design a knowledge generation prompt template for each target task, taking into account the
specific characteristics of each task. The detailed prompt template is provided below:

1) Classification benchmarks (e.g., QASC, ScienceQA, etc.): Figure 7, Figure 8, and Figure 10.
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2) TruthfulQA benchamrk: Figure 9.

C DETAILED EXPERIMENT RESULTS

C.1 DISTINCT QUESTION-ANSWERING TASKS

Method TruthfulQA
(True + Info (%))

ScienceQA
(Acc. (%))

Fine-tuning LLMs 72.0 79.4
Zero-shot LLMs 66.0 77.6
Fine-tuning SLMs 61.0 66.6
KNOWPROXY 83.0 78.6

Table 8: Evaluation results on distinct tasks spanning truthful and informative (TruthfulQA) and
scientific (ScienceQA) domains. We employ Llama 3.2 (3B) as LLM and Llama 3.2 (1B) as SLM.

To assess the effectiveness of KNOWPROXY across diverse domains, we conduct evaluations on two
representative benchmarks: truthfulness and informativeness (TruthfulQA) and scientific reasoning
(ScienceQA).

C.2 DETAILED RESULTS ON APPLICABILITY ACROSS PROXY CHOICES

As shown in Table 9, we observe that the performance of KNOWPROXY is influenced by the capa-
bility of the lightweight proxy model.

Model Approach OBQA ARCh PIQA CSQA StrategyQA QASC SIQA Average
Llama 3.2 (3B) Fine-tuning 82.2 76.2 87.7 79.5 71.5 82.9 80.5 80.1

Zero-shot 72.2 68.6 75.8 67.7 60.9 75.9 65.3 69.5
w/ Llama 3.2 (1B) Fine-tuning 73.2 60.9 80.3 72.0 66.5 68.0 74.9 70.8

KNOWPROXY 80.2 75.2 83.4 75.0 72.9 78.1 76.3 77.3
w/ LaMini-GPT (0.7B) Fine-tuning 56.0 27.3 70.4 49.5 61.9 20.4 68.2 50.5

KNOWPROXY 74.6 75.2 78.7 72.5 67.7 78.0 71.9 74.1
w/ Qwen 2.5 (0.5B) Fine-tuning 68.8 43.9 73.9 65.4 59.7 64.2 69.1 63.6

KNOWPROXY 76.2 75.3 79.9 72.8 69.4 78.4 73.9 75.1

Table 9: The detailed results on applicability across proxy models. We employ Llama 3.2 (3B) as
the frozen LLM.

C.3 PROXY MODEL SCALABILITY

To demonstrate the relationship between the scalability of proxy models and KNOWPROXY, we
evaluate KNOWPROXY on various reasoning benchmarks using the Pythia family, which differs
only in model size while maintaining consistent design choices and training processes.

C.4 RESOURCE ANALYSIS

We further conduct a resource analysis to demonstrate the efficiency of KNOWPROXY in terms
of the resources required during training. To further highlight the contribution of KNOWPROXY,
which independently trains smaller proxy models while leveraging textual knowledge, we ana-
lyze how textual knowledge influences resource burden for training. As shown in Table 10, we
observe that KNOWPROXY, across all proxy choices, is consistently more memory-efficient than
parameter-efficient methods such as LoRA during training. Notably, on PhysicalIQA with long in-
put sequences, KNOWPROXY exhibits substantial memory efficiency comparable to existing proxy-
based approaches that fine-tune only the smaller model in target domains. These results demonstrate
that KNOWPROXY is a resource-efficient approach for effectively adapting LLMs to target domains,
ranging from white-box to black-box settings.
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Figure 6: Comparison of effectiveness with respect to the scalability of small models. Here, we
utilize llama 3.2 (3B) as LLM.

Approach PIQA SIQA OBQA QASC
Direct Fine-tuning (LoRA) 74.5 38.0 30.4 36.7
Proxy-tuning 33.9 16.9 15.5 16.1
CombLM 40.4 23.4 22.0 22.6
KNOWPROXY (Llama 3.2 (1B)) 33.9 24.6 26.9 27.1
KNOWPROXY (LaMini-GPT (0.7B)) 38.1 26.8 29.2 31.2
KNOWPROXY (Qwen 2.5 (0.5B)) 24.6 16.8 19.6 19.3

Table 10: Comparison of the maximum GPU memory required for training process. We set the
target LLM for training in each task to Llama 3.2 (3B). For each proxy model, KNOWPROXY is
evaluated under the hyperparameter settings that yield the best performance.
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Figure 7: The designed prompt for Llama family aimed at generating knowledge in complex rea-
soning benchmarks.

Figure 8: The designed prompt for ChatGPT aimed at generating knowledge in complex reasoning
benchmarks.
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Figure 9: The designed prompt for Llama 3.2 aimed at generating knowledge associated with Truth-
fulQA dataset.

Figure 10: The designed prompt for Llama 3.2 aimed at generating knowledge associated with the
ScienceQA dataset.
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