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Abstract

Prior Unsupervised Domain Adaptation (UDA) methods often aim to train a
domain-invariant feature extractor, which may hinder the model from learning
sufficiently discriminative features. To tackle this, a line of works based on prompt
learning leverages the power of large-scale pre-trained vision-language models to
learn both domain-invariant and specific features through a set of domain-agnostic
and domain-specific learnable prompts. Those studies typically enforce invariant
constraints on representation, output, or prompt space to learn such prompts. Dif-
ferently, we cast UDA as a multiple-objective optimization problem in which each
objective is represented by a domain loss. Under this new framework, we propose
aligning per-objective gradients to foster consensus between them. Additionally, to
prevent potential overfitting when fine-tuning this deep learning architecture, we
penalize the norm of these gradients. To achieve these goals, we devise a practical
gradient update procedure that can work under both single-source and multi-source
UDA. Empirically, our method consistently surpasses other vision language model
adaptation methods by a large margin on a wide range of benchmarks. The imple-
mentation is available at https://github.com/VietHoang1512/PGA.

1 Introduction

Deep learning has significantly advanced the field of computer vision, achieving remarkable perfor-
mance in tasks such as image classification [1–5], object detection [6–9], and semantic segmentation
[10–13]. However, the effectiveness of these deep learning models heavily relies on large amounts
of labeled training data, which is often labor-intensive and expensive to collect. Moreover, the
discrepancy between training data and real-world testing data can lead to substantial performance
drops when models are deployed in practical settings [14–16].

To address these challenges, Unsupervised Domain Adaptation (UDA) has emerged as a pivotal
solution. UDA aims to transfer knowledge from a labeled source domain to an unlabeled target domain
in the presence of a domain shift, thereby enabling models to generalize well across different domains
without requiring extensive labeled data for the target domain. This is often achieved by optimizing
objective function on source domains and other auxiliary terms that encourage learning domain-
invariant feature representations [17–20] or enhance model robustness [21–24], which mitigates the
domain shift and improve the performance on unseen data. Nevertheless, aligning representations
could potentially hurt the model performance due to the loss of discriminative features [25, 26].
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Conceptually, our proposed method is orthogonal to these invariant feature learning methods, and
they could complement each other.

Recent works leveraging pre-trained models like CLIP [27] for UDA can significantly bridge domain
gaps and improve generalization by utilizing rich semantic information and robust visual represen-
tations through extensive pre-training on diverse image-text datasets. Following this vein, DAPL
[25] first introduces domain-specific and domain-agnostic prompts to efficiently adapt pre-trained
vision-language models without fine-tuning the entire model. Furthermore, MPA [28] aligns multiple
prompts from different sources using an auto-encoder. While these methods could obtain superior
performance on different benchmarks, we find that the main improvement comes from the strong
zero-shot performance and self-training mechanism. In particular, prior works often generate pseudo-
label for unlabeled images and then train the model on those samples. Consequently, finetuning a
pretrained CLIP model on this dataset alone without leveraging source datasets can help refine model
prediction significantly, boosting the performance from 88.1% to 90.1%, yielding a competitive result
compared against MPA, as presented in Table 1.

Dataset → C → I → P Avg
Zero-shot 87.9 88.2 78.7 88.1
Simple Prompt 93.6 90.6 80.9 88.4
Self-training 92.9 94.3 83.2 90.1
MPA 97.2 96.2 80.4 91.3

Table 1: Self-training on pseudo-labeled target data
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Figure 1: Baselines performance on Office-Home

Motivated by this observation, we directly optimize the main objective function not only on source
domains but also on the target data, instead of only using them for auxiliary objectives as in previous
work [29, 30]. We thus cast the original UDA problem as a multi-objective optimization (MOO)
problem. Specifically, we minimize a vector-valued loss function, which includes the objectives of
multiple source domains and the target domain. This formulation allows us to apply existing results
from MOO literature for finding Pareto solutions, from which we can not optimize an objective
without hurting another [31–33] or encourage positive inter-task transfer between objectives [34–37].
Note that in the context of UDA, we focus more on learning the target task, thus motivating us to apply
prioritized MOO algorithms [38–40] or to incorporate predefined preferences [32, 41–43]. While
those methods allow practitioners to focus more or less on the objectives at hand, they come with
the cost of extensive hyperparameter tuning. Besides, recent works [44–46] argue that simple loss
functions reweighting can match the performance of gradient-based MOO methods [35, 47]. Those
findings suggest we focus more on the inherent conflict nature of per-objective gradients instead of
attempting to remove the conflict between them [35, 34].

In this paper, we propose casting the problem of UDA as a multi-objective optimization by leveraging
powerful pre-trained models. However, while obtaining impressive results on various downstream
tasks, over-parameterization is still a crucial problem for transformer-based models [48, 49], which
potentially causes overfitting [50–54] more severely than small-parameter architectures [55], espe-
cially in the multi-task learning context. For that reason, we propose to (i) fine-tune pre-trained model
via prompt learning, which is known for being more robust [56–58] and especially more light-weight
than full fine-tuning, (ii) and to leverage the gradient norm penalty to encourage model generalization
[59, 24, 60, 61]. Furthermore, we introduce a gradient alignment algorithm to foster inherent con-
sensus between per-objective gradients without modifying the gradient itself. Our proposed method,
termed Prompt Gradient Alignment (PGA), and its variant for multi-source UDA, Multi-Prompt
Gradient Alignment (MPGA), achieve state-of-the-art performance on different UDA benchmarks.
As shown in Figure 1, PGA and MPGA outperform traditional UDA methods like MFSAN [62]
and recent prompt-based UDA methods such as MPA [28] and DAMP [63] while requiring fewer
trainable parameters. We also provide a generalization bound for UDA and show how theoretical
insights motivate the design of our proposed method.
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2 Related work

Unsupervised Domain Adaptation. A dominant approach to solving the UDA problem is to
reduce the distribution shift between source and target domains. Following the foundational theory
outlined in [64], one group of methods seeks to minimize the H-divergence between the marginal
distributions of these domains [65–67]. Alternatively, other methods aim to align the moments of
these distributions, as suggested in [68–70]. Additionally, adversarial learning has been employed
to learn domain-invariant features. For instance, methods such as those in [19, 71] use a domain
discriminator to differentiate between source and target samples, training a feature extractor to deceive
this discriminator. However, as [25] highlights, these methods often struggle with a trade-off between
domain alignment and classification performance, particularly in multi-source scenarios where only a
single model is used.

Prompt learning-based domain adaptation is a novel approach introduced in [25], leverages the
generalization capabilities of CLIP to learn both domain-agnostic and domain-specific prompts. This
method effectively addresses the trade-off between domain alignment and classification performance
by employing a contrastive loss. This loss aligns the representation of an image with the prompt
corresponding to its ground truth class and domain, thereby encouraging the learning of domain-
invariant features. Building on this foundation, MPA [28] advances the concept of multi-source UDA.
It adapts the prompt learning strategy to each source-target domain pair. The prompts are aligned
through a denoising auto-encoder using Euclidean distance. However, prompting is known as a
brittle process where a small shift to the prompt can cause large variations in the model predictions
[72–74]. Therefore, in this work, we propose to intervene in the training on the gradient space as it
offers a more interpretable and controllable effect during training. Furthermore, PGA is trained in an
end-to-end fashion, avoiding the sequential training for each source-target pair as in MPA.

Gradient-based multi-task learning. Due to the multi-objective nature of the multi-source domain
adaptation problem, one can leverage recent methods from the multi-task learning literature [34,
35, 75] to derive an optimization procedure that benefits the learning across domains or put more
weight on some specific domains via incorporating preference [32, 41, 42]. While those techniques
are readily applicable in our context, we directly re-weight per-task gradients, similar to scalarization,
instead of adopting multi-task learning methods for simplicity. Furthermore, our work is orthogonal to
those gradient-based multi-task learning methods where we encourage the consensus among objects
instead of directly manipulating their gradients to remove inherent conflicts among them.

Gradient matching is commonly used in continual learning [76–78] to measure conflict and trans-
ferability between tasks. A positive dot product between two tasks’ gradients implies updating the
models with one task can benefit the other. This principle is also applied in domain generalization
[79, 80] to focus on invariant features. However, our approach aligns in the space of prompt gradient,
a significantly smaller parameter set than the full model gradients used in previous works. Besides,
to avoid the computation of costly second-order derivatives, [79] linearly approximate the inner
product between gradients, which underperforms on datasets with a larger number of domains due
to cumulative approximation error. Meanwhile, our method does not face this problem since we
implicitly compute this term without using any approximation. More works sharing the same intuition
of gradient alignment are provided in Appendix D.

3 Background

3.1 Unsupervised Domain Adaptation

Given a set of N ≥ 1 source domains {DS,i}Ni=1 each of which is a collection of data-label pairs of
domain i, i.e. DS,i = {xj , yj}

NS,i

j=1 , and one unlabelled target domain DT = {xj}NT
j=1, where NS,i

and NT are respectively the number of data points in source domain i and target domain T , the goal
is to learn a model that can perform well on the unlabelled target domain. In this paper, we focus on
classification problems and denote K as the number of categories.

3.2 Prompt Learning on CLIP-based models

CLIP [27] is a vision-language model that consists of an image encoder fi and a text encoder ft,
which is trained to align the visual representation fi(x) of an image x with the textual representation
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ft(y) of the corresponding label. The textual representation is derived from a manually crafted
prompt pk in the form "A photo of a [CLASS]k", where [CLASS]k is the class k’s name. With great
generalization capability, pre-trained CLIP models are often used for a variety of downstream tasks
through prompt learning.

For zero-shot inference, K class names are forwarded through the text encoder, and the one with the
highest representation similarity with the image is the predicted class:

ypred = argmaxkP (y = k|x), where P (y = k|x) = exp(⟨fi(x), ft(pk)⟩/γ)∑K
k′=1 exp(⟨fi(x), ft(pk′)⟩/γ)

, (1)

and ⟨., .⟩ measures the cosine similarity and γ is the temperature.

For fine-tuning, a set of learnable class-shared prompts are added to the class token to form P k =
[v1|v2| · · · |vM ][CLASS]k, where vi is a vector with the same size as the word embedding, and M is
the number of added prompts. These prompts are learnt by maximizing log-likelihood on downstream
data, i.e. max

∑
i logP (y = yi|xi,P ). Note that in this predictive probability, we abuse symbol P

to refer to the learnable tokens vi, and when we drop the symbol as in 1, we refer to the zero-shot
prediction using CLIP. As a result, additional information about the downstream task can be encoded
in the prompts, and this design will enable knowledge transfer from pre-trained datasets.

4 Proposed method

In this section, we describe our proposed prompt gradient alignment method. Motivated by the
lightweight and effective nature of prompt learning in adapting pre-trained knowledge to downstream
tasks, we cast UDA as a multi-objective optimization (MOO) problem, from which we propose
aligning gradients of different objectives and minimizing their norms simultaneously. Additionally,
we derive a UDA generalization bound to justify the intuition of our method. The full details of our
proposed method in the generalized case where we have more than one source domain are provided
in Appendix B.

4.1 Prompt design

A common assumption in domain adaptation literature is that each domain can be represented by
domain-specific features and those that are shared with others. To reflect this, we employ two sets
of prompts for each domain: domain-agnostic prompt (or shared prompt, interchangeably) P sh,
and domain-specific prompts P S,i and P T . Here, P S,i refers to prompt used for source domain i,
and P T is that for target one. In particular, following DAPL, we use K ×M1 tokens to construct
P sh = [P k

sh]
K
k=1, where P k

sh = [vk
1 |vk

2 | · · · |vk
M1

] is class-specific shared tokens. For source- and
target-specific prompts, we use M2 tokens: P S,i = [uS,i

1 |u
S,i
2 | · · · |u

S,i
M2

], P T = [uT
1 |uT

2 | · · · |uT
M2

].
And denote P = [P sh, {P S,i}Ni=1,P T ] as the whole prompts used in our method. Based on this,
we use a prompt of the form [P k

sh][P S,i][CLASS]k to compute the predictive distribution of a source
i sample belonging to class k, and similarly [P k

sh][P T ][CLASS]k for a target sample.

4.2 Empirical risk minimization: a simple baseline

As we introduced, to learn those prompts, we consider the cross-entropy losses applied to source data
and target data with pseudo labels as a set of objectives to optimize simultaneously:

Ltotal(P ) :=
[
[LS,i(P )]Ni=1,LT (P )

]
=

[
[LS,i(P sh,P S,i)]

N
i=1,LT (P sh,P T )

]
,

LS,i(P sh,P S,i) = CE(P sh,P S,i;XS,i, YS,i) = −
1

NS,i

NS,i∑
j=1

logP (y = yj |xj ,P sh,P S,i), (2)

LT (P sh,P T ) = CEτ (P sh,P T ;XT , YT )

= − 1

NT

NT∑
j=1

I(P (y = ŷj |xj) ≥ τ) logP (y = ŷj |xj ,P sh,P T ), (3)

ŷj = argmax
k

P (y = k|xj). (4)

4



In summary, the total loss consists of N + 1 objectives. The target objective is applied to target
samples whose zero-shot predictions made by CLIP are larger than a threshold τ .

Given these objectives, source- and target-specific prompts can be updated by minimizing source and
target losses, respectively. Regarding domain-agnostic prompt, one can put a weighting term on the
signal from source losses to compute the gradient. Formally, for ∀i = 1→ N , we have:

gsh,i, gS,i = ∇PLS,i(P sh,P S,i), gsh,T , gT = ∇PLT (P sh,P T ),

P S,i = P S,i − ηgS,i, P T = P T − ηgT , (5)

P sh = P sh − η(gsh,T + λ
∑
i

gsh,i), (6)

where η is the learning rate, and λ is the weighting term to control how much emphasis we want
to put on the target domain. Note that we treat gradient signals from source domains equally as
we assume no prior preference knowledge about them. Nevertheless, one can measure the domain
similarity between each source and target domain to devise a better way to reweight source domains’
objectives. However, as will be shown in the experiments, taking the average is simple yet yields
superior results, hence we will leave this for future work.

4.3 Prompt gradient alignment for UDA

For simplicity, we first consider the single-source UDA setting and will present the extension to the
multi-source one later in Appendix B. One problem with the method above is we ignored the potential
inherent gradient conflict between objectives when updating the shared prompt. To mitigate this,
one can follow gradient-based methods, such as [35, 47] to manipulate the gradients so that conflict
is reduced. However, it has been shown in [44–46] that comparable performance can be obtained
without such complex manipulations, but with simple re-weighting the loss functions. Therefore, to
encourage consensus between these gradients without modifying them, we propose aligning gradients
between source and target domains during training. Specifically, we aim to maximize their cosine
similarity, ⟨gsh,S , gsh,T ⟩, If this goal is achieved, one can expect the shared prompt to capture useful
features for classes regardless of domains. Indeed, −gsh,S denotes the direction that moves the
shared prompt towards low-loss region of source data, and similar for −gsh,T . Hence, when they
point to the same direction, i.e., ⟨gsh,S , gsh,T ⟩ > 0, updating the shared prompt as in Eq. 6 can
reduce loss of both domains, because the aggregated gradient gsh = λgsh,S +gsh,T will create acute
angles with both gsh,S and gsh,T . As a result, the shared prompt can learn knowledge that benefits
both domains, which is its ultimate goal.

However, there remain two important questions when implementing this gradient alignment constrain:
(i) How to incorporate the cosine similarity maximization term as a regularization in the framework
described in Sec. 4.2?; and (ii) How to reduce training time and space when explicitly maximizing it,
as it involves the computation of Hessian matrix w.r.t the shared prompt? Our method will address
these two concerns.

Consider the following loss applied on target data with ||.|| denoting l2-norm of a vector:

Lalign
T (P ) := LT (P sh − ρ

gsh,S

∥gsh,S∥.∥gsh,T ∥
,P T )

≈ LT (P sh,P T )− ρ
(gsh,S)

T.∇P sh
LT (P sh,P T )

∥gsh,S∥.∥gsh,T ∥
= LT (P sh,P T )− ρ⟨gsh,S , gsh,T ⟩, (7)

where Eq. 7 is obtained by applying first-order Taylor expansion with ρ is a small value, and T is the
vector transpose. It can be seen that minimizing this loss also maximizes cosine similarity between
gradients of the two domains. In order to achieve this, let denote a =

gsh,S

∥gsh,S∥.∥gsh,T ∥ , and consider
the loss’s gradient w.r.t P sh:

galign
sh,T := ∇P sh

LT (P sh − ρa,P T )

=
d(P sh − ρa)

d(P sh)
∇P sh

LT (P sh,P T )

∣∣∣∣
P sh=P sh−ρa

≈ ∇P sh
LT (P sh,P T )|P sh=P sh−ρa . (8)
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In the approximation of Eq. 8, we avoid the Hessian computation by dropping the derivative of a w.r.t
P sh. Now we can practically apply deep learning optimizers, such as SGD, to minimize Lalign

T (P ).
Specifically, we first compute gradients of the source and target losses w.r.t the shared prompt to get
vector a, then move the current shared prompt to the new stage: P sh = P sh − ρa. Finally, at this
new stage, re-compute the loss on target data then calculate the new gradient.

In a similar way, we can derive Lalign
S (P ) on source data and then compute its new gradient w.r.t

the shared prompt, i.e. galign
sh,S . Given these two new gradients, we can combine them to get the final

update direction of the shared prompt, which will navigate it to common low-valued regions in the
loss landscapes of both domains.

b =
gsh,T

∥gsh,S∥.∥gsh,T ∥
, galign

sh,S ≈ ∇P sh
LS(P sh,P S)|P sh=P sh−ρb ,

galign
sh = galign

sh,T + λgalign
sh,S .

4.4 Prompt gradient-norm penalization for UDA

So far, we have proposed casting each domain loss as an objective in a multiple-objective optimization
framework, and have suggested maximizing congruence between gradients of these objectives to
reduce their inherent conflict. However, the domain loss is in the empirical form, which has been
shown to be easily stuck in sharp minima and thus limiting generalization ability [81, 82], especially
under distribution shifts [83]. Therefore, we argue that explicit control over the generalization of these
prompts can be beneficial. Moreover, inspired by the finding in [59] that gradient norm penalization
can help model favor flat minima, and by the effectiveness of such minima in the context of multi-task
learning [81], we propose minimizing prompt gradient norm of each objective to enhance prompt
generalization.

By following the same analysis as in Eq. 7, we can seamlessly fuse the gradient norm penalty term
with the cosine similarity maximization with the loss below:

LPGA
T (P ) := LT (P sh − ρga

gsh,S

∥gsh,S∥.∥gsh,T ∥
+ ρgn

gsh,T

∥gsh,T ∥
,P T + ρgn

gT

∥gT ∥
)

≈ LT (P sh,P T )− ρga
(gsh,S)

T.∇P sh
LT (P sh,P T )

∥gsh,S∥.∥gsh,T ∥
+ ρgn(∥gsh,T ∥+ ∥gT ∥)

= LT (P sh,P T )− ρga⟨gsh,S , gsh,T ⟩+ ρgn(∥gsh,T ∥+ ∥gT ∥),

where gT is the gradient of the target loss w.r.t target-specific P T , and gn stands for gradient norm.

We then follow the derivation of Eq. 8 to come up with a practical approximation of the gradient of
LPGA
T (P )

gPGA
sh,T , g

PGA
T := ∇PLPGA

T (P )

≈ ∇PLT (P sh,P T )|P sh=P sh−ρgaa+ρgn
gsh,T

||gsh,T || ,PT=PT+ρgn
gT

||gT ||
.

Similarly, we obtain the gradient of the source objective

gPGA
sh,S , g

PGA
S ≈ ∇PLS(P sh,P S)|P sh=P sh−ρgab+ρgn

gsh,S
||gsh,S || ,PS=PS+ρgn

gS
||gS ||

.

Following the same update rules in Eq. 5 and Eq. 6, the prompts can be learnt to achieve both of our
two goals: inter-domain gradient alignment and flat minima enforcement, which can lead to improved
performance for UDA. We will recap this with a generalization bound in the next part, and provide
details for the final loss function in Appendix B.

4.5 Theoretical Analysis of PGA

We informally present an information-theoretic bound to explain why PGA works. Refer to Appendix
A for the formal version. For simplicity, we will consider the single-source UDA setting and abuse N
as the number of source samples. Let Z,P be the input-label space and prompt space (or hypothesis
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space), respectively. Assume the loss function ℓ : P × Z → R+
0 is R-subgaussian

∗
Denote µ, µ′ as

the two underlying distributions from which the source and target data is sampled, and KL(.||.) as the
KL-divergence. The generalization error

∗
is defined as the difference between the target population

loss and the source empirical loss

Err := EP ,DS ,DT
[Rµ′(P )−RDS

(P )] = EP ,DS ,DT
[EZ′∼µ′ [ℓ(P ,Z′)]− 1

N

N∑
i=1

ℓ(P ,Zi)].

Theorem 4.1. Under the assumption R-subgaussianity, the generalization error can be upper-
bounded by:

|Err| ≤

√√√√4R2

N

T∑
t=1

η̃2tEP t−1,DS ,DT
[∥gsrc

t ∥2 + ∥g
tgt
t ∥2 + ∥gsrc

t − gtgt
t ∥2] +

√
2R2KL(µ||µ′),

where T is the total number of training iterations, η̃t is the learning rate at iteration t scaled by a
scalar, gsrc

t = ∇PLS(P t−1), g
tgt
t = ∇PLT (P t−1) are the gradients w.r.t P t−1 of source loss Eq.

2 and target loss Eq 3 where P t is the prompt at iteration t.

As our method tries to minimize source empirical loss, gradient norms and gradient mis-alignment,
from the first term in the R.H.S of Eq. 4.1, its benefit to the performance on target domain can
be justified. Furthermore, the second term shows that the generalization error can be reduced by
bridging the gap between the two domain distributions, which is the core of many UDA methods,
such as [70, 84]. However, as stated earlier, our work is orthogonal to this line of method as we do
not explicitly attempt to close such gap. Hence, an interesting future development could be taking the
second term into account. Refer to Appendix A.5 for more discussion about this bound.

5 Experiments

In this section, we evaluate the efficacy of our proposed method on different UDA benchmarks,
following the same protocol of recent prompt-based UDA studies [25, 28]. Before that, we start with
a simple multi-objective-optimization setup to derive insights into the effectiveness of our proposed
method compared to conventional empirical risk minimization (ERM).

5.1 Illustrative example

Let y ∈ {−1, 1} be the true label, e be the environmental feature and ϵ be Gaussian noise, x ∈ R300,
and p ∈ (0, 1), C > 1 be predefined scalar constants. The data-generating process is given by:

y ∼ U{−1, 1}, e ∼
{

pp(e = y | y = y) = p
pp(e = −y | y = y) = (1− p) , ϵ ∼ N

(
0, I298

)
, x = [C ∗ e,y, ϵ]
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Figure 2: Performance of ERM and PGA on the in-domain data (validation set) and out-of-distribution
data (test set). Average results and shaded standard errors are obtained from 10 random seeds.

The environmental feature e correlates with the true label y according to p. Similar to [55, 85],
we set p = 0.9 for the training and validation set (in-distribution) and p = 0.1 for the test set

∗
A random variable X is R-subgaussian if for any ρ, logE exp(ρ(X − EX)) ≤ ρ2R2/2.

∗
Refer to the Appendix to see why the expectation is taken over P , DS , DT .
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Table 2: Accuracy (%) on ImageCLEF and Office-Home. We use bold to denote the best method
overall and underscore to denote the best method using source combined. Overall, PGA and MPGA
consistently obtain the best results among source combined and multi-source scenarios, respectively.

ImageCLEF Office-Home

→ C → I → P Avg → Ar → Cl → Pr → Rw Avg
Zero-Shot
CLIP [27] 87.9 88.2 78.7 88.1 71.2 50.4 81.4 82.6 71.4

Source Combined
DAN [19] 93.3 92.2 77.6 87.7 68.5 59.4 79.0 82.5 72.4
DANN [18] 93.7 91.8 77.9 87.8 68.4 59.1 79.5 82.7 72.4
D-CORAL [69] 93.6 91.7 77.1 87.5 68.1 58.6 79.5 82.7 72.2
DAPL [25] 96.0 89.2 76.0 87.1 72.8 51.9 82.6 83.7 72.8
Simple Prompt [28] 93.6 90.6 80.9 88.4 70.7 52.9 82.9 83.9 72.4
PGA (Ours) 96.8 95.7 84.6 92.4 75.2 59.7 86.2 86.2 76.8

Multi-Source
DCTN [88] 95.7 90.3 75.0 87.0 N.A. N.A. N.A. N.A. N.A.
MDDA [89] N.A. N.A. N.A. N.A. 66.7 62.3 79.5 79.6 71.0
SIMplDA [96] 93.3 91.0 77.5 87.3 70.8 56.3 80.2 81.5 72.2
MFSAN [62] 95.4 93.6 79.1 89.4 72.1 62.0 80.3 81.8 74.1
MPA [28] 97.2 96.2 80.4 91.3 74.8 54.9 86.2 85.7 75.4
MPGA (Ours) 97.4 96.5 84.7 92.9 76.3 63.8 90.0 87.4 79.4

(out-of-distribution). Figure 2 presents the performance of three linear classifiers trained by ERM, our
gradient alignment method only and PGA. In summary, while ERM learns non-predictive features
and fails to generalize beyond in-distribution data, our gradient alignment algorithm can leverage the
gradient information from multiple environments to learn the core feature that helps perform well
on OOD data. Besides, incorporating the gradient norm penalty term further enhances stability and
robustness at convergence.

5.2 Experimental setup

Datasets. We conduct experiments using three well-established UDA datasets of varying scales:
ImageCLEF [17], Office-Home [86], and DomainNet [87], respectively. Detailed descriptions of
these datasets are available in Appendix C.1.

Metrics. We evaluate our model by reporting the top-1 accuracy for each target domain and the
average accuracy across all domains. To further validate the effectiveness of our proposed method, we
conduct experiments in two distinct settings: a source-combined setting, where data from all source
domains are merged, and a multi-source setting, which utilizes individual domain identifications.
Additionally, we provide pair-wise single-source domain adaptation results for the Office-Home
dataset.

Baselines. Regarding prompt-based baselines, we compare our method with MPA [28], DAPL [25],
Simple Prompt [28], and Zero-shot CLIP [27]. To ensure a comprehensive evaluation, we also include
comparisons with various non-prompt methods such as DCTN [88], MDDA [89], MFSAN [62],
T-SVDNet [90] and PFSA [91] ... As we follow the same settings as in [28] and [25], results for
baselines are taken from those studies for the consistency. Note that while DAPL [25], MPA [28] and
our methods employ CoOp [92] with text-end soft-prompt, other methods finetune the transformer
block [63] or both image and text-end soft-prompts [93] or the whole encoders [94, 95]. Since those
methods typically fine-tune many more parameters, we thus do not include them in the experimental
results for the sake of fair comparison.

5.3 Experimental results

Table 2 presents the results for the ImageCLEF and Office-Home datasets. Under the source-combined
scenario, PGA significantly outperforms nearly all other baseline methods on both datasets, with
the exception of its own multi-source variant, MPGA. For instance, PGA surpasses the second-
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best source combined method by a notable 4% in average accuracy and exceeds MPA by over 1%.
Notably, in the Office-Home domain Clipart, while two prompt-based baselines, DAPL and Simple
Prompt, lag behind their non-prompt counterparts, PGA still manages to achieve slightly better
results than these non-prompt methods. In the multi-source setting, MPGA consistently delivers the
highest performance across all domains, notably outperforming MPA, the state-of-the-art (SOTA)
prompt-based method for multi-source UDA, by a substantial margin of 4% on Office-Home.

Table 3: Accuracy (%) on DomainNet. We use bold to denote the best method overall and underscore
to denote the best method using source combine.

DomainNet

→ Clp → Inf → Pnt → Qdr → Rel → Skt Avg
Zero-Shot
CLIP [27] 61.3 42.0 56.1 10.3 79.3 54.1 50.5

Source Combined
DANN [18] 45.5 13.1 37.0 13.2 48.9 31.8 32.6
MCD [97] 54.3 22.1 45.7 7.6 58.4 43.5 38.5
DAPL [25] 62.4 43.8 59.3 10.6 81.5 54.6 52.0
Simple Prompt [28] 63.1 41.2 57.7 10.0 75.8 55.8 50.6
PGA (Ours) 66.3 49.2 63.3 11.1 81.8 60.6 55.4

Multi-Source
M³SDA-β [98] 58.6 26.0 52.3 6.3 62.7 49.5 42.6
SImpAl101 [96] 66.4 26.5 56.6 18.9 68.0 55.5 48.6
LtC-MSDA [99] 63.1 28.7 56.1 16.3 66.1 53.8 47.4
T-SVDNet [90] 66.1 25.0 54.3 16.5 65.4 54.6 47.0
PFSA [91] 64.5 29.2 57.6 17.2 67.2 55.1 48.5
PTMDA [100] 66.0 28.5 58.4 13.0 63.0 54.1 47.2
MPA [28] 65.2 47.3 62.0 10.2 82.0 57.9 54.1
MPGA (Ours) 67.9 50.5 63.8 11.6 82.2 61.0 56.2

On DomainNet, as Table 3 presents, our method still obtains superior average accuracy under both
source combined and multi-source, higher than the runner-up by 3.4% and 2.1%, respectively. Overall,
in the domain where CLIP brings significant results compared with non-prompt baselines, our method
leads to better performance, except for the difficult QuickDraw domain, as remarked by a relatively
low zero-shot accuracy for CLIP-based methods, where it seems that prompt learning fails to beat
non-prompt counterparts. Even though, both PGA and MPGA still outperform other prompt-based
counterparts while fine-tuning fewer parameters (e.g. 500k versus 2M of MPA).

In addition, we also demonstrate our method’s effectiveness under 12 pair-wise source-target settings
on Office-Home in Table 4. Again, PGA acquires the highest average score and consistently beats
DAPL under 12 settings while using the same parameter-efficient-finetuning method [92].

Table 4: Accuracy (%) on Office-Home[101] for unsupervised domain adaptation (ResNet-50[102]).
The best accuracy is indicated in bold.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50[102] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [19] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [17] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN+E [71] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP+CDAN [103] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
SymNets [104] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2
ETD [105] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
BNM [106] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
GSDA [107] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
GVB-GD [108] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
RSDA-MSTN [109] 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
SPL [110] 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
SRDC [26] 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
DisClusterDA [111] 58.8 77.0 80.8 67.0 74.6 77.1 65.9 56.3 81.4 74.2 60.5 83.6 71.4
CLIP [27] 51.6 81.9 82.6 71.9 81.9 82.6 71.9 51.6 82.6 71.9 51.6 81.9 72.0
DAPL [25] 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
PGA (Ours) 56.1 85.5 86.0 75.5 85.2 85.8 75.2 55.7 86.1 75.4 56.7 85.8 75.8
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5.4 Ablation study

From Table 5, we can see that (i) learning prompts using solely the target loss, the accuracy across
all settings already surpasses that of Zero-shot CLIP. This confirms the reliability of pseudo labels
generated by CLIP. (ii) When adding source loss and grad-norm penalization, the results improve
slightly. (iii) Importantly, adding gradient alignment, the scores increase more clearly. These
observations verify each of our contributions.

LT LS GN GA → C → I → P Avg
× × × × 87.9 88.2 78.7 88.1
✓ × × × 92.9 94.3 83.2 90.1
✓ ✓ × × 93.3 95.0 83.3 90.6
✓ ✓ ✓ × 94.3 95.3 83.2 90.9
✓ ✓ ✓ ✓ 96.8 95.7 84.6 92.4

Table 5: Ablation studies on various modules of
PGA on the ImageCLEF. Each of the proposed
components shows its effectiveness while combin-
ing them helps obtain the best performance.
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Figure 3: Evolution of the gradient similarity
during training.

Furthermore, to show that gradient alignment indeed increases consensus between gradients, we
plot cosine similarity along the training process with three different values of ρga in Figure 3. First,
during early training stages, there seems to be less agreement between gradients when no alignment
is enforced, c.f. ρga = 0. When ρga > 0, we can see the similarity increase. Noticeably, there exists
a point where similarity starts plummeting. This is reasonable when the model starts to converge to a
Pareto solution where source and target gradients cancel each other. This is depicted more clearly
in Figure 4 in the appendix where the closer the model is to the Pareto front, the more conflict the
gradients are.

6 Conclusion

In this work, we have proposed a framework for UDA inspired by Multi-objective optimization thanks
to the generalizability of CLIP and the lightweight nature of prompt learning. We have then devised
a practical method to align per-objective gradients, which aims to encourage inherent consensus
between objectives. We have further fused gradient norm penalization into the method to enhance
prompt generalization. Finally, a UDA generalization bound is presented to justify the benefits of our
method.

Acknowledgements: Trung Le was supported by ARC DP23 grant DP230101176 and by the Air
Force Office of Scientific Research under award number FA2386-23-1-4044.
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Supplement to “Enhancing Domain Adaptation through Prompt
Gradient Alignment“

Due to space constraints, some details were omitted from the main paper. We therefore include
additional theoretical developments (section A), the detailed algorithm description (section B) and
experimental results (section C) in this appendix.

A UDA generalization bound

Here, we provide an information-theoretic generalization bound for UDA, which can be reduced
by our gradient alignment and gradient norm penalization. For simplicity, we will consider the
single-source UDA setting.

To begin, we first define some additional notations: let X ,Y,P be the input space, output space, and
prompt space (or hypothesis space), respectively. Denote the input-label space as Z = X × Y , and
the loss function as ℓ : P × Z → R+

0 (Cross entropy in our case). Finally, denote µ, µ′ as the two
underlying distributions from which the source and target domains are sampled. The training data for
source domain DS = {Zi}Ni=1 is drawn i.i.d from µ⊗N , and that for target domain DT = {X ′

j}Mj=1

is from µ
′⊗M
X .

For each prompt parameter, the population risk in the target domain is defined as

Rµ′(P ) := EZ′∼µ′ [ℓ(P ,Z′)]. (9)

This risk is the ultimate goal that a UDA algorithm aims to minimize. However, since µ′ is unknown,
and only a finite number of training data is given, we define the empirical risk in the source domain as

RDS
(P ) :=

1

N

N∑
i=1

ℓ(P ,Zi). (10)

In the information-theoretic analysis framework, model parameter, P ∈ P in our case, is a random
variable that is outputted from a learning algorithm A characterized by some conditional distribution
PP |DS ,DT

. Then the generalization error, measuring how close these two risks can be, has the form

Err := EP ,DS ,DT
[Rµ′(P )−RDS

(P )], (11)

where the expectation is taken over P , DS , DT ∼ PP |DS ,DT
, µ⊗N , µ

′⊗M
X .

To derive the bound, we need the following assumption on the loss function, which is commonly
adopted in many information-theoretic bounds such as those in [112, 113]:

Assumption A.1. (Subgaussianity). ℓ(P ;Z ′) is R-subgaussian
∗

under PP ,Z′|X′
j=x′

j
,∀x′

j ∈ X , for
any P ∈ P .

We also present the definitions of Mutual Information, Disintegrated Mutual Information, and
Conditional Mutual Information:
Definition A.2. (Mutual Information). I(X;Y ) = KL(PX,Y ||PX ⊗ PY ), where KL is the KL-
divergence and ⊗ denote the product of two marginal distributions.
Definition A.3. (Disintegrated Mutual Information). The disintegrated mutual information between
two random variables X and Y given a realization of a variable Z = z is

IZ=z(X;Y ) = KL(PX,Y |Z=z||PX|Z=z ⊗ PY |Z=z)

Definition A.4. (Conditional Mutual Information). I(X,Y |Z) = EZI
Z(X;Y ).

∗
A random variable X is R-subgaussian if for any ρ, logE exp(ρ(X − EX)) ≤ ρ2R2/2.
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Theorem A.5. Under assumption A.1, the generalization error can be upper-bounded by

|Err| ≤

√√√√4R2

N

T∑
t=1

η2t
σ2
t

EP t−1,DS ,DT
[∥gsrc

t ∥2 + ∥g
tgt
t ∥2 + ∥gsrc

t − gtgt
t ∥2] +

√
2R2KL(µ||µ′),

(12)

where T is the total number of training iterations, ηt is the learning rate at iteration t, P t is the
prompt at iteration t, gsrc

t = ∇PLsrc(P t−1), g
tgt
t = ∇PLtgt(P t−1) are the gradients w.r.t P t−1

of source loss Eq.2 and target loss Eq.3, and σt is the standard deviation of the isotropic Gaussian
noise added to the update of P t.

Remark A.6. For the purpose of simplicity, here we consider a ’noisy’ update version of prompts:
P t = P t−1 − ηtg + Nt, Nt ∼ N (0, σ2

t I). However, note that the bound still holds for the
conventional SGD update, i.e., no added noise, by following techniques in [113].

Remark A.7. Our methods align gradients of shared-prompt, but here we can omit its subscript in
the inter-domain gradient matching term, ∥gsrc

t − gtgt
t ∥2, by noting that gsrc

t = [gsh,src
t , gS

t ,0] and
gtgt
t = [gsh,tgt

t ,0, gT
t ]. Indeed, ∥gsrc

t − gtgt
t ∥2 = ∥gsrc

t ∥2 + ∥g
tgt
t ∥2 − 2(gsh,src

t )Tgsh,tgt
t , where T

denotes the vector transpose. In addition, this bound suggests maximizing the dot product between
gradients; however, to stabilize training, we aim to maximize the cosine similarity instead.

This theorem suggests that penalizing gradient norm and matching gradients across domains can
improve generalization on the target domain, i.e., the first term in the R.H.S of A.5 is minimized.
Note that minimizing gradient norm has been widely used in [59, 81, 114] to control the sharpness
of the loss landscape, which is strongly related to the generalization capability of the model. In this
work, we can empirically and theoretically verify the effectiveness of this technique in the gradient
space of prompt, consistent with results in previous works [115, 116].

Regarding the second term, we do not aim for a method that can explicitly reduce the gap between
source and target distributions, because we do not want to remove any domain-specific features that
may be helpful for prediction. Instead, we want to capture domain-agnostic features in the shared
prompt, and specific features in the domain-specific ones so that at inference, a more meaningful
representation can be obtained by using these prompts. Hence, one possible direction for future work
is to design and learn prompts such that domain distribution alignment can also be achieved.

Finally, this bound can grow as the number of training iterations increases unless gradient norms and
the difference between source and target gradients are extremely small at final iterations. Future work
could be overcoming this limitation by considering other bounds, such as ones suggested in [117].

Proof. Our bound is inspired from the bound in Theorem 5.1 in [112], which is restated as the
following lemma

Lemma A.8. Under assumption A.1, the generalization error can be upper-bounded by

|Err| ≤ 1

NM

M∑
j=1

N∑
i=1

EX′
j

√
2R2IX

′
j (P ;Zi) +

√
2R2KL(µ||µ′) (13)

≤
√

2R2

N
I(P ;DS |DT ) +

√
2R2KL(µ||µ′) (14)

Now consider the ’noisy’ update of the prompt as presented in Eqs. 6 and 5:

P t = P t−1 − ηt(∇PLsrc(P t−1) +∇PLtgt(P t−1)) +Nt (15)

:= P t−1 − ηtg
src
t − ηtg

tgt
t +Nt. (16)

Assume that we obtain the final prompts after T iterations, then following the chain rule of mutual
information and data processing inequality, we have
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I(P T ;DS |DT ) = I(P T −1 − ηT g
src
T − ηT g

tgt
T +NT ;DS |DT ) (17)

≤ I
(
P T −1,−ηT gsrc

T − ηT g
tgt
T +NT ;DS |DT

)
(18)

= I(P T −1;DS |DT ) + I(−ηT gsrc
T − ηT g

tgt
T +NT ;DS |DT ,P T −1) (19)

... (20)

≤
T∑
t=1

I(−ηtgsrc
t − ηtg

tgt
t +Nt;DS |DT ,P t−1) (21)

=

T∑
t=1

I(−gsrc
t − gtgt

t +Nt/ηt;DS |DT ,P t−1) (22)

≤
T∑
t=1

I

(
−gsrc

t +
Nt

2ηt
,−gtgt

t +
Nt

2ηt
;DS |DT ,P t−1

)
(23)

=

T∑
t=1

I

(
−gsrc

t +
Nt

2ηt
;DS |DT ,P t−1

)
+ I

(
−gtgt

t +
Nt

2ηt
;DS |DT ,P t−1,−gsrc

t +
Nt

2ηt

)
(24)

Eq. 21 is due to the assumption of independence of P 0 w.r.t DS and DT , and Eq. 22 is because
mutual information is scale-invariant.

Consider the first term in Eq. 24, for all t, inspired by the proof of Lemma 3 in [118], we have

I

(
−gsrc

t +
Nt

2ηt
;DS |DT ,P t−1

)
= EDS ,DT ,P t−1

[
KL

(
P−gsrc

t +
Nt
2ηt

|DT ,P t−1,DS
||P−gsrc

t +
Nt
2ηt

|DT ,P t−1

) ]
(25)

= EDS ,DT ,P t−1

[
KL

(
P−gsrc

t +
Nt
2ηt

|DT ,P t−1,DS
||PG̃t|DT ,P t−1

)
− KL

(
P−gsrc

t +
Nt
2ηt

|DT ,P t−1
||PG̃t|DT ,P t−1

) ]
(26)

≤ EDS ,DT ,P t−1

[
KL

(
P−gsrc

t +
Nt
2ηt

|DT ,P t−1,DS
||PG̃t|DT ,P t−1

) ]
, (27)

where PG̃t|DT ,P t−1
is some random distribution, every choice of which results in a upper bound for

the MI, and the equality holds when PG̃t|DT ,P t−1
= P−gsrc

t +
Nt
2ηt

|DT ,P t−1
.

Therefore, if we choose PG̃t|DT ,P t−1
= N (0,

σ2
t

4η2
t
I), the R.H.S of Eq. 27 will be upper-bounded

by 2η2
t

σ2
t
EDS ,DT ,P t−1

[
||gsrc

t ||2
]
, which is derived from the KL-divergence between two Gaussian

distributions.

Similarly for the second term in Eq. 24, choosing P
G̃t|DT ,P t−1,−gsrc

t +
Nt
2ηt

= N (0,
σ2
t

4η2
t
I) gives

us the upper bound 2η2
t

σ2
t
EDS ,DT ,P t−1

[
||gtgt

t ||2
]
. Furthermore, letting P

G̃t|DT ,P t−1,−gsrc
t +

Nt
2ηt

=

P−gsrc
t +

Nt
2ηt

, which is also a Gaussian distribution due to the effect of the added noise, we reach the

gradient matching term, 2η2
t

σ2
t
EDS ,DT ,P t−1

[
||gsrc

t − gtgt
t ||2

]
.

Note that in Eq. 15, we suppose the source-weight term λ = 1 to simplify proof. However, if one
wishes to keep the impact of λ, they can change gsrc

t = [λgsh,src
t , gS

t ,0]. In this case, the terms under
the expectation in the bound will become: (λ2−1)||gsh,src

t ||2+||gsrc
t ||2+||g

tgt
t ||2+||g

tgt
t −λgsrc

t ||2.

Combining everything together, the proof is done.
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B Algorithm

B.1 Final objectives

As we cast UDA as a MOO problem, the ideal final objectives, in the case of single-source UDA,
would be

[LPGA
S (P ),LPGA

T (P )],

where

LPGA
T (P ) := LT (P sh − ρga

gsh,S

∥gsh,S∥.∥gsh,T ∥
+ ρgn

gsh,T

∥gsh,T ∥
,P T + ρgn

gT

∥gT ∥
),

LPGA
S (P ) := LS(P sh − ρga

gsh,T

∥gsh,S∥.∥gsh,T ∥
+ ρgn

gsh,S

∥gsh,S∥
,P S + ρgn

gS

∥gS∥
).

As aforementioned, we use scalarization method, i.e. reweighting loss functions with λ put on the
PGA source objective. As a result, the PGA gradient updates for prompts are

gPGA
sh,T , g

PGA
T := ∇PLPGA

T (P ), gPGA
sh,S , g

PGA
S := ∇PLPGA

S (P ),

P S = P S − ηgPGA
S , P T = P T − ηgPGA

T ,

P sh = P sh − η(gPGA
sh,T + λgPGA

sh,S).

However, computing these PGA gradients will trigger the computation of the Hessian matrix. Hence,
we approximate them with a practical version:

gPGA
sh,T , g

PGA
T := ∇PLPGA

T (P )

≈ ∇PLT (P sh,P T )|P sh=P sh−ρga
gsh,S

∥gsh,S∥.∥gsh,T ∥+ρgn
gsh,T

||gsh,T || ,PT=PT+ρgn
gT

||gT ||
,

gPGA
sh,S , g

PGA
S := ∇PLPGA

S (P )

≈ ∇PLS(P sh,P S)|P sh=P sh−ρga
gsh,T

∥gsh,S∥.∥gsh,T ∥+ρgn
gsh,S

||gsh,S || ,PS=PS+ρgn
gS

||gS ||
.

B.2 Extension to Multi-source UDA

Our method can be easily extended to work with multi-source domains by noting that the target
gradient is aligned with each of the source gradients.

gPGA
sh,T , g

PGA
T := ∇PLPGA

T (P ),

gPGA
sh,i , g

PGA
S,i := ∇PLPGA

S,i (P ),∀i = 1→ N

P S,i = P S,i − ηgPGA
S,i ,∀i = 1→ N

P T = P T − ηgPGA
T ,

P sh = P sh − η(gPGA
sh,T + λ

∑
i

gPGA
sh,i),

gPGA
sh,T , g

PGA
T ≈ ∇PLT (P sh,P T )|P sh=P sh−ρga

∑
i

gsh,i
∥gsh,i∥.∥gsh,T ∥+ρgn

gsh,T
||gsh,T || ,PT=PT+ρgn

gT
||gT ||

,

(28)

gPGA
sh,i , g

PGA
S,i ≈ ∇PLS,i(P sh,P S,i)|P sh=P sh−ρga

gsh,T
∥gsh,i∥.∥gsh,T ∥+ρgn

gsh,i
||gsh,i||

,PS,i=PS,i+ρgn
gS,i

||gS,i||
.

(29)

The details of our proposed method for the general case of N source domains are presented in
Algorithm 1. When N = 1, our method degrades to PGA.

C Experimental details

In this section, we provide additional information for our experimental settings in Section C.1 and
C.2 then include detailed ablation studies and other empirical results in Section C.3.
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Algorithm 1 Prompt gradient alignment for unsupervised domain adaptation
Input: Prompt P = [P sh, {P S,i}Ni=1,P T ], gradient norm penalization trade-off ρgn, alignment
strength ρga, source-gradient trade-off λ, learning rate η.
Output: Updated prompt P ∗

1: Compute target loss LT (P sh,P T ) as in Eq. 3
2: Compute gradients of shared and target-specific prompts w.r.t target loss

gsh,T , gT ← ∇PLT (P sh,P T )
3: Compute source losses LS,i(P sh,P S,i) as in Eq. 2
4: Compute gradient of shared and source-specific prompts w.r.t each source loss

gsh,i, gS,i ← ∇PLS,i(P sh,P S,i),∀i = 1→ N

5: Compute gPGA
sh,T , g

PGA
T as in Eq. 28

6: Compute gPGA
sh,i , g

PGA
S,i as in Eq. 29 ∀i = 1→ N

7: Compute combined gradient of shared prompt gPGA
sh = gPGA

sh,T + λ
∑

i g
PGA
sh,i

8: Update prompt
P ∗ = [P sh, {P S,i}Ni=1,P T ]− η[gPGA

sh , {gPGA
S,i }Ni=1, g

PGA
T ]

C.1 Datasets

ImageCLEF is a small-scaled dataset with 1,800 images across 12 object categories from three
domains: ImageNet ILSVRC 2012 (I), Pascal VOC 2012 (P), and Caltech-256 (C). Office-Home is a
medium-scaled dataset containing approximately 15,500 images from 65 categories in four domains:
Art, Clipart, Product, and Real World. DomainNet is the largest dataset, comprising around 600,000
images from 345 categories across six domains: Clipart, Infograph, Painting, Quickdraw, Real, and
Sketch.

C.2 Implementation details

For fair comparisons, we use a ResNet50 as our backbone on Image-CLEF and Office-Home and a
ResNet101 on DomainNet. Their weights are taken from pretrained-CLIP and kept frozen during
training. Prompts are trained with the mini-batch SGD optimizer with a learning rate of 0.003 and
0.005. We use a batch size of 32 and adopt a cosine learning rate scheduler. For hyper-parameters,
token lengths M1 and M2 are both set to 16. Pseudo-label threshold τ is set to 0.4 for producing
reliable labels. ρgn, ρga and λ are found using grid-search. Details are provided in the public source
code.

During inference, we average the prediction of both source P S and target P T prompts, which
empirically yield the best performance. Please note that the inference cost remains almost the same
as using a pretrained CLIP as computing class embeddings is an one-time-cost. The complexity
grows linearly with the number of prompts during training (= 2 with PGA and N + 1 in the case of
MPGA), which is typically not a big issue in practice since the model training can quickly converge
by fine-tuning under intrinsic dimension [119]. We further confirm this in the computation complexity
ablation study below.

C.3 Additional experiments

C.3.1 Illustrative example

We run a small multi-objective-optimization problem on the ZDT-1 problem [120]. The ZDT-1
problems have a 30-dimensional variable and two differentiable objective functions f1, f2:

min f1(x)

min f2(x) = g(x)h (f1(x), g(x))

The function g(x) can be considered as the function for convergence, their formulas are given by:
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f1(x) = x1

g(x) = 1 +
9

n− 1

n∑
i=2

xi

h (f1, g) = 1−
√
f1/g

0 ≤ xi ≤ 1 i = 1, . . . , n

with the Pareto solutions are given by:

0 ≤ x∗
1 ≤ 1 and x∗

i = 0 for i = 2, . . . , n
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Figure 4: ZDT-1 task-specific gradient directions at different iterations. Red curve represents the
Pareto front while the blue and green arrows indicate the updating directions for minimizing f1 and
f2, respectively.

As can be seen from Figure 4, the cosine similarity increases at the beginning of the training and then
decreases when the obtained solution reach the region near the Pareto front. This behavior aligns
with the gradient similarity evolution experiment in the main paper.

C.3.2 Large-scale single-source unsupervised domain adaptation

Apart from those experiments in the main paper, we expand the single-source unsupervised domain
adaptation setup by including the empirical results on two large-scale synthetic-to-real benchmark for
classification adaptation S2RDA-49 and S2RDA-MS-39 [121]. For each task, synthetic samples are
created by rendering 3D models from ShapeNet, matching the label space of the real/target domain,
with 12K RGB images per class. The S2RDA-49 real domain contains 60,535 images across 49
classes from various sources including the ImageNet validation set. The S2RDA-MS-39 real domain
includes 41,735 natural images for 39 classes from MetaShift, featuring complex contexts like object
co-occurrence and attributes, which adds to the task’s difficulty.

Table 6: Unsupervised domain adaptation results on S2RDA. The best accuracy is indicated in bold.
Transfer Task No Adaptation DANN MCD RCA SRDC DisClusterDA CLIP DAPL PGA (Ours)

Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean Acc. Mean

S2RDA-49 51.9 42.2 47.1 47.6 42.5 47.8 47.1 48.5 61.5 53.0 53.0 52.3 69.9 65.7 71.5 66.5 74.1 67.8
S2RDA-MS-39 22.0 20.5 22.8 22.2 22.1 22.2 23.3 22.5 25.8 24.6 27.1 25.3 36.4 35.8 36.9 35.7 38.0 36.9

Table 6 illustrates accuracy and mean score over classes, where utilizing pretrained vision-language
models still shows their impressive performance. Using pretrained CLIP standalone outperforms
other traditional DA methods and PGA further boosts the performance by large margins, 4% on
S2RDA-49 and 1.5% on S2RDA-MS-39, respectively.
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C.3.3 Ablation studies

Similar to previous work on CLIP adaptation[25, 28], we vary the pseudo label threshold τ value to
study its sensitivity. As can be seen in Figure 7, both PGA and MPGA’s performance is relatively
stable across different values of τ , indicating that our methods are not sensitive to τ , and the best
result is obtained at a reasonable trade-off between the quantity and quality of pseudo data.

Table 7: Accuracy (%) of different threshold τ on ImageCLEF.
0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9

PGA 91.5 92.0 92.1 92.4 92.3 92.1 92.0 92.0
MPGA 92.4 92.6 92.9 92.7 92.7 92.7 92.6 92.5

In Figure 5, we provide the complexity for some comparative baselines. Accuracy curve (left):
While DANN and CDAN obtain their best performance at approximately 77% after more than
1000s, PGA and MPGA achieve 84% within 100s. Besides, the first stage of pairwise source-target
training of MPA takes 159s, followed by 35s for the second stage to actually train the final model.
Number of Trainable Parameters (middle): PGA and MPGA, with fewer than 140k parameters,
require significantly fewer parameters than MPA, DANN and CDAN, which have around 1M, 48.9M
and 51.7M parameters, respectively. GPU Memory Usage (right) PGA, MPGA, and MPA exhibit
substantially lower memory footprints, around 1300MB compared to 7000MB of DANN and CDAN
throughout training.

0 200 400 600 800 1000 1200 1400
Time(s)

0

20

40

60

80

Ac
cu

ra
cy

DANN 
CDAN 
MPA  
PGA  
MPGA 

0 1 2 3 4 5 6
# Param 1e7

DANN 

CDAN 

MPA  

PGA  

MPGA 

48.9M

51.7M

1M

114k

131k

60 80 100 120 140 160 180
Relative Time (Seconds)

2

3

4

5

6

7

8

G
PU

 M
em

or
y 

U
sa

ge
 (

By
te

s)

1e9

DANN 
CDAN 
MPA 
PGA 
MPGA 

Figure 5: Computational complexity: accuracy curve (left), number of trainable parameters (middle),
and GPU memory (right).

Figure 6 shows that PGA is generally not sensitive to ρga and ρgn within their acceptable range, i.e.
1e-2 to 10 for ρga and 1e-5 to 0.1 for ρgn. Specifically, (i) a too large value of ρgn is less effective
than smaller ones; (ii) ImageCLEF prefers larger values of ρga while OfficeHome prefers smaller
ones, suggesting that source and target domains in the former dataset may be more similar than those
in the latter, hence over-matching gradients in the latter dataset may be adverse.
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Figure 6: Parameter sensitivity analysis on ρgn and ρga of PGA on ImageCLEF and Office-Home
with CLIP-RN50 backbone.
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We present results of our methods using ViT-B/16, ViT-L/14 backbones on OfficeHome in Tables 8
and 9, following experimental setups in [122, 123]. We can observe the superiority of our methods
among all baselines while finetuning a small portion of the backbones using prompt tuning. Especially,
PGA outperforms the second-best method on ViT-B/16 backbone by ≈ 1% accuracy score.

Table 8: Accuracy (%) on Office-Home of ViT-based vision encoder CLIP backbones (except
CDTrans* uses DeiT). The overall best accuracy and best within per backbone are indicated in bold
and underscore, respectively.

Method Backbone Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

CDTrans* 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
TVT 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6
linear probe CLIP 60.1 73.7 80.9 66.4 76.4 76.3 63.4 61.0 82.3 74.7 64.8 83.3 72.4
CoOp 70.0 90.8 90.9 83.2 90.9 89.2 82.0 71.8 90.5 83.8 71.5 92.0 83.9
CoCoOp 70.4 91.4 90.4 83.5 91.8 90.3 83.4 70.9 91.0 83.4 71.6 91.7 84.1
VPT-shallow 66.9 89.1 89.1 81.7 89.0 89.2 81.6 70.0 89.1 81.7 66.9 89.0 81.7
VPT-deep ViT-B/16 71.6 89.9 90.3 82.8 91.0 89.7 82.0 71.5 90.3 84.6 71.7 91.6 83.9
IVLP 71.4 91.7 90.8 83.6 90.2 89.3 82.2 72.4 90.4 84.1 72.1 92.0 84.2
MaPLe 72.2 91.6 90.3 82.6 90.9 89.8 82.4 71.6 90.0 85.1 72.0 92.1 84.2
CLIP 67.8 89.0 89.8 82.9 89.0 89.8 82.9 67.8 89.8 82.9 67.8 89.0 82.4
DAPL 70.6 90.2 91.0 84.9 89.2 90.9 84.8 70.5 90.6 84.8 70.1 90.8 84.0
PGA (Ours) 71.8 91.5 91.0 84.8 91.6 90.9 84.9 71.5 91.1 85.9 72.1 92.4 85.1

CLIP 74.2 93.1 93.3 87.3 93.1 93.3 87.3 74.2 93.3 87.3 74.2 93.1 87.0
DAPL ViT-L/14 77.3 94.6 94.3 88.6 94.6 94.0 88.8 76.8 94.0 89.0 77.8 94.4 88.7
PGA (Ours) 79.0 95.1 94.3 88.9 95.1 94.2 88.9 78.8 94.2 88.9 79.0 95.3 89.4

Following a different protocol, Table 9 provides the results of ViT-L/14 backbones on Office-Home
but with three source domains per category on Art, Clipart, Realworld and Product domain. In this
setup, MPGA and PGA still consistently yield the best and second-best scores among all categories.

Table 9: Three-source domain adaptation of the Office-Home dataset on ViT-L/14.

Method → Ar → Rw → Pr Avg

CLIP ZS(G) 84.97 91.94 90.96 89.29
CLIP ZS(A) 86.34 92.10 87.73 88.73

CLIP LP 87.02 92.55 92.70 90.76
LADS 87.71 93.86 93.00 91.52
LanDA 88.83 94.09 93.22 92.05

PGA (Ours) 89.17 95.37 94.34 92.96
MPGA (Ours) 89.88 95.49 94.97 93.45

C.3.4 Domain adaptation with label shift

This section is to study how does the method performs when there are extreme label distribution
shifts between source and target domains. We test PGA on the setting of label shift following [124],
where the source or target domains are down-sampled with only 30% of data from the first-half of the
classes are taken (indicated by s- prefix).

Table 10: Accuracy (%) on the sub-sampled Office-Home for unsupervised domain adaptation. The
prefix s- denotes the domain where we sample only 30% of the images from the first half of its classes,
following the label shift setting from prior work.

Method sAr→Cl sAr→Pr sAr→Rw sCl→Ar sCl→Pr sCl→Rw sPr→Ar sPr→Cl sPr→Rw sRw→Ar sRw→Cl sRw→Pr Avg

ResNet-50 35.7 54.7 62.6 43.7 52.5 56.6 44.3 33.0 65.2 57.1 40.5 70.0 51.4
DANN 36.1 54.2 61.7 44.3 52.6 56.4 44.6 37.1 65.2 56.7 43.2 69.9 51.8
JAN 34.5 56.9 64.5 46.2 56.8 59.0 50.6 37.2 70.0 58.7 40.6 72.0 53.9
CDAN 38.9 56.8 64.8 48.0 60.0 61.2 49.7 41.4 70.2 62.4 47.0 74.7 56.3
IWDANN 39.8 63.0 68.7 47.4 61.1 60.4 50.4 41.6 72.5 61.0 49.4 76.1 57.6
IWJAN 36.2 61.0 66.3 48.7 59.9 61.9 52.9 37.7 70.9 60.3 41.5 73.3 55.9
IWCDAN 43.0 65.0 71.3 52.9 64.7 66.5 54.9 44.8 75.9 67.0 50.5 78.6 61.2
PCT 51.9 69.7 76.5 63.3 70.8 71.1 66.0 49.9 82.0 73.1 58.6 83.2 67.8

PGA (Ours) 54.7 85.4 85.4 75.3 84.4 85.2 75.4 54.9 85.7 75.6 54.3 85.7 75.2

Label-shift results presented in Table 10 and 11 below and Table 5 in the main text show the
effectiveness of PGA on different levels of label shift. PGA consistently yields superior performance
on every sub-experiment under these two setups.
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Table 11: Accuracy (%) on the sub-sampled (target) Office-Home for unsupervised domain adaptation.

Method Ar→sCl Ar→sPr Ar→sRw Cl→sAr Cl→sPr Cl→sRw Pr→sAr Pr→sCl Pr→sRw Rw→sAr Rw→sCl Rw→sPr Avg

ResNet-50 41.5 65.8 73.6 52.2 59.5 63.6 51.5 36.4 71.3 65.2 42.8 75.4 58.2
DANN 47.8 55.9 66.0 45.3 54.8 56.8 49.4 48.0 70.2 65.4 55.5 72.7 58.3
JAN 45.8 69.7 74.9 53.9 63.2 65.0 56 42.5 74 65.9 47.4 78.8 61.4
CDAN 51.1 69.7 74.6 56.9 60.4 64.6 57.2 45.5 75.6 68.5 52.7 79.8 63.0
IWDANN 48.7 62.0 71.6 50.4 57.0 60.3 51.4 41.1 69.9 62.6 51.0 77.2 58.6
IWJAN 44.0 71.9 75.1 55.2 65.0 67.7 57.1 42.4 74.9 66.1 46.1 78.5 62.0
IWCDAN 52.3 72.2 76.3 56.9 67.3 67.7 57.2 44.8 77.8 67.3 53.3 80.6 64.6
PCT-Uniform 55.8 77.6 80.4 65.1 72.3 74.7 67.0 50.9 81.1 72.6 57.0 84.0 69.8
PCT-Learnable 57.5 78.2 80.5 66.7 74.3 75.4 64.6 50.7 81.3 72.9 57.3 83.5 70.2

PGA (Ours) 57.4 84.8 86.4 76.0 84.6 85.6 74.5 57.1 86.1 75.9 57.4 85.3 75.9

C.4 Training Resources

All experiments are run on Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and NVIDIA A100-
SXM4-80GB GPU.

D Additional related work

Another work sharing the same intuition of gradient alignment is ProGrad [125], which manipulates
gradient of the fine-tuned loss to preserve general knowledge of the pretrained model. Similar to
other gradient-based MTL methods [34, 35], it attempts to remove conflicts between per-objective
gradients at each time step, thus is orthogonal to our approach. In contrast, we aim to stimulate their
inherent consensus throughout training by encouraging the same training trajectory for both domains,
hence, the model can find commonly good regions for them. Another concept that relates to gradient
alignment is meta-learning. This has been introduced to Domain generalization in [126, 127]. Their
intuition is a training procedure that enables the model to achieve low loss on a subset of training
domains after having learned the other ones, and they work on the full model space. In a recent
work about Vision-Language Models [128], meta-learning was used to deal with the problem of
few-shot prompt learning by meta-learning prompt initialization. The gradient of the inner loop
is modified with a learnable regulating function, and data for the support and query sets are found
by hierarchically clustering an auxiliary large-scale image-text dataset. This method also has the
impact of aligning gradient between support and query data as a result of meta-learning. However, its
computation and space complexity is rather large as it requires the computation of Hessian matrix,
web-scale of image-text pairs, and meta-learns the soft initialization for prompts.

E Limitations and Future works

First, our work relies on pretrained-CLIP, meaning that if UDA data is too different from pretrained
knowledge, our method may fail to learn adequately. Therefore adapting our method to scratch-
training scenarios without heavy computation and space complexity should be investigated. Second,
the derived bound can be potentially loose as the number of training iterations increases. Thus
studying other types of bounds could be an interesting work. Finally, as we mentioned, a strategy to
explicitly align feature distribution across domains is worth looking into.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We reported our computational complexity and also have a discussion section
in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provided full assumption and proof of our theory in appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We reported detailed descriptions and hyperparameters for all experiments.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our reproducible codebase is published in https://github.com/
VietHoang1512/PGA.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed settings and hyperparameters for all experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted the illustrative experiment ten times independently with different
random seeds and reported the mean and standard derivation of the result. The other
experiment setups follow the protocol of prior well-known work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention about compute resources in Appendix.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper has no negative social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: All datasets used in our paper are public.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our paper are public.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There is no new assets introduced in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: There are no crowdsourcing experiments and research with human subjects in
this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no potential risks incurred by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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