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ABSTRACT

Vision–language models (VLMs) have demonstrated strong cross-modal capabil-
ities, yet most work remains limited to 2D data and assumes binary supervision
(i.e., positive vs. negative pairs), overlooking the continuous and structured de-
pendencies present in volumetric data such as CT. Existing approaches often treat
volumetric scans as independent 2D slices, compromising spatial coherence and
underutilizing rich clinical semantics. We propose SCALE-VLP, a soft-weighted
contrastive vision-language pre-training framework that integrates (i) volumet-
ric spatial semantics to preserve anatomical structure and (ii) domain-aware,
knowledge-infused semantics (e.g., radiological ontologies) to guide alignment.
This yields structurally consistent and semantically grounded representations un-
der limited supervision, demonstrating strong cross-task transferability (retrieval,
report generation, and classification), and cross-domain generalizability with con-
sistent gains without further fine-tuning. In particular, compared to the previous
state of the art, SCALE-VLP achieves up to 4.3× higher top-1 CT–report retrieval,
improves abnormality classification by 10 points, and reaches ROUGE-L 0.44 and
BERT-F1 0.89 for report generation. Further, in zero-shot evaluation on an out-
of-domain external dataset, we observe consistent gains, indicating the cross-task
and cross-domain generalization ability of SCALE-VLP. 1

1 INTRODUCTION

Medical imaging is crucial to modern healthcare, aiding in diagnosis, treatment planning, and mon-
itoring. Recent advancements in AI, high-resolution imaging, and visualization techniques have
significantly enhanced our ability to extract detailed clinical insights from complex medical data
Perera et al. (2024); Li et al. (2025). Despite this progress, most current research still focuses on two-
dimensional (2D) imaging Li et al. (2023b); Jing et al. (2020); Wu et al. (2024), e.g. chest X-rays
Tanida et al. (2023), overlooking the increasing availability and importance of three-dimensional
(3D) scans (e.g. computed tomography (CT) and magnetic resonance imaging (MRI)), which offer
volumetric representations that are essential for capturing the full spatial complexity of anatomical
structures and disease patterns. Therefore, advancing 3D medical imaging analysis constitutes a
research priority with direct clinical impact.

Vision-language models (VLMs) have shown promising progress in this area by aligning visual
inputs with natural language supervision to learn transferable representations. However, the inherent
characteristics of volumetric data and their radiology reports pose three fundamental challenges for
vision–language alignment in medical VLMs:

(1) Data-Scarce Representation Learning: Effective vision–language alignment in VLMs requires
large-scale paired data, as exemplified by CLIP Radford et al. (2021) with 400M image–text pairs.
Medical imaging, however, is constrained by privacy and diagnostic complexity; for instance, CT-
RATE Hamamci et al. (2024b) provides only 24,128 CT–report pairs. Medical VLMs like M3D Bai
et al. (2024), CT-CLIP Hamamci et al. (2024b), and Merlin Blankemeier et al. (2024), adopt CLIP-
style training with strict one-to-one alignment, inducing binary similarity targets that underweight
partial, clinically meaningful matches across studies.

1The code and analysis scripts will be released upon acceptance.
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(2) Volumetric spatial coherence modeling: A central bottleneck lies in learning effective 3D repre-
sentations that preserve the intrinsic spatial and semantic structure of the data. Unlike 2D images,
3D scans, like CT and MRI, encode fine-grained spatial details across multiple slices, making it
difficult to pair them effectively with their radiology reports, including findings and impressions Lin
et al. (2024); Hamamci et al. (2024a). For example, fVLM Shui et al. (2025) applies a fine-grained
anatomy-level matching scheme, yet still operates on a discrete level, leaving the continuous struc-
ture of volumetric data under exploited. Recent methods, such as T3D Liu et al. (2023), attempt to
address this via multi-view consistency and 3D-aware contrastive learning, but they often struggle to
preserve spatial coherence across slices, which can weaken alignment with fine-grained report cues
and disrupt global anatomical understanding Wang et al. (2024); Liu et al. (2024).

(3) Medical knowledge understanding: Radiology reports contain complex terminology, seman-
tic relationships, and implicit references that challenge standard contrastive learning. For instance,
generic models treat “consolidation” and “infiltrate” as unrelated, ignoring their synonymity in pneu-
monia diagnosis. Recent works such as MedKLIP Wu et al. (2023) and KAD Zhang et al. (2023)
use medical ontologies (e.g., UMLS Bodenreider (2004), RadGraph Jain et al.) to enhance zero-shot
classification and grounding, underscoring the need for clinically informed alignment. In addition,
binary contrastive pairs overlook partial relevance; for example, a multi-finding report may only
partially correspond to a CT scan, leaving clinical knowledge underexploited.

To address these challenges, we propose the SCALE-VLP with a soft-weighted contrastive pre-
training framework that injects volumetric spatial coherence and medical knowledge into the vision-
language alignment objective. Instead of relying on binary pairwise targets, SCALE-VLP constructs
a dense similarity matrix whose weights reflect semantic affinity between spatial proximity and
clinical concepts within 3D scans. Volumetric structure is encoded through a volumetric kernel,
while medical knowledge is infused via domain-specific embeddings. These weights rescale positive
and negative terms in a CLIP/InfoNCE-style loss, encouraging the model to favor anatomically
consistent and clinically plausible correspondences without requiring additional supervision. To
summarize the contributions of this paper in three folds:

• We develop a novel Soft-Weighted Contrastive Alignment (SWCA) objective that explicitly en-
codes continuous, semantics-aware distances between volumetric CT data and reports, improv-
ing sample efficiency under limited supervision.

• We design a joint spatial-knowledge semantics aware alignment mechanism that constructs
dense similarity matrices via volumetric spatial coherence encoding and medical knowledge
fusion, enhancing the intrinsic radiological alignment between CT scans and diagnostic reports.

• We demonstrate through comprehensive experiments that SCALE-VLP exhibits strong cross-
task transferability spanning CT-report retrieval, report generation, and CT abnormality classi-
fication, and cross-domain generalization to an external CT benchmark with consistent gains
without further fine-tuning.

2 RELATED WORK

Multi-Modal Objectives. Multi-modal learning aims to leverage complementary cues from dif-
ferent modalities, such as visual and textual data, to construct more expressive feature representa-
tions Radford et al. (2021); Alayrac et al. (2022). While contrastive approaches are prevalent for
aligning paired samples across domains, traditional methods often rely on softmax-based losses that
require normalization over the entire batch, which introduces inefficiencies and limits scalability.
To address this, SigLIP Zhai et al. (2023) proposes a more efficient sigmoid-based pairwise objec-
tive that avoids global normalization. In parallel, Srinivasa et al. Srinivasa et al. (2023) show that
incorporating unimodal similarity signals can improve cross-modal alignment, especially when one
modality is weaker. Additionally, Subramanian et al. Subramanian et al. (2025) highlight the benefit
of using domain-specific language models as semantic priors to enhance visual tasks. Building on
these advances, our method introduces a customized multi-modal learning objective that transfers
medical knowledge as semantic guidance to improve clinical relevance and generalizability.

3D medical Contrastive Learning. Early medical multimodal contrastive learning focused on 2D
image–text alignment using X-rays and paired reports, with models such as GLoRIA Huang et al.
(2021), ConVIRT Zhang et al. (2022), and BioViL Boecking et al. (2022). These approaches en-
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Figure 1: SCALE-VLP framework. A 3D vision encoder embeds CT volumes and a clinical-
text encoder embeds reports. Soft-Weighted Contrastive Alignment aligns modalities using feature
similarity, spatial proximity, and medical knowledge priors.

abled strong zero-shot performance in classification, retrieval, and grounding. The introduction of
large-scale paired 3D datasets, such as CT-RATE Hamamci et al. (2024a) and BIMCV-R Chen et al.
(2024b), has accelerated the development of volumetric contrastive models. CT-CLIP Hamamci
et al. (2024a) aligns 3D CT volumes with radiology reports for zero-shot abnormality detection and
retrieval. MedFinder Chen et al. (2024b) augments this with view consistency and cross-attention
mechanisms. M3D Bai et al. (2024) integrates contrastive pretraining with instruction tuning to sup-
port diverse 3D tasks. However, current frameworks fall short in considering spatially grounded and
clinically guided semantic alignment, which are both crucial and can lead to improvment in down-
stream utility in tasks like report generation, text or CT volume retrieval, or abnormality detection.

3 SCALE-VLP

Our goal is to learn anatomically and semantically grounded 3D representations of CT scans and
align them with reports to generalize across diverse medical imaging tasks. As illustrated in Fig-
ure 1, we represent volumetric CT studies as sequences of spatially aware patch embeddings, pre-
serving 3D structure. Each CT scan is paired with its radiology report, and both modalities are
encoded using a 3D Vision Transformer and a medical-language encoder resepctively. We introduce
a novel pre-training objective based on a continuously weighted similarity matrix (Soft-Weighted
Contrastive Alignment), which softly aligns visual and textual features by incorporating volumet-
ric spatial information (Spatially-Guided Semantic Alignment) and ontological medical knowledge
(Knowledge-Infused Semantic Alignment). Once pre-trained, the learned representations can be
adapted to downstream tasks such as cross-modal retrieval, abnormality classification, and report
generation, demonstrating the flexibility and clinical utility of SCALE-VLP.

3.1 MODEL ARCHITECTURE

As shown in Figure 1, SCALE-VLP adopts a dual-encoder design that encodes volumetric CT scans
using a frozen 3D ViT Dosovitskiy et al. (2021) and processes radiology reports with a fine-tuned
BERT Devlin et al. (2019) encoder. The 3D ViT, pretrained on RadImageNet Mei et al. (2022),
extracts patch-level features from input volumes. These tokens are passed through a lightweight
Transformer layer, referred to as the vision head, which aggregates spatial information and outputs
sequence-level embeddings. The resulting features are projected into a shared embedding space
using a linear projection layer. The CLS token output is similarly projected and normalized to align
with the vision embeddings. On the language side, reports are encoded using BioClinicalBERT
Alsentzer et al. (2019), with all parameters fine-tuned during training. We compute cross-modal
similarity via scaled cosine similarity, where the scaling factor is a learnable parameter initialized as
in CLIP. During training, only the projectors, the vision head, and the language encoder are updated.

3
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3.2 SOFT-WEIGHTED CONTRASTIVE ALIGNMENT (SWCA)

Similarity between images and text often exhibits a continuous and non-binary nature, particularly
in domains such as medical imaging. For example, a CT radiology report may partially correspond
to multiple scans with related pathologies, and sentences across different reports may describe the
same anatomical finding from varying diagnostic perspectives. As a result, the alignment between
CT volumes and reports is inherently partial and better represented along a graded spectrum. To
capture this nuance, we introduce Soft-Weighted Contrastive Alignment (SWCA), a novel contrastive
learning objective that integrates continuous similarity with volumetric and semantic priors. Prior
methods either rely on dense batch-wise normalization, which requires constructing a full similar-
ity matrix with quadratic memory cost, or depend solely on independent pairwise scoring Radford
et al. (2021); Srinivasa et al. (2023); Zhai et al. (2023). SWCA instead incorporates a soft-weighting
mechanism that encodes three complementary signals: (i) graded cross-modal relevance, (ii) spatial
coherence derived from 3D CT structure, and (iii) knowledge-aware priors from large medical lan-
guage models. In addition, SWCA’s alignment objective is formulated as a pairwise loss, eliminating
collective operations while maintaining continuous alignment fidelity.

Intra-modal similarity weight. Given a mini-batch of B paired volumetric and textual samples,
we compute intra-modal embeddings zi ∈ RD within each modality to estimate soft similarity-based
weights. Intra-modal similarity between embeddings is computed as:

aij = exp(β cos(zi, zj)) , aii = 0. (1)

Row-normalization produces the similarity soft weights as follows:

wIntra-sim
ij =

aij
B∑

k=1, k ̸=i

aik + ε

, wIntra-sim
ii = 0. (2)

where ε is a small constant for numerical stability.

Cross-modal similarity. We extract volumetric and textual embeddings vi, tj ∈ RD for each
CT–report pair (i, j). For scaled cosine similarity, we ℓ2-normalize both modalities:

v̂i =
vi

∥vi∥2
, t̂j =

tj
∥tj∥2

.

The cross-modal similarity is then
sij = τ v̂⊤

i t̂j , (3)
where τ > 0 is a learnable temperature. The same normalization is applied at evaluation (retrieval),
keeping training and testing consistent.

Soft-weighted contrastive loss. With binary targets yij , which equals 1 if i = j and 0 otherwise,
the soft-weighted contrastive loss for one direction (e.g., V→T) is defined as:

LV→T
SWCA =

1

B

B∑
i=1

B∑
j=1

(wIntra-sim
ij + yij)

[
− yij log σ(sij)

−(1− yij) log(1− σ(sij))
]
,

(4)

where σ(·) denotes the logistic sigmoid. The additive yij term guarantees that exact matches are
always prioritized, while the soft weights wIntra-sim

ij enable continuous supervision from partially
similar pairs. To enforce mutual alignment, the loss is computed in both directions (V→T and
T→V) and averaged:

Lbidirectional
SWCA =

1

2

(
LV→T

SWCA + LT→V
SWCA

)
. (5)

The similarity weight wIntra-sim
ij is computed twice under two complementary conditions: (i) a spatial

coherence component wspatial
ij in spatially-guided semantic alignment, and (ii) a medical knowledge

component wknowledge
ij in knowledge-infused semantic alignment.

4
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3.3 SPATIALLY COHERENT SEMANTIC ALIGNMENT

Radiologists interpret CT scans as coherent 3D volumes rather than unordered collections of axial
slices; spatial locality carries semantic importance. To encode this intuition into the alignment
objective, we extend the soft-weighted contrastive loss with a spatial similarity weight wspatial

ij that
emphasizes alignment consistent with 3D geometry.

Each volume i is divided into N cubic patches, with patch m represented by its normalized centroid
ci,m ∈ [0, 1]3. We compute a non-negative saliency score ri,m for each patch (e.g., based on feature
norms or attention weights), and normalize:

αi,m =
ri,m∑N
n=1 ri,n

. (6)

Using these coefficients, we summarize each scan with a weighted centroid (µi) and a covariance
descriptor:

µi =

N∑
m=1

αi,m ci,m, Σi =
N∑

m=1

αi,m (ci,m − µi)(ci,m − µi)
⊤, (7)

where Σi is a 3 × 3 covariance matrix that captures the spread of the patch centroids. The spatial
proximity between two volumes (pij) is then defined as:

pij = exp
(
− ∥µi − µj∥22

2κ2
µ

)
· exp

(
− ∥Σi −Σj∥2F

2κ2
Σ

)
, (8)

where κµ and κΣ control the decay with respect to centroid displacement and structural difference.

Spatial similarity weight. We combine this kernel with the intra-modal similarity weights
wIntra-sim

ij (Equation (2)) via elementwise multiplication:

δij = wIntra-sim
ij pij , (9)

and row-normalize:

wspatial
ij =

δij∑
k δik + ε

. (10)

Replacing wIntra-sim
ij with wspatial

ij in Equation (4) and Equation (5) yields a spatially aware loss Lspatial
SWCA.

This formulation leverages centroid displacement and structural distribution to emphasize spatially
coherent alignments.

3.4 KNOWLEDGE-INFUSED SEMANTIC ALIGNMENT

We incorporate medical knowledge into the learning process without increasing the number of train-
able parameters by leveraging a frozen pre-trained medical language model, such as HuatuoGPT-o1
7B Chen et al. (2024a). This model encodes clinical reasoning, and understanding of medical termi-
nology derived from large-scale medical corpora. Our framework remains model-agnostic and can
support any comparable medical LLM such as LLaVA-Med Li et al. (2023a), Meditron Chen et al.
(2023), or BioMistral Labrak et al. (2024) with minimal changes.

Medical-knowledge similarity weight. Each medical report is passed through the selected med-
ical LLM (e.g., HuatuoGPT) in inference mode. The final hidden states are mean-pooled and pro-
jected, yielding a fixed knowledge embedding hi ∈ Rd for sample i. We reuse the similarity formu-
lation in Equation (1) and the soft normalization from Equation (2), where z now corresponds to the
knowledge embeddings h. This produces the semantic similarity weights wknowledge

ij , which reflect
report-level alignment. Substituting these into Equation (4) and Equation (5) defines the medical
knowledge-infused loss Lknowledge

SWCA , encouraging alignment across semantically related cases.

5
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3.5 OPTIMIZATION OBJECTIVE

The spatially-weighted and knowledge-weighted losses are merged with a convex combination:

Lspatial,knowledge
SWCA = αLspatial

SWCA + (1− α)Lknowledge
SWCA , α ∈ [0, 1], (11)

where α balances pure spatially-guided semantic alignment against knowledge-infused semantic
alignment. This unified objective integrates these two complementary semantics and continuous
similarity into a single differentiable framework, producing representations that respect where ab-
normalities are located and how clinicians describe them.

4 EXPERIMENTS

We assess model performance across various evaluation scenarios using multiple objective metrics.
Additional implementation details are provided in Section A.2.

4.1 DATASETS

We use two publicly available CT-report datasets: CT-RATE Hamamci et al. (2024a), which pro-
vides 50,188 reconstructed non-contrast chest CT volumes from 21,304 patients. We retain one
reconstruction per scan, yielding 24,128 volumes for training, while the testing set of CT-RATE
itself (1,564 volumes) is used as the in-domain test set. BIMCV-R Chen et al. (2024b), which
contains 8,069 chest CT volumes paired with corresponding radiology reports, is used only for out-
of-domain, zero-shot evaluation. For both datasets, scans are resampled to 256 × 256 × 32 voxels,
quantized to 8-bit integers, and stored in compressed NIfTI format.

4.2 MULTI-TASK ADAPTATION EVALUATION

As shown in Figure 4 in the appendix, for comprehensive benchmarking of SCALE-VLP, we con-
duct extensive evaluations on three downstream clinical applications: (1) CT-report cross-modal
retrieval, (2) report generation, and (3) CT abnormality classification.

4.2.1 CT-REPORT CROSS-MODAL RETRIEVAL

We evaluate retrieval in both CT-to-report and report-to-CT directions by ranking ℓ2-normalized
embeddings using cosine similarity. All components of SCALE-VLP, including the 3D vision en-
coder, text encoder, and projection heads, are kept frozen during evaluation, as illustrated in Figure 4
in the appendix. Performance is reported as Recall@K, defined as the fraction of queries for which
the correct match appears in the top-K results. In addition, we report SumR (the sum of all available
recalls per direction), which provides a single, scale-sensitive summary across cutoffs (Table 1).

As shown in Table 1, SCALE-VLP outperforms all state-of-the-art (SOTA) methods at every recall
threshold and in both directions. At N=100, SCALE-VLP yields 10.0 points (IR) and 8.0 points
(TR) improvements in R@1 compared to the strongest SOTA methods, respectively, and this ad-
vantage persists as the pool size grows. Even at N=1564, SCALE-VLP sustains its lead with the
best performance, underscoring robustness at scale. While fVLM benefits from explicit anatomical
priors through organ segmentation in pre-training, SCALE-VLP surpasses it, suggesting that our
spatial– and knowledge–aware alignment effectively capture fine-grained clinical semantics.

4.2.2 REPORT GENERATION

We begin with a pretrained 3D ViT encoder and BERT text encoder optimized via our SWCA ob-
jective. These frozen components encode CT–report pairs into semantically grounded embeddings
with spatial structure and clinical semantics. All subsequent stages build on this frozen backbone:

• Projection adaptation. We develop a lightweight projection module Pθ : Rdvis → Rdllm to map
vision tokens into the latent space of a LLM (LLaMA-2-7B). Only Pθ and its input embeddings
are updated, enabling volumetric grounding without disrupting the LLM’s prior.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

N Model IR (CT → Report) TR (Report → CT)

R@1 R@5 R@10 R@50 R@100 SumR R@1 R@5 R@10 R@50 R@100 SumR

100

CT-CLIP Hamamci et al. (2024a) 2.0 9.0 15.0 68.0 — 94.0 3.0 9.0 17.0 67.0 — 96.0
M3D Bai et al. (2024) 3.0 9.0 16.0 69.0 — 97.0 3.0 8.0 20.0 74.0 — 105.0
SigLIP Zhai et al. (2023) 1.0 6.0 12.0 55.0 — 74.0 1.0 5.0 10.0 52.0 — 68.0
Merlin Blankemeier et al. (2024) 1.0 15.0 28.0 86.0 — 130.0 4.0 15.0 28.0 84.0 — 131.0
fVLM Shui et al. (2025) 2.0 9.0 16.0 61.0 — 88.0 6.0 17.0 25.0 64.0 — 112.0
SCALE-VLP w/o Spatial & Knowledge 8.0 30.0 47.0 89.0 — 174.0 11.0 31.0 46.0 89.0 — 177.0
SCALE-VLP w/o Spatial 12.0 37.0 55.0 93.0 — 197.0 13.0 40.0 54.0 92.0 — 199.0
SCALE-VLP 13.0 40.0 56.0 94.0 — 203.0 14.0 42.0 59.0 93.0 — 208.0

500

CT-CLIP Hamamci et al. (2024a) 0.6 1.6 2.8 14.8 29.6 49.4 0.6 1.8 3.2 14.8 28.8 49.2
M3D Bai et al. (2024) 0.8 1.6 3.2 15.2 28.8 49.6 1.0 3.0 5.4 21.0 37.2 67.6
SigLIP Zhai et al. (2023) 0.2 1.4 2.6 12.0 21.6 37.8 0.2 1.0 2.0 10.2 20.6 34.0
Merlin Blankemeier et al. (2024) 1.8 6.6 9.4 34.2 55.8 107.8 0.6 6.4 10.2 35.8 57.2 110.2
fVLM Shui et al. (2025) 0.0 2.2 3.0 14.4 27.0 46.6 1.4 3.2 7.2 25.4 36.4 73.6
SCALE-VLP w/o Spatial & Knowledge 3.0 8.2 14.2 46.6 66.8 138.8 2.8 9.2 15.2 45.4 64.4 137.0
SCALE-VLP w/o Spatial 3.2 11.6 17.8 49.4 69.4 151.4 3.2 11.2 18.8 50.4 69.0 152.6
SCALE-VLP 3.4 12.2 19.8 53.2 72.6 161.2 4.4 11.8 21.0 51.6 72.6 161.4

1000

CT-CLIP Hamamci et al. (2024a) 0.3 1.0 2.0 7.8 15.1 26.2 0.4 1.0 1.8 7.8 14.9 25.9
M3D Bai et al. (2024) 0.2 0.8 1.4 8.2 15.1 25.7 0.4 1.7 2.7 10.6 19.4 34.8
SigLIP Zhai et al. (2023) 0.1 0.6 1.1 6.0 11.0 18.8 0.1 0.5 1.1 5.1 10.4 17.2
Merlin Blankemeier et al. (2024) 1.2 3.1 5.1 19.1 33.6 62.1 0.9 2.7 4.5 20.0 34.5 62.6
fVLM Shui et al. (2025) 0.2 0.9 1.4 7.1 13.5 23.1 0.5 2.1 3.4 13.9 22.0 41.9
SCALE-VLP w/o Spatial & Knowledge 1.5 5.0 8.5 28.3 46.0 89.3 1.3 5.5 9.2 26.9 44.6 87.5
SCALE-VLP w/o Spatial 1.7 6.3 10.5 34.4 50.6 103.5 1.7 6.2 11.0 34.5 50.0 103.4
SCALE-VLP 1.8 6.4 11.6 35.8 51.9 107.5 2.2 6.5 11.5 35.8 51.2 107.2

1564

CT-CLIP Hamamci et al. (2024a) 0.2 0.6 1.3 5.7 9.9 17.7 0.2 0.6 1.2 5.0 9.5 16.5
M3D Bai et al. (2024) 0.1 0.6 0.9 4.7 10.1 16.4 0.3 1.0 1.7 7.0 12.9 22.9
SigLIP Zhai et al. (2023) 0.1 0.4 0.7 3.8 7.4 12.4 0.1 0.3 0.6 3.3 6.5 10.8
Merlin Blankemeier et al. (2024) 0.6 1.7 2.7 12.2 23.0 40.2 0.3 1.3 2.9 13.4 24.6 42.5
fVLM Shui et al. (2025) 0.1 0.6 0.8 4.7 9.3 15.5 0.5 1.8 2.8 9.9 16.6 31.6
SCALE-VLP w/o Spatial & Knowledge 1.0 3.7 6.1 20.5 33.1 64.4 1.0 3.6 6.0 20.4 32.0 63.0
SCALE-VLP w/o Spatial 1.0 4.2 7.1 24.9 38.2 75.4 1.0 4.0 7.1 24.4 38.1 74.6
SCALE-VLP 1.2 4.2 7.4 25.1 38.8 76.7 1.3 4.2 7.4 25.4 38.5 76.8

Table 1: CT-report cross-modal retrieval results on CT-RATE. Illustration of results across recall
levels, retrieval directions, and pool sizes N ∈ {100, 500, 1000, 1564} for all models.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-L METEOR BERT-F1 CIDEr-D

CT-CLIP Hamamci et al. (2024a) 0.3681 0.2759 0.2179 0.1766 0.4257 0.2823 0.3140 0.8582 0.0837
M3D Bai et al. (2024) 0.3468 0.2620 0.2067 0.1695 0.4792 0.3107 0.3246 0.8711 0.1181
Merlin Blankemeier et al. (2024) 0.4428 0.1864 0.1035 0.0548 0.1112 0.0854 0.0221 0.8211 0.0104
SCALE-VLP w/o Spatial & Knowledge 0.4124 0.2572 0.2135 0.1833 0.4894 0.3237 0.3791 0.8696 0.1052
SCALE-VLP w/o Spatial 0.4367 0.3479 0.2882 0.2454 0.5303 0.3690 0.3985 0.8784 0.1273
SCALE-VLP 0.5210 0.4433 0.3886 0.3485 0.5984 0.4408 0.4709 0.8934 0.1684

Table 2: Report generation results on CT-RATE.

• Low-rank adaptation. To generate full radiology reports, we insert rank-16 LoRA adapters Hu
et al. (2022) into each decoder layer and fine-tune the model using cross-entropy loss over report
sequences. The vision encoder and projector remain frozen throughout, and only the LoRA and
projection parameters are updated. By building on pretrained alignment and restricting updates
to a minimal set of components, our approach enables efficient report generation with strong
performance and low memory overhead.

Table 2 shows that SCALE-VLP achieves consistent improvements over SOTA methods across all
nine metrics. The most notable gain is on BLEU-4, which nearly doubles compared to CT-CLIP
(∼2× improvement). Comparable relative gains are observed on semantically oriented metrics:
ROUGE-L improves by 56%, METEOR by 50%, and CIDEr–D more than doubles. Against the
stronger M3D baseline, SCALE-VLP still yields sizable advantages, including +82% on BLEU-4,
+42% on ROUGE-L, and +45% on METEOR, with BERT-F1 also increasing to 0.8934. Together,
demonstrating that SCALE-VLP ’s embedding captures rich semantic information.

4.2.3 CT ABNORMALITY CLASSIFICATION

We evaluate the transferability of the frozen image encoder to supervised multi-label classification
across 13 thoracic findings from CT-RATE. A Multi-Task classification head is trained on top of
projector. To support interpretability, we also group findings into six clinical clusters (airway, alve-
olar, interstitial, pleural, nodular, vascular) based on anatomical and pathophysiological coherence.
Global and cluster-level results are shown in Table 3, with full per-task scores in Appendix Table 5.
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Model (A) Summary Metrics (B) Cluster-average Accuracy

Accuracy F1 AUC Airway / Bronchi Alveolar / Airspace Interstitial Pleural / Extra-pulmonary Nodular / Mass Vascular / Cardiac

CT-CLIP Hamamci et al. (2024a) 0.41 0.53 0.52 0.31 0.46 0.29 0.38 0.38 0.51
M3D Bai et al. (2024) 0.48 0.58 0.48 0.89 0.43 0.29 0.11 0.61 0.47
Merlin Blankemeier et al. (2024) 0.62 0.50 0.50 0.80 0.66 0.64 0.36 0.54 0.67
fVLM Shui et al. (2025) 0.69 0.58 0.51 0.89 0.77 0.71 0.46 0.43 0.79
SCALE-VLP w/o Spatial & Knowledge 0.49 0.59 0.48 0.45 0.62 0.30 0.69 0.50 0.31
SCALE-VLP w/o Spatial 0.53 0.59 0.50 0.77 0.47 0.53 0.50 0. 43 0.50
SCALE-VLP 0.72 0.59 0.52 0.87 0.71 0.51 0.76 0.56 0.78

Table 3: CT abnormality classification results on CT-RATE.

Despite fVLM being trained with organ segmentations and therefore benefiting from explicit bio-
logical priors, SCALE-VLP achieves stronger overall accuracy (0.72), F1 (0.59) and AUC (0.52),
outperforming fVLM (0.69 / 0.58 / 0.50). At the cluster level, M3D peaks on airway (0.89), fVLM
leads interstitial (0.71) and alveolar (0.77), while SCALE-VLP is the most balanced, surpassing 0.70
in four clusters.

4.3 CROSS-DOMAIN GENERALIZATION EVALUATION

We evaluate zero-shot generalization on the external BimCV-R dataset under domain shift with
all parameters frozen. As shown in Table 4, SCALE-VLP consistently matches or outperforms
SOTA methods across both retrieval and generation tasks. In cross-modal retrieval, it ties the best
performance at small K while achieving clear gains at higher cutoffs, leading to the highest overall
SumR across both pool sizes (e.g., +6 points over Merlin at CT → Report, N=100 ). For report
generation, SCALE-VLP achieves the best results across BLEU, ROUGE, METEOR, and BERT-
F1. Together, the consistent improvements in both retrieval and report generation tasks highlight
the robustness of the learned volumetric and semantic representations, enabling effective zero-shot
transfer to unseen scanners and populations.

Retrieval (N = 100) Retrieval (N = 1000) Report Generation

CT → Report Report → CT CT → Report Report → CT BLEU ROUGE METEOR BERT-F1

Model R@1 R@5 R@10 sumR R@1 R@5 R@10 sumR R@5 R@10 R@50 R@100 SumR R@5 R@10 R@50 R@100 SumR

CT-CLIP Hamamci et al. (2024a) 1.0 6.0 11.0 18.0 1.0 5.0 10.0 16.0 0.6 1.3 6.0 11.0 18.9 0.5 1.1 6.0 11.0 18.6 0.2022 0.1939 0.1047 0.8082
M3D Bai et al. (2024) 2.0 6.0 10.0 18.0 1.0 5.0 12.0 18.0 0.7 1.4 6.3 11.5 19.9 0.6 1.6 6.5 12.2 20.9 0.2044 0.1965 0.1078 0.8106
Merlin Blankemeier et al. (2024) 4.0 8.0 11.0 23.0 2.0 5.0 13.0 20.0 0.9 1.6 7.0 13.0 22.5 1.2 1.7 7.2 13.0 23.1 0.2188 0.1309 0.0310 0.8125
fVLM Shui et al. (2025) 1.0 5.0 10.0 16.0 2.0 5.0 13.0 20.0 0.8 1.2 5.2 9.7 16.9 0.7 1.4 4.9 10.0 17.0 — — — —
SCALE-VLP 4.0 10.0 15.0 29.0 2.0 7.0 14.0 23.0 0.8 2.1 7.7 13.3 23.9 1.2 2.0 7.5 13.9 24.6 0.2406 0.2231 0.1416 0.8220

Table 4: Zero-shot results on BimCV-R: retrieval (N=100, N=1000) and report generation.

4.4 ABLATION STUDY

We conduct ablation studies to evaluate the contribution of individual components in our framework,
the effect of them at varying training data ratios, and the value of the mixing parameter α.

4.4.1 SPATIAL AND KNOWLEDGE ALIGNMENT

We study the contribution of spatial and knowledge cues through ablations. As shown in Table 1,
removing spatial alignment reduces SumR by roughly 2–6% across pool sizes (IR and TR), while
removing both spatial and knowledge cues yields a larger 14–18% drop. The pattern is consistent
from N=100 to N=1564, indicating that spatial reasoning is the dominant contributor to cross-
modal alignment, while medical knowledge provides complementary, additive gains.

For report generation (Table 2), removing spatial alignment lowers BLEU-4 by ∼30% and ME-
TEOR by ∼15%, while dropping both spatial and knowledge cues reduces BLEU-4 by ∼47% and
METEOR by ∼20%. These degradations highlight that spatial reasoning drives most of the im-
provement, with knowledge priors providing consistent semantic gains that enhance fluency and
fidelity of generated reports.

For classification task, ablations in Table 3 show that removing spatial alignment or both spatial
and knowledge alignment consistently reduces performance across clinical clusters. These results
confirm that both components are essential for robust cross-task transfer, with spatial alignment as
the dominant factor and knowledge cues providing complementary benefits. By jointly modeling
both, SCALE-VLP achieves SOTA performance across retrieval, report generation, and classifica-
tion, establishing a unified framework for CT-RATE.
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4.4.2 ROLE OF SWCA IN LARGE-BATCH SCALING AND CONSISTENT GAINS
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Figure 2: Batch scaling effect

Our SWCA replaces the softmax-based InfoNCE
with a pairwise sigmoid formulation, which elimi-
nates the need to materialize the full B×B similarity
matrix and substantially reduces memory overhead.
This design keeps VRAM usage within budget and
shortens alignment time, enabling the base model to
scale the per-device and effective batch size. Fig-
ure 2 compares the base model against our SWCA-
only variant, SCALE-VLP w/o Spatial & Knowledge
alignment. The results highlight the effect of SWCA,
where training with larger batches and soft-weighted
similarities yields consistent improvements across all sampling fractions relative to the base model.
Furthermore, Figure 2 illustrates retrieval performance as a function of training samples. While base
model retrieval performance stagnates throughout training, our SWCA variants continue to improve
as they are exposed to more data. Adding the knowledge-alignment head (SCALE-VLP w/o Spatial
alignment) provides additional gains, and the full SCALE-VLP, with both knowledge and spatial
heads, achieves the strongest performance, and shows the highest growth as training scales.

4.4.3 MIXING PARAMETER α.

Across Tables 6 to 9, we study the effect of the mixing parameter α. Performance differences
between α values (0.3–0.6) are modest but consistent, typically ranging from 0.2 to 1.5 points.
Based on these results and the trends in Figures 5 and 6, we adopt α=0.5 as the default for all
subsequent experiments.

4.5 QUALITATIVE VISUALIZATION OF ALIGNMENT

(a) SCALE-VLP Accuracy Across Abnormality Clusters (b) SCALE-VLP Similarity Matrix(Sorted by k-means Clusters) 

(c) SCALE-VLP Similarity Matrix(Sorted by Abnormality Clusters) 

Figure 3: Similarity Matrices by Model and Cluster.
Panels (b–c) share axes: x = report embeddings; y =
CT scan embeddings.

We qualitatively assess alignment and cluster-
ing properties of SCALE-VLP on the CT-RATE
validation set. Figure 3 summarizes both ac-
curacy distribution across abnormality clusters
and embedding similarity patterns. Panel (a) re-
ports accuracy across clinically defined clusters
including airway/bronchi, alveolar/airspace, in-
terstitial, pleural, nodular, and vascular groups,
which are also used to organize the similarity
matrices in panels (b) and (c). Panels (b) and
(c) visualize pairwise cosine similarity between
CT and report embeddings. When sorted by un-
supervised k-means clusters (b), block diago-
nal structure emerges, reflecting latent grouping
without external supervision. When reordered
by the predefined abnormality categories (c), coherent clusters corresponding to abnormality cat-
egories become evident. Together, these results demonstrate that SCALE-VLP learns embedding
spaces that reflect pathology aware structures.

5 CONCLUSION

SCALE-VLP pioneers a unified vision-language framework for 3D medical imaging by integrating
spatial coherence and medical knowledge through soft-weighted contrastive learning. It overcomes
critical limitations in volumetric data analysis: i) Data scarcity via continuous affinity modeling,
iii) Spatial fragmentation through geometry-aware kernels, and ii) Medical knowledge neglect via
domain-specific knowledge embedding fusion. Validated on CT-RATE and BimCV-R benchmarks,
SCALE-VLP achieves SOTA performance on CT-report cross-modal retrieval, report generation,
and abnormality classification, demonstrating SCALE-VLP possesses strong robustness and gener-
alization capabilities.
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REPRODUCIBILITY STATEMENT

Implementation details for SCALE-VLP appear in Section A.2; dataset curation and CT-
RATE/BimCV-R preprocessing are in Section 4.1 and Section A.1, respectively. The code, check-
points, and evaluation scripts will be released upon acceptance.
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LLM with LORA

<Question>:  What is the diagnosis for this image?
<Answer> : Trachea, both main bronchi are open. No 
occlusive pathology...

CT              Report Retrieval Abnormality ClassificationReport Generation

Multi-Task Adaptation of Pretrained SCALE-VLP
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Figure 4: Framework of multi-task SCALE-VLP for clinical downstream tasks: (1) report genera-
tion, (2) CT–report retrieval, and (3) CT abnormality classification.

A APPENDIX

A.1 PRE-PROCESSING PIPELINE

Prior to training, all CT volumes undergo a deterministic and reproducible pre-processing pipeline:

• Spatial normalization. Each scan is resampled to a fixed spatial resolution of 256 × 256 × 32
voxels using trilinear interpolation, preserving the native affine transformation and axial orien-
tation.

• Intensity quantization. Voxel intensities are cast to float16 and linearly quantized to signed
8-bit integers. This preserves clinically meaningful contrast while reducing memory consump-
tion by approximately 4×.

• Storage and efficiency. Volumes are saved in compressed NIfTI format to prevent partial writes.
Parallel processing with eight workers reduces the average scan size by 6×.

This pipeline is fully reproducible: repeated runs over the same dataset release produce identical
output hashes, ensuring consistent and verifiable results.

A.2 IMPLEMENTATION DETAILS

All experiments are conducted on a Slurm-managed cluster with four NVIDIA A40 GPUs (48 GB
each), 14 CPU cores, and 160 GB RAM. We utilize PyTorch 2.3 with HuggingFace ACCELERATE
in bf16 mixed precision, and configure training using four processes. Experiment tracking and
checkpoint management are handled via Weights & Biases. For contrastive pre-training, SCALE-
VLP operates with 55 CT–report pairs per GPU, resulting in an effective batch size of 220. Data
loading employs two worker threads and pinned memory. No gradient accumulation is used during
training. We set the loss interpolation parameters to α = 0.5 based on retrieval performance ob-
served in Sec. Tables 6 to 9. We employ the AdamW optimizer with a weight decay of 0.1, cosine
learning rate scheduling, 3% linear warm-up, and gradient clipping at 0.5. The learning rate is set
to 1 × 10−4 for pre-training and 5 × 10−5 for fine-tuning. Fine-tuning is performed using Deep-
Speed ZeRO-3 with a per-GPU batch size of 8, updating only task-specific heads while keeping the
encoders frozen. Pre-training for 10 epochs takes 3.8 hours for SCALE-VLP, whereas CT-CLIP,
M3D, and Merlin require 5.3, 5.58, and 10 hours, respectively. We have trained M3D, CT-CLIP,
and SigLIP under identical settings to ensure comparability. For fVLM, we have used the offi-
cially released pre-trained weights on CT-RATE. Fine-tuning SCALE-VLP for report generation
for 4 epochs requires an additional 3 hours on average. As the weights, code, and configurations of
fVLM’s report generation model are not publicly available, we restrict our evaluation of this model
to retrieval and abnormality classification tasks.
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Figure 5: Effect of the mixing parameter α on CT → Report retrieval.

Figure 6: Effect of the mixing parameter α on Report → CT retrieval.

A.3 PER-TASK ABNORMALITY CLASSIFICATION ON CT-RATE

Table 5 reports per-task abnormality classification accuracy on CT-RATE for SCALE-VLP and all
baselines. CT-CLIP and M3D models show unbalanced behavior as CT-CLIP performs relatively
well on calcification-related tasks (e.g., arterial wall, coronary artery) but struggles with effusion
and consolidation, whereas M3D achieves strong results on cardiomegaly, peribronchial thickening,
and bronchiectasis but fails on mosaic attenuation, pericardial effusion, hiatal hernia, and coronary
artery wall calc. Among recent baselines, Merlin shows stronger performance on most tasks, such
as cardiomegaly (0.90), peribronchial thickening (0.89), coronary artery wall calc (0.70), consoli-
dation(79), but remains weaker on some tasks, such as pericardial effusion (0.08). fVLM is trained
with additional organ segmentation data and therefore benefits from explicit biological priors, and
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Table 5: Per-task accuracy on CT-RATE.

Task CT-CLIP M3D Merlin fVLM SCALE-VLP w/o Spatial & Knowledge SCALE-VLP w/o Spatial SCALE-VLP

Arterial wall calcification 0.72 0.28 0.40 0.72 0.29 0.66 0.70
Cardiomegaly 0.45 0.90 0.90 0.90 0.42 0.10 0.90
Pericardial effusion 0.08 0.08 0.08 0.08 0.54 0.14 0.67
Coronary artery wall calc. 0.37 0.24 0.70 0.76 0.24 0.74 0.75
Hiatal hernia 0.68 0.15 0.65 0.85 0.84 0.85 0.85
Lymphadenopathy 0.25 0.75 0.59 0.38 0.52 0.34 0.62
Lung nodule 0.50 0.48 0.49 0.48 0.48 0.52 0.50
Lung opacity 0.45 0.42 0.52 0.58 0.42 0.42 0.42
Pulmonary fibrotic sequela 0.29 0.29 0.64 0.71 0.30 0.53 0.51
Mosaic attenuation pattern 0.73 0.07 0.66 0.93 0.79 0.79 0.93
Peribronchial thickening 0.33 0.89 0.89 0.89 0.62 0.64 0.89
Consolidation 0.21 0.79 0.79 0.79 0.66 0.21 0.79
Bronchiectasis 0.29 0.89 0.72 0.89 0.27 0.89 0.85

Table 6: Retrieval at pool size N=100 for different α values.

α
IR (CT → Report) TR (Report → CT)

R@1 R@5 R@10 R@50 R@1 R@5 R@10 R@50

0.3 13.0 38.0 55.0 93.0 11.0 36.0 56.0 94.0
0.4 12.0 39.0 55.0 95.0 14.0 40.0 56.0 93.0
0.5 15.0 40.0 58.0 97.0 15.0 41.0 58.0 96.0
0.6 12.0 37.0 56.0 95.0 12.0 38.0 56.0 94.0

Table 7: Retrieval at pool size N=500 for different α values.

α
IR (CT → Report) TR (Report → CT)

R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

0.3 2.8 10.6 19.0 52.2 70.4 3.2 9.8 17.0 50.8 69.4
0.4 3.2 10.2 19.0 51.2 71.8 3.4 10.6 18.0 51.2 71.2
0.5 3.4 12.0 19.0 55.2 72.4 4.8 12.6 20.4 52.4 71.2
0.6 3.0 11.6 19.0 51.8 71.4 3.0 11.2 18.8 50.3 70.4

this improved fVLM’s performance compared to other baselines. In contrast, SCALE-VLP, without
using any auxiliary data such as segmentations, achieves consistently competitive or superior results
across categories. It matches or exceeds the best prior methods on high-prevalence findings such
as hiatal hernia (0.85), mosaic attenuation (0.93), and peribronchial thickening (0.89), while also
offering improvements on more challenging cases such as pericardial effusion (0.67). These results
combined with the overall performance shown in Table 3 indicate that integrating SWCA, and spa-
tial and knowledge alignment balances the strengths of prior models and yields robust performance
across diverse clinical abnormalities.

A.4 ABLATION ON THE MIXING PARAMETER α

Across Tables 6 to 9, we examine how the mixing parameter α influences performance. Although
differences among values in the 0.3–0.6 range are relatively small, they are consistent, typically
spanning 0.2–1.5 points. Considering these results alongside the trends in Figures 5 and 6, we select
α=0.5 as a balanced choice and use it as the default in all subsequent experiments.

A.5 QUALITATIVE EVALUATION OF REPORT GENERATION

To qualitatively assess report generation, we compare outputs from SCALE-VLP, M3D, and CT-
CLIP against the ground truth for a representative patient case (Figure Figure 7). All models cor-
rectly capture core thoracic findings such as bilateral pleural effusions, associated compressive or
dependent atelectasis, interstitial or septal thickening, ground-glass opacities, and cardiomegaly.
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Table 8: Retrieval at pool size N=1000 for different α values.

α
IR (CT → Report) TR (Report → CT)

R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

0.3 1.9 6.0 11.2 34.1 51.3 1.6 6.3 10.3 34.0 50.0
0.4 1.6 5.8 10.7 35.0 51.9 1.8 6.6 11.0 34.3 50.1
0.5 2.1 6.9 11.6 35.7 53.1 1.9 7.4 11.6 35.1 51.2
0.6 1.5 6.0 11.2 34.7 51.4 1.4 6.6 10.7 33.9 50.6

Table 9: Retrieval at pool size N=1564 for different α values.

α
IR (CT → Report) TR (Report → CT)

R@1 R@5 R@10 R@50 R@100 R@1 R@5 R@10 R@50 R@100

0.3 1.2 4.3 7.4 24.4 37.9 1.1 4.3 7.2 24.1 37.2
0.4 1.1 4.2 7.6 25.3 39.7 1.2 4.5 7.4 24.7 38.0
0.5 1.5 4.6 7.7 26.3 40.0 1.2 4.7 8.1 25.8 38.8
0.6 0.9 3.6 6.8 25.0 38.9 0.9 3.9 6.3 23.5 38.0

However, SCALE-VLP most closely mirrors the ground-truth description, accurately localizing ef-
fusions, identifying the port catheter tip within the right atrium, and describing diffuse lung pathol-
ogy with high fidelity. In contrast, M3D and CT-CLIP omit certain device-related and anatomical
details, with CT-CLIP notably failing to mention the catheter. None of the models capture more
subtle findings such as minimal pericardial effusion or aortic calcifications. While SCALE-VLP in-
troduces a minor hallucinated finding (a renal calculus), it still achieves the highest alignment with
the reference report in terms of content coverage and clinical relevance. This is reflected in its su-
perior language metrics (BLEU-4: 0.373, ROUGE-1: 0.596, METEOR: 0.475), indicating stronger
semantic and syntactic coherence.

A.6 QUALITATIVE VISUALIZATION OF EMBEDDINGS

We qualitatively assess the t-SNE projections on the CT-RATE validation set. In Figure 8, we project
each sample’s volume embeddings via t-SNE. SCALE-VLP forms distinct, compact clusters (Fig-
ure 8.(c)), whereas CT-CLIP (Figure 8.(a)) produces coarse grouping and M3D (Figure 8.(b)) shows
unstructured scatter. Considering the similarity matrix visualization at Figure 3 and t-SNE plot to-
gether, these visualizations demonstrate that SCALE-VLP achieves superior semantic alignment and
clustering compared to prior models.

We qualitatively evaluate representation quality using t-SNE projections on the CT-RATE validation
set. As shown in Figure 8, we embed each sample’s volume representation via t-SNE. SCALE-
VLP forms distinct and compact clusters (Figure 8.c), whereas CT-CLIP (Figure 8.a) yields coarse
groupings and M3D (Figure 8.b) produces scattered, unstructured points. When viewed alongside
the similarity matrices in Figure 3, these visualizations highlight that SCALE-VLP achieves stronger
semantic alignment and more coherent clustering compared to prior models.

B USE OF LARGE LANGUAGE MODELS

We used a Large Language Model (LLM) solely to aid in polishing the writing of this paper. Specif-
ically, the LLM was employed to correct grammar, fix typographical errors, and improve the clarity
of expression; the authors verified all content.
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Sample
Ground truth:
Findings: Bilateral pleural effusion is observed, more prominent on the right side, associated with surrounding atelectasis. Interlobular
septal thickening and diffuse ground-glass opacities are noted, more prominently in the upper lobes of both lungs. Mediastinal structures
cannot be evaluated optimally because contrast material is not given. Heart size is increased and minimal pericardial effusion is present. A
port catheter tip projects over the right atrium. Calcific plaques are seen in the aortic walls. No obvious destructive bone lesions are seen
within the scanned area.
Impression: Bilateral pleural effusion with compressive atelectasis; diffuse interstitial thickening and ground-glass opacities.
Cardiomegaly with minimal pericardial effusion.

SCALE-VLP prediction:
Findings: Trachea and both main bronchi are patent. No obstructive lesion is noted. Diffuse interstitial thickening is present with patchy
ground-glass densities. Dependent atelectasis is seen posteriorly. A moderate right and mild left pleural effusion is identified. Heart size is
borderline enlarged. A right-sided port catheter tip overlies the right atrium. No definite destructive bone lesion is demonstrated. There is
a small renal calculus in the mid right kidney.
Impression: Bilateral pleural effusions with associated atelectasis; diffuse interstitial lung disease pattern.

M3D prediction:
Findings: Trachea and both main bronchi are patent. Diffuse septal thickening and scattered ground-glass opacities are noted throughout
both lungs. A moderate right pleural effusion and mild left pleural effusion with adjacent compressive atelectasis are present.
Cardiomegaly is noted; the mediastinum is otherwise unremarkable. No aggressive osseous lesion is seen.
Impression: Bilateral pleural effusions with compressive atelectasis; diffuse interstitial changes.

CT-CLIP prediction:
Findings: Trachea and both main bronchi are patent. Diffuse interlobular septal thickening and areas of ground-glass opacity are seen in
both lungs. A moderate right pleural effusion and mild left pleural effusion are present with associated atelectasis. No definite focal
consolidation is seen. Heart size appears enlarged. No pathologically enlarged mediastinal lymph nodes are identified. No aggressive
osseous lesion is demonstrated.
Impression: Bilateral pleural effusions with compressive atelectasis; diffuse interstitial thickening.

[BLEU-4—ROUGE-1—METEOR] SCALE-VLP:0.373—0.596—0.475 M3D:0.295—0.571—0.387
CT-CLIP:0.304—0.570—0.391

Figure 7: Qualitative comparison for Sample.
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Figure 8: t-SNE of volume–report similarity.
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