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Abstract
Modern text-to-speech (TTS) models are typically subjectively
evaluated using an Absolute Category Rating (ACR) method.
This method uses the mean opinion score to rate each model
under test. However, if the models are perceptually too similar,
assigning absolute ratings to stimuli might be difficult and prone
to subjective preference errors. Pairwise comparison tests offer
relative comparison and capture some of the subtle differences
between the stimuli better. However, pairwise comparisons take
more time as the number of tests increases exponentially with
the number of models. Alternatively, a ranking-by-elimination
(RBE) test can assess multiple models with similar benefits as
pairwise comparisons for subtle differences across models with-
out the time penalty. We compared the ACR and RBE tests for
TTS evaluation in a controlled experiment. We found that the
obtained results were statistically similar even in the presence
of perceptually close TTS models.

1. Introduction
Many modern text-to-speech (TTS) synthesis models [1, 2, 3]
achieve nearly natural quality speech. This naturalness in qual-
ity is typically measured through subjective Absolute Cate-
gory Rating (ACR) tests, which provide a Mean Opinion Score
(MOS) per model. In a recent study, Cooper et al. [4] reported
that the best five neural TTS models all had comparable quality.
This implies a need to conduct subjective tests that differentiate
between the quality of such TTS models.

In an ACR test, the outputs from TTS models (conditions)
to be evaluated are presented one after the other. This has the
disadvantage that the listener cannot go back and forth between
the conditions to assess them. The multiple stimuli with hidden
reference and anchor (MUSHRA) test [5] avoids this issue by
presenting multiple conditions at the same time to the listener,
e.g., [6]. Such a test is difficult to conduct in a TTS scenario
since the 3.5 kHz or 7 kHz anchor signals used typically in such
tests may not qualify as good anchor signals, e.g., [7]. The
utterance’s duration and prosody vary across synthesis models,
and hence are unsuited for a MUSHRA test. Also, it might not
be possible to use ground truth signal references. Further, [8]
found that MUSHRA and MOS scores were comparable, but
the difference between the TTS models was more apparent in
MUSHRA.

Wester et al. [9] reported that at least 30 listeners and 150
total judgments per MOS value are required for reliable results
with the ACR test. It would be interesting to know if there is an
objective test that can show reliable results with less number of
listeners.
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When the difference between the samples under evaluation
are subtle, providing absolute ratings to the samples becomes
difficult and subjective. Pairwise comparisons can avoid this is-
sue by providing for absolute comparison between the models.
[10].These have also been used for subjective evaluation with
TTS. The number of pairwise comparisons increases exponen-
tially with the number of TTS models to be tested, thereby in-
creasing the time and costs required for such an evaluation.

In the audio coding community, ranking-by-elimination
(RBE) has been used successfully in the assessment across mul-
tiple models instead of a pairwise comparison test. In the RBE
test, the evaluated samples are presented in a multi-stimulus
fashion. The listener is expected to repeatedly eliminate the
worst among the given samples until they cannot distinguish
between the remaining items. The RBE is an indirect scaling
test without absolute scores and hence easier to perform [10].
Wickelmaier et al. [11] compared the pairwise comparison test
to the RBE test for audio codec evaluation. They showed that
the results of pairwise comparison and the RBE test were com-
parable, but the RBE test was a lot faster. For example, the
RBE test took 50 seconds to evaluate a particular audio sample,
whereas the pairwise comparison took 300 seconds.

The current work compares the RBE test to the ACR test for
speech synthesis evaluation. We simulate synthesis models with
outputs at different perceptual qualities using the intermediate
training checkpoints of a ForwardTacotron [3] model. Typi-
cally the quality of the model output improves progressively
with training, which means that the expected quality changes
are known. e.g., we know that the model trained for five epochs
is worse than the model trained for 30 epochs. Since we are
comparing evaluation methods, this prior knowledge is benefi-
cial. We further show that the ACR and the RBE tests can be
employed reliably to evaluate TTS models even when the out-
puts are perceptually very hard to distinguish. Both tests require
a similar number of ratings for reliability. There are multiple
open-source software tools available for subjective testing of
audio like WebMUSHRA [12] and Hulti-Gen-v2 [13], but they
do not support RBE test. Hence as an additional contribution,
we implemented code to perform the RBE test as an extension
to the WebMUSHRA software. This extension has been open-
sourced for easy adoption and use in the community.

2. Evaluation Methods Under Test
2.1. Absolute category rating test

Typically subjective listening tests for evaluation of TTS mod-
els are done through absolute category rating tests. The mean of
the rated categories across the obtained ratings is then reported
as the MOS following the ITU-P.808 recommendation [14].
A five-point category-judgment scale is used for this purpose.



Figure 1: The screenshot of the ranking-by-elimination test for one sample sentence. The eliminated samples are hidden, with the order
of their elimination visible as their ranks. A lower rank indicates the sample was eliminated earlier, with lower quality.

Each test sentence should be synthesized using all models un-
der test and presented one after the other in a randomized or-
der. The sentences used in the test should also be presented
at random to the listener. The listener is expected to rate the
presented sample using the ACR scale. The test can, for exam-
ple, be conducted using the WebMUSHRA [12] software with
a Likert-single-stimulus scale.

The ACR test consists of training and test parts, which are
expected to be performed consecutively. Both parts are to be
conducted similarly, but the training ratings are not included in
the overall score. During the training, the listeners are expected
to familiarize themselves with the test setup and are introduced
to the typical artifacts in the samples. Further, the listeners are
asked to use good-quality headphones and not change the vol-
ume once the test part begins.

The resultant ratings across all the listeners and conditions
are averaged, and the confidence intervals are calculated. Fur-
ther, the Wilcoxon-signed-rank tests are used to evaluate the
statistical significance.

2.2. Ranking-by-elimination test

The RBE test is a multi-stimulus test, wherein the test sentence
synthesized through each of the models under test is presented
simultaneously to the listener [11]. The TTS models used to
synthesize the sample are hidden and randomized. The listener
can listen to each test sample as many times as desired. The
listener is asked to eliminate the worst of the available samples
sequentially. Only the sample being heard can be eliminated.
Once a sample is eliminated, its rank is displayed on the screen.
The elimination of the samples can be stopped if the remaining
samples are perceptually similar. This results in such remaining
samples having the same rank. A screenshot of the RBE test
implemented by us is shown in Fig. 1. Our modification to the
WebMUSHRA implementing this RBE test is available to the

public at https://s.fhg.de/rbe23.
Statistical analysis on the generated rankings can be done

through the Plackett-Luce model [15]. This model produces a
worth value for the TTS models on a logarithmic scale, which
can then be compared. Further, the Plackett-Luce model also
provides the p-values indicating the statistical significance of
the difference between the TTS models.

3. Controlled Test Conditions
3.1. Text-to-Speech Model

We used ForwardTacotron [3] with the StyleMelGAN vocoder
[16] as the TTS model under test. This low-complexity TTS
model can achieve state-of-the-art performance faster than real-
time inference speeds [17].

ForwardTacotron is a single-pass non-autoregressive model
built with feedforward networks, gated recurrent units, and long
short-term memory networks [17]. This model predicts mel-
spectrogram frames from the corresponding input phoneme se-
quence. Further, a duration predictor predicts the duration
of individual phonemes to which the length regulator resam-
ples the predicted mel-spectrogram frames. Finally, the mel-
spectrogram frames are transformed into audio frames using
StyleMelGAN, which is a generative adversarial network-based
neural vocoder built using temporal adaptive denormalization
blocks.

3.2. Test Sentences and Preliminary Objective Evaluation

Zielinski et al. [10] reported that indirect scaling tests like RBE
are more accessible than direct scaling tests like ACR. In indi-
rect scaling tests, the listener is only asked to rate if one sample
is better. It would be interesting to know whether the evalua-
tion results from these two methods differ. Further, it would be
interesting to know if the ratings depend on the presence or ab-



Table 1: Training losses at each of the selected checkpoints with MCD-DTW, MSD-DTW, and f0RMSE-DTW in relation to the 500K
step trained model. Only the mean of the objective metrics over 40 Harvard sentences is shown.

Training checkpoint (K iterations) Training Loss (↓) MCD-DTW (↓) MSD-DTW (↓) f0RMSE-DTW (↓)

5 1.382 17.84 32.20 238.87
25 1.088 15.60 27.96 209.68
50 0.960 14.40 26.16 198.01
140 0.930 11.79 21.42 167.49
500 0.725 − − −

sence of perceptually close samples. Hence, we performed the
subjective evaluations with the following two test sets:

1. Perceptually distinguishable set (PDS): Here, outputs from
all the TTS models being evaluated are clearly perceptually
distinct from each other.

2. Perceptually indistinguishable models in set (PIS): There is at
least one TTS model whose output is perceptually very close
to the output from the best TTS model in informal listening.

To simulate the TTS models with varying degrees of per-
ceptual quality, we used a single-speaker training of the For-
wardTacotron model at various stages of training. We used the
LJ Speech [18] as the dataset for training the ForwardTacotron
model. We held out Chapter 50 for testing, with the remain-
ing 49 chapters used for training. This resulted in approxi-
mately 23 hours of training data. Out of the training chapters,
ten samples at random were left for validation. These valida-
tion samples were used for informal hearing tests at intermedi-
ate checkpoints during the training using TensorBoard logging.
The training loss, which correlated with the validation loss, was
used as an indicator to select the checkpoints for the subjective
analysis.

The output was intelligible at low quality for a model
checkpoint after 5K training iterations with a batch size of 32.
Therefore this model checkpoint after 5K iterations was used as
one of our models under test. The last training checkpoint at
500K iterations was identified to be the best model. We further
chose model checkpoints at different training iterations where
the synthesis outputs were perceptually different from one an-
other.

We verified that chosen checkpoints produced perceptu-
ally different quality speech using the objective metrics of mel-
cepstral distortion (MCD), mel-spectrogram distortion (MSD),
and f0 root mean square error (f0RMSE). The objective metrics
indicated that these could be different from one another. Fur-
ther, through informal listening, we verified that there are easily
perceptible differences between the outputs at the chosen train-
ing checkpoints.

As multiple definitions for the objective metrics exist in the
literature, we present those used in our study here for complete-
ness. The MCD was computed using [19]

MCDXY =
1

N

N∑
n=1

√√√√ K∑
k=1

(MCX(k, n)− MCY (k, n))2, (1)

where MCX(k, n) and MCY (k, n) represent the k-th cepstral
coefficient in n-th time frame for the file X and Y , respectively.
The mel-cepstral values were in decibels (dB). The MSD was

computed using

MSDXY =
1

N

N∑
n=1

√√√√ K∑
k=1

(MSX(k, n)− MSY (k, n))2, (2)

where MSX(k, n) and MSY (k, n) represent the k-th spectral
coefficient in n-th frame for the files X and Y respectively. We
converted the spectral coefficients to the decibel (dB) scale be-
fore using them in this formula to get the MSD values in dB.
Finally, the f0RMSE was computed using [20]

f0RMSEXY

= 1200

√√√√ 1

N

N∑
n=1

(log2(FX(n))− log2(FY (n)))2, (3)

where FX and FY represent the f0 values for the file X and Y ,
respectively . The resulting f0RMSE is given in cents.

We used our best model, the model checkpoint trained up to
500K iterations, as our reference model for calculating the ob-
jective metrics. Since the durations of the synthesized samples
vary across checkpoints, we used dynamic time warping (DTW)
to align the samples. The DTW cost for the MCD-DTW, and
MSD-DTW was the mel-cepstral and mel-spectral distance, re-
spectively. To calculate the f0RMSE-DTW, we aligned time
frames across files by finding the minimum MCD cost path be-
tween them. This allowed us to calculate the squared f0 error
across all the frames even though meaningful f0 values existed
only for those consisting of voiced phonemes. The f0 values for
f0RMSE were measured using the SWIPE algorithm from libf0
[21]. These values were used in f0RMSE calculation only if the
prediction confidence for each of the corresponding frames was
greater than 0.4.

We used the training checkpoints starting from barely in-
telligible (after 5K training iterations at a batch size of 32) to
close to the best possible quality (after 140K training iterations).
The selected checkpoints, their training losses, and the objective
metrics are shown in Table 1. Here the objective metrics are av-
eraged over the first 4 lists of Harvard sentences consisting of
40 sentences [22].

4. Results and Discussion
We conducted the subjective tests using 40 sentences from the
first 4 Harvard sets with 16 listeners each. Each listener listened
to outputs from all the TTS models under test (4 with PDS and
5 with PIS case). We limited each listener to listen to 20 sen-
tences per TTS model. This meant, in total, we had 320 rat-
ings per TTS model. We used the WebMUSHRA software for
this purpose and utilized listeners from the lab not connected
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Figure 2: MOS values with their confidence intervals across
model checkpoints for the perceptually distinguishable set
(PDS) and perceptually indistinguishable set (PIS).
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Figure 3: Worth values with their confidence intervals across
model checkpoints for the perceptually distinguishable set
(PDS) and perceptually indistinguishable sets (PIS) measured
with the RBE test. The Worth values for the checkpoint at 5K it-
erations are −10.6±2.66 dB and −6.3±0.96 dB, respectively,
and hence outside the plot range.

Table 2: Age and gender distribution across the different tests.

Test Average age (y) Males Females

PDS-ACR 31.8 9 7
PDS-RBE 31.4 11 5
PIS-ACR 29.3 11 5
PIS-RBE 31.5 13 3

to the project. The age and gender distribution of the listeners
varied across tests, shown in Table 2. All the listeners in the
tests were fluent speakers, not necessarily native speakers, of
English. From the ACR test results, we calculated the average
and 95% confidence interval, and checked if the models under
test were statistically significantly different using the Wilcoxon-
signed-rank test. From the RBE test results, we calculated the
worth values using the Plackett-Luce library from R, which also
provided the p-values to determine the statistical significance of
the differences.

The ACR and RBE test results for both of our two test sets,
PDS and PIS, are shown in Figs. 2 and 3, respectively. The PIS
and PDS checkpoints are plotted in both plots with an offset for
better visibility. As determined by both tests, the preference or-
der of the TTS models was identical, as we can see from the
results. Both tests across the two scenarios also showed that
each pair of successive checkpoints (from the chosen ones) was
statistically significantly different; the p-values are shown in Ta-
ble 3.

If we look at the two tests done using ACR, the resultant
intervals between the scores of consecutively selected check-
points remain approximately the same for PDS and PIS. A sim-
ilar conclusion can be drawn for the RBE results. Further, from
the RBE test results, we note that the calculated worth values
for the lower-quality checkpoints, i.e., 50K and lower, are al-
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Figure 4: Box plot showing the time taken for each of the tests
across different subjective test sessions.

ways lower for the PDS than for the PIS. This indicates that it
was easier to eliminate the samples for the PDS. Hence, more
correct decisions in terms of quality were made when there was
a clear perceptible difference between samples.

All four tests showed that the used TTS models were all
statistically significantly distinct, as shown in Table 3. We also
did a significance analysis using smaller subsets of the listen-
ers for both tests. For the most challenging case of 140K vs.
500K comparison, more than 12 listeners were required to get
the significance values distinct for both tests. Hence, the RBE
test also requires a similar number of participants as the ACR
test for reliable results.

We also recorded the time the listeners took to perform the
ratings, which are shown in Fig. 4. We can conclude that the
RBE tests take longer than the ACR test, almost double in the
median sense. Even so, the overall median time to rank the five
samples in each rating is 40 s, which may be acceptable for
usage. For the ACR test, the time taken does not depend on the
test set, meaning the time required to rate each sample remains



Table 3: p-values for statistical significance, with a value less
than 0.05 indicating statistically significant differences.

Checkpoints ACR Test RBE Test
PDS PIS PDS PIS

500K vs. 140K - 1.7e-5 - 0.04
500K vs. 50K 1.3e-9 - 2e-16 -
140K vs. 50K - 1.9e-8 - 1.6e-10
50K vs. 25K 1.7e-18 1.3e-10 2e-16 1.5e-10
25K vs. 5K 3.2e-54 1.3e-51 8.9e-6 2e-16

almost the same across both PDS and PIS scenarios. This is
expected since the samples are rated independently. We can also
see that for the RBE test, the time taken to rate the individual
items of the PIS test (median of 9.5 s per ranking item) is higher
than the PDS test (median of 7.2 s ). This intuitively makes
sense since the listener must listen more carefully to the samples
when some are perceptually very close.

We conducted additional tests using different checkpoints
(i.e., after 150K and 200K training iterations) instead of the
140K checkpoint. The ACR and RBE tests showed no signif-
icant differences between the best two checkpoints (i.e., 500K
vs. 200K or 500K vs. 150K). While these results do not pro-
vide new information, they support our finding that the RBE
and ACR tests yield similar results.

We did not use the ”held out” Chapter 50 of the LJSpeech
database for listening tests due to the presence of a lot of ”seen”
words. The LJSpeech dataset’s textual content generally con-
sists of many law-enforcement terminologies. Even in the un-
seen Chapter 50, the sentences had a lot of seen terms like
”prison,” ”president,” ”commission,” etc.

5. Conclusion
In this paper, the ACR test was evaluated for the ability to dis-
tinguish perceptually similar outputs from various TTS mod-
els. We investigated whether an indirect scaling based multi-
stimulus RBE test provides similar results. In the RBE test,
worst quality samples are eliminated one after the other in a
loop to get a ranking for the samples. These rankings were then
analyzed using a Plackett-Luce model, which assigns a worth
value to each TTS model and calculates the statistical signif-
icance measure. We also extended the WebMUSHRA frame-
work to support the RBE test.

To simulate TTS models with different perceptual quali-
ties, we used model checkpoints from various iterations while
training a single-speaker non-autoregressive ForwardTacotron
model. We conducted subjective evaluations using ACR and
RBE tests under distinct and indistinguishable scenarios. Our
results showed that ACR test results are comparable to RBE
and that it was possible to differentiate between perceptually
close models using both tests. Since indirect scaling tests such
as RBE are easier to perform than ACR tests, they could be used
in cloud-based TTS evaluations.
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