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ABSTRACT

Graph metric learning methods aim to learn the distance metric over graphs such
that similar graphs are closer and dissimilar graphs are farther apart. This is of
critical importance in many graph classification applications such as drug discovery
and epidemics categorization. In many real-world applications, the graphs are
typically evolving over time; labeling graph data is usually expensive and also
requires background knowledge. However, state-of-the-art graph metric learning
techniques consider the input graph as static, and largely ignore the intrinsic
dynamics of temporal graphs; Furthermore, most of these techniques require
abundant labeled examples for training in the representation learning process. To
address the two aforementioned problems, we wish to learn a distance metric only
over fewer temporal graphs, which metric could not only help accurately categorize
seen temporal graphs but also be adapted smoothly to unseen temporal graphs. In
this paper, we first propose the streaming-snapshot model to describe temporal
graphs on different time scales. Then we propose the METATAG framework: 1) to
learn the metric over a limited number of streaming-snapshot modeled temporal
graphs, 2) and adapt the learned metric to unseen temporal graphs via a few
examples. Finally, we demonstrate the performance of METATAG in comparison
with state-of-the-art algorithms for temporal graph classification problems.

1 INTRODUCTION

Metric learning aims to learn a proper distance metric among data items in the input space, which
reflects their underlying relationship. With the prevalence of graph data in many real-world appli-
cations, it is of key importance to design a good distance metric function for graph data, such that
the output value of the function is small for similar graphs and large for dissimilar ones. Many
downstream tasks on the graph data can benefit from such a distance metric. For example, it could
lead to significantly improved classification accuracy for graph classification in many domains such
as protein and drug discovery (Schölkopf et al., 2004; Dai et al., 2016), molecular property predic-
tion (Duvenaud et al., 2015; Gilmer et al., 2017), and epidemic infectious pattern analysis (Derr et al.,
2020; Oettershagen et al., 2020); it could also speed up the labeling of graph data in an active learning
framework (Macskassy, 2009).

However, current graph metric learning methods (Shaw et al., 2011; Tsitsulin et al., 2018; Bai et al.,
2019; Li et al., 2019; Yoshida et al., 2019) assume the input graph data as static and ignore evolution
patterns of temporal graphs, which may also provide insights for identifying the graph property (Isella
et al., 2011). To best of our knowledge, there is currently no algorithm designed for learning metrics
over temporal graphs to further involve evolution pattern consideration into the learned metric space.
On the other hand, facing limited i.i.d. data, traditional metric learning methods (Goldberger et al.,
2004; Salakhutdinov & Hinton, 2007) have been extended to the few-shot learning by transferring
the learned metric across different tasks (Vinyals et al., 2016; Snell et al., 2017; Oreshkin et al., 2018;
Allen et al., 2019). Label scarcity problem also occurs in the graph research community, because
labeling graph data is typically expensive and requires background knowledge (Hu et al., 2020a;b; Qiu
et al., 2020), especially for domain-specific applications such as biological graph data labeling (Zitnik
et al., 2018). Inspired by that, graph metric learning via few-shot examples has recently attracted
many nascent researchers’ attention. But, the majority has been devoted to the node-level metric
learning (Yao et al., 2020; Suo et al., 2020; Huang & Zitnik, 2020; Lan et al., 2020; Wang et al.,
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2020; Ding et al., 2020), only a few nascent efforts focus on the graph-level metrics (Ma et al., 2020;
Chauhan et al., 2020), and all of them ignore the graph dynamics but take static graphs as input.

Figure 1: An example of metric learning on several
temporal graphs. In the right box, each ‘x’ denotes
a temporal graph representation, and each circle
denotes a class representation.

To wrap up, these discussed-above observa-
tions bring three bottlenecks to present tempo-
ral graph metric learning algorithms: 1) How
to learn a good metric over temporal graphs,
especially on the entire graph level (i.e., accu-
racy of metrics); 2) How to ensure the learning
process only consumes less labelled temporal
graph data; and 3) How to smoothly apply that
learned metric to identify unseen graphs (i.e.,
flexibility of metrics). In this paper, we wish to
learn a distance metric only over fewer tempo-
ral graphs, which metric (as shown in Figure 1)
could not only help accurately classify seen tem-
poral graphs during each metric learning task,
but also be adapted smoothly to new metric
learning tasks and converge fast (i.e., several
training iterations) to classify unseen temporal
graphs by consuming a few labeled examples.

Our main contributions can be summarized as:

• To describe the evolving graph in a fine-grained manner, we propose the streaming-snapshot
model that contains multiple time scales suitable for complex real-world scenarios and other
merits are discussed in Section 3.

• To learn the metric over a bunch of streaming-snapshot modelled temporal graphs, we
propose the prototypical temporal graph encoder to extract the lifelong evolution repre-
sentation of a temporal graph with the proposed multi-scale time attention mechanism,
such that temporal graphs from the same class share the similar encoded patterns; To make
the extracted metric rapidly adapt to unseen temporal graphs with only a few examples,
we introduce a meta-learner to transfer and tailor knowledge and encapsulate it with the
prototypical temporal graph encoder into an end-to-end model, called METATAG.

• We conduct the temporal graph classification experiments on biological network domain
and social network domain, which show the effectiveness of METATAG compared with
state-of-the-art algorithms. Also, we analyze the convergence speed of METATAG during
the meta-testing, the parameter sensitivity, and the ablation study of each part of METATAG.

2 PRELIMINARIES

Graph Metric Learning. Learning a distance metric is closely related to the feature extraction
problem (Globerson & Roweis, 2005; Salakhutdinov & Hinton, 2007). To be specific, given any
distance metric D, we can measure distance D(xi,xj) between two input feature vectors xi ∈ Rm
and xj ∈ Rm by computing D′(fθ(xi), fθ(xi)), where fθ is a learnable function mapping the input
feature xi ∈ Rm into the latent feature hi = fθ(xi) ∈ Rf (Salakhutdinov & Hinton, 2007). The
transformation function fθ could be linear or non-linear (Wang & Sun, 2015). When fθ is a linear
function fθ(xi) = Wxi, learning a generalized Mahalanobis metric D can be expressed as follows.

D(xi,yj) =
√

(xi − xj)>M(xi − xj)

=
√

(xi − xj)>W>W(xi − xj)

=
√

(Wxi −Wxj)>(Wxi −Wxj)

= D′(fθ(xi), fθ(xj))

(1)

where M is some arbitrary positive semi-definite matrix to be determined for the Mahalanobis
metric D, and M can be decomposed as M = W>W. Then the Mahalanobis metric D on the
input feature space is equivalent to the Euclidean metric D′ on the hidden feature space, such that
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learning a undetermined metric D (e.g., Mahalanobis) on input feature is equivalent to learning
hidden features on a fixed metric D′ (e.g., Euclidean) (Globerson & Roweis, 2005; Salakhutdinov &
Hinton, 2007; Wang & Sun, 2015; Snell et al., 2017). Also, fθ can be a non-linear transformation for
involving more parameters to model higher-order correlations between input data dimensions than
linear transformations (Salakhutdinov & Hinton, 2007; Wang & Sun, 2015; Snell et al., 2017). Based
on the above analysis, we are ready to model our graph metric learning problem: learning a "good"
distance metric over pairs of graphs is to learn a "good" mapping function fθ of graphs in Euclidean
space. The "goodness" is controlled by θ and we discuss how we define it in Section 3.

3 STREAMING-SNAPSHOT MODEL AND PROBLEM SETUP

The table of symbols is summarized in Appendix. To specify, we use bold lowercase letters to denote
column vectors (e.g. a), bold capital letters to denote matrices (e.g., A), and A(i, :) to denote the i-th
row of matrix A. Also, we let the parenthesized superscript denote the timestamp like A(t). We use
graph and network interchangeably in this paper.

Streaming-Snapshot Model. In the streaming-snapshot model, there exists two kinds of timestamps,
te ∈ {0, 1, . . . , Te} denotes the edge timestamp and ts ∈ {0, 1, . . . , Ts} denotes the snapshot
timestamp. To be specific, we describe a temporal graph G as a sequence of timestamped snapshots
{S(ts)}Ts

ts=0, and each timestamped snapshot has a set of timestamped edges labeled as (vi, vj , te, ts).
Note that, these two timestamps are different measures, they do not need to have the comparison
relationship. In Figure 2, we provide a temporal graph example whose Te = 4 and Ts = 2.

The merits of describing the temporal graph within the streaming-snapshot model include: 1) Carrying
multi-scale complex temporal information. Some social networks change rapidly in the microscopic
view (Leskovec et al., 2008), while some graphs like yeast metabolic graph (Tu et al., 2005) and
repeating frames in video analysis (Li et al., 2020) change slowly in the macroscopic view (Leskovec
et al., 2005). If the input temporal graph has these two evolution patterns (i.e., edge timestamps
and snapshot timestamps), our streaming-snapshot model could handle both of them simultaneously
because streaming model could describe the interaction graph in a rapid and continuous manner
and snapshots could compensate for the complement by modeling episodic, slowly-changing, and
periodical patterns (Aggarwal & Subbian, 2014). If not, our streaming-snapshot is also viable by
downgrading into a single streaming or a single snapshot model. 2) Saving computation memory.
When we need to generate the graph-level embedding for a long lifetime temporal graph, we only
need to load each snapshot embedding vector instead of loading every node embedding that appears in
the whole temporal graph. (The detail of how to generate a snapshot embedding through its relevant
node embeddings is discussed in Section 4.1.1, i.e., Multi-Scale Time Attention Mechanism.) Beyond
recent temporal graph representation learning methods (Pareja et al., 2020; Xu et al., 2020; Beladev
et al., 2020) that only focus on one time scale and ignore the whole lifetime evolution representation,
our method can learn the lifelong evolution pattern of a temporal graph on different time scales.

Figure 2: An example of a temporal graph described by the proposed streaming-snapshot model.
Each edge is labeled by two timestamps, i.e., (vi, vj , te, ts), te ∈ {0, 1, 2, 3, 4}, and ts ∈ {0, 1, 2}

As for the data structure, we store each edge as (vi, vj , te) and each snapshot adjacency matrix as
A(ts) ∈ R|V (ts)|×|V (ts)|, i.e., V (ts) ⊆ V and |V (ts)| 6= |V (ts+1)| is allowable. Although our method
is readily designed for evolving input features according to different timestamps, for the notation
clarity, we denote the node feature matrix X ∈ Rn×m, such that the input node feature of temporal
graph G is already time-aware, and n = |V | and m denotes the dimension of features.

Problem Setup. With the streaming-snapshot modelled temporal graphs, our goal is to learn a
parameterized metric that could accurately classify seen temporal graphs and also be smoothly
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adapted to unseen temporal graphs. Based on above analysis, this problem can be solved by learning
a "good" graph representation learning function fθ in Euclidean metric. To further achieve this
"goodness" only with less labelled data, we formalize fθ into a bi-level meta-learning paradigm (Finn
et al., 2017). Given the streaming-snapshot modelled temporal graphs and corresponding labels
G̃ = {(G0, y0), (G1, y1), . . . , (Gn, yn)}, we split G̃ into G̃train for meta-training and G̃test for meta-
testing, where the testing set only has unseen graph labels from the training set. We shuffle the
training set G̃train to sample graph metric learning tasks following a distribution Ti ∼ P (T ), where
each graph metric learning task Ti is realized by a K-way N -shot temporal graph classification task
based on the graph representation fθi(Gn). During each task Ti, we sample a support set G̃trainsupport

and a query set G̃trainquery, such that the support set is used to train the graph representation function
fθi to accurately predict the graph labels of the query set. At the meta-testing stage, we transfer the
learned knowledge from each task (i.e., θi) to the meta-learner (i.e., Θ), then we update Θ a few times
by classifying unseen temporal graphs on support set G̃testsupport, finally we report the classification
accuracy of fine-tuned Θ on query set G̃testquery . The concrete objective and loss function of each graph
metric learning task Ti, i.e., the "goodness", is mathematically expressed in Section 4.

4 METATAG FRAMEWORK

We illustrate METATAG with the proposed prototypical temporal graph encoder and meta-learner.
First, prototypical temporal graph encoder captures temporal graph lifelong evolution representations
through the multi-scale time attention mechanism, which serves for learning the parameterized metric
(i.e., θi) in each graph metric learning task (i.e., Ti). Second, meta-learner Θ transfers the knowledge
θi learned from each task Ti for the fast adaption on unseen temporal graphs classifications.

Figure 3: The multi-scale time attention mechanism of the prototypical temporal graph encoder for
encoding temporal graph representation vector z of input temporal graph G.

4.1 PROTOTYPICAL TEMPORAL GRAPH ENCODER

As stated in Eq. 1, the metric D is pair-wise. To save storage and computation complexity, learning D
with labels involves the class representation concept (e.g., chunklet in (Bar-Hillel et al., 2005) and
prototype in (Snell et al., 2017)), such that a sample should be close to its class representation and far
from other class representations in metric D. In this paper, we follow (Snell et al., 2017) to name
class representation as prototype. In each graph metric learning task Ti, prototypical temporal graph
encoder encodes class-distinctive lifelong evolution patterns within two steps. First, multi-scale time
attention mechanism is responsible for learning a single temporal graph representation from different
time domains, i.e., edge timestamps and snapshot timestamps. Second, prototype generator generates
the prototype for the same class temporal graph representations, to ensure same class graphs share
the same prototypical pattern.
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Algorithm 1 Sample Time-Aware Adjacent Node Sequence N (te)
v for Node v at Edge Timestamp te

Input: node v at te, temporal graph G
1: for edge timestamp t < te do
2: if edge (v′, v, t) exists then B connected edges before time te
3: N

(te)
v appends X(v′, :)‖K(t, te) B concatenation of X(v′, :) ∈ Rm and K(t, te) ∈ Rd

4: end if
5: end for

4.1.1 MULTI-SCALE TIME ATTENTION MECHANISM

As shown in Figure 3, multi-scale time attention mechanism encodes the streaming-snapshot modeled
temporal graph G into the representation vector z through three components, i.e., node-level time
attention, intra-snapshot time attention, and inter-snapshot time attention.

Node-Level Time Attention. Intuitively, this mechanism first uses edge timestamp te to learn
streaming pattern of the input graph. We first need to sample a time-aware adjacent node sequence
Nv for each node v in the temporal graph G (as shown in Alg. 1), then we apply the node-level time
attention mechanism to learn the time-aware embedding uv of node v from its previous connected
nodes. However, self-attention mechanism has become the key component for representing sequential
data (Vaswani et al., 2017), which itself could not deal with sequential information but rely on
positional encoding function to map discrete position indexes into differentiable functional domain.
Analogically, we need a time encoding function K for our node-level time attention mechanism,
which could map every observed time interval of node connections into a continuous differentiable
functional domain, i.e., K : [te − l, te] → Rd. The intuition of involving K is that, suppose node
v1 connects with node v2 at edge timestamp te − l, when we need to represent the node v2 at
edge timestamp te, we wish the time-aware node representation u

(te)
v2 incorporates the temporal

relationship K(te − l, te). This time function K could reflect the temporal relationship between
u

(te−l)
v1 and u

(te)
v2 , and many previous work solve K with the kernel method (Zhou et al., 2013; Du

et al., 2016; Xu et al., 2019; 2020; Zhang et al., 2020). For example, in (Xu et al., 2019; 2020),

K(te − l, te) = Ψ(te − (te − l)) (2)

and

Ψ(l) =

√
1

d
[cosω1(l), cosω2(l), . . . , cosωd(l)] (3)

where l = te − (te − l) denotes the input time interval, and {ω1, . . . , ωd} are learnable parameters.

After sampling the node time-aware adjacent node sequence N (te)
v for node v, we next apply the

node-level time attention on N (te)
v to learn u

(te)
v by setting node v as the query node to query and

aggregate attention weights from previously connected nodes in N (te)
v . Similar with self-attention

mechanism (Vaswani et al., 2017), we need form queries Q, keys K and values V, then the time-aware
node representation u

(te)
v ∈ Rr can be computed as follows.

u(te)
v = Attention(Q,K,V) = softmax(

QK>√
r

)V ∈ Rr (4)

where Q = [X(v, :)‖K(te, te)] ·WQ, K = N ·WK , and V = N ·WV . N ∈ R|N(te)
v |×(m+d)

is the matrix whose rows are [X(v′, :)‖K(t, te)] ∈ R(m+d) from the sequence N
(te)
v , and

WQ,WK ,WV ∈ R(m+d)×r are three learnable weight matrices with r denoting the dimension of
the time-aware node presentation vector u(te)

v .

Intra-Snapshot Time Attention. After we learn the time-aware node embedding u
(te)
v that follows

the streaming pattern based at the edge timestamp te, we also want the node in the snapshot S(ts)

follows the snapshot pattern of A(ts) w.r.t snapshot timestamp ts. Therefore, intra-snapshot time
attention is proposed to add constraints on node embeddings u

(te)
v in terms of ts timestamp by

reconstructing A(ts) via a graph autoencoder.
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First, we construct the snapshot feature matrix U(ts) ∈ R|V (ts)|×r whose rows are time-aware node
embedding vectors. Note that, snapshot S(ts) may not have all nodes of the input temporal graph.
For example, for the timestamped edge (v1, v2, te, ts), U(ts)(v1, :) = u

(te)
v1 and U(ts)(v2, :) = u

(te)
v2 .

Interestingly, if there is also another edge (v1, v3, t
′
e, ts), we will sample the most recent edge

timestamp. For example, if t′e > te, then U(ts)(v1, :) = u
(t′e)
v1 . The reason we adopt the latest node

embedding is that, according to the sampling strategy shown in Alg.1, the latest node embedding will
encode early node embeddings.

Then, with the adjacency matrix A(ts) and snapshot feature matrix U(ts), we add a reconstruction
loss to learn latent intra-snapshot representation matrix H(ts) via the graph autoencoder model (Kipf
& Welling, 2016). The snapshot reconstruction loss ` of the snapshot S(ts) is defined as follows.

`(A(ts),U(ts)) = ‖A(ts) − Â(ts)‖F (5)

where Â(ts) = GNNdec(H(ts))GNN>dec(H
(ts)) is the reconstructed adjacency matrix computed as

inner product of GNNdec(H(ts)) and its transpose, H(ts) = GNNenc(A(ts),U(ts)) ∈ R|V (ts)|×q

denotes the intra-snapshot representation matrix, and ‖ · ‖F denotes the Frobenius norm. GNNenc
and GNNdec are realized by GCN (Kipf & Welling, 2017) and Sigmoid function, respectively.

Given the extracted intra-snapshot representation matrix H(ts), we apply a Readout function to get
the intra-snapshot representation vector h(ts) at each snapshot timestmap ts as follows.

h(ts) = Readout(H(ts)(v, :) | v ∈ {1, . . . , |V (ts)|} ∈ Rq) (6)

where Readout is a permutation-invariant function and could be instanced by many graph pooling
layer models, such like Zhang et al. (2018); Ying et al. (2018).

Inter-Snapshot Time Attention. After we obtain the intra-snapshot representation vector h(ts) for
each snapshot timestamp ts individually, we are not sure which one or ones should represent the
temporal graph representation vector z to make it class-distinctive. To be specific, if a certain snapshot
S is shared by different classes of temporal graphs, then that snapshot is less representative and we
should decrease its weight during the snapshots aggregation process, to make different class temporal
graph representations different.

Therefore, we design a inter-snapshot time attention mechanism on the extracted intra-snapshot
representation vectors h(ts) to obtain time attention weights for the final temporal graph representation
vector z ∈ Rf . To be specific, the inter-snapshot time attention is realized through an attention
pooling layer (Bahdanau et al., 2015) to get the attention weight W(ts) ∈ Rf×q for each time ts.
Then, the inter-snapshot time attention is parameterized by the learned weight W(ts) as follows.

z =

Ts∑
ts=0

(W(ts)h(ts)) ∈ Rf (7)

4.1.2 PROTOTYPE GENERATOR

Through the proposed prototypical temporal graph encoder, we could embed a temporal graph G into
a representation z as shown in Figure 1. To make same class temporal graphs closer and different
class graphs farther apart in the metric D, we need to make same class graph representations closer to
their own class prototype and farther from other class prototypes in the metric D′ (i.e., Euclidean).

To this end, in each graph metric learning task Ti, we set the support set G̃trainsupport and the query set
G̃trainquery . The prototype learned on G̃trainsupport are used for predicting the class label of graphs in G̃trainquery .
The prototype pk of the class k is expressed as follows.

pk =
1

Ck

Ck∑
j

(zj) , Gj ∈ G̃trainsupport and yj = k (8)

where Gj is the temporal graph with label yj , zj is the embedding of Gj extracted by the prototypical
temporal graph encoder, and Ck denotes the number of k class temporal graphs in G̃trainsupport.
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Algorithm 2 Meta-Training Process of METATAG

Input: graph metric learning task distribution P (T ), step size hyperparameters α and β, loss
balancing hyperparameter γ

1: Randomly initialize Θ B Θ denotes all parameters in the prototypical temporal graph encoder
2: while not done do
3: Sample task Ti ∼ P (T ) with support set G̃trainsupport and query set G̃trainquery
4: for support set of each task Ti do
5: Compute zj = fΘ(Gj) B Gj ∈ G̃trainsupport

6: Construct pk for each class k in G̃trainsupport according to Eq. 8.
7: Evaluate snapshot reconstruction loss∇Θ`Ti(fΘ) and classification loss∇ΘLTi(fΘ)
8: Compute parameter θi ← Θ− α(∇Θ`Ti(fΘ) + γ∇ΘLTi(fΘ))
9: end for

10: Update Θ← Θ− β∇Θ

∑
Ti(`Ti(fθi) + γLTi(fθi)) B On query set G̃trainquery

11: end while

To help the the class prototype distinctive to each other, we design the temporal graph classification
loss L in each graph metric learning task Ti to tune θi.

L =−
Ck∑
j

log
exp(−dist(zj ,pk))∑
k′ exp(−dist(zj ,pk′))

,

Gj ∈ G̃trainquery and yj = k

(9)

where pk denotes the k class prototype learned from G̃trainsupport, k
′ denote the class other than k, dist(·)

denotes Euclidean distance between two vectors, zj is the representation vector of Gj and Ck denotes
the number of k class temporal graphs in the set G̃trainquery.

4.2 META-LEARNER

We have introduced the whole learning procedure and two loss functions (i.e., Eq. 5 and Eq. 9)
for extracting knowledge θi from a single task Ti. Next, we need to break though the knowledge
transfer and adaption cross tasks given only few-shot examples. Here, we introduce a meta-learner to
transfer the learned knowledge θi and tailor the globally shared knowledge Θ, the theory behind is
that transferring shareable knowledge could obtain the fast convergence on unseen tasks (Chauhan
et al., 2020; Ma et al., 2020).

We formalize the meta-training process of METATAG in a bi-level paradigm (Finn et al., 2017), which
is able to find meta-learner Θ that could be fast converged in each graph metric learning task. As
shown in Algorithm 2, we first randomly initialize Θ in Step 1. Then, in each graph metric learning
task Ti ∼ P (T ), we obtain the temporal graph representation vector in Step 5 and build the class
prototype for each class of the support set in Step 6. In Step 8, we tune Θ to get θi for current task Ti.
In Step 10, we aggregate the loss from each task Ti and fine tune Θ to end the meta-training process.
After that, we can use the fine-tuned Θ as the initialized parameter in meta-testing stage for unseen
graph metric learning tasks, aiming to the fast adaptation via only a few labeled samples.

The meta-testing phase of METATAG is very similar to Algorithm 2. After changing G̃trainsupport into
G̃testsupport and G̃trainquery into G̃testquery, the only difference is that Step 10 directly reports the accuracy
based on θi instead of getting new Θ.

5 EXPERIMENTS

In this section, we test our METATAG in terms of temporal graph classifications comparing with
state-of-the-art graph kernel and graph metric learning baseline algorithms. More experimental
details about the implementation and the other extensive experimental results like convergence speed,
parameter sensitivity, and ablation study can be found in Appendix.
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5.1 EXPERIMENT SETUP

Datasets. Our experiments conclude 12 temporal graph datasets from the biological domain (Fu
& He, 2021), and 6 temporal graph datasets from the social network domain (Morris et al., 2020).
Each biological graph is a dynamic protein-protein interaction network, which describes the proteins
interact of metabolic cycles of different yeast cells, where each node stands for a protein, and
timestamped edge stands for the interact of a pair of proteins. Each social network is a human-contact
relation graph online and offline, where the edges between individuals stand for the online or offline
contacts. The statistics of all network data are summarized in Table 1 and Table 2.

Table 1: Statistics of Biological Temporal Graph Data

Graph #Classes #Graphs Total Nodes Total Edges Timestamps Graph #Classes #Graphs Total Nodes Total Edges Timestamps
Uetz 1 11 922 2,159 36 Ito 1 11 2,856 8,638 36
Ho 1 11 1,548 42,220 36 Gavin 1 11 2,541 140,040 36

Krogan-LCMS 1 11 2,211 85,133 36 Krogan-MALDI 1 11 2,099 78,297 36
Yu 1 11 1,163 3,602 36 Breitkreutz 1 11 869 39,250 36

Babu 1 11 5,003 111,466 36 Lambert 1 11 697 6,654 36
Tarassov 1 11 1,053 4,826 36 Hazbun 1 11 143 1,959 36

Table 2: Statistics of Social Temporal Graph Data

Graph (Online) #Classes #Graphs Total Nodes Total Edges Timestamps Graph (Offline) #Classes #Graphs Total Nodes Total Edges Timestamps
Facebook 2 995 95,224 267,673 104 Infectious 2 200 10,000 91,944 48
Tumblr 2 373 19,811 74,520 89 HighSchool 2 180 9,418 98,066 203
DBLP 2 755 39,917 241,674 46 MIT 2 97 1,940 142,508 5,576

Baselines. The selection of baseline algorithms includes three factors, i.e., graph kernel or graph
metric learning, few-shot learning or not few-shot learning, and static or dynamic. Graph kernel
methods include: Vertex histogram kernel (Nikolentzos et al., 2019), Shortest Path kernel (Borgwardt
& Kriegel, 2005), Neighborhood Hash graph kernel (Hido & Kashima, 2009), Weisfeiler-Lehman
Optimal Assignment kernel (Kriege et al., 2016), and Pyramid Match kernel (Nikolentzos et al.,
2017). Graph metric learning or graph representation learning algorithms include: GL2Vec (Chen &
Koga, 2019), NetLSD (Tsitsulin et al., 2018), tdGraphEmbed (Beladev et al., 2020), TGAT (Xu et al.,
2020), and CAW (Wang et al., 2021). GL2Vec and NetLSD are static algorithms, tdGraphEmbed is a
dynamic algorithm that could take a temporal graph as input and output graph embeddings of each
snapshot, and TGAT and CAW are dynamic graph representation learning algorithms but focus on
the node-level. To enable graph metric learning methods the few-shot learning capability, we also
include ProtoNet (Snell et al., 2017) and its special case k-NN method.

Table 3: Temporal Graph Classification Accuracy on Biological Temporal Graphs

Methods 3 way - 5 shot 3 way - 3 shot 3 way - 2 shot 3 way - 1 shot

Graph
Kernel

Weisfeiler-Lehman Opt 0.5025 ± 0.3531 0.4625 ± 0.3118 0.4350 ± 0.2420 0.4250 ± 0.2251
Vertex Histogram 0.3150 ± 0.2466 0.2700 ± 0.1881 0.1375 ± 0.1314 0.3125 ± 0.2415
Neighborhood Hash 0.4375 ± 0.4058 0.4400 ± 0.3697 0.2850 ± 0.1815 0.4000 ± 0.3175
Pyramid Match 0.2500 ± 0.1971 0.2525 ± 0.1337 0.2325 ± 0.1569 0.2950 ± 0.2174
Shortest Path 0.2025 ± 0.1477 0.2175 ± 0.1314 0.1875 ± 0.1325 0.1900 ± 0.1329

Graph
Metric

Learning

GL2Vec + KNN 0.1400 ± 0.0616 0.1925 ± 0.0754 0.1175 ± 0.0689 0.1150 ± 0.0591
NetLSD + KNN 0.3600 ± 0.2585 0.3650 ± 0.2747 0.2000 ± 0.0901 0.2625 ± 0.1519
TGAT + KNN 0.2100 ± 0.0817 0.1325 ± 0.2217 0.1650 ± 0.0387 0.0750 ± 0.0208
tdGraphEmbed + KNN 0.3200 ± 0.1272 0.2275 ± 0.1459 0.1750 ± 0.0580 0.1875 ± 0.0150
GL2Vec + ProtoNet 0.6083 ± 0.0099 0.6541 ± 0.0159 0.6542 ± 0.1370 0.5583 ± 0.1578
NetLSD + ProtoNet 0.6916 ± 0.1396 0.7145 ± 0.1396 0.6937 ± 0.1674 0.6667 ± 0.1372
TGAT + ProtoNet 0.2417 ± 0.0500 0.3083 ± 0.0739 0.2917 ± 0.1167 0.2417 ± 0.0319
CAW + ProtoNet 0.1496 ± 0.0104 0.2113 ± 0.0110 0.2404 ± 0.0117 0.2842 ± 0.0044
tdGraphEmbed + ProtoNet 0.6562 ± 0.1882 0.6791 ± 0.1141 0.6271 ± 0.1159 0.4229 ± 0.0463
MetaTag (Ours) 0.7292 ± 0.0682 0.7917 ± 0.1278 0.7062 ± 0.0762 0.6833 ± 0.0589

5.2 TEMPORAL GRAPH CLASSIFICATION

First, in the biological dataset, given the 12 classes we split 8 classes into the meta-training set
G̃train and 4 classes into the meta-testing test G̃test. Note that G̃train and G̃test do not share any
class label. In G̃train, we sample K-way N -shot graph metric learning tasks Ti ∼ P (T ), and
each task has a support set G̃trainsupport and a query set G̃trainquery. Then, METATAG is trained on G̃train
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based on Algorithm 2 and fine tune a few times on G̃trainsupport and report the accuracy on G̃trainquery. We
shuffle G̃train and G̃test 4 times for cross-validation and report the average classification accuracy
in Table 3, where our METATAG outperforms all the baseline algorithms. For example, in the
3-way 5-shot setting, our METATAG achieve 72.92% temporal graph classification accuracy, which
is 5.44% higher than the second place. An intuitive explanation is that different class yeast cells
(i.e., temporal graphs) has class-distinctive metabolic patterns (i.e., temporal patterns), capturing that
pattern comprehensively is helpful in identifying class labels. Also, we observe other interesting
patterns. First, graph kernel methods and KNN-based graph metric learning methods do not perform
well and bear the larger standard deviation. A possible answer is that they do not have few-shot
learning capability and could not transfer knowledge from seen cases to unseen cases. ProtoNet-based
graph metric learning and our method enjoy the data augmentation property from the few-shot
learning manner, thus they have better performance and smaller deviations. Second, our experiments
shows that increasing the number of shots during the meta-training is not always the good choice for
improving the performance of meta-testing 1, because intra-class variances may be amplified (Cao
et al., 2020). For the page limit, we place the experimental results of temporal graph classification on
social network data in Appendix.

6 RELATED WORK

Graph Metric Learning. Learning a good metric in the input feature can be transferred to learn
proper graph representations in Euclidean space, then graph embedding based graph metric learning
methods are proposed (Shaw et al., 2011; Bai et al., 2019; Li et al., 2019). Facing the label scarcity
problem, many generic metric learning methods consider the few-shot learning or meta-learning
strategy to adapt metrics across different tasks with only a few labeled sample in each task (Snell
et al., 2017; Oreshkin et al., 2018; Allen et al., 2019). Inspired by that, some graph metric learning
methods involve the few-shot learning manner, where the majority of these algorithms focus on
learning the metric over nodes across different graphs (Yao et al., 2020; Suo et al., 2020; Huang
& Zitnik, 2020; Lan et al., 2020; Wang et al., 2020; Ding et al., 2020). Only a few graph metric
learning methods learn the metric over the whole graphs to distinguish distance between graphs (Ma
et al., 2020; Chauhan et al., 2020). Currently, graph metric few-shot learning methods ignore to
consider the dynamics of graphs into the metric learning process. We are the first effort to involve
the dynamics and temporal dependencies of input graphs into the learned metric. Graph Kernel.
Given a distance metric D, it should maintain four properties: non-negativity (i.e., D(x,y) ≥ 0),
coincidence (i.e., D(x,y) = 0 iff x = y), symmetry (i.e., D(x,y) = D(y,x)), and subadditivity
(i.e., D(x,y) + D(y, z) ≥ D(x, z) ) (Wang & Sun, 2015). While in graph kernel research, only the
symmetry and non-negativity need to be hold for a kernel function, i.e., the symmetric graph kernel
function K should be a positive semi-definite function (Vishwanathan et al., 2010). To measure the
similarity among graphs, one category graph kernel methods explicitly define the kernel function
from the graph topological view, such as Random Walk graph kernel (Vishwanathan et al., 2010)
and Weisfeiler-Lehman graph kernel (Shervashidze et al., 2011). To handle the evolving graph
scenario, some methods map dynamic graphs into constant representations and then apply static
graph kernel functions for dynamic node classification (Yao & Holder, 2014) and temporal graph
classification (Oettershagen et al., 2020); On the other hand, some graph kernel methods learn the
kernel function instead of hand-crafted designing it (Yanardag & Vishwanathan, 2015; Zhao & Wang,
2019). For example, in (Yanardag & Vishwanathan, 2015), the kernel is determined by learning the
latent representation of substructures of input graphs.

7 CONCLUSION

In this paper, we first propose the streaming-snapshot model to describe a temporal graph, and
then we propose the prototypical temporal graph encoder to capture temporal graph representation
vectors. Last but not the least, we entitle the prototypical temporal graph encoder with a meta-learner
into an end-to-end model, named METATAG, to transfer knowledge among different tasks for the
fast adaption to unseen cases. We execute extensive experiments to show the effectiveness of our
METATAG with different category state-of-the-art baseline algorithms.

1The number of shots in the query set during meta-testing is 2.
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