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ABSTRACT

In this work, we introduce a novel paradigm for generalized In-Context Learning
(ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demon-
stration selection strategies tailored for two distinct real-world scenarios: Mixture
of Tasks and Noisy ICL. We systematically evaluate the effectiveness of Influence
Functions (IFs) as a selection tool for these settings, highlighting the potential of
IFs to better capture the informativeness of examples within the demonstration
pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 di-
verse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA.
We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate
model can further improve performance, leading to average absolute accuracy
gains in 3-shot and 5-shot setups when compared to traditional ICL metrics. In the
Noisy ICL setting, we examine scenarios where demonstrations might be misla-
beled or have adversarial noise. Our experiments show that reweighting traditional
ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accu-
racy on noisy GLUE benchmarks. For the adversarial sub-setting, we show the
utility of using IFs for task-agnostic demonstration selection for backdoor attack
mitigation. Showing a reduction in Attack Success Rate compared to task-aware
methods. In sum, we propose a robust framework for demonstration selection that
generalizes beyond traditional ICL, offering valuable insights into the role of IFs
for Indirect ICL.

1 INTRODUCTION

In-Context Learning (ICL) has emerged as a powerful method for utilizing large language models
(LLMs) to handle novel tasks at inference (Mann et al., 2020; Min et al., 2022). Unlike traditional
approaches that require task-specific fine-tuning, ICL allows a single model to adapt to different
tasks without additional training, relying solely on the demonstrations provided in the context.
This flexibility not only reduces the cost of task adaptation but also offers a transparent and
easily customizable way of guiding the model’s behavior (Liu et al., 2021a; Wei et al., 2022). By
leveraging the context provided in prompts, ICL has been shown to improve both generalization
across diverse tasks and reasoning abilities (Anil et al., 2022; Drozdov et al., 2022). Despite its
advantages, the success of ICL is closely tied to the choice of demonstrations used in the prompt.
Even slight variations in these demonstrations can significantly influence the model’s performance,
as shown in numerous studies (Zhao et al., 2021; Liu et al., 2021a; Lu et al., 2022).

Traditional ICL makes numerous assumptions that restrict its applicability to real-world problem
domains. For instance, traditional ICL (Min et al., 2021; Conneau, 2019; Halder et al., 2020)
assumes that demonstrations to be selected are directly and accurately annotated for the end-task.
However, this is not always the case – for low-resource, sparse, or specialized domains, end-task
information and labeled demonstrations might not be available. Similarly, when LLMs are deployed
as services, the user query or the end task itself could be unknown beforehand, let alone providing
direct demonstrations at inference.1 Thus, in this paper, we explore a more generalized setting for
ICL, which we refer to as Indirect ICL.

1Our proposed method can improve performance by selecting relevant demonstrations from a task agnostic
pool of labeled data at test time.
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Indirect ICL appears in real-world applications in several ways. For instance, it can be applied to
diagnosing rare medical conditions, where no precedents or labeled demonstrations exist. Similarly,
it is relevant for niche programming languages or indigenous spoken languages, which often lack
sufficient labeled data. In Indirect ICL, we aim to provide indirect (or incidental) supervision (Yin
et al., 2023; Li et al., 2024) by selecting demonstrations from a pool of examples where the majority
are not directly suited to the end task due to severe distribution/covariate shifts. This includes
selecting demonstrations from a pool that predominantly consists of demonstrations belonging
to other tasks, with few demonstrations from the end task possibly included. Additionally, the
demonstration set may be mislabeled by humans (Yan et al., 2014; Zhu et al., 2022) or LLMs
(Wu et al., 2023). Since the effectiveness of ICL heavily relies on the quality of demonstrations
selected (Kossen et al., 2024; Wu et al., 2022; Wang et al., 2024), selecting the most helpful indirect
demonstrations becomes imperative in these situations. We provide detailed examples of practical
applications of Indirect ICL in Appendix A.

Figure 1: Example showcasing demonstration se-
lection for Indirect ICL using Influence Functions
(IFs). Consider web corpora with many tasks (dif-
ferent from the end-task) and noisy data– Indi-
rect ICL can be formalized as: Mixture of Tasks
(Section 3.1) and Noisy (Section 3.2) ICL, respec-
tively. In MoT, for a given target task (e.g. Med-
ical Genetics), we first filter from this (indirect)
pool of candidate demonstrations using BertScore
and Cosine Similarity, then re-rank with IFs to se-
lect suitable demonstrations (e.g. High-School Bi-
ology). For Noisy ICL, we leverage IFs to filter
out the Noisy ICL before conducting ICL with the
remaining clean demonstrations.

Despite these potential issues with the demon-
stration set, we wish to pave the way for extract-
ing maximal benefit from any type of annotated
dataset, irrespective of label purity or task-
relatedness. Moreover, existing approaches
designed for Direct ICL often fail to gener-
alize effectively to the Indirect ICL setting.
For example, in an ablation study reported in
Appendix C.7, we observe that standard re-
trieval methods such as Cosine Similarity and
BERTScore-Recall select demonstrations from
related tasks only 33.90% and 36.03% of the
time, respectively, when evaluated on a pool
where the vast majority of tasks are unrelated.

Thus, in order to combat the aforementioned
issues with sub-optimal datasets for ICL and
sub-optimal demonstration selection strategies,
we leverage Influence Functions (IFs) (Ham-
pel, 1974; Cook & Weisberg, 1980). IFs of-
fer a formal method for assessing how indi-
vidual training data points affect model predic-
tions. They have proven effective in a range of
downstream data-centric learning tasks, includ-
ing mislabeled data detection (Koh & Liang,
2017; Pruthi et al., 2020), optimal subset se-
lection (Feldman & Zhang, 2020; Guo et al.,
2020; Xia et al., 2024), model interpretation
(Han et al., 2020; Grosse et al., 2023; Chhabra
et al., 2024), data attribution (Bae et al., 2024),
data valuation (Choe et al., 2024) and analyzing
model biases (Wang et al., 2019; Kong et al.,
2021).

Traditional (direct) ICL methods that use met-
rics such as BertScore-Recall (BSR; Gupta
et al. 2023a) and cosine similarity (Reimers,
2019) inherently rely on the semantic similarity between demonstrations and test samples. In this
paper, we posit that IFs can be a reasonable measure of affinity between the end task and any (indi-
rect) demonstrations. We show that it is practical to use IFs to identify candidate demonstrations that
represent a close inductive bias with the end-task, and utilize this information for highly accurate
demonstration selection in the challenging Indirect ICL setting. As our experiments and results will
demonstrate, this is indeed the case, and we find that IFs can aid in improved performance when
simple semantic similarity is insufficient for demonstration selection.

Contributions. In sum, our work advances ICL demonstration selection and makes the following
key contributions and findings:
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• We formalize a new and general paradigm for ICL, namely Indirect In-Context Learning, where
we benchmark demonstration selection for two distinct and real-world settings: (a) Mixture of
Tasks and (b) Noisy ICL. This novel paradigm with two settings is ubiquitous in the real world,
and has yet been overlooked by existing research in ICL that assumes the availability of direct
supervision.

• We propose utilizing Influence Functions (IFs) as an effective approach for demonstration
selection in generalized ICL settings, leveraging their capacity to exploit the task inductive
bias of models to enhance selection quality. We also examine multiple influence functions for
Indirect ICL and conduct an extensive analysis on their benefits in this setting.

• For Mixture of Tasks, combining an IF Surrogate model with BertScore-Recall (BSR) can lead
to an increase in performance for k = 3 and k = 5 shots compared to the best performing
traditional ICL metric.

• For Noisy ICL, we observe that undertaking a weighted average selection using traditional ICL
selectors (BSR and Cosine Similarity) and IF based selectors increases the absolute accuracy for
mislabeled samples. IFs can also lead to a reduction in the Attack Success Rate for task-agnostic
demonstration selection for backdoor attack mitigation.

2 PRELIMINARIES

We hereby introduce preliminaries of ICL and IF.

2.1 TRADITIONAL IN-CONTEXT LEARNING

Before we define the more generalized problem of Indirect ICL, we first define traditional ICL.

In-Context Learning. ICL allows LLMs to solve test inputs from novel tasks by presenting a few
examples of the task in the prompt. Formally, given a set of input x and output y pairs {(xi, yi)}ki=1,
prompt template T , and the test input xtest, ICL using an LLM involves prompting it to conditionally
generate the test output ytest according to the following distribution:

ytest ∼ PLM(· | T (x1, y1, . . . , xk, yk, xtest))

Demonstration Selection. In this work we study the problem of selecting k in-context examples
from a pool of N ≫ k labeled candidates. This is often necessary due to context length limits
and cost considerations (Rubin et al., 2021; Gupta et al., 2023a). Formally, the goal is to select a
subset S ⊂ {(xi, yi)}Ni=1 of size k that maximizes the probability of generating the desired ytest
when the LLM is conditioned on xtest and S. It is noteworthy that prior studies mainly consider a
task-dependent ICL scenario and assume that candidate demonstrations all directly match the end
task (Min et al., 2021; Conneau, 2019; Halder et al., 2020).

2.2 INDIRECT IN-CONTEXT LEARNING

Now, we describe two scenarios of Indirect ICL, one where the candidate pool comprises of demon-
strations from various tasks and the other where the demonstrations may have noisy labels.

Mixture of Tasks. Unlike traditional ICL, where candidate demonstrations match the end task
at inference, we consider the more generalized Indirect ICL setting where the demonstration pool
is task-agnostic. In practice, this setting would allow for pooling annotated demonstrations from
various accessible tasks. Formally, given a set of input x and output y pairs {(xi, yi)}ki=1, where the
pairs (xi, yi) may originate from different tasks than the test input xtest, the model is prompted to
maximize performance across test tasks.

Noisy ICL. To further generalize the problem of Indirect ICL, we also consider noisy supervision
that is likely existing in the pool of demonstrations. Formally, let D = {(xi, yi)}ni=1 denote the
training dataset, where xi ∈ X is the input and yi ∈ Y is the corresponding binary label. We
randomly select a percentage of data points from D and flip their labels. Once the noisy dataset is
generated, we use it for ICL. Given the noisy set of input-output pairs {(xi, yi)}ki=1 and a test input
xtest, the goal is to conditionally generate the test output ytest based on the noisy training data.

3
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2.3 INFLUENCE FUNCTIONS

Here we formally define how we will use IFs to perform Generalized Indirect ICL.

Let the input space be X and the label space be Y . The training dataset is denoted as
D = {(xi, yi)}ni=1, where xi ∈ X and yi ∈ Y are the input and label of the i-th data point. Given
a loss function ℓ and a parameter space Θ, the empirical risk minimization problem is defined as:

θ∗ = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(yi, fθ(xi)),

where fθ : X → Y is the model parameterized by θ ∈ Θ. The gradient of the loss for the i-th data
point with respect to a vector η is denoted as:

∇ηℓi = ∇ηℓ(yi, fθ(xi)).

The IF evaluates the effect of individual training data points on the estimation of model parameters
(Hampel, 1974; Cook & Weisberg, 1980; Martin & Yohai, 1986). It measures the rate at which
parameter estimates change when a specific data point is up-weighted.

Specifically, for k ∈ [n] and ϵ ∈ R, we consider the following ϵ-weighted empirical risk minimiza-
tion problem:

θ(k)(ϵ) = argmin
θ∈Θ

1

n

n∑
i=1

ℓ(yi, fθ(xi)) + ϵℓ(yk, fθ(xk)).

Here, the loss function ℓ(y, fθ(x)) is assumed to be twice-differentiable and strongly convex in θ
for all (x, y) ∈ X × Y , the empirical risk minimizer (model weights) θ∗ is well-defined, and the
influence of the k-th data point (xk, yk) ∈ D on the empirical risk minimizer (model weights) θ∗ is
defined as the derivative of θ(k)(ϵ) at ϵ = 0:

Iθ∗(xk, yk) :=
dθ(k)

dϵ

∣∣∣∣
ϵ=0

= −H(θ∗)−1∇θℓ(yk, fθ(xk)).

where H(θ) := ∇2
θ

(
1
n

∑n
i=1 ℓ(yi, fθ(xi))

)
is the Hessian of the empirical loss.

The IF Iθ∗(xk, yk) on the empirical risk minimizer θ∗ is generalized to assess its effect on prediction
loss (Koh & Liang, 2017). Given a validation dataset DV := {(xV

i , y
V
i )}mi=1, the influence of

(xk, yk) on the validation loss is defined as:

I(xk, yk) :=

(
1

m

m∑
i=1

∇θℓ(y
V
i , fθ(x

V
i ))

∣∣∣∣
θ=θ∗

)⊤

× Iθ∗(xk, yk).

This gives us

I(xk, yk) = −
m∑
i=1

(
∇θℓ(y

V
i , fθ(x

V
i ))

⊤H(θ∗)−1∇θℓ(yk, fθ(xk))
)
.

The IF I(xk, yk) provides insight into how a single data point impacts the validation loss. Essen-
tially, it indicates whether (xk, yk) contributes positively or negatively to the prediction loss. The
more positive the influence value, the more it contributes to the loss decreasing, hence it is a benefi-
cial data point to train the model.

Remark. As discussed above, IFs assume convexity of the loss function, which does not hold for
LLMs and deep neural networks. Even though the IF formulations we employ in this paper (Kwon
et al., 2023; Koh & Liang, 2017) make this underlying assumption, we find through empirical
observations that for indirect ICL, they can work well. Circumventing the convexity assumption in
IF is an ongoing area of research (Grosse et al., 2023; Chhabra et al., 2025) and our framework is
flexible enough to accommodate any future IF variants.
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3 PROPOSED APPROACH

In this section, we describe our approach to select demonstrations in both sub tasks.

3.1 SELECTING WITHIN MIXTURE OF TASKS

In this scenario, we develop influence-based methods for demonstration selection. Specifically, for
each validation example, we compute influence values to identify the most impactful examples from
a pool of training examples containing a mixture of tasks. Two approaches are employed to calculate
these influence scores:

• A surrogate-model based method, where a lightweight surrogate model such as RoBERTa (Liu,
2019) is fine-tuned on the candidate demonstrations to compute influence.

• A pretrained-gradient based method where the samples are passed through the LLM itself. We
then compute IFs using the extracted gradients.

Formally, for each validation example (xval, yval), we compute the influence of each training ex-
ample (xi, yi) ∈ Dtrain, where Dtrain is the set of the training examples. The influence score
I((xi, yi), (xval, yval)) quantifies the effect of (xi, yi) on the loss function evaluated at (xval, yval)

2.
Using these computed influence values, we select the top k samples with the highest IF scores.

We compare two versions of computing the IF after extracting the gradient, DataInf (Kwon et al.,
2023) and TracIn (Pruthi et al., 2020). DataInf uses an easy-to-compute closed-form expression,
leading to better computational and memory complexities than other IF methods, more details
in Appendix B. TracIn traces how the loss on the test point changes during the training process
simply using an inner product of training and validation set gradients. Since it does not compute
the Hessian matrix, it is faster than DataInf, but at the cost of lower estimation performance.

Additionally, we compare the influence-only methods described above with strong ICL baselines
BertScore-Recall (BSR; Gupta et al. 2023a) and Cosine Similarity (Reimers, 2019). These methods
excel at capturing semantic similarity between validation and training examples. We also compare
with a performant sparse information retrieval baseline algorithm, BM25 (Jones et al., 2000).

Lastly, we combine the previously described approaches by implementing a two-stage selection
process. First, we perform an initial pruning of the demonstration pool using either BSR or Cosine
Similarity. Specifically, for a given number of desired demonstrations k, we prune the dataset to
select 2k candidates from the original set of labeled examples {(xi, yi)}Ni=1. We then apply the
IF-based methods to re-rank these remaining examples based on their influence scores. The final
selection of k in-context demonstrations is performed by selecting the top k examples from the
re-ranked subset.

3.2 SELECTING NOISY ICL

In this setting, we utilize IFs to identify noisy mislabeled samples within the dataset. Formally,
let D = {(xi, yi)}Ni=1 represent the training dataset. First, we employ IFs to prune the dataset by
detecting and removing noisy examples, following which the top k in-context demonstrations are
selected using either BSR or Cosine Similarity. We will refer to this approach as IF PRUNING.

Additionally, we construct approaches that combine the influence values with the BSR or Cosine
Similarity scores. To do so, both the influence values and similarity scores are min-max normalized,
resulting in scores scaled between 0 and 1. We then reweigh the scores using a linear combination
of the normalized values. Let α and β represent the weights assigned to the influence values and the
similarity scores, respectively, where α+ β = 1 and 0 < α, β < 1, the final combined score for
each training example is:

Score(xi, yi) = α · I((xi, yi), (xval, yval)) + β · S(xi, yi),

where I((xi, yi), (xval, yval)) is the influence value and S(xi, yi) represents either the
BertScore (Zhang et al., 2019) or Cosine Similarity for the training example (xi, yi). The top k

2We use the standard negative log-likelihood as the loss function.
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examples with the highest combined scores are selected as demonstrations. We will refer to this
approach as IF AVERAGING.

In this setting, we compute influence values using our surrogate model approach. In addition to
using DataInf, we also conduct influence experiments using the LiSSA IF method which is a second-
order method to compute the inverse Hessian vector product (Agarwal et al., 2017; Koh & Liang,
2017). Although LiSSA is generally computationally expensive (Kwon et al., 2023), we prioritize it
over TracIn owing to its greater performance in detecting mislabeled samples, as the computational
overhead is incurred only once in this setting3.

4 EXPERIMENTS

Here, we expand upon our experimental setup to conduct the experiments and analyze the results.
Overall, we find that combining DataInf with BSR for demonstration selection consistently improves
accuracy across both the Mixture of Tasks and Noisy ICL settings within the Indirect ICL frame-
work. Additionally, the surrogate model approach outperforms the pretrained gradient approach.

4.1 EXPERIMENTAL SETUP

We discuss our dataset details and model used to conduct the experiments.

Evaluation Data. For Mixture of Tasks, we collect a generalized pool of examples from different
tasks such that the input x and output y pairs {(xi, yi)}ki=1 do not necessarily correspond to the same
task as the test input xtest. The evaluation task pool contains three samples each from 28 different
tasks from MMLU (Hendrycks et al., 2020), BigBench (Srivastava et al., 2022), StrategyQA (Geva
et al., 2021) and CommonsenseQA (Talmor et al., 2018). We evaluate the ICL accuracy, using this
train set, on 12 different tasks from MMLU and BigBench.

For Noisy ICL, we employ the noisy dataset framework from Kwon et al. (2023). In their work, the
four binary classification GLUE datasets (Wang, 2018) MRPC, QQP, QNLI, and SST2 are utilized.
To simulate a scenario where a portion of the data samples are noisy, 20% of the training data
samples are randomly selected and their labels are flipped. We use these noisy datasets as the
candidate pool in our experiments and evaluate the ICL accuracy.

Base LLM. In Mixture of Tasks, for k = 3 shots, we conduct ICL experiments on Llama-2-13b-chat
(Touvron et al., 2023), Mistral-7b-v0.3 (Jiang et al., 2023), Zephyr-7b-beta (Tunstall et al., 2023),
Qwen2.5-3b (Team, 2024) and Llama-3-70b (Grattafiori et al., 2024). For k = 5 shots we conduct
experiments on Llama-2-13b-chat. We extend on the framework designed by Gupta et al. (2023a;b).
The temperature is set to 0 for inference. For Noisy ICL, we conduct experiments on Llama-2-13b-
chat for mislabeled data detection and Llama-3-8b for backdoor defense. All of our experiments run
on 8×NVIDIA RTX 6000 Ada GPUs.

4.2 METHOD AND BASELINE CONFIGURATIONS

Here we expand on the methods and baselines we use for our experiments in both settings.

Mixture of Tasks. We construct 4 IF-only methods. 2 based on the Surrogate Model based ap-
proach, SUR and 2 based on the Pretrained LLM weights based approach, PRE. We test Data-Inf
and TracIn based versions of these approaches, namely, Surrogate Model-DataInf SURD, Surrogate
Model-TracIn SURT, Pretrained Model-DataInf PRED and Pretrained Model-TracIn PRET. As men-
tioned before, SURD and SURT use RoBERTa as the surrogate model, whereas PRED and PRET
use Llama2-13b-chat as the pretrained LLM. Additionally, we test traditional semantic approaches,
such as BSR and Cosine Similarity (COS), as well as retrieval based approaches, such as BM25,
as baselines. Finally, we test the combination of the aforementioned traditional and IF methods as
well.Specifically, we denote these as:

MODEL[IF,SEL], where MODEL ∈ {SUR, PRE}, IF ∈ {D,T}, and SEL ∈ {COS, BSR}.
3We use different influence algorithms since Noisy ICL computes IF scores using all validation samples,

enabling detection of noisy training samples. In contrast, MoT requires sample-specific IF scores, necessitating
dynamic and per-instance computation.
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Noisy ICL. As elaborated in Section 3.2, we explore two approaches, IF Pruning and IF Averaging,
for the task of selecting the best demonstrations. We only use the surrogate model-based IF method
in this setting, and we employ an additional method of computing IFs, LiSSA (Koh & Liang, 2017).
We experiment with different levels of pruning and IF weights (α) as hyperparameters, namely 10%
pruning and 0.5α. Furthermore, we also create a random pruning variation for BSR and Cosine
Similarity as well. Formally, we denote these as METHOD[MODELIF,SEL], where METHOD ∈
{PRU, AVG}, MODEL ∈ {SUR, RAND}, IF ∈ {D,L}, and SEL ∈ {COS, BSR}.

4.3 RESULTS ON MIXTURE OF TASKS

Figure 2: Average performance of different
demonstration selection methods across Llama2-
13b-chat, Zephyr-7b-beta and Mistral-7b-v0.3 for
k = 3 shots.

We present the results on Mixture of Tasks in
Figure 2. Additional results for varying the
number of shots (k) and multiple LLMs are
provided in Appendix C.1. Further, results for
the alternative TracIn IF method are provided in
Appendix C.2. Results for Pretrained Gradients
combined with BertScore and Cosine Similar-
ity are presented in Appendix C.3. We also
present results on using DeBERTa (He et al.,
2021a;b) as an alternative surrogate model in
Appendix C.4. Finally, we present results on
Qwen2.5-3b (Team, 2024) in Appendix C.5
and results on Llama-3-70b (Grattafiori et al.,
2024) in Appendix C.6.

Combining Surrogate Model DataInf with
BertScore results in the best performance.
As can be observed in Figure 2 and Table 6,
the SUR[D,BSR] method has the highest average
performance across the tasks, in both 3 and 5 shots. This shows the benefit of combining IF with
BertScore as performance increased by 0.56 in k = 3 shots and by 1.52 in k = 5 shots. The re-
sults also show that the maximal benefit of IF methods is gained in combination with the semantic
similarity methods. This is due to the fact that IF can leverage the model’s inductive bias to re-rank
the retrieved demonstrations effectively, but the initial 2k pruning via BSR is critical to shorten the
candidate pool to demonstrations that are semantically relevant enough. However, it is important to
note that, given the inclusion of only three shots in the prompt, where the overwhelming majority of
demonstrations are unrelated to the test task, achieving significant improvements remains challeng-
ing. We provide an ablation diving deeper into why combining IF with semantic similarity methods
works well in Appendix C.7.

Figure 3: Average performance of the baselines
across the 4 datasets.

Surrogate Models outperform Pretrained
Gradients. We see that surrogate models out-
performed Pretrained Gradients in demonstra-
tion selection for the Mixture of Tasks setting
in both the k = 3 and k = 5 shots. The fine-
tuning of the surrogate model leads it to better
capture the test task affinity of the demonstra-
tion pool. However, it is interesting to note that
on more recent LLMs Appendix C.5 and LLMs
with larger number of parameters Appendix C.6
PreTrained Gradients outperformed the surro-
gate models.

DataInf is better than TracIn as an IF
method. The speed gains of TracIn come at
a cost of performance as the DataInf method of
IF computation routinely outperformed TracIn.
TracIn likely underperforms because it does not utilize critical second order gradient information
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since the Hessian H(θ∗) is assumed to be the identity matrix. This trend has also been observed in
past work on IF methods (Chhabra et al., 2025).

Qualitative Analysis. Finally, to understand the unique benefits provided by IFs, we present a
qualitative analysis examining the types of shots selected by our method in Appendix C.8. We see
that even though BSR selects more semantically relevant samples, SUR[D,BSR] shots assist in guiding
the model toward the correct answer by providing examples that promote more structured reasoning.

4.4 RESULTS ON NOISY ICL

Table 1: ICL Accuracy across MRPC, QNLI,
SST2, and QQP datasets using different meth-
ods for Noisy ICL, with 20% noise added to the
datasets. The top 2 performers for each dataset
are in bold.

Method MRPC QNLI SST2 QQP

RAND 70.4 69.6 86.2 70.9
BSR 71.3 74.6 80.4 71.4
COS 72.3 68.2 82.6 73.2
BM25 70.6 67.6 88.0 71.0

PR
U

-0
.1

RAND[COS] 70.1 68.4 87.0 69.4
SUR[D,COS] 69.4 69.8 84.0 71.8
SUR[L,COS] 68.9 68.2 86.8 70.8
RAND[BSR] 71.1 65.2 86.4 68.4
SUR[D,BSR] 70.6 68.0 82.0 71.0
SUR[L,COS] 70.1 67.4 88.8 68.2

AV
G

-0
.5 SUR[D,COS] 75.5 74.8 89.8 67.8

SUR[L,COS] 70.6 75.8 86.4 73.0
SUR[D,BSR] 74.3 69.6 90.6 73.8
SUR[L,BSR] 73.3 73.4 93.6 69.2

In this section, we present results for the
mislabeled data setting under Noisy ICL.
Additionally, we report results for adversarial
noise, specifically a backdoor defense strategy,
in Appendix H.

IF Averaging works better than other base-
lines. Table 1 and Figure 3 clearly show that
doing a weighted average between the surrogate
model IF and both Cosine and BertScore leads
to performance boosts. Atleast one and if not
both of the highest performing methods in each
of the datasets we tested were from the aver-
aging method. We see that LiSSA and DataInf
are similarly effective, with DataInf being more
computationally efficient.

Pruning hurts not helps performance. We
can see that pruning actively hurts performance
as Figure 3 shows that all 3 types of BertScore
pruning and all 3 types of Cosine pruning had
lower average scores than BertScore and Co-
sine Similarity. This might be due to the fact
that we are removing potentially helpful samples from the demonstration pool, even if they might
have noisy labels. We further provide results on varying the noise levels in the datasets in D.1, vary-
ing the hyperparameters we tested in D.2 and an experiment analyzing the effectiveness of IF’s in
detecting Noisy ICL in D.3.

Table 2: Computational complexity for each test
sample at inference. N is #demonstration sam-
ples, p is #model parameters, d is embedding
size, K is the max candidate length, L is the
length (in tokens) of the test input, Z is #ngrams

Method Time Complexity

BSR O(NLKd)
COS O(Nd)
BM25 O(NZ)

PRED O(Np)
SURD O(Np)
PRET O(Np)
SURT O(Np)
BSR COMBINED METHODS O(NLKd) +O(Np)
COS COMBINED METHODS O(Nd) +O(Np)

IF protect against adversarial noise. The re-
sults presented in Appendix H show that the IF-
based indirect-ICL paradigm mitigates backdoor
attacks, reducing ASR by 32.89% on average.
Even without task-specific data, demonstrations
guided by a model’s inductive bias offer a strong
task-agnostic backdoor defense.

4.5 COMPUTATIONAL COMPLEXITY

We present the worst case time complexity (for
inference) for our methods and related baselines
in Table 2. As can be observed, our methods are
comparable, if not more efficient than the other
baselines. Note that the SUR methods require an
additional fine-tuning step on a smaller surrogate
model before the gradients are extracted, which
the PRE methods do not. Furthermore, note that TracIn as an influence method is much faster than
Hessian-based approaches (e.g. DataInf) as it assumes that the Hessian is the identity matrix. While
this leads to more efficient influence computation, it comes at the cost of lower estimation perfor-
mance, as our results with TracIn also show. Additionally, we present the maximum GPU memory
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consumption while performing demonstration selection in Appendix E, scalability to large models
in Appendix F and scalability to large datasets in Appendix G. The experiments demonstrate the
feasibility of applying our methods at increasing scales. Nevertheless, it is important to recognize
that improving the efficiency of IFs remains an active research area, and such advancements can be
readily integrated into our approach to further enhance the efficiency and accuracy of Indirect-ICL
performance.

5 RELATED WORK

In-Context Learning (ICL). Following the scaling of model sizes and learning resources (Mann
et al., 2020; Chowdhery et al., 2023; Touvron et al., 2023), LLMs have gained emergent abilities for
efficient inference-time adaptation via ICL (Mann et al., 2020). However, ICL is critically sensitive
to demonstration pool examples (An et al., 2023; Liu et al., 2021a; Zhang et al., 2022) and selection
strategies (Rubin et al., 2021; Mavromatis et al., 2023). One line of work studies example scoring
and retrieval, utilizing model-agnostic heuristic metrics like perplexity (Gonen et al., 2022), mutual
information (Sorensen et al., 2022), semantic similarity (Liu et al., 2021a; Gupta et al., 2023b), etc.
to select demonstrations. Another line of work optimizes selection based on empirically verified
desirable features a priori, e.g. diversity (Su et al., 2022; Ye et al., 2023), coverage (Gupta et al.,
2023a), etc. However, prior work assumes that the demonstration distribution is aligned with task
distribution, which is not always the case (Chatterjee et al., 2024). Our work serves as a first to
investigate ICL demonstration selection in the task and dataset quality shifts in the ICL settings.

Influence Functions. Influence functions (IFs) comprise a set of methods from robust statistics
(Hampel, 1974; Cook & Weisberg, 1982) that have been recently proposed for deep learning data
valuation and can provide a conceptual link that traces model performance to samples in the train-
ing set. For gradient-based models trained using empirical risk minimization, IFs can be used to
approximate sample influence without requiring actual leave-one-out retraining. For deep learning
models, the seminal work by Koh & Liang (2017) utilized a Taylor-series approximation and LiSSA
optimization (Agarwal et al., 2017) to compute sample influences. Follow-up works such as Rep-
resenter Point (Yeh et al., 2018) and Hydra (Chen et al., 2021) sought to improve IF performance
for deep learning models, constrained to vision applications. More recently, efficient influence esti-
mation methods such as DataInf (Kwon et al., 2023), Arnoldi iteration (Schioppa et al., 2022), and
Kronecker-factored approximation curvature (Grosse et al., 2023) have been proposed which can be
employed for larger generative language models, such as LLMs. Some other simpler IF approaches
simply consider the gradients directly as a measure of influence (Pruthi et al., 2020; Charpiat et al.,
2019), followed by some ensemble strategies (Bae et al., 2024; Kim et al., 2024). Recent work has
also found that self-influence only on the training set can be a useful measure for detecting sample
influence (Bejan et al., 2023; Thakkar et al., 2023).

IFs have been utilized with great success in a number of application scenarios (e.g. classification
(Chhabra et al., 2025; Koh & Liang, 2017), generative models (Kwon et al., 2023; Schioppa et al.,
2022; Grosse et al., 2023), active learning (Chhabra et al., 2024; Liu et al., 2021b), layer-quality
estimation (Askari et al., 2025), etc.). Moreover, while some recent works have considered using
influence for selecting direct demonstrations (Nguyen & Wong, 2023; Van et al., 2024), neither of
them has considered their effect on inductive bias selection in the indirect ICL setting, which is the
focus of our work.

6 CONCLUSION

We formalize a new paradigm for generalized In-Context Learning, which we term Indirect In-
Context Learning. We analyze two different real-world Indirect ICL settings and propose effective
demonstration selection strategies for these scenarios. We explore using Influence Functions (IFs) to
leverage the informativeness of the samples in the demonstration pool and the models’ task inductive
bias. We find that combining a surrogate model-based IF approach with BertScore performs better
when there are an overwhelming majority of irrelevant tasks in the candidate pool. We also find that
reweighting the surrogate model-based IF scores with traditional metric scores can be helpful in the
case of Noisy ICL. Future work will aim to augment the Pretrained Gradient approach by finetuning
the LLMs.
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REPRODUCIBILITY STATEMENT

We use the implementation of Gupta et al. (2023a) for BERTScore-Recall, cosine similarity, and
BM25 retrieval. Cosine similarity is computed via dense retrieval using all-mpnet-base-v2 from
SentenceBERT, while BM25 uses the Okapi variant from the rank_bm25 library (Brown, 2018).
BERTScore-Recall employs deberta-large-mnli as the encoder. For the Random baseline, we report
the average over 5 runs with different seeds. The temperature for all LLMs was set to 0 for inference.
All of our experiments run on 8×NVIDIA RTX 6000 Ada GPUs. The surrogate model is augmented
with rank-2 LoRA adapters on the value projections and fine-tuned for 10 epochs. Training uses
cross-entropy loss, AdamW optimizer with a learning rate of 3*e-4 and a 6% warm-up, linear-decay
schedule. The dataset used for finetuning is the training set demonstrations we want to compute
the Influence scores for. An anonymized version of the source code and datasets are available at
https://anonymous.4open.science/r/IncontextInfluence-ICLR-40B7
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APPENDIX

A INTEGRATION TO PRACTICAL WORKFLOWS

We provide several use cases of Indirect ICL in real-world scenarios. Here are a few examples:
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A.1 PRACTICAL APPLICATIONS OF INDIRECT ICL

• Enhancing prompt performance at test time: If an LLM service provider needs to use
in-context learning (ICL) to improve prompt performance during test time, they may not
know the precise task beforehand or during inference (e.g., a novel task requested by a
user in real-time). Indirect ICL and our proposed methods can improve performance by
selecting relevant demonstrations from a task-agnostic pool of labeled data (i.e., the MoT
setting), ensuring the model can adapt to various scenarios even when task-specific labeled
samples (direct supervision) are not available.

• Medical diagnosis: Indirect ICL can be used to diagnose rare medical conditions based
on symptoms. Since such conditions are rare, demonstrations for these specific cases are
often unavailable. However, the model can learn diagnostic reasoning patterns from more
common conditions with overlapping symptoms, improving accuracy for the rare cases.

• Code generation for obscure programming languages: Indirect ICL can aid in generat-
ing code for rarely-used or proprietary programming languages. Demonstrations from code
generation tasks in related languages with similar structures can be leveraged, enabling the
model to generalize and perform well in these low-resource scenarios.

• Ideology Estimation from Underrepresented Contexts: We can use our paradigm to
estimate political ideology, or any other sort of text classification, from text in an underrep-
resented cultural or linguistic context. We can use demonstrations from ideology estimation
in well-represented contexts such as Western political texts. The can transfer learned asso-
ciations between linguistic cues and ideological stances, adapting them to the new context.

These examples highlight just a few of the practical applications of indirect ICL, particularly in
low-resource settings.

B DATAINF METHOD OF COMPUTING INFLUENCE FUNCTIONS

DataInf is an efficient method for estimating influence functions in deep neural networks, especially
in parameter-efficient fine-tuning settings such as LoRA. Traditional influence function computation
requires inverting large Hessian matrices, which is impractical for large models. DataInf addresses
this by introducing a closed-form approximation that significantly reduces both computational and
memory costs.

The key approximation is to swap the order of the matrix inversion and the average calculations as
below: (

1

n

n∑
i=1

∇θℓℓi∇θℓℓ
⊤
i + λℓIdℓ

)−1

≈

1

n

n∑
i=1

(
∇θℓℓi∇θℓℓ

⊤
i + λℓIdℓ

)−1

Using the Sherman-Morrison formula, the inverse in each term can be computed analytically, allow-
ing a closed-form estimate of the influence:

ID(xk, yk) =

L∑
ℓ=1

1

λℓ

(
1

n

n∑
i=1

Lℓ,i

λℓ + Lℓ,ii
Lℓ,ik − Lℓ,k

)

This formulation enables DataInf to scale to large models by avoiding iterative solvers and full
Hessian storage, making it practical for real-world LLM applications.

C INDIRECT ICL RESULTS FOR LLM BASED INFLUENCE

C.1 FULL RESULTS FOR MIXTURE OF TASKS

Following are the full results for the Mixture of Tasks setting. For k = 3 shots in Tables 3, 4, and 5.
For k = 5 shots in Table 6.
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Table 3: Performance across different datasets and demonstration selection methods with k = 3
shots. The datasets are sampled from sub-tasks of the MMLU and BigBench datasets for Llama-2-
13b-chat.

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 80.60 87.00 84.00 79.00 76.00 81.00 86.00 82.00
prof-psychology 68.30 70.00 73.00 65.50 65.00 68.50 72.00 68.50

formal-logic 60.16 59.52 60.32 58.73 61.11 59.52 57.14 55.56
moral-disputes 81.00 78.00 79.50 80.50 78.50 76.00 80.50 76.50
public-relations 72.18 79.09 80.91 73.64 71.82 75.45 79.09 79.09
comp-security 76.80 76.00 80.00 76.00 76.00 80.00 76.00 76.00

astronomy 80.26 80.26 78.95 80.92 74.34 79.61 80.26 78.95
abstract-algebra 57.00 58.00 62.00 55.00 57.00 47.00 72.00 72.00

nutrition 75.50 77.50 79.00 78.00 77.50 77.00 79.50 81.50
high-school-biology 76.70 76.50 78.00 76.50 73.50 79.00 80.50 76.50

formal-fallacies 47.25 52.00 50.00 49.50 47.00 56.50 47.50 50.00
tracking-3 40.20 44.00 39.00 45.00 40.00 37.00 43.50 39.00

Average 68.00 69.82 70.39 68.19 66.48 68.04 71.16 69.63

Table 4: Performance across different datasets and demonstration selection methods with k = 3
shots. The datasets are sampled from sub-tasks of the MMLU and BigBench datasets for Mistral-
7b-v3

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 88.25 88.00 91.00 89.00 88.00 86.00 87.00 89.00
prof-psychology 84.50 84.00 84.50 82.00 85.00 83.00 85.50 84.00

formal-logic 66.47 66.67 69.05 65.08 63.49 66.67 68.25 69.05
moral-disputes 87.00 85.00 85.50 87.00 88.5 86.00 87.00 87.50
public-relations 83.41 82.73 81.82 84.55 84.55 83.64 84.55 81.82
comp-security 87.25 83.00 89.00 88.00 90.00 88.00 86.00 90.00

astronomy 87.34 88.82 89.47 88.16 84.87 86.18 86.18 86.18
abstract-algebra 57.75 63.00 60.00 60.00 59.00 50.00 64.00 64.00

nutrition 84.75 86.50 87.50 83.00 83.00 83.50 88.50 87.00
high-school-biology 85.63 84.00 86.50 85.00 87.00 84.00 87.50 87.00

formal-fallacies 49.63 53.50 50.00 53.50 48.00 46.50 52.50 53.50
tracking-3 46.38 49.00 49.00 49.50 46.50 39.00 48.50 45.50

Average 75.70 76.19 76.95 76.23 75.66 73.54 77.13 77.05

C.2 TRACIN RESULTS

Here we provide results for the TracIn method of Influence Computation for k = 3 shots in Tables
7, 8, and 9. We also provide results for k = 5 shots in Table 10.

C.3 PRETRAINED GRADIENT RESULTS

Here we provide results for pretrained gradients method of computing IF. These can be found in for
k = 3 shots in Tables 11, 12 and 13 and for k = 5 shots in Table 14.

C.4 RESULTS USING A DIFFERENT SURROGATE MODEL

We present results where DeBERTa-v3-Large replaces RoBERTa-Large as the surrogate model.
Evaluated on Llama2-13B-Chat with k = 3 shots. We compare the best-performing baseline
SUR[D,BSR] with BSR in Table 15.

The results indicate that the DeBERTa surrogate model outperforms BSR. However, it is important
to note that, given the inclusion of only three shots in the prompt—where the overwhelming ma-
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Table 5: Performance across different datasets and demonstration selection methods with k = 3
shots. The datasets are sampled from sub-tasks of the MMLU and BigBench datasets for Zephyr-
7b-beta

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 79.50 80.00 77.00 76.00 78.00 82.00 76.00 78.00
prof-psychology 74.50 74.00 74.50 74.50 72.00 74.50 73.00 74.00

formal-logic 69.44 65.87 65.87 65.08 66.67 71.43 65.87 61.11
moral-disputes 77.63 78.50 78.00 76.50 75.00 78.00 78.50 77.00
public-relations 75.00 80.91 72.73 73.64 76.36 75.45 76.36 76.36
comp-security 76.00 73.00 77.00 78.00 75.00 77.00 79.00 79.00

astronomy 79.77 81.58 80.26 80.26 74.34 80.92 79.61 82.24
abstract-algebra 52.00 53.00 53.00 51.00 51.00 50.00 62.00 55.00

nutrition 75.63 77.00 79.50 75.50 74.00 74.50 75.50 77.50
high-school-biology 77.63 81.00 80.50 79.50 78.50 80.00 78.50 78.00

formal-fallacies 49.75 57.50 55.50 56.50 52.50 55.00 51.50 46.50
tracking-3 49.25 49.50 49.50 51.50 52.50 45.00 49.50 49.50

Average 69.68 70.99 70.28 69.83 68.83 70.31 70.45 69.51

Table 6: Performance across different datasets and demonstration selection methods with k = 5
shots for Llama-2-13b-chat

Dataset RAND BSR COS BM25 PRED SURD SUR[D,BSR] SUR[D,COS]

medical-genetics 80.00 86.00 81.00 81.00 84.00 80.00 84.00 83.00
prof-psychology 71.00 71.00 73.50 66.00 70.00 68.50 77.00 71.00

formal-logic 62.70 59.52 57.94 56.35 58.73 68.25 62.70 61.90
moral-disputes 79.50 77.50 81.00 81.00 82.00 81.00 81.50 81.50
public-relations 70.00 78.18 81.82 76.36 70.91 77.82 80.91 78.18
comp-security 75.00 78.00 82.00 77.00 76.00 77.00 81.00 77.00

astronomy 78.95 85.53 82.89 80.92 80.92 82.89 84.87 81.58
abstract-algebra 52.00 63.00 62.00 58.00 63.00 55.00 67.00 65.00

nutrition 71.50 81.00 80.00 78.00 76.00 78.00 79.00 81.00
high-school-biology 73.00 79.00 80.00 76.50 77.00 79.00 81.50 75.50

formal-fallacies 46.50 48.50 48.00 50.00 47.50 43.50 53.00 43.50
tracking-3 36.50 49.00 47.00 46 42.50 52.00 42.00 39.00

Average 66.38 71.35 71.42 68.93 69.04 70.24 72.87 69.84

Table 7: Performance across different datasets and different TracIn Influence methods with k = 3
shots for Llama2-13b-chat

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 77.00 79.00 81.00 85.00
prof-psychology 67.00 66.00 69.50 70.00

formal-logic 56.35 61.11 59.52 59.52
moral-disputes 79.50 76.00 82.00 79.50
public-relations 73.64 72.73 76.36 77.27
comp-security 78.00 74.00 76.00 79.00

astronomy 80.26 75.66 82.24 79.61
abstract-algebra 57.00 61.00 67.00 63.00

nutrition 79.50 79.50 78.50 81.00
high-school-biology 76.50 76.00 79.00 75.00

formal-fallacies 46.50 42.50 47.50 43.00
tracking-3 41.00 35.50 40.00 39.50

Average 67.69 66.58 69.89 69.28
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Table 8: Performance across different datasets and different TracIn Influence methods with k = 3
shots for Mistral-7b-v0.3

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 88.00 85.00 87.00 88.00
prof-psychology 83.00 80.00 84.00 86.50

formal-logic 65.08 69.05 65.87 68.25
moral-disputes 87.50 84.50 84.50 89.00
public-relations 80.91 82.73 85.45 81.82
comp-security 87.00 83.00 86.00 87.00

astronomy 86.18 86.18 88.16 90.13
abstract-algebra 61.00 51.00 62.00 57.00

nutrition 85.00 83.00 88.50 86.00
high-school-biology 86.50 84.50 88.00 85.00

formal-fallacies 47.00 52.00 54.50 62.50
tracking-3 44.00 42.00 35.00 38.00

Average 75.10 73.58 75.75 76.60

Table 9: Performance across different datasets and different TracIn Influence methods with k = 3
shots for Zephyr-7b-beta

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 76.00 77.00 74.00 80.00
prof-psychology 72.50 71.50 72.50 72.50

formal-logic 67.46 69.84 67.46 64.29
moral-disputes 77.50 75.50 76.00 77.50
public-relations 76.36 74.55 79.09 72.73
comp-security 77.00 78.00 76.00 75.00

astronomy 76.32 78.95 81.58 80.92
abstract-algebra 50.00 48.00 53.00 52.00

nutrition 75.50 77.00 75.50 78.00
high-school-biology 77.50 75.50 80.50 78.00

formal-fallacies 50.00 41.00 46.00 50.00
tracking-3 50.50 48.00 49.50 42.50

Average 68.89 67.90 69.26 68.62

Table 10: Performance across different datasets and different TracIn Influence methods with k = 5
shots for Llama2-13b-chat.

Dataset PRET SURT SUR[T,BSR] SUR[T,COS]

medical-genetics 82.00 78.00 83.00 81.00
prof-psychology 69.00 67.50 73.50 73.50

formal-logic 61.90 61.11 57.14 57.14
moral-disputes 81.00 81.00 82.50 81.50
public-relations 70.00 70.00 73.64 78.18
comp-security 75.00 76.00 77.00 76.00

astronomy 82.24 76.32 83.55 78.95
abstract-algebra 53.00 56.00 65.00 64.00

nutrition 77.50 75.50 79.00 79.50
high-school-biology 77.00 74.50 82.50 77.00

formal-fallacies 45.50 47.00 39.50 48.00
tracking-3 40.50 41.50 46.50 36.50

Average 67.87 67.03 70.23 69.27

jority of demonstrations are unrelated to the test task—achieving significant improvements remains
challenging.
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Table 11: Performance across different datasets and Pre-training based demonstration selection
methods (k = 3 shots) for Llama2-13b-chat.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 85.00 80.00 86.00 84.00
prof-psychology 68.50 73.50 70.50 69.50

formal-logic 55.56 57.14 57.94 54.76
moral-disputes 80.50 80.00 78.50 82.00
public-relations 80.91 77.27 74.55 78.18
comp-security 75.00 79.00 80.00 76.00

astronomy 80.26 76.32 78.95 77.63
abstract-algebra 57.00 56.00 58.00 61.00

nutrition 81.00 80.00 78.00 80.50
high-school-biology 75.50 73.50 80.00 76.00

formal-fallacies 52.50 48.00 46.50 45.50
tracking-3 48.50 47.50 37.00 38.00

Average 70.02 69.02 68.83 68.59

Table 12: Performance across different datasets and Pre-training based demonstration selection
methods with k = 3 shots for Mistral-7b-v0.3.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 86.00 88.00 86.00 88.00
prof-psychology 87.50 83.50 85.00 85.50

formal-logic 64.29 65.87 65.08 65.87
moral-disputes 86.00 85.00 85.00 85.50
public-relations 85.45 80.00 86.36 84.55
comp-security 82.00 88.00 85.00 89.00

astronomy 88.16 90.13 87.50 89.47
abstract-algebra 62.00 59.00 62.00 60.00

nutrition 86.50 84.00 86.50 84.50
high-school-biology 86.00 85.50 86.50 87.00

formal-fallacies 54.50 46.00 51.00 50.00
tracking-3 49.50 48.50 50.00 53.00

Average 76.49 75.29 76.32 76.87

Table 13: Performance across different datasets and Pre-training based demonstration selection
methods with k = 3 shots for Zephyr-7b-beta.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 82.00 77.00 81.00 82.00
prof-psychology 73.00 70.50 74.50 73.00

formal-logic 69.84 67.48 65.08 66.67
moral-disputes 73.00 76.00 75.50 76.50
public-relations 78.18 77.27 76.36 70.00
comp-security 78.00 73.00 75.00 76.00

astronomy 76.97 78.29 77.63 79.61
abstract-algebra 51.00 55.00 58.00 58.00

nutrition 79.00 74.50 76.50 78.50
high-school-biology 78.00 77.00 80.00 78.50

formal-fallacies 54.50 55.50 46.50 54.50
tracking-3 47.00 47.50 49.00 48.50

Average 70.04 69.08 69.59 70.15

C.5 RESULTS ON QWEN2.5-3B

Here we present results on Qwen2.5-3b (Team, 2024) for k = 3 shots on the Mixture of Tasks
setting. We compare BSR with our two IF based BSR methods SUR[D,BSR] and PRE[D,BSR]. We
see in Table 16 that for an advanced model like Qwen2.5-3b, the unfinetuned pretrained gradients
slightly outperform the finetuned gradients from the RoBERTa model.
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Table 14: Performance across different datasets and Pre-training based demonstration selection
methods with k = 5 shots for Llama2-13b-chat.

Dataset PRE[D,BSR] PRE[D,COS] PRE[T,BSR] PRE[T,COS]

medical-genetics 83.00 83.00 82.00 83.00
prof-psychology 73.50 74.00 74.00 71.50

formal-logic 60.32 56.35 62.70 62.70
moral-disputes 82.00 82.50 81.00 79.50
public-relations 75.45 75.45 78.18 77.27
comp-security 77.00 77.00 76.00 80.00

astronomy 82.24 81.58 81.58 77.63
abstract-algebra 60.00 59.00 62.00 60.00

nutrition 81.00 78.50 80.50 79.50
high-school-biology 80.50 78.50 79.50 76.00

formal-fallacies 48.50 50.50 49.00 49.00
tracking-3 50.00 46.00 47.50 51.50

Average 71.13 70.20 71.16 70.63

Table 15: Performance comparison between BSR and SUR[D,BSR] with DeBERTa as the surrogate
model with (k = 3 shots) for Llama2-13b-chat.

Dataset BSR SUR[D,BSR]

medical-genetics 87.00 85.00
prof-psychology 70.00 72.50

formal-logic 59.52 59.52
moral-disputes 78.00 84.50
public-relations 79.09 76.36
comp-security 76.00 77.00

astronomy 80.26 80.26
abstract-algebra 58.00 59.00

nutrition 77.5 79.00
high-school-biology 76.50 79.00

formal-fallacies 52.00 45.5
tracking-3 44.00 46.50

Average 69.82 70.30

Table 16: Performance comparison between BSR, SUR[D,BSR], and PRE[D,BSR] with (k = 3 shots)
for Qwen2.5-3b.

Dataset BSR SUR[D,BSR] PRE[D,BSR]

medical-genetics 88 90 87
prof-psychology 80 82.5 81.5

formal-logic 71.43 66.67 68.25
moral-disputes 83.5 80 82.5
public-relations 79.09 79.09 80.91
comp-security 84 87 85

astronomy 85.53 88.16 88.82
abstract-algebra 64 63 63

nutrition 84.5 85.5 85
high-school-biology 87.5 87 89

formal-fallacies 49 50 50.5
tracking-3 48 48 49

Average 75.38 75.57 75.87
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C.6 RESULTS ON LLAMA-3-70B

Here’s an explanation for the Llama-3-70B results following the style of your previous explanation:

Here we present results on Llama-3-70B for k = 3 shots on the Mixture of Tasks setting. We com-
pare both BSR and Cosine similarity baselines with our IF-based methods: SUR[D,BSR], PRE[D,BSR],
SUR[D,COS], and PRE[D,COS]. We see in Table 17 that for a large-scale model like Llama-3-70B,
the pretrained gradients combined with cosine similarity (PRE[D,COS]) achieve the highest average
performance at 83.256%. Notably, the pretrained-gradient based methods outperform the surrogate-
model based methods in a pattern similar to the Qwen2.5-3b results. This suggests that the pre-
trained gradients in the newer-larger models are more representative of model’s inductive bias than
the older-smaller models.

Table 17: Performance comparison between BSR, SUR[D,BSR], PRE[D,BSR], Cos, SUR[D,COS], and
PRE[D,COS] for Llama-3-70B.

Dataset BSR SUR[D,BSR] PRE[D,BSR] Cos SUR[D,Cos] PRE[D,Cos]

medical-genetics 95 94 97 97 98 98
prof-psychology 92.5 91 90.5 91.5 91.5 90.5

formal-logic 72.22 77.78 74.6 73.81 73.02 79.37
moral-disputes 89 91 90 87 90.5 91
public-relations 86.36 84.55 84.55 83.64 85.45 86.36
comp-security 86 86 86 87 88 87

astronomy 98.68 98.68 97.37 98.03 97.37 99.34
abstract-algebra 68 66 67 65 65 66

nutrition 95.5 93.5 93.5 95.5 95.5 94
high-school-biology 93.5 94 93.5 94 94.5 94

formal-fallacies 59 66.5 60.5 59.5 63 66
tracking-3 43.5 46 47 48 45.5 47.5

Average 81.605 82.418 81.793 81.665 82.278 83.256

C.7 ABLATION ANALYSIS ON THE BENEFITS OF COMBINING IF WITH SEMANTIC
SIMILARITY METHODS

We conduct an ablation analysis to examine the benefit of using BertScore-Recall and Cosine Simi-
larity in conjunction with our IF-based methods. We want to quantify how effective these methods
are at selecting the same training task demonstration as the test task in the 3 shots selected (e.g
if the test task is from MMLU-abstract-algebra, then the demonstration retrieved is also from the
MMLU-abstract-algebra train set in our demonstration pool). We find that BertScore-Recall selects
the same task 33.90% of the time and Cosine Similarity selects the same task 36.03% of the time. In
our MoT approach, we initially retrieve the top 2k candidate demonstrations using similarity-based
methods, and subsequently re-rank and select the final k examples based on IF scores. This staged
retrieval process effectively narrows the pool to semantically relevant demonstrations, enabling the
IF-based re-ranking to more precisely exploit the model’s inductive biases.

C.8 QUALITATIVE ANALYSIS

For MoT, to understand the merits of our method, we compare demonstrations selected via BSR and
SUR[D,BSR] on the MMLU-abstract-algebra dataset:

Example 1:

Q: Compute the product in the given ring. (2, 3)(3, 5) in Z5 × Z9

Options: (B) (3,1) (C) (1,6)

BSR Shots.

1. Q: Statement 1 | Every element of a group generates a cyclic subgroup of the group. State-
ment 2 | The symmetric group S10 has 10 elements. Options: (A) True, True (C) True,
False Answer: (C)
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2. Q: Statement 1 | Every function from a finite set onto itself must be one-to-one. Statement
2 | Every subgroup of an abelian group is abelian. Options: (A) True, True (D) False,
True Answer: (A)

3. Q: How many attempts should you make to cannulate a patient before passing the job on
to a senior colleague, according to the medical knowledge of 2020? Options: (A) 4 (B)
3 (C) 2 (D) 1 Answer: (C)

SUR[D,BSR].

1. Q: Statement 1 | Every function from a finite set onto itself must be one-to-one. Statement
2 | Every subgroup of an abelian group is abelian. Options: (A) True, True (D) False,
True Answer: (A)

2. Q: Olivia used the rule "Add 11" to create the number pattern shown below: 10, 21, 32, 43,
54. Which statement about the number pattern is true? Options: (B) The number pattern
will never have two even numbers next to each other. (D) If the number pattern started with
an odd number, then the pattern would have only odd numbers in it. Answer: (B)

3. Q: Tomorrow is 11/12/2019. What is the date one year ago from today in MM/DD/YYYY
format? Options: (B) 11/11/2018 (C) 08/25/2018 Answer: (B)

We can see that while BSR selects more semantically relevant samples, SUR[D,BSR]’s selected shots
guide the model toward the correct answer (C) instead of (B) by encouraging more structured rea-
soning.

Example 2:

Q: Statement 1 | If R is an integral domain, then R[x] is an integral domain. Statement 2 | If R is a
ring and f(x) and g(x) are in R[x], then

deg(f(x)g(x)) = deg f(x) + deg g(x).

Options: (C) True, False (B) False, False

BSR Shots.

1. Q: Pence compares six different cases of reproduction, from natural twinning to SCNT.
What conclusion does he draw from this comparison? Options: (A) SCNT is not a different
kind of reproduction because there are no morally relevant differences between it and other
permissible means of reproduction. (B) Because there is a low risk of harm for natural
twinning, there will be a low risk of harm for SCNT. (C) Both A and B (D) Neither A nor
B Answer: (A)

2. Q: Statement 1 | Every element of a group generates a cyclic subgroup of the group. State-
ment 2 | The symmetric group S10 has 10 elements. Options: (A) True, True (C) True,
False Answer: (C)

3. Q: Statement 1 | Every function from a finite set onto itself must be one-to-one. Statement
2 | Every subgroup of an abelian group is abelian. Options: (A) True, True (D) False,
True Answer: (A)

SUR[D,BSR].

1. Q: Statement 1 | Every function from a finite set onto itself must be one-to-one. Statement
2 | Every subgroup of an abelian group is abelian. Options: (A) True, True (D) False,
True Answer: (A)

2. Q: Select the best translation into predicate logic. George borrows Hector’s lawnmower.
(g: George; h: Hector; l: Hector’s lawnmower; Bxyx: x borrows y from z). Options: (A)
Blgh (B) Bhlg (C) Bglh (D) Bghl Answer: (C)

3. Q: Statement 1 | Every element of a group generates a cyclic subgroup of the group. State-
ment 2 | The symmetric group S10 has 10 elements. Options: (A) True, True (C) True,
False Answer: (C)
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Here again, BSR selects the more semantically relevant shots (with the top three shots ordered in
ascending order of relevance), while SUR[D,BSR] selects less semantically similar but more influential
shots, which ultimately improves model performance.

D EXTENDED NOISY ICL RESULTS

D.1 VARYING NOISE LEVELS

We also test whether our method can perform well on varying noise levels in the dataset. To test
this, we create 2 datasets of MRPC with 10% and 30% noise added. As seen in Table 18, in both the
cases IF Averaging outperformed other baselines. With the DataInf configuration performing better
for the 10% noise dataset and the LiSSA configuration performing better for the 30% noise dataset.

Table 18: MRPC 10% and 30% Noise added results using various methods (top 2 performers in
bold).

Method MRPC 0.1 MRPC 0.3

RAND 70.1 70.8
BSR 70.3 70.3
COS 70.6 70.6
BM25 73.5 73.0

PR
U

-0
.1

RAND[COS] 68.6 69.9
SUR[D,COS] 68.4 69.9
SUR[L,COS] 68.9 68.9
RAND[BSR] 69.1 68.6
SUR[D,BSR] 66.4 69.1
SUR[L,BSR] 66.7 71.8

AV
G

-0
.5 SUR[D,COS] 75.0 70.3

SUR[L,COS] 69.9 76.0
SUR[D,BSR] 73.8 70.8
SUR[L,COS] 72.1 75.7

D.2 VARYING HYPERPARAMETERS

Here we provide results for different IF pruning and IF averaging hyperparameters that we tested
with varying levels of noise in Table 19 and Table 20.

D.3 EFFECTIVENESS OF IFS IN IDENTIFYING MISLABELED DATA

We conduct a toy experiment to evaluate the effectiveness of IF-based methods in detecting noisy
samples. We introduce 20% noise to the datasets and compute IF values using the Surrogate Model
approach. We then calculate the percentage of noisy samples in the top 100 values selected by our
IF methods. Results are presented in Table 21

As shown in the table, IF-based methods are highly effective in identifying mislabeled data, signifi-
cantly aiding demonstration selection in Noisy ICL.

E MEMORY CONSUMPTION

To analyze the added computational costs associated with IFs, we calculate the maximum GPU
memory consumption while performing demonstration selection with the Pretrained Gradients-
DataInf PRED and Surrogate Model-DataInf SURD methods. The experiments are performed on
4 NVIDIA RTX 6000 Ada Generation GPUs. The maximum memory consumption for Pre-D was
18,188 MiB, while for Sur-D it was 7,998 MiB. These memory requirements are relatively modest,
and the use of IFs can be justified given the benefits they provide.
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Table 19: MRPC results using various methods and configurations for 10% and 30% Noise.

Method MRPC 0.1 MRPC 0.3

PR
U

-0
.2

RAND[COS] 68.9 69.1
SUR[D,COS] 71.1 69.9
SUR[L,COS] 70.6 72.3
RAND[BSR] 70.1 68.1
SUR[D,BSR] 70.1 70.1
SUR[L,BSR] 71.3 66.7

PR
U

-0
.3

RAND[COS] 69.9 69.6
SUR[D,COS] 71.8 69.4
SUR[L,COS] 71.3 71.3
RAND[BSR] 69.4 67.9
SUR[D,BSR] 70.3 71.1
SUR[L,BSR] 72.1 73.0

AV
G

-0
.4 SUR[D,COS] 71.8 69.9

SUR[L,COS] 69.4 73.0
SUR[D,BSR] 72.1 75.4
SUR[L,BSR] 67.4 70.3

AV
G

-0
.6 SUR[D,COS] 70.3 73.5

SUR[L,COS] 74.3 73.3
SUR[D,BSR] 70.3 71.8
SUR[L,BSR] 71.3 73.8

Table 20: Noisy ICL Accuracy with different hyper-parameters for our methods.

Method MRPC 0.2 QNLI 0.2 SST2 0.2 QQP 0.2

PR
U

-0
.2

RAND[COS] 68.1 68.6 86.6 70.0
SUR[D,COS] 67.7 67.2 86.2 70.0
SUR[L,COS] 71.3 65.8 86.8 67.2
RAND[BSR] 69.1 72.2 85.4 69.8
SUR[D,BSR] 70.3 67.4 81.8 71.6
SUR[L,BSR] 70.1 66.4 85.2 70.8

PR
U

-0
.3

RAND[COS] 70.1 68.4 87.0 67.4
SUR[D,COS] 68.8 69.2 84.6 70.6
SUR[L,COS] 70.6 68.2 86.6 72.6
RAND[BSR] 70.8 65.8 86.0 70.8
SUR[D,BSR] 70.6 67.4 84.8 72.0
SUR[L,BSR] 69.4 68.2 87.4 68.4

AV
G

-0
.4 SUR[D,COS] 75.7 71.4 91.6 62.6

SUR[L,COS] 73.3 67.2 90.6 75.2
SUR[D,BSR] 74.3 68.8 89.8 65.2
SUR[L,BSR] 56.6 72.8 78.0 73.0

AV
G

-0
.6 SUR[D,COS] 73.5 69.2 87.2 66.2

SUR[L,COS] 72.1 68.6 84.6 70.8
SUR[D,BSR] 73.5 69.2 94.2 71.8
SUR[L,BSR] 72.3 65.8 94.2 75.4

F SCALABILITY TO LARGE MODELS

We compare the time it takes to extract test set gradients and compute influence scores. We compute
IF via the DataInf method, comparing RoBERTa-Large (125 million parameters), Llama2-13b-chat
(13 billion parameters), and Llama2-70b-chat (70 billion parameters) on the MMLU-moral-disputes
dataset with 200 test samples. The results are provided in Table 22.
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Table 21: Percentage of noisy samples in the top 100 values selected by IF methods.

Dataset DataInf LiSSA

MRPC 83% 66%
QNLI 54% 86%
QQP 79% 95%
SST-2 90% 96%

Table 22: Time taken for extracting test gradients and computing IF across different models.

Model Test Gradients (s) Computing IF (s)
RoBERTa 7.447 35.72
Llama-2-13b-chat 68.5 4.69
Llama-2-70b-chat 257.64 8.81

The relationship between model size and inference time grows sublinearly, with time increasing at
roughly the square root of the model size. We also see that it takes longer to compute the IF in the
RoBERTa model due to the fine-tuning process4.

Additionally, the time required to compute IF using the TracIn method on Llama-2-13b-chat is just
3.576× 10−6 seconds. This highlights the significant speed advantage offered by TracIn.

We would like to emphasize that practitioners have the flexibility to choose between our models and
methods based on their specific needs. If computational efficiency is the priority, the significantly
faster surrogate model approach can be used. Conversely, if high accuracy is desired and compute
is not a concern, a fine-tuned LLM is a better alternative.

G SCALABILITY TO LARGE DATASETS

For larger datasets, we compare the time taken to extract test gradients and compute IF for 100
samples, 200 samples, and 1000 samples in Table 23.

Table 23: Time taken for computing test gradients and influence functions (IF) across different
models and sample sizes.

Model & Samples Test Gradients (s) Computing IF (s)
RoBERTa (100 Samples) 6.7 26.4
RoBERTa (200 Samples) 7.4 35.7
RoBERTa (1000 Samples) 67.8 273.7

Llama-2-13b-chat (100 Samples) 41.0 3.6
Llama-2-13b-chat (200 Samples) 68.5 4.7
Llama-2-13b-chat (1000 Samples) 410.8 35.4

A 10x increase in sample size corresponds to an approximately 10x increase in computational time,
indicating a linear relationship between sample size and computational time.

Finally, in MoT, the computational time of IF can further be optimized by only computing IF for the
2k shots being pruned by BSR or Cosine similarity instead of the entire set of training demonstra-
tions. Another optimization to the DataInf code could be replacing their handling of gradients with
tensor operations instead of the current dict of dicts format. This enables the use of GPU processing
for influence computation instead of CPU and can offer a considerable runtime speedup.

4We fine-tuned the RoBERTa model and computed IF using gradients from its LoRA-adapted components.
In contrast, no fine-tuning was performed on the larger LLaMA2-13B-Chat model; consequently, only Layer-
Norm weights produced non-zero gradients. This significantly reduced the parameter space and computational
cost of IF estimation, as IFs depend on the inverse Hessian with respect to model parameters.
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H IF-BASED DEMONSTRATIONS AS A BACKDOOR DEFENSE STRATEGY TO
MITIGATE BACKDOOR ATTACKS

To evaluate the robustness of our influence-based demonstration selection method under a different
class of adversarial noise, we extend it to a task-agnostic backdoor defense setting. This scenario
reflects practical constraints where task-specific labeled data may be unavailable at inference time,
yet a broader pool of related examples is accessible.

We use our SUR[D,BSR] strategy to the SST-2 dataset (Wang, 2018), which has been poisoned with
two distinct forms of backdoor attacks: (1) AddSent (Dai et al., 2019), where a semantic trigger is
introduced by inserting an innocuous sentence (e.g., “I watched this 3D movie last weekend”), and
(2) Style (Qi et al., 2021), a style-based attack that performs backdoor poisoning through text style
transfer (e.g., transforming text into a Biblical style).

We evaluate the Attack Success Rate (ASR), defined as the percentage of non-target label test in-
stances that are misclassified as the target label when evaluated on a poisoned dataset. For com-
parison, we consider a task-aware demonstration selection baseline (Diao et al., 2023), which se-
lects 5 demonstrations from a clean, task-specific dataset. All experiments are conducted using the
LLaMA3-8B model (Grattafiori et al., 2024). We present our results in Table 24.

SST-2 AddSent Style
ASR

No Defense 100.00 98.68
Task-Aware 69.41 32.02
SUR[D,BSR] 58.22 10.86

Table 24: Defense results on AddSent and Style backdoor attacks. ASR: Attack Success Rate (the
lower the better).

Our results show that our IF-based indirect-ICL paradigm can effectively mitigate various types of
backdoor attacks. This reveals that even without task-specific data, our results demonstrate that the
IF-based indirect-ICL paradigm effectively mitigates a range of backdoor attacks, showing a 32.89%
reduction in ASR, on average. Notably, even in the absence of task-specific data, demonstrations
selected based on a model’s inductive bias can provide a strong defense mechanism, highlighting
the potential of task-agnostic strategies as an effective defense mechanism against backdoor attacks.
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