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Abstract

Open-set recognition (OSR), the identification of
novel categories, can be a critical component when
deploying classification models in real-world applica-
tions. Recent work has shown that familiarity-based
scoring rules such as the Maximum Softmax Prob-
ability (MSP) or the Maximum Logit Score (MLS)
are strong baselines when the closed-set accuracy
is high. However, one of the potential weaknesses
of familiarity-based OSR are adversarial attacks.
Here, we study gradient-based adversarial attacks
on familiarity scores for both types of attacks, False
Familiarity and False Novelty attacks, and evaluate
their effectiveness in informed and uninformed set-
tings on TinyImageNet. Furthermore, we explore
how novel and familiar samples react to adversarial
attacks and formulate the adversarial reaction score
as an alternative OSR scoring rule, which shows a
high correlation with the MLS familiarity score.

1 Introduction

In many real-world applications of machine learn-
ing models, it is crucial to understand the models’
limitations and the trustworthiness of their predic-
tions in novel situations. Thus, we investigate open-
set recognition (OSR) [1], which can be seen as a
special case of out-of-distribution (OOD) detection
[2]. The OSR task is to identify novel categories,
which were not included in the training dataset, at
test time. Recently, Vaze et al. [3] have demon-
strated that the progress in OSR performance over
the past years is not necessarily due to advancement
in OSR approaches, but is correlated with improved
performance on the closed-set categories, i.e., the
classification of categories included in the training
dataset. With this observation, simple baseline scor-
ing rules such as the Maximum Softmax Probability
(MSP) [4] and the Maximum Logit Score (MLS)
[3, 5] are competitive and perform on par with—
or even outperform—more dedicated approaches
such as ARPL and ARPL+CS [6], OSRCI [7], and
OpenHybrid [8]. At the same time, Dietterich &
Guyer [9] have proposed the Familiarity Hypothe-
sis, stating that such familiarity-based scoring rules
identify novel categories by measuring the absence
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Figure 1. Adversarial attacks on OSR familiarity
scores. Considering novel categories as positives, the
top box depicts a false positive (FP) attack that lowers
the familiarity of the known category leading to a false
novelty (FNov). In contrast, the bottom box indicates a
false negative (FN) attack that increases the familiarity
of a known category leading to a missed novelty or false
familiarity (FFam).

of familiar features instead of actively recognizing
the presence of novel features. They investigated
occlusions as one of the weaknesses of familiarity-
based OSR, which can cause false novelty detections.
Adversarial attacks pose another potential weakness
to familiarity-based OSR, which we study in this
work. Dietterich & Guyer [9] mention the risks of
adversarial vulnerability in their outlook discussion:

“By applying existing attack algorithms
(e.g., the FGSM [10]), we predict that it
will be very easy to raise the logit score of
at least one class and thereby hide a novel
class image from novelty detection. It may
also be possible to depress the logit scores
of enough classes to create false anomaly
alarms.”

In other words, this prediction states that it might
be easy to compute adversarial perturbations that
amplify familiar features to cause a false familiarity
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(FFam), but it might be harder to hide (all) familiar
features to yield a false novelty (FNov) (see Fig. 1).
While it has been shown that the OSR approach
OpenMax [11] is vulnerable to adversarial attacks
[12, 13], we study the vulnerability of familiarity-
based OSR approaches to gradient-based adversarial
white-box attacks (i.e., the model parameters are
given).
A crucial difference to prior work studying ad-

versarial robustness of OOD detection is that
familiarity-based OSR approaches neither train on
auxiliary OOD data (like, e.g., [14, 15]), nor intro-
duce an explicit category for the “openness” of the
test data (e.g., [11]). Consequently, this requires dif-
ferent designs of adversarial objectives. Ultimately,
using such perturbations for adversarial training
may yield better robustness, but prior work relies
on training with both perturbed closed-set and aux-
iliary OOD data [16].

Although we do not use the presented objectives
for adversarial training in this work, we explore
whether these adversarial attacks can be used to
design an alternative OSR score. Liang et al. [17]
found that OOD detection was enhanced by pre-
processing inputs with an adversarial perturbation.
We explore if this generalizes to the OSR setting
and whether it can be used to develop new OSR
methods. In summary, this study aims to answer
four main questions:

1. False Familiarity vs. False Novelty: What
type of attack is more effective?

2. Uninformed vs. informed attacks: How
can adversarial attacks profit from knowing the
input type (i.e., closed-set or open-set sample)?

3. FGSM vs. iterative attacks: Can more flex-
ible iterative attacks improve upon the fast gra-
dient sign (FGSM) method?

4. OSR scores using adversarial attacks: Can
we use the reaction to adversarial perturbations
as an OSR score to separate familiar and novel
samples?

2 Methodology

2.1 Familiarity-based open-set recog-
nition (OSR)

We consider an input space X and a set F of familiar
categories, i.e., the closed-set. In closed-set recogni-
tion (CSR), the objective is to model the probability
p(y | x, y ∈ F), where y is a label that is associated
with the input x ∈ X . The model is trained on a
training dataset Dtrain = {(xi,yi)}Ni=1 ⊂ X ×F and
evaluated on a non-overlapping closed-set test set,
Dtest-csr = {(xi,yi)}Mi=1 ⊂ X ×F that contains the

categories given at train time. We consider a deep
neural network fθ : X → R|F| parameterized by θ
for modelling p(y | x, y ∈ F). Here, fθ maps an
input to a vector of logits that are normalized using
the softmax function σ : R|F| → (0, 1)|F| to obtain
pseudo-probabilities for the familiar categories.
In open-set recognition (OSR) a set N of novel

categories is additionally considered and a test set
containing inputs from both novel and familiar
classes is used to evaluate the OSR performance:
Dtest-osr = {(xi,yi)}Mi=1 ⊂ X × (F ∪ N ). A bal-
anced test set containing an equal number of familiar
and novel samples is typically used to evaluate the
OSR performance. To decide whether y ∈ F , a fa-
miliarity score, S(y ∈ F | x), is calculated and used
to rank the test samples in Dtest-osr. Familiarity-
based scoring rules include the Maximum Softmax
Probability (MSP) score [4]

SMSP(y ∈ F | x) = max
y

σ(fθ(x))y (1)

and the Maximum Logit Score (MLS) [3, 9]

SMLS(y ∈ F | x) = max
y

fθ(x)y, (2)

which has outperformed the MSP score in prior
work [3]. For both scoring rules, high scores indicate
familiar and low scores indicate novel categories.

2.2 Fast gradient sign method

A simple and effective method for generating ad-
versarial inputs is the Fast Gradient Sign Method
(FGSM) which was first described in [10]. The
FGSM generates an adversarial input, xadv, using
the following rule:

xadv = x+ ε sign[∇xL(θ,x, y)] (3)

Here x represents the unmodified input and the
second term is known as the adversarial perturbation,
where ε controls the magnitude of the perturbation
(as visualized in Fig. 2). Initially, L is set to the
training objective [10], but can be any objective
function that an adversary aims to optimize. The
adversarial perturbation is constrained such that
∥xadv − x∥∞ ≤ ε.

= 0.07 = 0.2 = 0.5 = 0.8 = 1.0

Figure 2. Qualitative example. Perturbed images
(top) and adversarial perturbations (bottom).
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2.3 Iterative attacks

Iterative approaches can generate more diverse per-
turbations compared to the FGSM by optimizing the
objective function in a more flexible manner but at
higher computational costs. An iterative adversarial
attack takes the general form

xadv
n+1 = Clipx,ε{xadv

n + Step(L,θ,xadv
n , y)} , (4)

starting from xadv
0 = x, where Clipx,ε(z)i =

min(max(zi, xi − ε), xi + ε). The Basic Itera-
tive Method (BIM) [18] applies the FGSM up-
date iteratively by setting Step(L,θ,xadv

n , y) =
α sign(∇xL(θ,xadv

n , y)). In this method, the step
size α and the number of iterations can be adjusted
to get the desired trade-off between run-time and
performance. Alternative approaches are inspired
by gradient-based optimizers using momentum to
improve performance [19]. We investigate an itera-
tive approach using RPROP [20–22] that relaxes the
fixed step size α of BIM with an adaptive step size,
where Step(L,θ,xadv

n , y) denotes the update step
computed by some iterative optimization method.
RPROP adjusts the step size separately for each
optimizable parameter while iterating—in the case
of adversarial attacks on images for every pixel per
channel. Hence, adversarial perturbations created
with RPROP can be sparse and may therefore be
less noticeable. For a fair comparison with FGSM,
the perturbations are constraint to ∥xadv−x∥∞ ≤ ε.

2.4 Adversarial attacks on
familiarity-based OSR

The goal of adversarial attacks on OSR is to destroy
the ranking of novel and familiar samples given by
the OSR score, e.g., MLS or MSP. We discuss two
types of attacks as illustrated in Fig. 1.
False Familiarity (FFam). False Familiarity at-
tacks aim to increase the logit (or softmax prob-
ability) of an arbitrary familiar category, which is
similar to targeted attacks in closed-set recognition
[23]. We investigate three objective functions to
achieve this attack:

Lmax(θ,x, y) = max
y′

fθ(x)y′ (5)

L2-norm(θ,x, y) = ∥fθ(x)∥2 (6)

Llog-MSP(θ,x, y) = log max
y′

σ(fθ(x))y′ (7)

The log-MSP loss has been proposed in the ODIN
approach [17] (which was refined in the generalized
ODIN [24]) to preprocess images with adversarial
perturbations to improve OOD detection using the
MSP score.1

1While this is not further investigated in this work, our
OSR experiments did not confirm an improvement over the
MSP score as also mentioned in other independent work [9].

False Novelty (FNov). In this likely more chal-
lenging setting, we may have to decrease the logits of
multiple categories either with a single FGSM step
or multiple iterative steps. Objective functions re-
warding only the decrease of the largest logit might
fail, thus, besides the Lmax, we investigate a the
L2-norm and the sum-exp loss:

Lsum-exp(θ,x, y) =
∑

y′∈|F|

efθ(x)y′ (8)

The 2-norm encourages reducing non-maximum log-
its while still prioritizing the max logit. However,
one limitation of the 2-norm is that it is non-negative.
Since logits are unnormalized and can be negative,
it would be preferable if the objective function also
rewarded making the logits negative. This led us
to propose the sum-exp loss, which continues to
decrease if a logit becomes negative. Importantly,
while False Familiarity attacks maximize these ob-
jectives, False Novelty attacks minimize them.

2.5 Uninformed vs. informed attacks

We call an attack informed if the adversary has
access to the binary set-labels of the input, i.e.,
closed-set vs. open-set, and uninformed if that in-
formation is not available [25]. In the uninformed
setting, either a FNov or FFam attack is applied to
all images, disregarding whether an image is novel
or familiar. For informed adversaries, FFam attacks
are only performed on novel images to make the
classifier falsely predict that the inputs are familiar,
leaving all familiar images unchanged. In contrast,
FNov attacks are only performed on familiar images
to make the classifier wrongly assume novel inputs,
leaving all novel images unchanged.

2.6 Adversarial reaction score (ARS)

The idea that novel and familiar inputs could react
differently to adversarial attacks is motivated by the
findings in [17] as discussed in the introduction and
by our own analyses of the behaviour of scores before
and after adversarial perturbation (see Fig. 5). Here,
we present the concept of an Adversarial Reaction
Score (ARS) as an alternative OSR score. The
ARS measures the reaction to an adversarial attack
applied to a given input. We define the ARS as the
signed difference between the MLS (or MSP) before
and after the adversarial attack:

Sadv(y ∈ F | x) = max
y

fθ(x
adv)y−max

y
fθ(x)y (9)

Note that this may involve using logits (or probabil-
ities) from different categories to calculate a score.
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Figure 3. Uninformed FGSM attacks. Fast gradient sign method (FGSM) attacks on TinyImageNet. Left:
False Familiarity (FFam) attacks. Right: False Novelty (FNov) attacks. (a,b) The OSR ranking measured by
AUROC. (c,d) Median Maximum Logit Score (MLS) of all samples (familiar and novel).

3 Experimental results

We experiment with the TinyImageNet dataset [26],
described as one of the more challenging benchmarks
used in the OSR literature [3]. Here we use the open-
set split presented in Vaze et al. [3] and follow their
experimental setup. TinyImageNet consists of a
subset of 200 ImageNet categories [27], whereas 20
classes are used as the closed-set training dataset
and 180 classes as the open-set. The CNN archi-
tecture was a VGG322, a lightweight version of the
VGG architecture [28]. This results in a closed-set
accuracy of 84.2% averaged over five class splits.
We report the OSR performance of the MLS for

the first of the five splits with the area under the
Receiver-Operator curve (AUROC). The AUROC
is a threshold-less metric that evaluates the ranking
from open-set to closed-set samples. As a higher
AUROC means better OSR performance, adversar-
ial attacks aim to lower the AUROC.

What type of attack is more effective? It de-
pends. In the uninformed FGSM experiments, False
Novelty attacks are more effective in destroying the
ranking, i.e., decreasing the AUROC, than False
Familiarity attacks at the same magnitude ε of ad-
versarial perturbation (Fig. 3(a), 3(b)). However, we
observe the opposite in the informed FGSM setting
(Fig. 4(a), 4(b)), which also holds for the informed
iterative attack (Fig. 6), where the AUROC of FFam
attacks is lower than FNov attacks. To understand

2We use the model weights published on: https://github.
com/sgvaze/osr_closed_set_all_you_need (accessed 2023-
05-23).

this behaviour, we look at the distribution of scores
before and after the attacks (see Fig. 5).

It is too easy to raise the logit score. Or in
other words, it is easy to amplify familiar features.
While FFam attacks aim to amplify familiar features
of the open-set to cause a missed novelty, FNov at-
tacks aim to hide familiar features to reduce the
familiarity of closed-set categories. We recall that
uninformed attacks are performed on both novel
and familiar images. Even though FFam attacks
can increase the median MLS above the 99th per-
centile of the original test data scores (Fig. 3(c)),
the AUROC is rather preserved (Fig. 3(a)). Hence,
the FFam attacks not only increase the familiarity
(i.e., MLS) of the novel but also of the familiar sam-
ples, which preserves the ranking (see also Fig. 5(a)).
In contrast, FNov attacks cannot decrease the me-
dian MLS below the 1st percentile of the original
test scores (Fig. 3(d)), but the ranking (AUROC)
is effectively destroyed (Fig. 3(b)). This suggests
that FNov attacks tend to decrease the scores of the
closed-set more than the scores of the open-set (see
Fig. 5(b)). Our experiments confirm the prediction
of Dietterich & Guyer [9] that it is very easy to
raise the logit score, which only leads to effective
FFam attacks in the informed setting. However, our
results reveal that for uninformed attacks the ability
to easily raise the logit score is not the key to attack
the ranking of familiarity-based OSR approaches.

Which objective function performs best?
While some objectives are able to perform both
types of attacks by swapping the sign, no objective
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Figure 4. Informed FGSM attacks. Fast gradient sign method (FGSM) attacks on TinyImageNet. Left: False
Familiarity (FFam) attacks. Right: False Novelty (FNov) attacks. (a,b) The OSR ranking measured by AUROC.
(c,d) Median Maximum Logit Score (MLS) of novel samples (c) and familiar samples (d).
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Figure 5. MLS for familiar and novel samples after adversarial perturbation. FGSM attacks on
TinyImageNet. Median Maximum Logit Score (MLS) w.r.t. original scores separately for the familiar and novel
samples. The filled region shows the 25th and 75th quantile. (a) False Familiarity (FFam) attacks with the max
loss. (b) False Novelty (FNov) attacks with the 2-norm loss. These were the objectives that could push the scores
most up or down w.r.t. the original scores, for FFam and FNov, respectively (see Fig. 3(c), 3(d)).
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Figure 6. Informed FGSM vs. iterative attacks.
False Novelty (FNov) attacks are performed on familiar
samples (2-norm loss) and False Familiarity (FFam)
attacks on novel samples (max loss). (a) Fast gradient
sign method (FGSM) using ε = 0.07 for FFam and
ε = 0.04 for FNov. (b) Our iterative method with
ε = 0.07 for both the FFam and FNov attacks.

is clearly best for both FFam and FNov attacks
(Fig. 3, 4). In the uninformed setting (Fig. 3), FFam
attacks achieve the lowest AUROC using the Log-
MSP loss and second lowest with the Max loss. For
FNov attacks, the Max loss achieves the lowest AU-
ROC with ϵ < 0.1. Whereas at ϵ ≈ 0.3 all objective
functions achieve an AUROC of ≈0.5, for ϵ > 0.3
the 2-norm achieves even lower AUROC.

Informed attacks reverse the ranking almost
perfectly. As expected, informed FGSM attacks
(Fig. 4) can improve substantially over uninformed
attacks (Fig. 3). While the FFam attacks can in-
crease the median MLS of the adversarial novel sam-
ples beyond the 99th percentile of the test dataset
(Fig. 4(c)), the FNov attacks cannot decrease the
median MLS of the adversarial familiar samples be-
low the 1st percentile (Fig. 4(d)). To study the

5



combination of informed attack types in Fig. 6, we
use the objectives yielding the lowest AUROC, i.e.,
the 2-norm for FNov and the max loss for FFam
attacks. Ultimately, when using both FNov attacks
on familiar and FFam attacks on novel samples to-
gether, informed attacks (both FGSM and iterative)
are able to reverse the ranking of novel and familiar
images almost perfectly (Fig. 6).

FGSM vs. iterative attacks. Informed itera-
tive attacks are able to decrease the AUROC by an
order of magnitude compared to informed FGSM
attacks using the same or even smaller ε (Fig. 6).
The AUROC for FNov attacks is decreased from
0.34 (FGSM) to 0.06 (iterative) and for FFam at-
tack from 0.12 (FGSM) to 0.01 (iterative).

Can adversarial reaction scores be used for
OSR? We calculated the ARS as in Eq. 9 by obtain-
ing xadv with the FGSM using all combinations of
loss-functions (5)-(8), attack types (i.e., FFam and
FNov) and ε-values. While all combinations exhibit
similar behaviour, we focus only on the combination
that achieved the best result. We found this to be
the MLS based ARS using FNov FGSM with the
2-norm loss and ε = 0.051. This resulted in an AU-
ROC of 0.81 compared to the 0.83 obtained by the
MLS scoring rule. Statistics from the evaluation of
our best ARS are shown in Fig. 7. Figure 7(a) shows
that the ARS indeed allows to distinguish novel and
familiar images. However, Fig. 7(b) reveals that the
ARS is strongly correlated with the MLS of the orig-
inal unattacked images. Given the same MLS value,
the overlapping trend lines show that the ARS for
a fixed MLS is very similar for novel and familiar
images. Hence, the effectiveness of the ARS as an
OSR score could be explained by the effectiveness
of the MLS, but further analyses are needed to gain
a better understanding of how the MLS and ARS
are related.

Familiar Novel
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Figure 7. Adversarial reaction score (ARS). This
ARS uses the false novelty FGSM with the 2-norm loss
and ε = 0.051. (a) ARS of familiar and novel samples.
(b) ARS compared with MLS. The trend lines show a
sliding average of the ARS of samples with similar MLS.

4 Limitations

While our study presents adversarial attacks on
familiarity-based OSR scores and steps towards un-
derstanding their adversarial robustness, some lim-
itations exist. Our empirical evaluation is limited
to the TinyImageNet dataset and the VGG32 archi-
tecture. Further research is needed to determine if
our findings generalize to other datasets and model
architectures. Furthermore, we focused on the MLS
and it needs to be tested if the observations hold for
alternative familiarity scores, like the MSP.
While the studied objective functions are appli-

cable to both MLS and MSP, the 2-norm can be
affected by negative scores. For the FFam attack,
where we aim to increase the max logit, the attack
would fail if the logit with the largest absolute value
is negative. In this case, the 2-norm would encour-
age making the negative logit even more negative.
Empirically, this rarely occurred in our experiments.
Finally, with very large epsilon values the adver-
sarial perturbations are clearly visible in the input
images (see Fig. 2). These noisy images lead to
random OSR scores, which cause a random ranking
of the test samples as measured by the AUROC.
However, large epsilons do not lead to meaningful
subtle adversarial attacks.

5 Conclusion

We have studied the vulnerability of familiarity-
based OSR approaches to adversarial attacks. Our
MLS experiments confirm Dietterich & Guyer’s [9]
prediction that the logit score can be easily raised
with an adversarial perturbation. However, their
prediction did not specify what information is avail-
able to the attack. Here, we show that this ability –
to easily raise the logit score of one class – only leads
to effective false familiarity attacks in the informed
setting. In the uninformed setting, such attacks are
less effective than false novelty attacks, which, in
contrast, are able to successfully destroy the ranking
by lowering the logit scores of closed-set categories.
Furthermore, we explored using adversarial attacks
for defining new OSR scores. However, our ARS
scoring rules, contrary to the findings in [17], did
not seem to improve upon the MLS. Nonetheless, we
believe that our study can contribute to the design
of better scoring rules in the future and to making
familiarity scores robust against adversarial attacks.
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