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Abstract

We introduce wrapped β-Gaussians, a family of wrapped distributions on Riemannian
manifolds, supporting efficient reparametrized sampling, as well as exact density estimation,
effortlessly supporting high dimensions and anisotropic scale parameters. We extend Fenchel-
Young losses for geometry-aware learning with wrapped β-Gaussians, and demonstrate the
efficacy of our proposed family in a suite of experiments on hypersphere and rotation manifolds:
data fitting, hierarchy encoding, generative modeling with variational autoencoders, and
multilingual word embedding alignment.

1 Introduction

The Euclidean space is not always sufficiently expressive for modeling the rich data encountered in applied
machine learning. Sometimes data naturally lives in another geometry. Examples include geological processes
(Curray, 1956) or word embeddings (Meng et al., 2019) where data is represented on spheres. Hierarchical
data such as knowledge graphs or taxonomies may be better represented in hyperbolic spaces (Nickel & Kiela,
2017), while the manifolds of rotations and of rigid motions are used in applications like robot pose or motion
estimation (Rosen et al., 2019) or as domains for parametrizing other models (Artetxe et al., 2016).

Probabilistic modeling on Riemannian manifolds is a research area attracting increasing attention. Geometry
introduces substantial computational challenges compared to the Euclidean case. For instance, whereas the
multivariate Gaussian distribution allows efficient calculations over Rn for any symmetric positive semidefinite
covariance matrix, the Gaussian has no direct equivalent over a Riemannian manifold that is as efficient, exact,
and expressive. The possible extensions, further described in §2.2, either require numerical approximations,
numerical integration, rejection sampling, sacrifice expressivity of the scale parameter or abandon geometry
in favor of working in a restriction of the ambient Euclidean space.

A promising direction is that of wrapped distributions (Chevallier & Guigui, 2020), defined implicitly in terms
of a core distribution in tangent space. Wrapped distributions support efficient sampling by design, but
their exact density is in general intractable. Unless the manifold has non-positive curvature everywhere,
like hyperbolic geometry (Nagano et al., 2019), in general, any point on the manifold can be reached by
the wrapping of infinitely many tangent points (figure 1, left). In order to have exact expressions, it is,
therefore, necessary to use a compactly-supported yet expressive distribution in the tangent space, yet no
such constructions have been proposed so far.

We fill this gap with β-Gaussians (Martins et al., 2022), a recent family generalizing Gaussians, which provide
controllable compact support, tractable sampling, and natural loss functions. Our main contributions are:

• We propose the wrapped β-Gaussian, a distribution family on Riemannian manifolds, providing exact
density assessment and reparametrized sampling even in high dimensions and with anisotropic scale;

• We propose an efficient embedded parametrization of scale matrices for the case of hyperspheres;

• We introduce geometry-aware Fenchel-Young losses for parameter fitting;
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Figure 1: Wrapped β−Gaussian on S1 with (1) β = 1 (wrapped Gaussian), (2) β = 0.5 and (3) β = 0. The
β-Gaussian (orange), defined over the tangent plane at µ = (−1, 0), is wrapped over the circle x2 + y2 = 1 to
obtain the wrapped β-Gaussian distribution (blue). For β < 1, the wrap mapping is injective.

• We experimentally demonstrate the usefulness of wrapped β-Gaussians in synthetic and real modeling
tasks on Sn and SO(n), including hierarchy modeling, variational autoencoders, and multilingual
word embedding alignment tasks, in high dimensions.

Wrapped β-Gaussians tend toward wrapped Gaussians in the limit of β → 1, and the proposed losses tend
toward log-probability and Kullback-Leibler divergences, but for any β < 1 the support of the distribution is
compact, allowing for efficient and exact computation, even on manifolds with finite injectivity radius. Our
scalable, numerically stable implementation will be released under an open-source license upon publication.

2 Background

2.1 Differential geometry

A smooth manifold M is a topological space that locally resembles Euclidean space. Common examples
include the sphere, the torus, the real projective plane, as well as various matrix manifolds such as the special
orthogonal group. The tangent spaces allow to generalize calculus on manifolds: at each point x ∈ M, the
tangent space at x, denoted TxM, is a real vector space isomorphic to Rd, where d is the dimension of the
manifold. A Riemannian manifold is a manifold in which every tangent space TxM is equipped with an inner
product gx, and thus also with the induced norm ∥v∥x.

Every tangent vector uniquely defines a geodesic. The exponential mapping Expx : TxM → M maps a
tangent vector v to a point on the manifold corresponding to taking a unit-length step along that geodesic.
The exponential mapping is not injective in general. For instance, on the circle S1, two tangent vectors v
and 2πv map to the same point: a unit-length journey along the geodesic defined by 2πv means travelling in
the same direction as v except faster by a factor of 2π, and so will wrap around and end up at the same
destination. However, Expx is injective on a small enough ball B(0, r) = {v ∈ TxM : ∥v∥x ≤ r}. The
injectivity radius of a manifold at a point x is defined as the radius of the largest such ball:

injx M := sup{r > 0 : Expx is injective on B(0, r)}.

The canonical mapping in the opposite direction is known as the logarithmic map. If we denote Exp−1
x as the

set-valued inverse (preimage), then Logx : M → TxM is defined as1

Logx(y) := arg min{∥v∥x : v ∈ Exp−1
x (y)}.

1We urge caution with the different types of logarithms and exponentials used throughout the paper: Logx(y), Expx(y) refer
to the mappings between manifold and tangent space. We use exp(t) and log(t) for the base-e natural exponential and logarithm
on real and complex numbers, and by extension also for the matrix exponential and logarithm. The notation logβ(t), expβ(t),
introduced in §2.3, are generalizations of log and exp from nonextensive statistical mechanics, and not base-β operations.
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When the minimizer above is not unique, (e.g., for the antipodal point on a circle), Logx is undefined. With
these definitions, on the set B(0, injx M) ⊆ TxM, Expx and Logx form a pair of inverse diffeomorphisms.

Finally, we discuss the special case of embedded manifolds, which covers all manifolds used in our experiments.
In many cases of interest a manifold can be represented as a subset of Rn. In this case, the tangent space
can also be taken as a subset of Rn, specifically TxM = {v ∈ Rn : ⟨v, x⟩ = 0}, and the inner product and
Riemannian metric are inherited from Rn.

2.2 Statistics on manifolds

Standard probability and statistics on Euclidean vector spaces enjoy the benefit of linearity which are no
longer available when generalizing to manifolds. In particular, on manifolds, there is no unique generalization
of the Gaussian distribution. We briefly present the few alternative directions and their tradeoffs.

The intrinsic approach (Pennec, 2006). A natural and principled way to define probability distributions
on manifolds is in terms of the intrinsic geodesic distances d(x, y). The intrinsic standard Gaussian centered
at µ) would take the form p(x) ∝ exp(−d2(x, µ)/2), with its extension to full scale matrices:

p(x) ∝ exp
(︃

−1
2 Logµ(x)⊤Σ−1 Logµ(x)

)︃
. (1)

This formulation can be derived from a maximum entropy principle on the manifold, but it generally does not
lead to computationally friendly reparametrized sampling, and while unnormalized densities are tractable,
the normalization constant might not be (see Hauberg (2018) for the instantiation on Sn).

The embedded approach. For manifolds embedded in a vector space Rn the embedded approach relies
on defining a distribution in the ambient space and conditioning (renormalizing) it on the manifold. This
approach is sometimes computationally friendlier: in fact, conditioned on Sn, p(x) ∝ exp(−κ∥x − µ∥2) yields
the celebrated Langevin distribution, also known as von Mises–Fisher (Mardia & Jupp, 1999, §9.3.2). Still,
more complex anisotropic constructions are generally intractable. Moreover, since distances in ambient space
are not necessarily related to distances on the manifold, this approach may misrepresent the geometry.

The wrapped approach (Chevallier & Guigui, 2020). Since the tangent space of a Riemannian
manifold is isomorphic to a Euclidean space, a natural idea is to pick a location µ ∈ M and define a zero-mean
distribution in TµM. Any mapping from TµM then induces an implicit distribution over M, but in particular
the Exp mapping is an appealing choice due to its relationship to geodesic distances ∥v∥2

µ = d2(µ, Expµ(v)).
Sampling from wrapped distributions amounts to sampling from the tangent distributions and applying
the Exp mapping. Assessing probabilities is possible for manifolds where Exp is invertible and its Jacobian
tractable, e.g., on the hyperbolic space, where Nagano et al. (2019) successfully used wrapped normal
distributions. However, for many important manifolds Exp is not invertible due to curvature, and many
tangent points can map to the same manifold location, leading to generally intractable infinite summations.

Constraining or renormalizing an arbitrary tangent distribution over the injectivity domain of Exp would
solve this problem, at the cost of complicating both sampling and normalizing constant calculation, outside of
simple isotropic cases. Instead, we show how a careful choice of compactly-supported β-Gaussian distributions
in tangent space can keep the support within the injectivity domain with straightforward calculations, leading
to a computationally friendly wrapped distribution that enjoys all the benefits mentioned in this section: a
flexible, anisotropic, geometry-aware distribution with efficient reparametrized sampling and tractable exact
probability assessment.

2.3 Sparse continuous distributions

To ensure that the injectivity constraint is satisfied, the tangent distribution should have bounded, controllable
support. Martins et al. (2022) study such distributions and propose the β-Gaussian family, a generalization
of the Gaussian (normal) distribution. Whereas the Gaussian is deeply connected to the Shannon-Boltzmann-
Gibbs differential entropy H[p] = Ep[− log p(t)], β-Gaussians are generated by the Tsallis entropies (Tsallis,

3



Under review as submission to TMLR

1988), from nonextensive statistical mechanics. Consider for β ̸= 1 the functions

expβ(t) := [1 + (1 − β)t]
1

1−β

+ , logβ(t) := (t1−β − 1)/(1 − β). (2)

Notice that limβ→1 expβ(t) = exp(t) and limβ→1 logβ(t) = log(t), and so by continuity we may define both
functions at β = 1 as the usual exponential and logarithm. Define the Tsallis negative entropy (negentropy):

Ωβ [p] := (1/(2 − β))Ep[logβ p(t)]. (3)

Given a location parameter u ∈ Rn and a symmetric positive semidefinite scale parameter Σ, the multivariate
β-Gaussian (Martins et al., 2022) is defined by the following density function:

v ∼ Nβ(u, Σ) ⇐⇒ p(v) := expβ

(︃
−1

2(v − u)⊤Σ−1(v − u) − Aβ(Σ)
)︃

, (4)

where Aβ(Σ) is an additive normalizing constant whose expression we list in appendix A.1. Therefore, for
β = 1, the β-Gaussian is the usual Gaussian. For β = 0 we obtain a truncated paraboloid, and for β → −∞
the β-Gaussian converges to the uniform distribution on an ellipsoid. Introducing a convenience parameter

Σ̃ = |Σ|
− 1

n+ 2
1−β Σ, Martins et al. (2022) show that β-Gaussians are elliptical distributions satisfying:

y ∼ Nβ(u, Σ) ⇐⇒ y = u + Σ̃
1
2 z, where z ∼ Nβ(0, I), (5)

and that the support of the general β-Gaussian is an ellipsoid:

supp(Nβ(u, Σ)) = {v : (v − u)⊤Σ̃−1(v − u) < R2}, (6)

where the radius R, which depends only on β and the dimension of the space, is listed in appendix A.1.

For v /∈ supp(Nβ(u, Σ)), p(v) = 0 and therefore fitting the parameters by maximizing log-likelihood using
gradient-based methods is ineffective. Instead, Blondel et al. (2020) propose the framework of Fenchel-Young
losses, derived as a natural learning objective for distributions induced by the Tsallis entropies. In particular,
when p is a β-Gaussian and q is an arbitrary density, the FY loss between p and q is:

ℓ(q : p) = Ωβ [q] + Ω∗
β [f ] − Eq(v) [f(v)] , (7)

where (.)∗ denotes the Fenchel convex conjugate (Borwein & Lewis, 2010, §3.3), and f(v) = − 1
2 (v−u)⊤Σ−1(v−

u) is the function generating the β-Gaussian. (Martins et al., 2022, Definition 3). When q is an empirical
distribution Ωβ [q] is infinite, but constant w.r.t. the learnable parameters of f , motivating the cross-FY loss:

ℓ×(q : p) := Ω∗
β [f ] − Eq(v) [f(v)] . (8)

The negentropies Ωβ and Ω∗
β have closed-form expressions for β-Gaussians (appendix A.1). As β → 1, L

recovers the KL divergence and ℓ× recovers the cross-entropy loss. Importantly, ℓ(q : p) is finite when the
support of q and p don’t match, and ℓ×(q : p) is finite even when q has infinite entropy outside of the support
of p. This allows learning and gradient-based modeling.

3 The wrapped β-Gaussian distribution

3.1 Construction.

We propose a tractable distribution on general Riemannian manifolds by wrapping a suitably-parametrized
β-Gaussian defined in tangent space.
Definition 1 (Wrapped β-Gaussian). A random variable y has wrapped β-Gaussian distribution with
location µ ∈ M and scale Σ if y = Expµ(v) where v ∼ Nβ(0, Σ). We write in this case y ∼ WNβ(µ, Σ).
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As a wrapped distribution, we have that Cov[y] = Cov[v] and the Karcher mean is µ (Chevallier et al., 2022),
which is further discussed in §5.1.

For general wrapped distributions, including the wrapped Gaussian (β = 1), assessing the probability density
of some value p(y) is intractable. This is due to the general non-injectivity of Expµ, and is often sidestepped
using approximations that assume small ∥Σ∥. With wrapped β-Gaussians, we can have exactly tractable
density estimation, alongside all other benefits of wrapped distributions, by parametrizing Σ to ensure the
support of v is within the injectivity radius at µ.

To derive the necessary parametrization we use the following result on the β-Gaussians:

Lemma 1. Let Σ̃ = |Σ|−
1

n+2/(1−β) Σ, and R as in eq. (25). If the maximal eigenvalue λmax(Σ̃) < r2

R2

then supp Nβ(0, Σ) ⊂ B(0, r)

Proof can be found in appendix A.2. In practice, it is often more numerically convenient to parameterize
β-Gaussians directly using Σ̃, so we may use the two interchangeably.

Equipped with the result of lemma 1, we derive the following tractable expression for densities, provided the
scale is within a generous constraint set. By varying β, µ, and ˜︁Σ, we can obtain an expressive family with
adaptive support within the injectivity domain around any point.

Proposition 1. Let y ∼ WNβ(µ, Σ) be a wrapped β-Gaussian on M, with Σ̃ as in lemma 1.

If λmax(Σ̃) <
injµ(M)2

R2 , then the density of y has the exact expression

p(y) = expβ

(︃
−1

2 Logµ(y)⊤Σ−1 Logµ(y) − Aβ(Σ)
)︃ ⃓⃓⃓⃓

∂ Logµ(y)
∂y

⃓⃓⃓⃓
. (9)

Proof. From lemma 1 with r = injµ(M), we have that the support of Nβ(0, Σ) lies strictly in the injectivity
domain of M at µ, on which Expµ and Logµ are bijections. The change-of-density formula (push-forward)
yields the desired result.

Like β-Gaussians, wrapped β-Gaussians enjoy efficient tractable reparametrized sampling, since the Exp
mapping is differentiable. This means all necessary building blocks for deep generative models are available.

3.2 Fenchel-Young losses

Due to the compact support of β-Gaussians, p(y) is zero on points outside of the support. For fitting the
distribution parameters to data, therefore, the usual gradient-based maximum likelihood approach does not
apply. In Euclidean space, Fenchel-Young losses (§2.3) address this concern. In this section we study their
extension to wrapped distributions.

Losses in tangent space. On TµM, the natural learning objective for a β-Gaussian is the cross-Fenchel-
Young loss, which for a single target point v ∈ TµM takes the value

ℓ×(δv : p) = (1 − β)Ωβ [p] + Aβ(Σ) + 1
2v⊤Σ−1v. (10)

Derivation is provided in Martins et al. (2022) (proposition 18). For x ∈ M we can therefore directly define
the tangent loss

ℓ×
t (x) := ℓ×(δLogµ(x) : p) = (1 − β)Ωβ [p] + Aβ(Σ) + 1

2 Logµ(x)⊤Σ−1 Logµ(x). (11)

Wrapped Fenchel-Young losses. While the tangent space loss is adequate and we find it to perform
well in practice, it does not account for the distortion induced by wrapping. Notably, while in tangent space
limβ→1 L×(δv, p) = − log p(v), the wrapped case limβ→1 ℓt(x) ̸= − log p(x), as the Jacobian term in eq. (9) is
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not accounted for. The correct way to incorporate a Jacobian term J(x) from a change of density, under
the Tsallis non-extensive system, is not straightforward from eq. (10). We next show how to relate the
Fenchel-Young losses with the probability measure directly by proposing a new rearrangement.

Notice that, in tangent space, if p(v) > 0 then

ℓ×(δv : p) = (1 − β)Ωβ [p] − logβ p(v), (12)

where p(v) = Expβ (f(v) − Aβ(Σ)) = expβ(h(v)). Substituting p(v) = p(Log(x)) · |J(x)| we can apply

logβ(ab) = logβ(a) + logβ(b) + (1 − β) logβ(a) logβ(b) = b1−β logβ(a) + logβ(b). (13)

Then, introducing h(v) := −1/2 v⊤Σ−1v − Aβ(Σ), we get the following the wrapped loss:

L×(x) := (1 − β)Ωβ [p] − |J(x)|1−βh(Logµ(x)) − logβ(|J(x)|). (14)

Contrasting eq. (14) with ℓ×
t (x) = (1−β)Ωβ [p]−h(Logµ(x)) reveals that the Jacobian has both multiplicative

and additive contributions; moreover, the loss satisfies the desired property limβ→1 L×(x) = − log p(x).

Outside of the support, logβ and expβ are not inverses of each other, but we can write L×(δv : p) =
(1 − β)Ωβ [p] − logβ p0(v) where p0(v) = [1 + (1 − β)h(v)]1/(1−β) is the “unclipped” version of p, continuous
and agreeing with p(v) on the support. Since logβ p0(v) = h(v), we may use eq. (14) on all of M.

We stress that even outside of the compact support of the wrapped β-Gaussians, the proposed FY losses
are finite and effective in learning on the entire domain of Logµ(x) (e.g., for spheres, this excludes only the
antipode −µ).

3.3 Parametrizations of the scale parameter

Instantiating (and modeling with) a wrapped β-Gaussian WNβ(µ, Σ) requires the specification of a β-Gaussian
Nβ(0, Σ) such that (i) its support of Nβ(0, Σ) is on the tangent space TµM and (ii) the spectrum of its scale is
bounded following proposition 1. In this section, we detail several ways to achieve both desiderata efficiently.

To ensure that a tangent space β-Gaussian distribution remains within the injectivity radius, we parametrize
the eigenvalues of Σ̃ to have values between 0 and λmax = inj(M)2

R2 from proposition 1, using the sigmoid
function in log-domain: we fit a real parameter s ∈ Rm and set

log λ̃j = log λmax − log(1 + exp(−sj)). (15)

We may then use Σ̃ = diag(exp λ̃) as a feasible diagonal scale matrix. While we do not report experiments
with full scale matrices, the same strategy may be used, introducing an additional orthogonal parameter
matrix for the eigenvectors.

Local coordinates. The scale parameter can be defined as a n-dimensional matrix in some chosen basis of
TµM. This requires an arbitrary choice of basis which should depend on µ continuously, leads to complicated
gradients, and makes the comparison between distributions at different points challenging. We propose
identifying a point p ∈ M (a pole) and parametrizing a matrix Σ (or Σ̃) in TpM. Then we may implicitly
define Σµ via parallel transport map such that

PTp→µv ∼ Nβ(0, Σµ) where v ∼ Nβ(0, Σ). (16)

For a Riemannian manifold M embedded in Rn, parallel transport is an isometry, therefore the two densities
are equivalent and we can assess the probability of any vector in Tµ by first applying PTµ→p. In other words,
in embedded coordinates PTp→µ has an orthogonal matrix representation Qµ, and |Σµ| = |QµΣQ−1

µ | = |Σ|.

Ambient coordinates. Alternatively, we may specify Σ as an n-by-n matrix in ambient space and denote
Pµ the rank-d orthogonal projection matrix onto TµM, and set Σµ = PµΣPµ. This removes the dependency
on an arbitrary pole and leads to a more interpretable parametrization. In general, carrying out calculations
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with PµΣPµ requires a costly factorization even when Σ is already decomposed or diagonal. In §4.2 we show
efficient expressions that avoid costly factorization for working with the sphere manifold Sn. Since projection
matrices have eigenvalues 0 and 1, it is sufficient to constrain the ambient Σ as described above, in order to
obtain a feasible scale matrix after projection.

4 Instantiations on specific manifolds

4.1 Geometric toolbox

Table 1 summarize all the necessary geometric tools to instantiate the wrapped β-Gaussian on two manifolds:
the hypersphere (Sn) and the manifold of rotations, also known as the special orthogonal group (SO(n)).

Table 1: Geometric toolbox for the sphere and rotation manifolds. For the Jacobian on SO(n), ±iθj are the
eigenvalues of X⊤V , m = ⌊n/2⌋, and γ = n mod 2.

Hypersphere Sn (appendix B) Special orthogonal group SO(n) (appendix D)

Tangent space TxSn = {v ∈ Rn, ⟨x, v⟩ = 0} TXSO(n) = {V ∈ Rn×n : V ⊤X + X⊤V = 0}
Injectivity radius inj Sn = π inj SO(n) = π

√
2

Exponent Expx(v) = cos(∥v∥2)x + sin(∥v∥) v
∥v∥ ExpX(V ) = X exp(X⊤V )

Logarithm Logx(y) = arccos(⟨y,x⟩)√
1−⟨y,x⟩2

(y − ⟨y, x⟩x) LogX(Y ) = X log(X⊤Y )

Jacobian
⃓⃓⃓

∂ Expx(v)
∂v

⃓⃓⃓
=

(︁
sinc(∥v∥2)

)︁n−1 ⃓⃓
∂ ExpX V

∂V

⃓⃓
=

∏︁m

j=γ

∏︁m

k=1 sinc2
(︂

θj −θk

2

)︂
sinc2

(︂
θj +θk

2

)︂

4.2 Hypersphere Sn−1 embedded in Rn

Relative coordinates. Without loss of generality we choose the north pole p = (0, . . . , 0, 1) as reference.
The corresponding tangent space is TpM = {(v, 0)|v ∈ Rn−1} where we can easily parametrize a scale
parameter by removing the unused last coordinate. We rotate the space via parallel transport, and implement
it as a composition of two Householder reflections in Rn: PTp→µ = Rµ ◦ R µ+p

∥µ+p∥
(Algorithm 1). R µ+p

∥µ+p∥
maps

a point from TpSn−1 to TµSn−1, and Rµ maps any point on TµSn−1 to itself, so can be considered as identity.

Ambient parametrization. On the sphere, we provide a result that allows the ambient space parametriza-
tion can be used efficiently. We may posit a scale matrix Σ̃ ∈ Rn×n and observe that the projection operator
Pµ = I − µµ⊤ is a rank-one matrix. The projected scale Σ̃µ = PµΣ̃Pµ has the subspace Rµ in its null space,
and we have λmax(Σµ) ≤ λmax(Σ). Thanks to its structure, we are able to derive exact expressions for the
pseudoinverse Σ̃+

µ and the pseudodeterminant |Σ̃µ|+, in terms of the ones of Σ̃.

Proposition 2. Let S be a n-by-n positive semidefinite matrix parameter and P = (I − xx⊤) be the
projection operator onto the hyperplane orthogonal to a unit vector x. Let R = I − S+(S+)⊤ be the
projection onto the kernel of S, and β = x⊤Rx. Then, we have:

(i) |PSP |+ =
{︄

|S| · x⊤S+x, β = 0,

|S| · β, β ̸= 0.

(ii) (PSP )+ =

⎧⎨⎩S+ − S+xx⊤S+

x⊤S+x
, β = 0,(︂

I − 1
β Rxx⊤

)︂
S+

(︂
I − 1

β Rxx⊤
)︂⊤

, β ̸= 0.

The proof, and further implementation details, can be found in appendix C. If Σ̃ is diagonal, this result
allows us to perform all calculations needed for assessing densities or FY losses in O(n), and if Σ̃ is stored in
a factorized form, in O(n2). Without this result, a cubic-cost eigendecomposition of Σ̃µ would be required. If
Σ̃ is guaranteed full-rank (e.g., by parametrization), then only the β = 0 case is needed.
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(a) Fenchel-Young losses w.r.t. shifting the true
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Figure 2: Visualization of wrapped L× and tangent ℓ× losses w.r.t. shifts of (a) location, and (b) σ̃
parameter of WNβ(µ, σ̃2I). µ is random on the S2, and the trace of Covµ = 0.3. Losses are averaged over
10000 samples from the true WNβ distribution (β = 0.9). Additionally, in appendix B.4, we provide the plot
for S30, where we observe the higher influence of the Jacobian correction term (eq. (14)).

4.3 The Special Orthogonal manifold of rotation matrices SO(n)

The manifold SO(n) is well studied in Lie group theory. As an embedded submanifold of Rn×n, its elements
are identified with orthogonal matrices with determinant 1, i.e., rotation matrices. This makes it valuable in
practical applications involving rotations and alignment between spaces. The tangent space at the identity
matrix is the vector space of skew-symmetric matrices, with dimensionality n(n − 1)/2. On this manifold
we only employ a pole-based parametrization. The Exp mapping involves the matrix exponential, and its
Jacobian has an efficient expression which we present, along with the rest of the toolbox, in appendix D.

5 Experiments

We conduct a series of experiments to showcase the learning with wrapped β-Gaussians.

In our experiments, we use β = 0.9 as a default value, for which the distribution shape is relatively close to a
Gaussian distribution (β = 1.0), but with finite support size.

5.1 Parameter estimation: moment matching and FY loss minimization

As Chevallier & Guigui (2020) note, one of the important advantages of wrapped distributions is more
straightforward relationship between the moments and the parameters of the distribution.

For Riemannian manifolds, it is useful to have a notion of mean and covariance. The natural definition of
mean comes from a center of mass formulation for a set of non-negative weights wi:

µ = arg min
x

1
N

n∑︂
i=1

d(xi, x)2. (17)

For Euclidean spaces, by linearity there exist a closed form expression: µ = 1
N

∑︁N
i=1 xi. Unfortunately, for

Riemannian manifolds, the geometric mean of the points may not lie on the manifold. For Riemannian
manifold M endowed with a norm ∥.∥x at point x, the Fréchet mean is a global minimizer of the eq. (17),
and the Karcher mean is the local minimizer. The existence of Karcher means is ensured by the variances
being finite, and when well-defined, the Karcher mean is a barycenter of vectors in tangent space Logµ xi

(Pennec & Arsigny, 2012).
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Figure 4: Support of the embeddings trained on lexical entailment task: pole parametrization. For the
visibility we split the plot in three subplots according to the subtrees of nodes dog, cat, and bird (from left to
right). The supports are sent to the tangent space of the words dog, cat, bird via logarithm map.

The covariance is defined in tangent space and is the same for wrapped and tangent distributions (Chevallier
et al. (2022), equation. 2.6):

Covµ[x] =
∫︂

M
Logµ(x) Logµ(x)⊤p(x)dv(x) ≈ 1

N

∑︂
xi

Logµ(xi) Logµ(xi)⊤. (18)

Although we can use the moment matching described above directly searching for Karcher mean2 and
estimating empirical covariance from eq. (18), we can use gradient optimization with Fenchel-Young losses,
which can also be used in end-to-end deep learning modeling. We visualize the Fenchel-Young loss in the
figure 2. In appendix B.4 we perform a simple fitting of WNβ to the samples from true WNβ , and show that
indeed by using Fenchel-Young losses, we can do gradient-based optimization of location and scale parameters,
converging towards true distributions.

5.2 Modeling hierarchies on the sphere with FY losses

animal

cat dog bird

lion
tiger

jaguar
chihuahua

dalmatian
corgi seagull

parrot

Figure 3: Synthetic dataset emulating lex-
ical entailment.

In this experiment, we demonstrate Fenchel-Young losses for
modeling hierarchical relationships between distributional em-
beddings. We employ a small synthetic hierarchy inspired by
lexical entailment (figure 3) and embed each word as a wrapped
β-Gaussian. Vilnis & McCallum (2015) consider KL divergences
for this modeling task on Rn. Motivated by the relationship be-
tween the FY loss L(q : p) and KL divergence, we assign WNβ

distribution pw for each word in the dataset w, and minimize:

L(w) := L(pw : pπ(w)) − γ log
∑︂
w′

exp L(pw : pw′), (19)

where the term L(pw : pπ(w)) is calculated for words w and its parent π(w), and L(pw : pw′) is a loss for a
negative pair (no entailment edge), where w′ is a negative sample, that is not an ancestor of w. The k = 3
negatives are sampled with a replacement for each w in batch, and L(w) is averaged over the batch. We train
for 30 iterations with a learning rate of 0.05 with batch size 12 (the total number of words). We use γ = 0.1
to prevent L(pw : pw′) dominating the learning objective when positive L(w : p) becomes close to zero.

Results In figure 4, we visualize the learned probabilistic embeddings. We observe, that the learned
embeddings tend to organize the hierarchical structure: support of the superordinate incorporating the
support of hyponym.

2We use the geomstats package (Miolane et al., 2020) to find Karcher means on the sphere.
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5.3 Anisotropic hyperspherical VAE on MNIST

In this experiment, we evaluate the wrapped β-Gaussian on dynamically binarized MNIST (Salakhutdinov &
Murray, 2008) reconstruction task following Davidson et al. (2018). We train a Variational Auto Encoder
(Kingma & Welling, 2014, VAE;), optimizing the Evidence Lower Bound (ELBO) objective:

log p(x) ≥ Eqθ(z|x)[log pϕ(x|z)] − KL[qθ(z|x) : p(z)]. (20)

We explore modeling the latent vectors on an n-dimensional manifold Sn. We define the encoder output
qθ(z|x) as wrapped β-Gaussian, and use an uniform spherical prior p(z) ∝ 1. Even if the proposal has compact
support, as long as its support is included in the support of the prior, the ELBO in eq. (20) is finite and
well-defined, therefore we may use standard probability theory and do not need to resort to Fenchel-Young
losses, for which a corresponding nonextensive ELBO would be nontrivial.

Table 2: Summary of the results for MNIST exper-
iment for different latent space dimension z ∈ Sn.
We report the averaged log-likehoods estimated via
importance sampling with 500 samples (Burda et al.,
2016), as we as the standard deviations. Results are
averaged over 10 runs.

relative embedded
z dim S-VAE WNβ-VAE WNβ-VAE

2 -132.50±0.73 -130.10±1.65 -131.36±0.81
5 -108.43±0.09 -107.18±0.16 -107.16±0.25
10 -93.16±0.31 -92.60±0.51 -92.78±0.25
20 -89.02±0.31 -97.94±5.84 -90.58±0.38
40 -90.87±0.34 -100.49±4.53 -95.62±0.36

We estimate the gradients of the ELBO using Monte
Carlo methods. For the reconstruction part of the
ELBO (the first term), we apply the reparametrization
trick (Kingma & Welling, 2014) to WNβ , as we can
compose eq. (5) with the differentiable Exp mapping.
We estimate the KL term with the common random
numbers strategy (Blundell et al., 2015; Owen, 2013),
reusing the same sample as in the first term.

We follow the hyperparameter setting of Davidson et al.
(2018) using MLP with 2 hidden layers for both the
encoder and the decoder: [256, 128] hidden units for
the encoder and [128, 256] hidden units for the decoder.
We trained for 1000 epochs using the Adam optimizer
(Kingma & Ba, 2015) with mini-batches of size 64, and
with a linear warm-up for 100 epochs and maximum
learning rate of 0.001.

Results The results from table 2 indicate that
wrapped β-Gaussian VAEs perform slightly worse than the isotropic S-VAE baseline in higher dimen-
sions n ≥ 20, but can outperform it for smaller latent dimensions n = 2, 5, 10. We observe that the embedded
parametrization has overall lower variance compared to the relative to the pole parametrization and scales
better with dimension.

5.4 Multilingual embedding alignment via Bayesian orthogonal Procrustes

For most natural language processing tasks it is substantially easier to obtain monolingual data rather than
cross-lingually aligned data. Word embeddings (Turian et al., 2010) provide the opportunity for finding
alignments between the implicit Euclidean spaces occupied by two languages. It is common to restrict the
search to linear alignments (Mikolov et al., 2013a; Dinu et al., 2015; Lazaridou et al., 2015): given a dataset
of paired embeddings (ui, vi) ∈ D, obtained using a bilingual dictionary, we seek

arg min{
∑︂

i

∥ui − Xvi∥2
2 : X ∈ M ⊆ Rn×n}. (21)

A common choice of constraint is M = SO(n), which restricts the space of alignments to rotations. As
rotations preserve angles, this orthogonal constraint leads to good performance in a number of NLP tasks
(Xing et al., 2015; Artetxe et al., 2016; Hamilton et al., 2016). Equation (21) is known as the orthogonal
Procrustes problem, and a direct solution is available from the SVD of the matrix

∑︁
i viu

⊤
i (Schönemann,

1966). However, in some situations that require more advanced analysis, a Bayesian treatment can be more
informative than point estimation. For probabilistic treatment, note that eq. (21) is a constrained regression
with unit-variance Gaussian observations:

p(u | X, v) ∝ exp
(︁
∥u − Xv∥2/2

)︁
. (22)
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prognoses, prognosi

cooking, cottura

pregnancy, gravidanza

animation, animazione

photograph, fotografia

billingham, billingham

2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25
Distance between rotated english and italian word

head, capo

Figure 5: Euclidean distances between Italian embedding and rotated English embedding. English
embeddings are rotated by 30 samples from the q(X). The smooth distributions are 1d Gaussian kernel
density estimation plots (original samples are present as well).

We treat X as a random variable over SO(n), with a known prior distribution p(X): for simplicity, we pick
the uniform distribution under the Haar measure. Under this measure, the volume of SO(n) is the product
of the sphere surface areas for dimensions ranging from 1 to n, leading to: (Zhang, 2015, Theorem 2.24)3

p(X) = 1
Vol(SO(n)) =

∏︁n
k=1 Γ(k/2)

2n−1πn(n+1)/4 . (23)

Under the uniform prior, the maximum a posteriori point estimate is the same as the standard orthogonal
Procrustes solution to eq. (21), but the full posterior distribution p(X | D) is intractable. We perform
variational inference with a wrapped β-Gaussian approximate posterior

qθ(X) ∼ WNβ(µX , ΣX),

where µX ∈ SO(n) is a trained location parameter parametrized as µX = exp(L − L⊤), L ∈ Rn×n, and ΣX

is a covariance operator which is diagonal in our chosen basis of TISO(n) (per proposition 5), and thus
parametrized as a log-domain n(n − 1)/2-dimensional vector. We then maximize an evidence lower-bound:

log p(u | v) ≥ Eqθ(X)[log p(u | X, v)] − KL[qθ(X) : p(X)], (24)

using reparametrized samples from qθ(X) and the tractable expression of the density log qθ(X), like in §5.3.

We fit this probabilistic orthogonal Procrustes model on the English-Italian alignment dataset from Dinu et al.
(2015), where the source and target spaces are independently trained continuous bag-of-words representations
(Mikolov et al., 2013b) of dimensionality n = 300. (The dimension of SO(n) is then 44 850.) Despite the very
high dimension, we encounter no numerical issue in optimizing, starting with a random initialization, and
converge to a probabilistic with precision@1 test set performance just slightly worse than the point estimate
(42.3 ± 0.3% vs. 43.3%). Figure 5 demonstrates the kind of analysis of some individual word translation made
possible by the probabilistic treatment: some word pairs with more ambiguity (e.g., pregnancy–gravidanza)
get mapped to a wider range of values, as measured by the distance from the expected translation in the
dictionary, compared to other words, like the toponym billingham, which is much less ambiguous. In addition
to the analysis, the probabilistic treatment also allows to incorporate further domain-specific knowledge
through the prior p(X), which need not be uniform.

6 Related work

Prescribed distributions on spheres. The sphere manifold Sn has in particular attracted much attention
from the field of directional statistics (Mardia & Jupp, 1999). Possibly the most widely used distribution on Sn

is the Langevin distribution, obtained by conditioning an isotropic Gaussian. De Cao & Aziz (2020) propose
3The theorem gives the volume of O(n), which consists of two disconnected subsets, each isomorphic to SO(n).
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the Power Spherical distribution, which is similarly shaped to Langevin but more numerically stable in high
dimensions. For anisotropic covariances, the counterpart to Langevin is the Fisher-Bingham distribution
(Kent, 1982), which in general is not tractable, requiring numerical integration (Chen & Tanaka, 2021). The
Spherical Normal (Hauberg, 2018) is an intrinsical Riemannian construction supporting full covariances, but
neither densities nor reparametrized samples are available in general dimensions. The wrapped β-Gaussian
supports full covariances without sacrificing exact and efficient density assessment and sampling.

Wrapped distributions. Chevallier & Guigui (2020) study wrapped distributions within full generality,
and Chevallier et al. (2022) provide a general form for the required Jacobian in symmetric spaces (including
spheres and SO(n).) If the injectivity radius is infinite (e.g., for hyperbolic space), wrapping a Gaussian
leads to tractable and well-performing models in large-scale experiments (Nagano et al., 2019). For finite
injectivity radii, however, the infinite support of the Gaussian leads to intractable integrals, which require
either ignoring the tails (an approximation only valid for high concentrations), or truncating the distribution,
which is generally not tractable (Galaz-Garcia et al., 2022). Our construction, based on β-Gaussians, leads to
a practical solution for exact wrapping on manifolds with finite injectivity radii.

Implicit distributions on manifolds For statistical inference or modeling, more flexibility is required
than even anisotropic distributions can provide. Approaches based on neural networks have been extended to
Riemannian geometry, including normalizing flows (Rezende et al., 2020; Mathieu & Nickel, 2020), score-based
methods (Bortoli et al., 2022), and diffusion methods (Huang et al., 2022; Okhotin et al., 2023). Sampling
from general energies on manifolds is achievable by methods like Geodesic Monte Carlo (Byrne & Girolami,
2013) and Riemannian Stein Variational Gradient Descent (Liu & Zhu, 2018) (Liu & Zhu (2022) provide a
review). The flexibility of these methods comes at higher computational cost.

7 Conclusion

We introduce wrapped β-Gaussians: a flexible family of distributions on Riemannian manifolds, with efficient
expressions for sampling, learning, and exact assessment of density. We adapt the Fenchel-Young losses, the
natural learning criterion for β-Gaussians, to take into account the manifold curvature. We instantiate our
construction on spheres and rotations, deriving new expressions for an ambient-space parametrization on
spheres, and experimentally validate the utility of β-Gaussians for learning, variational auto-encoding, and
high-dimensional variational inference for orthogonal Procrustes. We release an open-source implementation
that we hope will aid researchers and practitioners exploring new applications and other manifolds.
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Appendix
A Sparse continuous distributions

A.1 Expressions

For completeness, we cite here some expressions given by Martins et al. (2022).

The radius of a standard β-Gaussian is:

R =

⎛⎝Γ
(︂

n
2 + β

β−1/2

)︂
Γ

(︂
β

β−1/2

)︂
π

n
2

·
(︃

2
1 − β

)︃ 1
1−β

⎞⎠
1−β

2+(1−β)n

. (25)

The normalizing constant of a β−Gaussian has expression

Aβ(Σ) = 1
β − 1 − R2

2 |Σ|−
1

n+2/(1−β) . (26)

The Tsallis negentropy of a β-Gaussian p is

Ωβ [p] = − 1
(2 − β)(1 − β) + R2|Σ|−

1
n+2/(1−β)

2(2 − β) + n(1 − β) . (27)

If f is the function that induces the sparse distribution p, then we have the relationship (Martins et al., 2022,
Proposition 10)

Ω∗
β [f ] = (1 − β)Ωβ [p] + Aβ(Σ). (28)

In all expressions, if Σ is rank-deficient, we may use the pseudodeterminant in order to obtain a distribution
in a lower-dimensional subspace with respect to the appropriate Lebesgue measure (Gelbrich, 1990)

A.2 Eigenvalues and support: Proof of lemma 1.

When the scale of β-Gaussian is parametrized by Σ̃ it is easy to control for the support size of β-Gaussian to
be strictly less than a desired radius r. Let Σ̃ = PΛP ⊤, for PP ⊤ = I, then:

sup
t⊤Σ̃−1

t<R2

∥t∥2
2 = sup

t⊤Λ−1t<R2

⃦⃦
P ⊤t

⃦⃦2
2 = sup

∥t∥2
2<R2λmax(Σ̃)

∥t∥2
2 = R2λmax(Σ̃) < r2.

B The wrapped β-Gaussian on the sphere.

B.1 Inverse exponential map

In this section, we derive the inverse of the exponential map,

y = Expx(v) = cos(∥v∥2)x + sin(∥v∥2) v

∥v∥2
.

We seek v ∈ Exp−1
x (y). The first step is to identify the possible values for ∥v∥2.

⟨y, x⟩ = cos(∥v∥2) ⟨x, x⟩⏞ ⏟⏟ ⏞
=1

+ sin(∥v∥2) 1
∥v∥2

⟨v, x⟩⏞ ⏟⏟ ⏞
=0

∥v∥2 = arccos ⟨y, x⟩ + 2kπ, k ∈ Z.

(29)
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At this point it is apparent why the Exp mapping is not injective. Since the Log mapping seeks the
smallest-norm solution, we take ∥v∥2 = arccos ⟨y, x⟩. Finally, solving for the direction of v,

Logx(y) = v =
∥v∥2

sin ∥v∥2
(y − cos(∥v∥2)x) = arccos ⟨y, x⟩√︂

1 − ⟨y, x⟩2
(y − ⟨y, x⟩x). (30)

B.2 Determinant of Jacobian of exponential map
Proposition 3. Let x ∈ Sn and v ∈ TxSn. Then,⃓⃓⃓⃓

∂ Expx(v)
∂v

⃓⃓⃓⃓
=

(︃
sin ∥v∥2

∥v∥2

)︃n−1

Proof. We adapt the proof of Nagano et al. (2019) for determinant of the exponential map on a hyperbolic
space. We start by noting that ∂ Expx(v)

∂u is a function, which acts from TxSn to TExpx(v)Sn. We are free
to select an orthonormal basis in which we compute the Jacobian

⃓⃓⃓
∂ Expx(v)

∂u

⃓⃓⃓
. Hence, we choose a basis by

including v = v
||v|| , and any other set of orthogonal unit vectors in TxSn: {v, v′

1, . . . , v′
n−1}. Next we compute

a set of directional derivatives w.r.t. to each of the basis vectors.

d Expx(v̄) = ∂

∂ϵ

⃓⃓⃓⃓
ϵ=0

Expx(v + ϵv̄)

= ∂

∂ϵ

⃓⃓⃓⃓
ϵ=0

[︃
cos(∥v∥2 + ϵ)x + sin(∥v∥2 + ϵ) v + ϵv̄

∥v + ϵv̄∥

]︃
= − sin(∥v∥2)x + cos(∥v∥2)ȳ.

Here we used ∂
∂ϵ

v+ϵv
||v+ϵv|| = 0 since the norm of the vector does not change w.r.t. ϵ

The norm of this directional derivative w.r.t. v is equal to 1:

∥− sin(∥v∥2)x + cos(∥v∥2)v∥2 =
√︂

sin(∥v∥2)2 + cos(∥v∥2)2 = 1

Next, we calculate the directional derivatives w.r.t. the other basis vectors v′
1, . . . , v′

n−1:

d Expx(v′
k) = ∂

∂ϵ

⃓⃓⃓⃓
ϵ=0

Expx(v + ϵv′
k)

= ∂

∂ϵ

⃓⃓⃓⃓
ϵ=0

[︃
cos(∥v∥2)x + sin(∥v∥2)v + ϵv′

k

∥v∥2

]︃
=

sin ∥v∥2
∥v∥2

v′
k.

The norm of the directional derivative w.r.t. v′
k is thus

⃦⃦⃦
sin∥v∥2

∥v∥2
v′

k

⃦⃦⃦
2

= sin∥v∥2
∥v∥2

.

Finally, the determinant is the product of norms of directional derivatives since the chosen basis is orthonormal:

det
(︃

∂ Expx(v)
∂v

)︃
=

(︃
sin ∥v∥2

∥v∥2

)︃n−1

Note that n here is the dimension of the sphere and not the dimension of the ambient space.
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B.3 Wasserstein-2 distances and interpolation

Mallasto & Feragen (2018) provides an analitical expression for a pullback Wasserstein-2 squared distance
between two wrapped normal distributions defined over the tangent bundle, which we can directly adapt to
calculate pullback Wasserstein-2 squared distance between two WNβ distributions p1 = WNβ(µ1, Σ2) and
p2 = WNβ(µ2, Σ2) transported to a shared tangent plane at some point µ:

W2
2 (p1, p2) = d2

M(µ1, µ2) + W2
2 (PTµ1→µNβ(0, Σ2), PTµ2→µNβ(0, Σ2)) (31)

For pole parametrization, when tangent β-Gaussians are already defined over a common tangent space the
expression simplifies to

W2
2 (p1, p2) = d2

M(µ1, µ2) + R2

N + 2(2−β)
1−β

B2(Σ̃1, Σ̃2), (32)

where B2(A, B) := Tr
(︂

A + B − 2
(︁
A1/2BA1/2

)︁1/2
)︂

(Martins et al., 2022).

In figure 6, we plot the pullback Wasserstein-2 interpolation between two wrapped β-Gaussian distributions.

Figure 6: pullback-Wasserstein-2 interpolation between two wrapped β-Gaussians over the S2.

B.4 Fitting data with L× loss.

In figure 7, we provide additional visualization for tangent and wrapped losses for higher dimensionality (S30),
where the influence of wrapping is higher.

Additionally, we experiment with fitting a dataset of points on S2 using the Fench-Young losses. To fit the
wrapped β-Gaussian to the dataset X we use the tangent ℓ× loss from eq. (10), and compare it to L× loss
with Jacobian correction (eq. (14)). For the simple experiment, we create a dataset of size 10000 by sampling
from a true wrapped β-Gaussian (initialized randomly to have non-isotropic covariance). We initialize the
wrapped β-Gaussian with a random location and scale parameters and optimize the location parameter with
Riemannian Adam (Becigneul & Ganea, 2019), with the scale parameterized as in eq. (15), with learning rate
0.01 (other hyperparameters are default) for 5000 iterations.

Results In figure 8, we show that by optimizing the Fenchel-Young loss, we can successfully recover the
true location and covariance parameters. Both tangent loss and wrapped loss recover true parameters,
while the tangent loss converges faster in our experiments. In this experiment, the accuracy of finding µ,
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(a) Loss w.r.t. shifting the location µ from the
true location: µ̂ = Logµ(P Tp→µ(t, 0)).
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(b) Loss w.r.t. shifting the σ̃ of the
WNβ(µ, σ̃2I).

Figure 7: Visualization of wrapped and tangent Fenchel-Young losses w.r.t. to (a) location, and (b) scale
shift from the true parameters of WNβ(µ, σ̃2I), where µ is random on the S30, and the trace of Covµ = 0.3.
Losses are averaged over 10000 samples from the true WNβ distribution (β = 0.9).
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tangent Lx, β= 0.99
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Figure 8: Fitting data on S2. For different β parameters, we fit the wrapped β-Gaussian on the samples from
the true wrapped β-Gaussian with the same β. We each run, we plot pullback W2

2 distance (appendix B.3)
between true wrapped β-Gaussian and the fitted one (with the same β). Solid colored lines represent fitting
with tangent ℓ×, and dashed colored lines represent fitting with wrapped L× (with Jacobian correction).
Different colors represent different β. On the x axis is the number of optimization steps.

Σ̃ is comparable for moment matching and FY loss optimization (< 0.02 pullback W2
2 error, as defined in

appendix B.3). When available, the iterative process based on Karcher mean is empirically preferrable.

C Extrinsic parametrization of covariances on the sphere: Proof of proposition 2

For full-rank covariance Σ̃ defined in the ambient space, the following result allows us to calculate pseudo-
determinants and pseudoinverses efficiently. For narrative purposes, we split the proposition into separate
results for the full-rank and rank-deficient cases.
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Lemma 2. Let S be a n-by-n positive definite scale parameter and P = (I − xx⊤) be the projection
operator onto the hyperplane orthogonal to the unit vector x. We have:

(i) |PSP |+ = |S| · x⊤S−1x,

(ii) (PSP )+ = S−1 − S−1xx⊤S−1

x⊤S−1x
,

(iii) v⊤(PSP )+v = v⊤S−1v
(x⊤S−1v)2

x⊤S−1x
.

Proof. (i) For any two matrices A, B, AB and BA have the same nonzero eigenvalues. Therefore, |PSP |+ =
|PPS|+ = |PS|+, since projection operators are idempotent. Following Grossmann (2022), since PS has
rank n − 1, its adjugate adj(PS) has a single nonzero eigenvalue equal to |PS|+ and therefore:

|PS|+ = tr(adj(PS)) = tr(adj(S) adj(P )) = |S| tr(S−1 adj(P )).

Since P has n − 1 non-null eigenvalues equal to 1, adj(P ) = xx⊤ and so |PSP |+ = |S|x⊤S−1x.

(ii) Let M = S1/2P be a square root of PSP , so M⊤M = PSP . For any matrix, (M⊤M)+ = M+(M+)⊤,
so we just need to find M+. Remark that

M = S1/2P = S1/2 − S1/2xx⊤ = S1/2 + cd⊤,

with c = −S1/2x and d = x. M is thus a rank-one update to S1/2. Meyer (1973) categorizes such updates
depending on whether c and d are in row (column) space of S1/2 and on the value β = 1 + c⊤S−1/2d =
1 − x⊤S1/2S−1/2x = 1 − x⊤x = 0. Since S is full-rank, its row and column spaces contain all non-null vectors,
leaving us under the scope of Meyer (1973, Theorem 6) which reads:

M+ = S−1/2

− xx⊤S−1/2

− 1
x⊤S−1x

S−1xx⊤S−1/2

+ −x⊤S−1x

x⊤S−1x
(−xx⊤S−1/2)

The second and fourth term cancel out, leaving

M+ = S−1/2 − 1
x⊤S−1x

S−1xx⊤S−1/2 = S−1/2(I − zz⊤),

where we define z = S−1/2x
∥S−1/2x∥ such that (I − zz⊤) is an orthogonal projection, and thus idempotent. Finally,

(PSP )+ = M+(M+)⊤ = S−1/2(I − zz⊤)S−1/2

= S−1 − S−1xx⊤S−1

x⊤S−1x
.

Pre- and post-multiplying by any vector v gives the relationship in (iii).

In practice, covariances are usually enforced to be full rank in parametrization. Nevertheless, for completeness
we derive in the next proposition the corresponding expressions for low-rank Σ̃.

Lemma 3. Let S be an n-by-n low-rank matrix and R = I − S+(S+)⊤ be the orthogonal projection onto
the kernel of S. Let x be a unit vector and P = I − xx⊤ be its tangent projection, and let β = x⊤Rx.

If β = 0 then lemma 2 applies, replacing determinants/inverses with pseudo versions.

20



Under review as submission to TMLR

If β > 0, we have
(i) |PSP |+ = |S|+ · β,

(ii) (PSP )+ =
(︃

I − 1
β

Rxx⊤
)︃

S+
(︃

I − 1
β

Rxx⊤
)︃⊤

.

Proof. For the β = 0 case, the condition implies x ∈ Span S. As both P and S have no action on the kernel
of S, we can apply a rotation that moves those dimensions to the end, and perform all calculations on the
full rank top-left block.

When β ̸= 0, things dramatically change.

(i) We make use of the limit definition of pseudodeterminants:

|A|+ = lim
α→0

|A + αI|/αn−rank A. (33)

In the full-rank case, rank PSP = n − 1. In general rank PSP = rank S − 1 only if x ∈ Span S, which we
have ruled out, otherwise rank PSP = rank S. Since P is a projection onto a subspace of dimension n − 1,
we have P = UU⊤ where U ∈ Rn,n−1 and U⊤U = In−1. U has orthogonal columns, so the spectrum of PSP
is equal to the one of U⊤PSPU = U⊤SU . We therefore have

|PSP |+ = |U⊤PSPU |+
= lim

α→0
|U⊤PSPU + αI|/α(n−1)−rank S

= lim
α→0

|PSP + αP |+/α(n−1)−rank S (left and right multiply by U and U⊤)

= lim
α→0

|P (S + αI)P ⊤|+/α(n−1)−rank S

= lim
α→0

|S + αI| · x⊤(S + αI)−1x/α(n−1)−rank S

= |S|+ lim
α→0

αx⊤(S + αI)−1x

= |S|+x⊤Rx,

(34)

where the final step comes from noticing that the eigenvalues of α(S +αI)−1 are of the form λ̂j = α
α+λj

, where
λj are the eigenvalues of S. In the limit, λ̂j = 1 if λj = 0 and 0 otherwise, therefore limα→0 α(S + αI)−1 = R,
finishing this part of the proof.

(ii) We once again turn to Meyer (1973), finding ourselves under the auspices of Theorem 3, since β ≠ 0. We
define the same symbols as in the previous proof, except S−1/2 is replaced by (S1/2)+, and therefore the
terms that become an identity matrix in the full-rank case now become (S1/2)+(S1/2) = I − R. The q1 term
in Meyer’s theorem is null. Carrying out the calculation leads to

M+ =
(︃

I − 1
β

Rxx⊤
)︃

(S1/2)+.

Using again (PSP )+ = M+(M+)⊤ yields the desired result. Efficient Mahalanobis distances by calculating
vM+ without materializing M+ are left as an exercise.

Combining the two lemmas yields a proof of the proposition.

D The wrapped β-Gaussian over Rotation Matrices

Our construction is not limited to spheres but is applicable and useful in other manifolds, as long as we know
the injectivity radius, the Log and Exp mappings, and parallel transport.

In this section, we instantiate wrapped β-Gaussians over the manifold of rotation matrices, also known as the
special orthogonal group SO(n).
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D.1 Preliminary: properties of skew-symmetric matrices

The set of real skew-symmetric matrices is defined as

Skew(n) := {A ∈ Rn×n : A⊤ = −A}.

The next result recaps some classical results about skew-symmetric matrices.
Lemma 4 (Properties of skew-symmetric matrices). Let A ∈ Skew(n) with m = ⌊n/2⌋.

(i) The nonzero eigenvalues of A are purely imaginary and come in pairs λ+j = iθj , λ−j = −iθj.

(ii) The eigenvectors of A have the form p±j = 1√
2 q+j ± 1√

2 iq−j, with ∥q±j∥ = 1 for all j, and
⟨qs, qt⟩ = 0 for any s ̸= t.

(iii) A admits the canonical decomposition

A =
m∑︂

j=1
θj(q+jq⊤

−j − q−jq⊤
+j). (35)

(iv) For even n, forming the matrix Q with columns (q+1, q−1, . . . , q+m, q−m), and the block-diagonal
matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 θ1
−θ1 0

0 θ2
−θ2 0

. . .
0 θm

−θm 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (36)

Q is orthogonal and we have A = QBQ⊤. For odd n, extend B with an additional zero row and
column, and Q with a unit vector from the null space of A.

(v) A admits a (potentially truncated) singular value decomposition with singular triplets
{(θj , q+j , q−j)}j=1,...,m ∪ {(θj , q−j , −q+j)}j=1,...,m

(vi) exp(A) is a special orthogonal matrix and is equal to Q exp(B)Q⊤.

Proof. A proof of properties (i)–(iv) can be found in Gantmacher (1959, §IX.12). For completeness, since the
proofs are compact, we re-derive them here.

(i) The complex eigenvalues and eigenvectors of any real matrix come in conjugate pairs: if Ap = λp, taking
conjugates on both sides gives λ̄p̄ = Āp̄ = Ap̄. For skew-symmetric A, we have on one hand

⟨Ap, p⟩ = ⟨λp, p⟩ = λ̄⟨p, p⟩

and on the other hand

⟨Ap, p⟩ = pHAHp = pHA⊤p = pH(−Ap) = pH(−λp) = −λ⟨p, p⟩.

Therefore λ is purely imaginary, and for convenience we index the pairs as λ±j = ±iθj for θj ∈ R.

(ii) If p is an eigenvector of A associated with a nonzero eigenvalue, then so is p̄ and since their eigenvalues
are distinct they must be orthogonal. Writing p = b + id,

⟨p̄, p⟩ = p⊤p = (b + id)⊤(b + id) = (b⊤b − d⊤d) + i(b⊤d + d⊤b). (37)

It follows that b⊤b = d⊤d. But since eigenvectors have length 1, we have

1 = ∥p∥2 = b⊤b + d⊤d.
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Combining this with the fact that the real part of eq. (37) is zero, we get ∥b∥ = ∥d∥ = 1√
2 , so we set b = 1√

2 q+

and d = 1√
2 q− where ∥q±∥=1. From setting the imaginary part of eq. (37) to zero we get b⊤d = 0 so q⊤

+q− = 0.
For two distinct j, k we use orthogonality to obtain:

0 = 2⟨p+j , p+k⟩ = q⊤
+jq+k − q⊤

−jq−k + iq⊤
+jq−k − iq⊤

−jq+k,

0 = 2⟨p−j , p+k⟩ = q⊤
+jq+k + q⊤

−jq−k + iq⊤
+jq−k + iq⊤

−jq+k.

Adding and subtracting the two relationships reveals the orthogonality of q±j , q±k, and q∓k.

(iii) First, note that, if p = b + id,

ppH − p̄p̄H = (b + id)(b − id)⊤ − (b − id)(b + id)⊤ = 2i(db⊤ − bd⊤). (38)

We rearrange the eigendecomposition:

A =
∑︂

j

[︁
iθjp+jpH

+j − iθjp−jpH
−j

]︁
=

∑︂
j

[︁
iθj(p+jpH

+j − p−jpH
−j)

]︁
=

∑︂
j

[︃
iθj

2 (2i(q−jq⊤
+j − q+iq

⊤
−j)

]︃
=

∑︂
j

[︁
θj(q+jq⊤

−j − q−iq
⊤
+j)

]︁
.

(iv) and (iv). Both follow from (iii) and the fact that all q±j are unit length and all distinct-index pairs are
orthogonal.

(vi) We may start from the decomposition A = QBQ⊤. Note that Ak = QBkQ⊤ for natural powers, since
Q⊤Q = I. Since the matrix exponential is defined through a power series, we have exp(A) = Q exp(B)Q⊤.

exp(B) is a block-diagonal matrix with each block corresponding to a rotation by θj :
(︃

cos θj sin θj

− sin θj cos θj

)︃
,

and therefore is orthogonal with determinant 1. Therefore so is the product of QBQ⊤.

D.2 Standard toolbox for SO(n)

SO(n) can be seen as an embedded manifold of Rn×n defined as follows:

SO(n) := {X ∈ Rn×n : X⊤X = In, det(X) = 1}.

The tangent space is characterized as

TXSO(n) = {V ∈ Rn×n : V ⊤X + X⊤V = 0},

which can be seen by differentiating the orthogonality constraint X⊤X = In in the ambient space.

The identity matrix In is a distinguished element of SO(n). Its tangent space TISO(n) is the space of
skew-symmetric matrices Skew(n), which can be seen to be a vector space of dimension n(n − 1)/2, and
in this context it is often called the Lie algebra so(n). At the identity matrix, the Exp and Log mappings
between SO(n) and TISO(n) = so(n) are exactly the matrix exponential and matrix logarithm:

ExpI(A) = exp(A), LogI(Y ) = log(Y ).

Now remark that any rotation X ∈ SO(n) is also an invertible linear operator that maps In to X. Moreover,
if A ∈ TISO(n) then X⊤XA+A⊤X⊤X = A+A⊤ = 0, therefore XA ∈ TXSO(n). Since orthogonal matrices
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are isometries, we can rotate the ambient space by multiplying by X−1 in order to identify TXSO(n) with
so(n) (since the rotation takes X to In) and thus we have

TXSO(n) = {XA : A ∈ Skew(n)},

and we can now compute:

ExpX(A) = X exp(X⊤A), LogX(Y ) = X log(X⊤Y ).

From the same observation it also follows that PTX→Y = Y X−1. Remark. Since all orthogonal matrices are
invertible, all tangent spaces are isomorphic to so(n). It is common in practice to identify them and avoid
some of the redundant parallel transports. With this representation we would write ˜︃ExpX(A) = X exp(A)
and ˜︃LogX(Y ) = log(X⊤Y ).

The matrix exponential and logarithm are not univerally inverses of each other; the following result gives the
injectivity radius.

Proposition 4. The injectivity radius of SO(n) is π
√

2.

Proof. We recap the proof given by Axen (2023), with a few more details. By symmetry we need only focus on
the injectivity of ExpI = exp. Let A = PΛP H be the spectral decomposition A ∈ Skew(n), with eigenvalues
of the form λ+j = ±iθj . A is in the injectivity domain iff A = log(exp(A)), or equivalently λ = log(exp(λ))
for all eigenvalues of A. The injectivity domain therefore constrains θj ∈ (−π, π). Let r denote the radius of
the largest ball contained in the injectivity domain, and notice that ∥A∥2

F = tr(A⊤A) = 2
∑︁

j θ2
j . Consider

the matrix A1 defined by θ1 = π and all other θj = 0: this matrix is just on the boundary of the injectivity
domain and ∥A1∥F = π

√
2, so r ≤ π

√
2. On the other hand, for an arbitrary A we have ∥A∥2

F ≥ 2θj for any
j, and so ∥A∥F < π

√
2 implies |θj | < π for any j, so r ≥ π

√
2.

Finally, for completeness, we give an explicit orthonormal basis of Skew(n), allowing us to parametrize
wrapped distributions in this space.
Proposition 5. Let ejk ∈ Rn×n be an indicator matrix with all elements set to zero except the element at
index j, k, which is set to one. Let D denote the linear operator D : Rn(n−1)/2 → Skew(n) ⊂ Rn×n with
columnsa

Djk = 1√
2

(︁
ejk − e⊤

jk

)︁
.

Then, D is an orthogonal matrix.
aGiven a vector v ∈ Rn(n−1)/2, Dv = (V − V ⊤)/

√
2 where V is a lower triangular matrix with the lower triangle given by

the elements of v.

Proof. Verify that the columns of D are by construction skew-symmetric, pairwise orthogonal, and have
unit norm, as: ∥Dij∥2

F = 2( 1√
2 )2 = 1. They therefore form an orthonormal basis of Skew(n) and we have

D⊤D = In(n−1)/2.

We can therefore construct a wrapped β-Gaussian on SO(n) as:

X ∼ WNβ(M, Σ) ⇐⇒ X = ˜︃ExpM (V ) = M exp(V ), V = Dv, v ∼ Nβ(0, Σ).

D.3 Jacobian Log-Determinant

To compute the (log)-density of WNβ random variables, we apply the change of density formula. Multiplication
by an orthogonal matrix is an isometry, and we have shown that so is the embedding D. It remains to
calculate the change of volume induced by the matrix exponential.
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Proposition 6. Let A ∈ Skew(n), m = ⌊n/2⌋, and denote the eigenvalues of A as λ±j = ±iθj, for
j = 1, . . . , m, and for odd n an additional λ0 = θ0 = 0. Let J denote the Jacobian of the matrix exponential
at A, i.e., Jij,kl = ∂(exp A)ij

∂Akl
. Then,

det J =
m∏︂

j=γ

m∏︂
k=1

sinc2
(︃

θj − θk

2

)︃
sinc2

(︃
θj + θk

2

)︃
. (39)

where the range of j (but not of k) starts at γ = 0 if n is odd, and at γ = 1 otherwise,

Proof. First, we note the result is similar to the case of Grassmanians given by Chevallier et al. (2022, eq. 4.4).
We proceed to give a complete proof.

Per Higham (2008, Theorem 3.9), as exp is analytic, the eigenvalues of J are

νst =
{︄

exp λs−exp λt

λs−λt
, s ̸= t,

exp λs, s = t.

For a general characterization of the spectral decomposition of J see Magnus et al. (2021).

The eigenvalues of J are complex, but we next show that for skew-symmetric A the determinant is always
real. Let us assume for now that n is even. The eigenvalues of a skew-symmetric matrix are purely imaginary
and come in conjugate pairs, so we may use the indexing λ+j = iθj and λ−j = −iθj for j = 1, . . . , n/2. In
this notation, the indices s and t take values in {±1, . . . , ±m}.

We notice that the eigenvalues of the Jacobian can be grouped two by two:

ν+j+kν−j−k = exp iθj − exp iθk

iθj − iθk
· exp −iθj − exp −iθk

−iθj + iθk

= 2 − exp i(θj − θk) − exp −i(θj − θk)
i(θj − θk) · (−i)(θj − θk)

= 2 − 2 cos(θj − θk)
(θj − θk)2

ν+j−kν−j+k = exp iθj − exp −iθk

iθj + iθk
· exp −iθj − exp iθk

−iθj − iθk

= 2 − exp i(θj + θk) − exp −i(θj + θk)
i(θj + θk) · (−i)(θj + θk)

= 2 − 2 cos(θj + θk)
(θj + θk)2

Using the fact that 2 − 2 cos ϕ = 4 sin2 ϕ
2 we rewrite both terms above in the form sinc2

(︂
θi±θj

2

)︂
, yielding the

desired result. We point out that further simplification can be obtained by recognizing symmetry (νst = νts)
and noticing that the diagonal terms cancel out because ν+i+iν−i−i = 1. Calculating the (log) determinant
with a minimum number of operations can be achieved by considering only the upper triangle.

In the case of odd n, there is an additional unpaired zero eigenvalue which we index with s = 0. Then, we
have to consider the additional entries:

ν00 = exp 0 = 1

ν0t = νt0 = exp λt − 1
λt

.

Using a similar calculation to above we get that ν0+iν0−i = ν+i0ν−i0 = sinc2 (︁
θi

2
)︁

, which for brevity we can
absorb by extending the range of j in the product.
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Numerical details. By continuity, sinc(0) = 1. For stable computation directly in log-domain, use

log sinc(πx) = − log Γ(1 − x) − log Γ(1 + x). (40)

In general, just like in the spherical case, the log-determinant can go to −∞. However, proposition 4 implies
that within the injectivity domain of TISO(n), we have |θ| < π, and so all the sinc terms in eq. (39) take
arguments in (−π, π) and are therefore finite.

Computing the rotation angles. Learning with a wrapped distribution over SO(n) requires evaluating
the determinant of the Jacobian (which requires the eigenvalues of A) as well as calculating the matrix
exponential itself. This is in contrast to applications where just the matrix exponential is needed, where
truncated series approximations are widely applicable. Obtaining an eigendecomposition of A would allow us
to compute both quantities needed; however, complex decompositions are more expensive. The following
propositions shows how to efficiently use a SVD of A to obtain both the rotation angles θ and the value of
the matrix exponential.

Proposition 7 (Computation). Let A ∈ Skew(n) and A = USV ⊤ be a singular value decomposition. Then,

exp(A) = U cos(S)U⊤ + U sin(S)V ⊤.

Proof. Assume for now that n is even. From lemma 4, item (vi), we have

exp(A) =
∑︂

j

Qj exp(Bj)Q⊤
j , where Qj =

(︃
q+j

q−j

)︃
, and exp(Bj) =

(︃
cos θj sin θj

− sin θj cos θj

)︃
. (41)

Explicitly calculating one such rank-2 term gives:

Qj exp(Bj)Q⊤
j = cos θj(q+jq⊤

+j + q−jq⊤
−j)

+ sin θj(q+jq⊤
−j − q−jq⊤

+j).

From lemma 4 item (v), one possible SVD is given by the triplets (θj , q+j , q−j), (θj , q−j , −q+j). A straight-
forward calculation shows that the part of U cos(S)U⊤ + U sin(S)V ⊤ corresponding to the two copies of
θj is exactly Qj exp(Bj)Q⊤

j . While SVD is only unique up to a simultaneous sign flip of a singular vector
pair (y, v), the rank-one terms are invariant, since (−u)(−u)⊤ = uu⊤ and (−u)(−v)⊤ = uv⊤. Therefore, the
desired expression holds for any SVD. If n is odd, there is an additional row q0 in the canonical decomposition,
with a corresponding 1-d block B0 = (0) so exp(B0) = (1) and exp(A) has an additional rank-1 term q0q⊤

0 .
In this case, a complete SVD of A has an unpaired zero singular triplet (θ0 = 0, ±q0, ±q0). Regardless of
the sign choice, since sin(0) = 0 and cos(0) = 1, we get an additional term q0q⊤

0 as expected. Other than
the sign ambiguity, there is no ambiguity about the direction of the singular vector corresponding to the
unpaired singular value, since it must be orthogonal to the 2m distinct q±j vectors, even if some of them may
correspond to other zero singular values.

E Algorithms for Sn

Here we provide the algorithm for the parallel transport for the hypersphere.

Algorithm 1: Parallel transport for Sn−1 embedded in Rn.
Input: p, x ∈ Rn, ∥p∥2 = 1 ∥x∥2 = 1; x ̸= −p; u: the point on the TpSn

z′ = (p + x);
z = z′

∥z′∥ ; // z defines reflection plane R µ+p
∥µ+p∥

return u − 2⟨u, z⟩z (rotated vector)
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