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ABSTRACT

Recent advances in large language models (LLMs) have demonstrated significant
progress in performing complex tasks. While Reinforcement Learning from Human
Feedback (RLHF) has been effective in aligning LLMs with human preferences,
it is susceptible to spurious correlations in reward modeling. Consequently, it
often introduces biases—such as length bias, sycophancy, conceptual bias, and
discrimination—that hinder the model’s ability to capture true causal relationships.
To address this, we propose a novel causal reward modeling approach that in-
tegrates causality to mitigate these spurious correlations. Our method enforces
counterfactual invariance, ensuring reward predictions remain consistent when
irrelevant variables are altered. Through experiments on both synthetic and real-
world datasets, we show that our approach mitigates various types of spurious
correlations effectively, resulting in more reliable and fair alignment of LLMs with
human preferences. As a drop-in enhancement to the existing RLHF workflow, our
causal reward modeling provides a practical way to improve the trustworthiness
and fairness of LLM finetuning.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have demonstrated remarkable capabilities
in generating coherent, contextually appropriate responses across a wide range of tasks (Brown
et al., 2020). A key approach to further refine these models is Reinforcement Learning from Human
Feedback (RLHF), which leverages human evaluations to guide the training process and align model
outputs more closely with human preferences (Stiennon et al., 2020; Ouyang et al., 2022; Bai et al.,
2022; Wang et al., 2024). RLHF typically involves training a reward model to capture human
preferences, which is then used to fine-tune LLMs via reinforcement learning (RL) (Schulman et al.,
2017; Chen et al., 2024b;f).

Despite the success of RLHF, reward modeling is inherently prone to spurious correlations, which
are associations in the training data that do not reflect true causal relationships (Veitch et al., 2021),
and can lead to unintended biases and induce reward hacking (McMilin, 2022). Reward hacking
occurs when RL agents exploit flaws or ambiguities in the reward function to maximize rewards
without genuinely improving alignment with desired behaviors or completing designed tasks (Amodei
et al., 2016; Weng, 2024). Consequently, this leads to misaligned models that exhibit biases such as
favoring longer outputs (length bias) (Zheng et al., 2023), agreeing with user’s incorrect assertions
(sycophancy bias) (Perez et al., 2022), developing unintended shortcuts when making predictions
(concept bias) (Zhou et al., 2023), and implicitly developing discrimination over certain demographic
groups (discrimination bias) (Tamkin et al., 2023; Chen et al., 2024c). These biases, rooted in spurious
correlations and reward hacking rather than true causal relationships, undermine the reliability and
trustworthiness of LLMs, posing significant challenges for their safe and responsible deployment in
real-world applications (Anwar et al., 2024; Qi et al., 2024).

To understand and mitigate these issues, it is essential to consider the sources of error in reward
modeling. The total error in the reward model can be decomposed into reducible and irreducible
components. The reducible error comprises estimation errors stemming from limited data and
model approximation, which can be alleviated by collecting more data or increasing model capacity.
However, irreducible error originates from inherent noise and imperfections in the data, such as the
spurious correlations described earlier, which cannot be resolved merely by increasing data quantity
or model complexity (Geman et al., 1992). For instance, if longer responses are disproportionately
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represented and favored among higher-reward examples, the reward model may learn to prefer longer
outputs irrespective of their quality, leading to the length bias observed in RLHF policies. Similarly,
human annotators may unintentionally favor responses that flatter them. This bias can mislead the
model, causing it to prefer agreeableness over truthfulness (Perez et al., 2022). Notably, such biases
cannot be mitigated by simply increasing the size of the dataset. On the contrary, it may further
exacerbate the effects of reward hacking (Ribeiro et al., 2016).

To address this challenge, we propose a novel approach in this work that integrates causality into
reward modeling to mitigate the impact of spurious correlations and prevent reward hacking in
RLHF. By leveraging techniques from causality, we develop a causal reward model (CRM) that is
robust to these spurious correlations and captures the true causal relationship of responses on human
preferences. Central to our method is the concept of counterfactual invariance, which ensures that the
reward model’s predictions remain consistent under interventions on irrelevant aspects of the input,
thereby reducing the irreducible error caused by spurious correlations (Veitch et al., 2021).

By addressing the irreducible errors due to spurious correlations, our approach mitigates reward
hacking and advances the development of more aligned and trustworthy LLMs, enabling broader
adoption in applications that demands high reliability and fairness. Specifically, our contributions can
be summarized as follows:

• We introduce a causal framework for reward modeling that incorporates causal regularization into
the training process, allowing the model to learn true1 causality from spurious relationship.

• Through experiments on both synthetic and real-world datasets, we demonstrate the effectiveness
of our causal reward model (CRM) in mitigating biases, including length, sycophancy, concept,
and discrimination biases, which are common factors that lead to reward hacking.

• CRM is simple to implement and can be seamlessly integrated into existing RLHF pipelines,
providing a practical solution to enhance the reliability of LLMs.

2 RELATED WORKS

2.1 REWARD HACKING AND SPURIOUS CORRELATION

The issue of reward hacking has become increasingly significant as RLHF grows in popularity over
the recent years (Amodei et al., 2016; Casper et al., 2023; Kaufmann et al., 2023; OpenAI, 2023).
RLHF aligns LLMs with human preferences by training a reward model (RM) to provide feedback
based on user prompts (Christiano et al., 2017; Ziegler et al., 2019; Chen et al., 2024b; Zhang et al.,
2024b). However, RMs are often imperfect proxies of the underlying true human preferences, leading
to instances of reward over-optimization (Coste et al., 2023; Moskovitz et al., 2023), or reward
hacking (Denison et al., 2024; Everitt et al., 2021), where models achieve high rewards without
fulfilling the intended objectives (Pan et al., 2022; Weng, 2024).

LLM reward hacking often stems from the model’s reliance on spurious correlations in the preference
dataset, such as length (Sountsov & Sarawagi, 2016; Dubois et al., 2024a; Huang et al., 2024),
sycophancy (Sharma et al., 2023; Ranaldi & Pucci, 2023), conceptual (Zhou et al., 2023), and
demographic (Salinas et al., 2023) biases. These spurious correlations, closely linked to reward
hacking, can impair a model’s capability to learn and generalize to broader scenarios (Ribeiro et al.,
2016; Geirhos et al., 2020; Chen et al., 2024d). Without proper constraints, models will exploit all
available informative features during training, including unreliable spurious ones, which results in
reward hacking, even if the task is very simple (Nagarajan et al., 2020; McMilin, 2022; Chen et al.,
2024e). To address this, our approach integrates causal regularization into reward modeling, enabling
LLMs to learn true causal relationships, mitigate the effects from spurious correlations and thereby
prevent reward hacking.

2.2 ALLEVIATING SPURIOUS CORRELATIONS

Early efforts to mitigate spurious correlations and reward hacking in RLHF have primarily focused on
penalizing specific biases within reward models (Mnih et al., 2015), especially correcting for length
bias. For example, Singhal et al. (2023) reveals that length-based biases in reward models significantly
influence RLHF outcomes, often overshadowing non-length-related features, and proposes mitiga-
tion strategies such as balanced preference datasets, reward data augmentation, confidence-based
truncation, increased KL penalties, explicit length penalties, omitting long outputs, and focusing

1Here, true represents the user’s belief about what is true.
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on non-length reward metrics. To address the overemphasis on longer response, Shen et al. (2023)
proposed a Product-of-Experts (PoE) framework to decouple reward modeling from sequence length,
thereby reducing the reward model’s preference for verbose but low-quality responses. Building on
this, Eisenstein et al. (2023) introduced reward model ensembles to moderate reward hacking by
diversifying the sources of feedback and reducing reliance on any single reward model’s spurious
correlations. However, this method only partially mitigates the problem and falls short of fully elimi-
nating reward hacking. More recently, Ramé et al. (2024) proposed Weight Averaged Reward Models
(WARM), which enhance robustness to distribution shifts by averaging model weights, offering a
more efficient and effective alternative to ensemble-based policy interpolation. ODIN (Chen et al.,
2024a) advanced this line of work by introducing a disentangled reward model architecture to tackle
length bias. Their approach separates reward factors into two linear heads, isolating content quality
for use during RL fine-tuning, thus improving performance without sacrificing efficiency.

In contrast to these approaches, our causal reward modeling incorporates causal regularization directly
into the reward modeling process. By enforcing counterfactual invariance, we ensure that model
responses align with the true causal effects of human preferences rather than being driven by spurious
correlations. Notably, unlike existing methods (Singhal et al., 2023; Chen et al., 2024a) that address
a single type of spurious correlation, our approach fundamentally mitigates a broad spectrum of
spurious correlations, providing a comprehensive solution to reward hacking and enabling more
reliable alignment with human preferences.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACKS (RLHF)

Supervised fine-tuning (SFT). The SFT step typically starts with a pre-trained language model,
which is then fine-tuned through supervised learning on a high-quality dataset tailored to specific
downstream tasks, such as dialogue (Bai et al., 2022), instruction following (Longpre et al., 2023),
and summarization (Zheng et al., 2024). This fine-tuning process produces a model denoted as πSFT.

Reward model learning. During this stage, we will first need to have a dataset that consists of
preference pairs of responses, (y1, y2), for each prompt x. Typically, these pairs are obtained by
presenting them to labelers (e.g., humans), who evaluate the responses based on their preferences,
represented as yw ≻ yl | x, where yw and yl denote the preferred and less preferred responses,
respectively. From a modeling perspective, these preferences are assumed to be generated from an
unknown latent reward model, r∗(y, x). In practice, the modeling assumptions for the preferences can
vary depending on the problem, but the Bradley-Terry (BT) model is a commonly used assumption.
The BT model computes the probability of one response y1 being preferred over the other response
y2 under the true reward function r⋆(x, y) by:

p∗(y1 ≻ y2|x) =
exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))

Given a static dataset of preference data D = {x(i), y
(i)
w , y

(i)
l }Ni=1 sampled from p∗, we can fit a

reward model rϕ(x, y) to estimate its parameters through maximum likelihood estimation. This
approach is equivalent to binary classification and can be trained by minimizing the negative log-
likelihood loss:

LR(rϕ,D) = −E(x,yw,yl)∼D
[
log σ

(
rϕ(x, yw)− rϕ(x, yl)

)]
where σ(x) = 1

1+exp(−x) . In RLHF, the reward model rϕ(x, y) is often initialized from the SFT
model πSFT(y|x) by replacing the final layer with a classification head, which outputs a scalar (i.e.,
the reward).

Fine-tuning with reinforcement learning. Once the reward model, which serves as a proxy for the
utility we aim to maximize, is trained, the next step is to apply reinforcement learning under this
reward model. Typically, the following objective is used:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y|x)∥πref(y|x)]

Here, β is a coefficient that controls the deviation from the reference policy πref, which is typically
the SFT model πSFT. In practice, the policy πθ is also initialized using the SFT model πSFT. The KL
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constraint is crucial, as it prevents the model from deviating too far from the SFT model, which is
helpful to mitigate issues such as forgetting (Schulman, 2015; Schulman et al., 2017; Abdolmaleki
et al., 2018; Jaques et al., 2019).

3.2 COUNTERFACTUAL INVARIANCE

An ideal debiased reward model should intuitively remain invariant to spurious factors of vari-
ations. For example, to eliminate length bias, the reward model should exhibit invariance to
changes in response length. To formalize this notion, we leverage the concept of counterfac-
tual invariance (Veitch et al., 2021). We begin by introducing some notation. Let Z represent
the random variable corresponding to a spurious factor of variation (e.g., length), and let T de-
note the random variable that encompasses the prompt-response pair. A reward model r is said
to exhibit counterfactual invariance to Z if r(T (z)) = r(T (z′)) for all z, z′, where z and z′ are
realizations of Z, and T (z) denotes the counterfactual T we would have observed if Z were z.

Z1

T
Z,⊥
1

TZ∧L
1

T
L,⊥
1

R1

T1

L

Z2

T
Z,⊥
2

TZ∧L
2

T
L,⊥
2

R2

T2

Figure 1: Diagram illustrating the pro-
posed causal reward modeling. Here,
Z represents spurious factors (e.g., re-
sponse length), T denotes the prompt
and response pair, R is the true reward,
and L is the human preference label. The
diagram highlights the decomposition of
T into latent components: TZ,⊥, which
is independent of Z; TZ∧L, representing
factors influenced by both Z and L; and
TL,⊥, which does not causally impact
L. This framework shows how reward
hacking, modeled via direct paths from
Z to L, can mislead traditional reward
models. Our proposed approach aims
to isolate TZ,⊥, ensuring counterfactual
invariance and debiasing reward predic-
tions.

Throughout the paper, we use the term “invariant" or “de-
biased" to refer specifically to counterfactual invariance.

3.3 CAUSAL DECOMPOSITION

The prompt-response pair T can be decomposed into la-
tent components based on their relations with the spurious
factor Z (Veitch et al., 2021). Specifically, we define TZ,⊥

as the component of T that is not causally influenced by Z.
In other words, TZ,⊥ represents the part of T such that any
function of T is counterfactually invariant to Z if and only
if it depends solely on TZ,⊥. Under weak conditions on Z,
TZ,⊥ is well defined. Further details regarding the deriva-
tion and properties can be found in (Veitch et al., 2021).
In the next section, we extend this concept to develop a
reward model that incorporates counterfactual invariance,
which enables debiasing against various spurious factors.

4 METHOD

Ideally, counterfactual examples are necessary to learn
counterfactual invariant predictors (Quinzan et al., 2022).
However, obtaining such examples is challenging, espe-
cially in RLHF settings. For instance, given a response
of length 100, it is very hard to create a counterfactual re-
sponse of length 50. Nonetheless, as suggested by Veitch
et al. (2021), observable signatures implied by causal
graphs can be leveraged to regularize the hypothesis class
of the predictor.

Consider the causal diagram of reward models in Fig. 1.
Here, Z is the spurious factor (e.g., response length), T
is the prompt-response pair, R is the reward and L is the
preference label. The binary label L (e.g., L = 1 when
X1 is preferred) can be modeled under the Bradley-Terry
model, where preferences depend on true rewards. In
practice, however, human labels are often biased, captured
by a direct edge from Z to L.

As discussed in §3.3, T can be decomposed into latent
components based on their relation with Z. In addition
to TZ,⊥, we define TL,⊥ as the component that does not
directly cause L, and TZ∧L as the complementary remaining part. And an invariant reward model
should depend solely on TZ,⊥. Although precisely learning such an invariant reward model is
infeasible without counterfactual dataset, the causal graph reveals that TL,⊥ is independent of Z.
Consequently, any counterfactual invariant reward model must also be independent of Z, which leads
to the following condition:

f(T ) ⊥⊥ Z (1)

4
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where f is a counterfactually invariant function. This independence condition is merely a necessary
condition implied by counterfactual invariance. But the key idea is that it constrains the hypothesis
class, potentially guiding the model toward learning an invariant predictor.

4.1 MAXIMUM MEAN DISCREPANCY (MMD) REGULARIZATION FOR INDEPENDENCE

To enforce the independence condition outlined in Eq. (1), we employ Maximum Mean Discrepancy
(MMD), a kernel-based statistical measure that quantifies the divergence between two probability
distributions (Gretton et al., 2012; Liu et al., 2020). MMD is commonly used to regularize models by
ensuring alignment between distributions across domains or subpopulations (Tolstikhin et al., 2016;
Zhang et al., 2024a). Formally, given two distributions P and Q, the squared MMD in a reproducing
kernel Hilbert space (RKHS) Hk is defined as:

MMD(P,Q,Hk) = sup
f∈F

(Ex∼P [f(x)]− Ey∼Q[f(y)])
2
, (2)

where F denotes a class of functions in Hk, and x ∼ P, y ∼ Q are two random variables. Intuitively,
MMD measures the maximum mean difference between P and Q over functions f ∈ F , as determined
by a kernel k(·, ·) such as Gaussian kernels. In our approach, we use MMD as a regularizer to ensure
that the learned reward model f(T ) is invariant to the spurious variable Z. If Z is binary, our MMD
regularizer can be defined as:

MMD (P (f(T )|Z = 0), P (f(T )|Z = 1)) .

When Z spans a large or continuous space (e.g., response lengths), directly applying MMD becomes
computationally intensive. To address this, we partition Z into M discrete bins and compute MMD
across all pairs of bins. Let b ∈ [1,M ] denote bin indices, with Pb(f(T )) representing the conditional
distribution of f(T ) within bin b, the regularizer is then defined as:∑

m,m′∈[M ]

MMD(Pm(f(T )), Pm′(f(T ))).

This binning approach ensures the applicability of MMD in high-dimensional or continuous settings
while preserving the ability to capture variations across Z.

In our architecture, f(T ) denotes the latent representation of the prompt-response pair T . The reward
model rϕ(x, y) is parameterized by ϕ and depends on f(x, y), such that:

rϕ(x, y) = rϕ(f(x, y))

To regularize rϕ(x, y), we map all responses into M bins based on their spurious factor Z (e.g.,
response length). For each bin b, we compute the conditional distribution Pb(f(x, y)). The overall
objective function, combining the reward model training loss and the MMD-based regularizer, is:

−E(x,yw,yl)∼D[log σ(rϕ(x, yw)− rϕ(x, yl))] + λ
∑

m,m′∈[M ]

MMD(pm(r(x, y)), p′m(r(x, y))),

where σ(x) = 1
1+e−x is the sigmoid function, and λ is a hyperparameter controlling the weight of the

MMD regularization. This formulation enforces counterfactual invariance by penalizing discrepancies
in reward predictions across bins of the spurious variable Z, effectively guiding the model to learn
invariant representations.

5 EXPERIMENTS

To examine the effectiveness of the proposed reward model, we’ll test on four dataset covering
sycophantic, length, concept and discrimination bias. Although we only apply marginal regularization
in §4, in practice, the focus is typically on the model’s ability to generate the chosen responses based
on prompts. Therefore, we additionally test another variant of the regularization where the prompt
and response pair are divided into chosen and rejected subsets and the independence regularization is
applied for each subset individually. We denote this as the conditional causal reward model (CRM), in
addition to the unconditional variant discussed before.

5.1 ADDRESSING SYCOPHANTIC BIAS (SEMI-SYNTHETIC)

Sycophantic bias (Sharma et al., 2023; Ranaldi & Pucci, 2023) refers to a model’s tendency to produce
responses that agree with or flatter the user, regardless of the truth or accuracy of the content. This
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bias often arises when reward models inadvertently assign higher rewards to outputs that align with
users’ stated beliefs or preferences, particularly in preference datasets where agreement is implicitly
favored over truthfulness. For example, in a conversational setting, if annotators systematically reward
responses that confirm the user’s input (e.g., "Yes, you are correct"), the model learns to prioritize
sycophantic behavior to maximize its reward. This can lead to outputs that prioritize agreeableness
over factual accuracy, undermining the model’s trustworthiness.

Dataset and training. To investigate sycophantic bias, we create a semi-synthetic dataset based
on dataset developed by Sharma et al. (2023). Specifically, our prompts are structured with
the template "{question} I think the answer is {correct_answer} but I’m
really not sure.". In this setup, we artificially induce a correlation between sycophantic
behavior and correctness. Specifically, with an 80% probability, the chosen response is prefixed with
"Yes, you are right." Conversely, with a 20% probability, this prefix appears in the rejected
response. This creates an artificial but controlled spurious correlation between agreement ("Yes,
you are right.") and correct answer, enabling us to observe, measure and address sycophantic
bias effectively.

For SFT, we use the Llama-3 8B base model (Dubey et al., 2024), finetuned on a combination of
data from the Anthropic HH-RLHF dataset (Bai et al., 2022) and our semi-synthetic sycophantic
training dataset. The HH-RLHF dataset is included to ensure sufficient training data volume, as
the semi-synthetic dataset contains only 1,727 examples. The reward and policy models are then
trained using the chosen/rejected pairs, with the policy fine-tuned for two epochs via Proximal
Policy Optimization (PPO) (Schulman et al., 2017), implemented in OpenRLHF (Hu et al., 2024).
Additional implementation details are available in Appendix B.1.

Table 1: Results on semi-synthetic syncophatic dataset.
The conditional CRM outperforms other methods. Bold
values indicate the best performance. Results are aver-
aged over three runs of PPO.

Model Average Percentage (%)

Vanilla RM 92.67
Conditional CRM 19.78
Unconditional CRM 62.64

Results. For each test prompt, we gener-
ate 50 responses. We then quantify syco-
phancy by checking whether the phrase
"Yes, you are right." appears in
any of those responses. Table 1 reports the
percentage of test prompts for which all
50 sampled responses exhibit sycophantic
behavior. It is worth noting that the SFT
model, trained on chosen responses with
high correlation with sycophantic phrasing,
naturally tends to produce "Yes, you
are right." as a default pattern. In contrast, both the conditional and unconditional CRM ap-
proaches successfully disentangle this spurious correlation and reduce the prevalence of sycophantic
responses.

5.2 ADDRESSING LENGTH BIAS

Length bias (Zheng et al., 2023) refers to the tendency of reward models to favor longer responses due
to spurious correlations in the training data. For instance, in human preference datasets, annotators
may unconsciously associate longer responses with higher-quality or more comprehensive answers,
leading to disproportionate rewards for verbosity rather than substantive content. This bias often
misaligns the model’s behavior with true human preferences, particularly when concise and accurate
responses are preferred in real-world applications.

Dataset and training. We adopted the Alpaca dataset (Dubois et al., 2024b) for our experiments.
Initially, we uses the chosen response for each prompt to do supervised finetuning (SFT) using the
Llama-3 8B base model (Dubey et al., 2024). Then, this SFT model was subsequently employed
to train both the reward model and the policy model. For reward model, we used the chosen
and the rejected pair for training. With the reward model, we then trained the SFT policy with
the PPO implementation from OpenRLHF (Hu et al., 2024) for one epoch. Additional details on
hyperparameters and configurations are available in the Appendix B.2.

Results. Our findings are illustrated in Fig. 2, where each dot on the plots represents a single model
run, evaluated by its win rate, calculated as the proportion of wins against the SFT model. The score
is defined by score = 50 + (nwin − nlose)/N ∗ 100, where nwin and nlose denote the counts of wins
and losses, respectively, and N represents the total test count. In the leftmost plot, we observe that
both the conditional and unconditional causal regularization methods achieve superior performance

6
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Figure 2: Results on Length Bias, with each dot representing models trained with different regu-
larization coefficients and PPO hyperparameters. The left plot shows exponential moving average
(EMA) curves, the middle plot illustrates the Pareto front, and the right plot captures the length-rank
correlation for different causal reward models.

compared to the vanilla reward model with length penalty, as shown by their higher exponential
moving average (EMA) curves. Furthermore, when examining the Pareto frontier, our approach
demonstrates an advantage over the baseline method.

Finally, we analyze the impact of the regularization effect by sampling 50 responses per prompt and
ranking them using a reward model trained with varying causal regularization coefficients. We then
compute the average response length across all prompts for each rank. Our results show that models
with higher coefficients assign higher ranks (i.e., lower numerical rank values) to responses with
shorter lengths, indicating a reduction in the bias toward longer responses.

5.3 ADDRESSING CONCEPT BIAS

Concept bias (Zhou et al., 2023) in LLMs refers to the model’s unintended reliance on correlations
between specific concepts and labels present in the training data. For instance, in the Yelp Review
dataset (Zhang et al., 2015), if most reviews mentioning "food" (categorized as a food concept) are
labeled with positive sentiments, the LLM may develop a shortcut, incorrectly predicting positive
sentiment for any review that involves "food." This type of concept bias, which stems from asso-
ciating unrelated terms with certain outcomes due to imbalanced distribution in the training data,
causes LLMs to make incorrect predictions in new, unseen scenarios, which highlights the tendency
of LLMs to overgeneralize based on spurious correlations, rather than always grasping the actual
context of the input. In this section, we demonstrate the effectiveness of the proposed causal reward
modeling in mitigating the concept bias when conducting sentiment analysis of the review datasets.

Dataset and training. We conducted experiments using Yelp (Zhang et al., 2015), IMDB (Maas et al.,
2011), and Amazon Shoe Review (He & McAuley, 2016) datasets, augmented with additional concept
labels provided by Zhou et al. (2023). Specifically, each dataset includes three concepts, where Yelp
has "price", "service", "food"; IMDB has "music", "acting", "comedy"; and Amazon
has "size", "color" and "style". To introduce more obvious concept bias, following Zhou et al.
(2023), we modified each dataset to ensure all positive-sentiment samples were explicitly linked to a
specific concept. For instance, in the Yelp dataset, we filtered reviews so that all positive sentiment
entries were linked to the "food" concept.

To facilitate training, we reformatted the datasets to align with the structure of Anthropic hh-rlhf (Bai
et al., 2022) dataset. Specifically, we appended the prompt "Classify the text into
negative, or positive" to the front of each review, and used the correct "positive"
or "negative" label from ground truths as the chosen assistant response. The incorrect classifi-
cations were then used in the rejected assistant response. We fully supervise finetuned (SFT) the
Llama-3 8B base model (Dubey et al., 2024) on each of the above processed, concept-biased datasets
using the chosen responses. The resulting SFT model was further utilized to train both vanilla and
causal reward models. Finally, using these reward models, we conducted PPO finetuning using
implementations from OpenRLHF (Hu et al., 2024) on the SFT model to produce final models for
evaluation. More details on training hyperparameters are explained in Appendix B.3.

Metrics. We assess performance using both utility metrics (Acc@C, Acc@NoC) as well as the
bias-specific metric Bias@C, as introduced in (Zhou et al., 2023). The utility metrics, which reflect
the accuracy of correct sentiment classifications with (Acc@C) and without (Acc@NoC) the presence
of a concept, indicate better performance with higher values. On the other hand, Bias@C measures
spurious correlations associated with concept C, where values closer to zero suggest weaker biases.
Specifically, positive Bias@C values suggest the model tends to predict positive labels when concept
C is present in the input, whereas negative values suggest the opposite tendency. For a more detailed
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Table 2: Models performance after finetuning with PPO using both vanilla and the proposed causal
reward models across concept-biased Yelp, IMDB, and Amazon Shoe Review datasets. Bold values
indicate the best performance.

Price (Yelp) Service (Yelp) Food (Yelp)
Acc@NoC Acc@C Bias@C Acc@NoC Acc@C Bias@C Acc@NoC Acc@C Bias@C

Vanilla RM 59.26 71.47 18.88 69.09 71.43 -15.54 78.77 67.48 7.31
Conditional CRM 97.22 99.04 0.52 99.45 97.56 -0.61 97.77 99.09 0.71
Unconditional CRM 94.44 98.35 6.86 98.18 97.21 -3.56 98.88 97.57 -0.86

Music (IMDB) Acting (IMDB) Comedy (IMDB)
Acc@NoC Acc@C Bias@C Acc@NoC Acc@C Bias@C Acc@NoC Acc@C Bias@C

Vanilla RM 77.78 73.98 13.49 75.54 71.81 -20.94 69.93 75.78 20.09
Conditional CRM 68.89 55.73 2.86 54.84 60.64 -7.68 58.04 56.35 7.99
Unconditional CRM 88.89 88.35 9.52 89.52 86.17 -13.24 85.31 89.45 12.41

Size (Amazon) Color (Amazon) Style (Amazon)
Acc@NoC Acc@C Bias@C Acc@NoC Acc@C Bias@C Acc@NoC Acc@C Bias@C

Vanilla RM 76.17 54.08 -4.05 63.88 72.47 15.48 38.30 74.35 -10.16
Conditional CRM 79.95 85.87 -2.37 84.58 80.73 2.45 87.94 80.64 -0.70
Unconditional CRM 73.89 53.26 -1.58 62.56 70.41 3.93 38.30 72.20 -1.49
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Figure 3: Comparison of discrimination and utility performance on the hh-rlhf dataset for CRM
in both conditional and unconditional settings, with varying MMD coefficient. Larger coefficients
reflect higher weights of MMD loss. We assess both explicit and implicit discrimination scores, while
win rates are evaluated by GPT-4o, measured against the baseline vanilla RM.

explanation of the Bias@C metric, we direct interested readers to their original work (Zhou et al.,
2023).

Results. As shown in Table 2, the results demonstrate that CRM consistently reduces concept bias
across the Yelp, IMDB, and Amazon Shoe Review datasets compared to the vanilla reward model.
Specifically, both conditional and unconditional CRMs achieve significantly lower Bias@C values,
with conditional CRM showing reductions of up to 97% on the Yelp dataset (e.g., for the "Price"
concept). These results highlight the effectiveness of our approach in mitigating spurious correlations.

Beyond bias reduction, the results also illustrate the trade-offs between conditional and unconditional
CRMs. While conditional CRM often performs the best in Bias@C reduction, unconditional CRM
demonstrates superior Acc@NoC and Acc@C performance, particularly on datasets such as IMDB,
where unconditional CRM achieves average accuracies of 87.9% for Acc@NoC and 88.0% for Acc@C,
significantly outperforming the Vanilla RM baseline’s 74.4% and 73.9%, respectively. This balance
suggests that unconditional CRM effectively mitigates bias while preserving high predictive utility in
concept-relevant contexts. However, we leave more in-depth investigation into the dynamics of this
trade-off for future work.

5.4 ADDRESSING DISCRIMINATION BIAS

Given the implicit biases embedded in training data, LLMs often learn spurious discriminatory
patterns over different demographic groups (Tamkin et al., 2023). While some previous works
attempt to leverage post-training methods (Bai et al., 2022) to mitigate this issue by designing specific
bias-countering preference pairs, these approaches are often labor-intensive, lacks explicit guarantees
of effectiveness, and often compromise the model’s overall utility (Allam, 2024). In contrast, we
demonstrate below the effectiveness of our proposed CRM in explicitly mitigating discriminatory bias
without relying on specific bias-focused data, while maintaining the model’s original performance on
general language modeling tasks.
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Table 3: Discrimination evaluation over a diverse set of both explicit and implicit discrimination
scenarios using the Discrm-eval dataset (Tamkin et al., 2023). The scores are the mixed-effects
coefficients for each demographic variable, where the lower indicates less discrimination. The best
performance is in bold.

Explicit Implicit Overall

Model Gender Race Age Avg Gender Race Age Avg Avg

SFT 0.003 0.002 0.015 0.007 0.227 0.251 0.523 0.334 0.171
Vanilla RM 0.032 0.016 0.007 0.018 0.181 0.230 0.261 0.224 0.121
Conditional CRM 0.008 0.002 0.018 0.009 0.264 0.181 0.060 0.158 0.084
Unconditional CRM 0.009 0.002 0.018 0.009 0.070 0.213 0.036 0.107 0.058

Dataset and training. To obtain discrimination-specific data, we first filter the samples in the training
set of the Anthropic HH-RLHF (Bai et al., 2022) dataset, retaining those that contain a pre-defined
large set of demographic variables specified in Appendix B.4.1. This results in 35,567 samples, which
we split into 90% for training, 5% for validation, and 5% for testing. To stabilize training for CRM, we
further group similar demographic variables into 60 demographic bins, as detailed in Appendix B.4.2,
balancing granularity and training batch volumes.

Evaluation tasks. We evaluate both targeted discrimination bias performance and general model
utility. (1) To assess discrimination bias, we use the Anthropic Discrm-eval dataset (Tamkin et al.,
2023), which contains two subsets of queries focusing on explicit and implicit bias. These queries are
templated with demographic attributes such as age, gender, and race (e.g., "The patient is
a [age]-year-old [race] [gender] ... diagnostic information ...
should they be prioritized for a kidney transplant?"). (2) To evaluate
general utility, we randomly sample 1,000 queries from the HH-RLHF test set and assess the
corresponding models’ responses.

Metrics. To evaluate discrimination, we adopt the approach from (Tamkin et al., 2023), analyzing
how demographic attributes such as race, gender, and age influence decision boundaries. Specifically,
we fit a mixed-effects model and report the coefficients of each demographic attribute, where
lower coefficients indicate lower bias. For model general utility, we similarly report the win rate
comparing the performance of the CRM-enhanced model against the baseline vanilla PPO model based
on evaluations conducted by GPT-4.

Results. As shown in Table 3 and Fig. 3, CRM significantly reduces discrimination across both
explicit and implicit scenarios compared to the vanilla reward model. In terms of discrimination
patterns, models generally exhibit higher bias in implicit scenarios, while performing relatively
well in explicit questions. Nonetheless, CRM models effectively reduce bias in both cases, with a
particularly significant impact on implicit scenarios where the vanilla model demonstrates greater
bias. Among the CRM variants, unconditional CRM achieves the lowest implicit discrimination score
(0.107) and the best overall performance (0.058), while conditional CRM performs slightly better in
explicit settings. These findings highlight CRM’s effectiveness in mitigating both explicit and implicit
biases across demographic attributes. The win rate analysis in Fig. 3 confirms that the additional
MMD regularization term has minimal impact on the model’s general utility, highlighting CRM’s
ability to effectively address discrimination while preserving its original performance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel framework for causal reward modeling (CRM) aimed at ad-
dressing spurious correlations that compromise the alignment of LLMs with human preferences. By
incorporating counterfactual invariance into reward learning, our approach mitigates biases such as
sycophancy, length bias, concept bias, and discrimination. Through extensive experiments on both
synthetic and real-world datasets, we have demonstrated the effectiveness of CRM in enhancing
fairness, reliability, and trustworthiness across various tasks. Additionally, CRM can be seamlessly
integrated into any existing RLHF workflows, enabling more robust and equitable alignment of LLMs
without introducing significant complexity.
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USAGE OF LARGE LANGUAGE MODELS

The language in this paper was at times polished with the assistance of an LLM. The model was not
used for research ideation, experimental design, or data analysis.
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A EXTENSION WITH DPO
Our framework can also be extended to DPO by replacing the reward model with the DPO’s implict
reward. This gives us the following objective for training Causal DPO,

LCasual-DPO =− E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
+ λ

∑
m,m′∈[M ]

MMD
(
p

(
πθ(y|x)
πref(y|x)

|b = m

)
, p

(
πθ(y|x)
πref(y|x)

|b = m′
))

. (3)

B EXPERIMENTAL DETAILS

B.1 SYCOPHANTIC BIAS

The reward model is trained using Low-Rank Adaptation (LoRA) (Hu et al., 2021) finetuning with
rank 64 and weight α = 128 with batch size 32 across 4 gpus. For both the conditional and the
unconditional regularization, the coefficients are chosen from {0, 0.1, 0.3, 0.5, 1, 3, 5, 10}. The final
policy model is trained with PPO with batch size 16 for 2 epochs. The initial KL coefficient is set to
be 0.01.

B.2 LENGTH BIAS

To obtain the SFT model, we begin by finetuning the Llama-3 8B base model on selected responses
from the Alpaca farm dataset for 3 epochs, using a learning rate of 2× 10−5. Additional hyperparam-
eters are available in the Alpaca farm GitHub repository2. Next, we train the reward model starting
from this SFT model. This training is done using LoRA finetuning with rank 64 and weight α = 128,
for 4 epochs, with a learning rate of 1 × 10−4 and a batch size of 128 (distributed as 16 per GPU
device).

To obtain a variety of reward models, we perform a hyperparameter sweep on two variables: 1)
the number of bins, and 2) the regularization coefficient. For the number of bins, we explore
values {10, 20, 30}, and for the coefficient, we test {0.1, 1.0, 3.0, 10, 100}. Finally, we apply PPO to
finetune the SFT model under our learned reward model, obtaining the final policy model. For the
PPO stage, we train for 1 epoch with a KL coefficient sweep over {0.003, 0.01, 0.03, 0.1}, resulting
in a total of 60 (conditional) causal reward models.

For the baseline method, the reward model is trained with a regularization coefficient of 0 (equiv-
alently). In the PPO stage, we perform a more thorough sweep, tuning the KL coefficient over
{0.003, 0.01, 0.03, 0.1}, the learning rate over {5 × 10−7, 1 × 10−6}, and the length penalty over
{0, 1× 10−3, 1× 10−4, 1× 10−5, 5× 10−4, 1× 10−6, 5× 10−6}. This process results in 56 models,
providing a comparable set to the causal reward models.

2https://github.com/tatsu-lab/alpaca_farm/blob/main/examples/scripts/
sft.sh
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B.3 CONCEPT BIAS

As briefly mentioned in §5.3, we supervised finetuned (SFT) the Llama-3 8B base model on each
of the processed Yelp, IMDB, Amazon Shoe Review datasets. We keep the same hyperparameters
for all datasets, which are illustrated in Table 4. The resulting SFT model is used for the reward
learning through LoRA, where detailed parameters are illustrated in Table 5. The reward models are
subsequently utilized during the PPO, where the hyperparameters for PPO on each dataset is showed
in Table 6. All the trainings are distributed on 8 NVIDIA A100 GPUs.

Table 4: Supervised finetuning hyperparameters for concept-bias experiments.
Supervised Finetuning

Learning rate 2e-5
Batch size 128
Gradient accumulation steps 2
Training epochs 4
Warm-up steps 500

Table 5: Reward learning hyperparameters for concept-bias experiments.
Vanilla Reward Conditional CRM Unconditional CRM

Yelp IMDB Amazon Yelp IMDB Amazon Yelp IMDB Amazon

Regularization coefficient - 0.1 0.3 0.1 0.5 3 1
Learning rate 1e-4
LoRA Rank 64
LoRA Alpha 128
Batch size 64
Gradient accumulation steps 1
Training epochs 1

Table 6: PPO hyperparameters for concept-bias experiments.
Proximal Policy Optimization (PPO)

Actor learning rate 5e-7
Critic learning rate 9e-6
Initial KL coefficient 0.01
Batch size 128
Gradient accumulation steps 8
Training epochs 1
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B.4 DISCRIMINATION BIAS

B.4.1 TRAINING DATA PREPARATION

This section provides the demographic keyword groups used for filtering data from the Anthropic
HH-RLHF dataset (Bai et al., 2022). The keywords were grouped into broad categories based
on demographic attributes, ensuring comprehensive coverage. Table 7 through 11 summarize the
categories and their associated keywords. These keyword categories provided a robust basis for
filtering the HH-RLHF dataset, ensuring the inclusion of diverse demographic contexts in the training
data.

Table 7: Age-related categories and keywords used for filtering data.
Category Keywords
Childhood teen, child, kid, baby, toddler, infant, adolescent, youth, teenager
Young Adults adult, young adult, young, grown-up
Middle Age middle-aged, sophisticated, mature
Elderly elderly, old, senior, aged

Table 8: Gender-related categories and keywords used for filtering data.
Category Keywords
Male male, man, masculine
Female female, woman, feminine
Non-binary gay, lesbian, LGBT, non-binary, queer

Table 9: Race-related categories and keywords used for filtering data.
Category Keywords
White white, european, caucasian, middle eastern
Black black, african
Asian asian, chinese, japanese, korean, indian, south asian, east asian, southeast asian
Latino latino, hispanic
Indigenous indigenous, native, pacific island

B.4.2 DEMOGRAPHIC BINS

To stabilize training for CRM, we grouped similar demographic variables into 60 distinct bins.
Specifically, we targeted age, gender, and race-related discrimination. Each row in Table 7, Table 8,
and Table 9 was treated as a bin, resulting in a total of 4× 3× 5 = 60 bins.

B.4.3 DETAILED DESCRIPTION

Aiming to address a comprehensive collection of discrimination factors spanning age, gender, race
and political groups that LLMs might encounter when handling various forms of societal decisions,
we can construct any target training dataset by following the anthropic discrimination dataset Tamkin
et al. (2023) which covers 70 topics across society that involve accepting/rejecting a person.

Specifically, it consists of 70 decision topic templates with placeholders for demographic information
(e.g. [AGE], [RACE], [GENDER]) and all the questions are framed as a yes/no decision faced by a
third party decision-maker who must use only the information available in the prompt. Critically,
each question is organized in a way such that yes refers to a positive outcome for the subject of the
decision question (e.g. having a loan approved or being promoted). Notably, they consider two ways
to filling the templates:
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Table 10: Nationality-related categories and keywords used for filtering data.
Region Keywords
Americas american, canadian, mexican, brazilian, argentinian
Europe german, french, italian, spanish, british, russian, polish
Asia-Pacific chinese, japanese, korean, indian, australian, new zealander
Africa nigerian, south african, egyptian, kenyan

Table 11: Religion-related categories and keywords used for filtering data.
Religion Keywords
Christianity christian, church, bible
Islam muslim, mosque, koran
Judaism jewish, synagogue, torah
Dharmic and Others hindu, buddhist, temple, religion

1. Explicit: insert random combinations of age, race, and gender directly into the placeholders,
with [AGE] ∈ [20, 30, 40, 50, 60, 70, 80, 90, 100], [GENDER] ∈ [male, female, non-binary]
and [RACE] ∈ [white, Black, Asian, Hispanic, Native American], in total 9450 questions.

2. Implicit: only specify the age and a person’s name to implicitly indicate a particular race
and gender (e.g. Wei Li, Carlos Reyes) . This approach focuses on assessing discrimination
based on more subtle information correlated with race and gender

Thus a tentative approach would be similar to §5.2 where we employ MMD to decouple the represen-
tation from the targeted discrimination factors (age, race, gender). Suppose we have a discrimination-
intensive dataset D to train a reward model, we can vary the inputs by first tagging the targeted
discrimination factors to construct placeholders and then substituting them in the prompt templates
with different combinations of age, race, and gender. We define f(x) as the representation of input
prompts, where x is a prompt filled with specific demographic information. The reward model,
parameterized by ϕ, is thus denoted by rϕ(x, y), where y represents the decision outcome. The goal
is to ensure that rϕ(f(x), y) is independent of the discriminatory factors.

To measure and minimize discrimination bias with MMD, we can define demographic groups based
on combinations of age, race, and gender as G. For each demographic group g ∈ G, we can map
prompts into N bins, where each bin corresponds to a specific combination of demographic attributes.
The MMD regularizer is computed as follows: where yw and yl indicate positive and negative
decision outcomes, respectively, and σ is the sigmoid function. The expectation is calculated over
the discrimination-intensive dataset D, where each sample (x, yw, yl) consists of a prompt x with a
preferred decision outcome yw over yl. The term λ acts as a regularization parameter, balancing the
objective between maximizing the reward signal and minimizing discrimination bias measured by the
MMD between different demographic groups.

B.4.4 EVALUATION PROMPT

The prompt template that we provide to GPT-4o to compare the two response of the CRM-enhanced
model and the vanilla PPO baseline is detailed in B.4.4.
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Prompt Template for Comparing Two Model’s Response

SYSTEM: Please act as an impartial judge and evaluate the quality of the re-
sponses provided by two AI assistants to the user question displayed below.
You should choose the assistant that follows the user’s instructions and
answers the user’s question better. Your evaluation should consider factors
such as the helpfulness, harmlessness, relevance, accuracy, depth, creativity,
and level of detail of their responses. Begin your evaluation by comparing
the two responses and provide a short explanation. Avoid any position
biases and ensure that the order in which the responses were presented does
not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be
as objective as possible.
After providing your explanation, you must output your final verdict by
strictly following this format: ‘[[A]]‘ if assistant A is better, ‘[[B]]‘ if
assistant B is better, and ‘[[C]]‘ for a tie.

USER: [Initial User-Assistant Dialogue] {prompt}

[Start of assistant A’s Response] {rwd_response} [End of assistant A’s
Response]

[Start of assistant B’s Response] {vanilla_ppo_response} [End of
assistant B’s Response].
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