Under review as submission to TMLR

Chaos Theory and Adversarial Robustness

Anonymous authors
Paper under double-blind review

Abstract

Neural Networks, being susceptible to adversarial attacks, should face a strict level of
scrutiny before being deployed in critical or adversarial applications. This paper uses ideas
from Chaos Theory to explain, analyze, and quantify the degree to which Neural Networks
are susceptible to or robust against adversarial attacks.

Our results show that susceptibility to attack grows significantly with the depth of the
model, which has significant safety implications for the design of Neural Networks for pro-
duction environments. We also demonstrate how to quickly and easily approximate the
certified robustness radii for extremely large models, which until now has been computa-
tionally infeasible to calculate directly, as well as show a clear relationship between our new
susceptibility metric and post-attack accuracy.

1 Introduction

The current state of Machine Learning research presents Neural Networks as black boxes due to the high
dimensionality of their parameter space, which means that understanding what is happening inside of a model
regarding domain expertise is highly nontrivial, when it is even possible. However, the actual mechanics
by which Neural Networks operate - the composition of multiple nonlinear transforms, with parameters
optimized by a gradient method - were human-designed, and as such are well understood. In this paper,
we will apply this understanding, via analogy to Chaos Theory, to the problem of explaining and measuring
susceptibility of Neural Networks to adversarial methods.

It is well-known that Neural Networks can be adversarially attacked, producing obviously incorrect outputs
as a result of making extremely small perturbations to the input (Goodfellow et al., 2014; Szegedy et al.|
2013). Prior work, like [Shao et al.| (2021); |Wang et al| (2018) and |Carmon et al.| (2019) discuss “Adversarial
Robustness" in terms of metrics like accuracy after being attacked or the success rates of attacks, which
can limit the discussion entirely to models with hard decision boundaries like classifiers, ignoring tasks
like segmentation or generative modeling (He et al. [2018)). Other work, like |Li et al| (2020) and [Weber
et al.| (2020)), develop “certification radii," which can be used to guarantee that a given input cannot be
misclassified by a model without an adversarial perturbation with a size exceeding that radius. However,
calculating these radii is computationally onerous when it is even possible, and is again limited only to
models with hard decision boundaries.

Regarding the existence of adversarial attacks in the first place, [Pedraza et al.| (2020)) and [Prabhu et al.
(2018) have explained this behaviour of Neural Networks on the basis that they are dynamical systems,
and then use some results from that analysis to try and classify adversarial inputs based on their Lyapunov
exponents. However, this classification methodology rests on shaky ground, as the Lyapunov exponents of
a single input must be relative to those of similar inputs, and it is entirely reasonable to imagine a scenario
in which an input does not become more susceptible to attack just because it is itself adversarial.

In this work, we re-do these Chaos Theoretic analyses in order to understand, not particular inputs, but the
Neural Networks themselves. We show that Neural Networks are dynamical systems, and then continuing
that analogy past where |Pedraza et al.| (2020) and [Prabhu et al.| (2018) left off, investigate what Neural-
Networks-as-dynamical-systems means for their susceptibility to attack, through a combination of analysis
and experimentation. We develop this into a theory of Adversarial Susceptibility, the “Susceptibility Ratio"

Under review as submission to TMLR

‘Pt(l‘f)

\

®t(z; + dw)

.

Figure 1: In a dynamical system, two trajectories with similar starting points may, over time, drift farther and
farther away from one another, typically modeled as exponential growth in the distance between them. This
growth characterizes a system as exhibiting “sensitive dependence," known colloquially as the “butterfly
effect," where small changes in initial conditions eventually grow into very large changes in the eventual
results.

as a measure of how effective attacks will be against a Neural Network, and show how to easily numerically
approximate this value. Returning to the work in |Li et al.| (2020) and [Weber et al.| (2020), we use the
susceptibility ratio to quickly and accurately estimate the certification radii of very large Neural Networks,
aligning this paper with prior work.

2 Neural Networks as Dynamical Systems

We'll start by re-writing the conventional feed-forward Neural Network in the language of dynamical systems,
and then transferring the analysis of dynamical systems over to Neural Networks. But we should begin by
explaining what a dynamical system is (Alligood et al.l |1998]).

2.1 Dynamical Systems

In Chaos Theory, a dynamical system is composed of three core ingredients. Ingredient one is T, representing
“time," or something like it. A change in time can be added to an initial time to get an end time, in an
associative fashion. Ingredient two is X, the state space. Elements of X could include the positions of a
pendulum, the states of memory in a computer program, or all the possible arrangements of atoms in a
room. And the third ingredient is ® : 7' x X — X, the “evolution function" of the system. When & is given
a state x; ; and a change in time At, it returns ; ;4 a¢, which is the new state of the system after At time
has elapsed. We'll write this as

Tipnr = P(AL ;1)

In order to stay well defined, this has to have some properties like being consistent with the end result
regardless of how intermediate states were taken, like so:

(I)(Ata, @(Atb, xi,t)) = (I)(Ata + Atb7 xi,t)

From this, we can take a “trajectory" of the initial state x;¢ over time, with points represented by
(t, <I>(t,:ci70)). In order to simplify the notation, and following on from the notion that the evolution over
time of a system can be thought of as the composition of multiple instances of the evolution function, we
will write this trajectory as

D(t,zi0) = D' (24)

Under review as submission to TMLR

The final piece of the puzzle, the Chaos in Chaos Theory, concerns the relationship between trajectories
with very similar initial conditions, say x;, and x; + dx, where dx is some very small change, such as subtly
reorienting the arms of a double pendulum before setting it into motion. We then need some notion of the
distance between two elements of the state space, but we will assume that the space is some sort of vector
space equipped with a notion of length written with | - |, and proceed from there. For the initial condition,
we know off the bat that

\(bo(a:i) — O (x; + dx)| = |dx|

However, the interesting analysis comes when we model this difference as time progresses. In some systems,
very small differences in the initial condition end up being ignored, such as the position of an oscillator with
a damping force; no matter what, you reach the resting state, and that’s the end of the story. However,
in some systems, very small differences in the initial condition end up compounding on themselves, like the
flaps of a butterfly’s wings eventually resulting in a hurricane. Both of these can be approximately modeled
by an exponential function, like so

| (2;) — D (x; + da)| ~ |dx|e™

In each of these cases, the growing or shrinking differences between the trajectories are described by A, also
called the Lyapunov exponent. If A < 0, these differences disappear over time, and the trajectories of two
similar initial conditions will eventually align with one another. However, if A > 0, these differences increase
over time, and the trajectories of two similar initial conditions will grow farther and farther apart, until
they might as well have started from entirely different regions of the state space. This is called “sensitive
dependence," and is the mark of a chaotic system. It must be noted, however, that the exponential nature of
this growth is a shorthand model, with obvious limits, and is not fully descriptive of the underlying behavior.

2.2 Neural Networks

Conventionally, a Neural Network is given a formulation along the following lines (Schmidhuber} [2015)). It
is given by a function A : © x X — Y, where O is the space of possible learned parameters with W; being
multiplicative weight matrices and b; as additive bias vectors, X is the vector space of possible inputs,
and Y is the vector space of possible outputs. Each of the L layers in the Neural Network is given by a
matrix multiplication, an optional bias addition, and a nonlinear activation function, with hidden states z;
representing the intermediate values taken during the inference operation, e.g.

23,0 = Ty

Zijp1 = o(Wizgg + b)) |Wi, by C 6

hO;x;) =9 = 21,

Now, consider rewriting this by saying that a Neural Network is a dynamical system composed of three
ingredients. Ingredient one is [L] = {0,1,2... L}, which here will be used to represent the current depth of
the hidden state, from 0 for the initial condition up to L for the eventual output. Ingredient two is Z, which
is the vector space of all possible hidden states. And ingredient three is g : [L] X Z — Z, which is written
here as

Zig+1 = 9(1,2zi1) = oc(Wizig + by)

We will handwave the method by which g “knows" which parameters W; and b; to use, perhaps using
something along the lines of a dimension appended to z;; that records the current value of [, and which

Under review as submission to TMLR

g iterates, rather than including in the ordinary operations of the feed-forward layer. The generalization
to g(Al, z; ;) then follows from the same rule of composition applied to the dynamical systems, at least for
integer values of Al, under the condition that it never leaves [L]. We can also then re-write the notation
along the lines of that for the dynamical systems, e.g.

9(l, zi0) = g'(z:)

Noting of course that we have defined z; o as x;. From here, we can start to discuss the trajectories of the
hidden states of the Neural Network, and what happens when their inputs are changed slightly. For the first
hidden state, defined as the input, we can immediately say that

19°(z:) — ¢° (@i + da)| = |da|

And then by once again mapping to the dynamical systems perspective, we model the difference between
the two trajectories at depth [with

9" (i) = g' (2 + dz)| =~ |da]e

When the value of)\ is greater than 0, we call the Neural Network sensitive to the input, but when the value
of eM - essentially, the ratio of the size of the change of the output to the size of the change in the input -
is very large, we call dr an Adversarial Perturbation. If this analogy holds, we should expect that when we
adversarially attack a Neural Network, the difference between the two corresponding hidden states should
grow as they progress through the model. Again, as per the dynamical system, this growth is not necessarily
exponential, but using an exponential model is the most illustrative. This is our first experimental result.

3 Experimental Design

For our experiments, we used two different model architectures: ResNets (He et al.,|2015)), as per the default
Torchvision implementation (Marcel & Rodriguez, 2010), and a custom CNN architecture in order to have
finer-grained control over the depth and number of channels in the model. The ResNets were modified, and
the custom models built as to allow for recording all of the hidden states during the inference operation.
These models, unless specified that they were left untrained, were trained on the Food-101 dataset (Bossard
et al.l [2014)) for 50 epochs with a batch size of 64 and a learning rate of 0.0001 with the Adam optimizer
against Cross Entropy Loss. The ResNet models used were ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152.

In the Torchvision ResNet class, models consist of operations named convi, bnl, relu, maxpool, layeri,
layer2, layer3, layers, avgpool, and and fc, with the first four representing a downsampling intake, then four
more “blocks" of ResNet layers, and then a final operation that converts the 3D spatial tensor into a 1D
class weight tensor. Hidden states are recorded at the input, after convi, layeri, layer2, layer3, layer4, and
the output.

The custom models, specified with C' and D, consist of D tuples of convolutional layers, batch normalization
operations, and ReLLU nonlinearities, with the first tuple having a downsampling convolution and a maxpool
operation after the ReLU. Each of these convolutions, besides the first which takes in three channels, has
C hidden layers. Finally, there is a 1 x 1 convolution, a channel-wise averaging, and then a single fully
connected layer with 101 outputs, one for each class in the Food-101 dataset. Hidden states are recorded
after every tuple, and also include the input and the output of the model. The first tuple approximates the
downsampling intake of the ResNet models.

In order to better handle the high dimensionality and changes in scale of the inputs, outputs, and hidden
states, rather than using the Euclidean L2 norm as the distance metric, we used a modified Euclidean
distance

Under review as submission to TMLR

Medified Euclidean Distance between Perturbed
and Non-Perturbed Hidden States

107" § — Adversarial Perturbation
E Random Perturbation
E
o
=)
=
C 1077 o
b
L
BE
ag
U 1077
E
3
E
E
= .
10~

T T T T T T T
Input 1 2 3 4 5 Output
Hidden State Depth in Meural Network

Figure 2: Example of hidden state drift while performing inference with the ResNet18 model. Note the

logarithmic scaling on the y-axis.
1
= - 2
o1 \/ dim(7) Z”

This will be applied to every instance of length, distance, radius, and so on. Adversarial perturbations dx g4,
against a Neural Network h(0;-) of a given radius r for a given input x; were generated by using five steps
of gradient descent with an update size of 0.01, maximizing

|h(0; ;) — h(0; z; + dxaay)|

and projecting back to the hypersphere of radius r after every update. These attacks are along the lines of
[Zhang et al.|(2021); Wu et al. (2021} 2022)); [Xie et al.| (2021) and |[Shao et al.| (2021)), and their use of attacks
with l,-norm decay metrics or boundaries. For comparison, random perturbations were also generated, by
projecting randomly sampled Gaussian noise to the same hypersphere. In order to perform these experiments
under optimal conditions, the inputs that were adversarially perturbed were selected only from the subset
of the Food-101 testing set for which every single model trained agreed on the top-1 output class and
were correct. A Jupyter Notebook implementing these training regimes and attacks will be made available
alongside this manuscript, pending review.

4 Hidden State Drift

An example of the approximately exponential growth in the distance between hidden states between normal
and adversarially perturbed inputs hypothesized in section [2:2] for 32 inputs is shown in Figure 2] Between
the initial perturbations, generated with a radius of 0.0001, and the outputs, the differences grew by a factor
of ~ 747x. Given that ResNet18 has 18 layers, using 747 ~ e'®*, we can calculate A ~ 0.368, a measure
of this drift per layer. However, the Lyapunov exponent for each layer is of less interest to an adversarial
attacker or defender, with the actual value of interest being given by this new metric, ¥, the adversarial
susceptibility for a particular input and attack, given by

|h(0;25) — h(0; 2 + draqy)|

h,0,x;, dxaqy) = M =
¥(dv) (dras]

(1)

Essentially, this measures the “Susceptibility Ratio," the ratio of the damage done by a given adversarial
perturbation to its original size. If this is a meaningful metric by which to judge a Neural Network archi-
tecture, it should remain relatively stable despite changes in the radius of the adversarial attack. This is

Under review as submission to TMLR

Estimated Adversarial Susceptibility (i) for ResNet Models

—— ResNetls
ResMet34
—— ResMet50
—— ResMetl0l
ResMet152

Adversarial Susceptibility
=
<

e 102 10 1073
Radius of Adversarial Perturbation

Figure 3: Despite a change in the radius of the adversarial perturbation by three orders of magnitude, the
value of v associated with those attacks remains relatively stable.

\ResNet18 ResNet34 ResNetb0 ResNetl01 ResNetl52
\I/(h,ﬂ)‘ 781.2 790.7 854.4 893.2 846.5

Table 1: Overall Adversarial Susceptibility of trained ResNet models.

our second experimental result, demonstrated in Figure 3| By sampling 1 over a number of inputs z; and a
variety of attack radii |dxqq,| and taking the geometric mean'}| we can come to a single value, written as

U(h,0) = Eln (¥ (h,0,2;,dad0))]

and approximated with \il(h, 0), giving a measure of the adversarial susceptibility for the model as a whole.
These values have been calculated for the trained ResNet models, and are given in Table [I] These results
contradict the predictions that we will make in the next section, at which point we will begin using the
custom model architectures to begin to tease out the relationships between a Neural Network’s architecture
and its Adversarial Susceptibility.

¥ (h,0)
Channels (C)
32 64 128 256

2 0.749 0.523 0.651 0.560
4 1.021 0.695 0.775 0.610
8 2.788 2.134 1.505 1.276
16 | 15.491 12.935 8.423 7.123
32 | 109.340 135.472 98.834 92.404
64 | 96.037 63.785 60.443 48.721

Layers (D)

Table 2: Adversarial Susceptibility of randomly initialized convolutional models with custom architectures
on inputs consisting of random noise

Under review as submission to TMLR

Mean Adversarial Susceptibility vs Number of Channels Mean Adversarial Susceptibility vs Model Depth
by Model Depth (D) by Number of Channels (C)
w{ — w02 {—— €=32
0 C =54
= = — =128
i — p=2 | & — =156
& p=4 | &
g gﬁi__— p=8 | Z 10
LA [l
- — D=16 | 3
= D=32 | §
2 2
10’3 10-3
-____‘_*__—/—4—4_*_‘_*—_
R £ 128 6 2 H B 16 2 &
Channels (C) Layers (D)

Figure 4: Graphical replication of Table

5 Architectural Effects on Adversarial Susceptibility

Returning to the definition of ¢ given in equation[I} we might model it as being proportional to the exponent
of L, the depth of the Neural Network. And yet, despite ResNet152 having more than eight times as many
layers as ResNet18, its Adversarial Susceptibility is only marginally higher. Thus, use of an exponential
model, at least to explain these experimental results, is limited. In order to explore this reasoning further
in a more numerically ideal setting, we present our third experimental result, in Table [2] and replicated in
Figure [d Here, using randomly initialized, untrained models with custom architectures as described in the
experimental methods section, giving them random inputs, and then attacking them on those inputs, we can
tease apart the relationship between model architecture and Adversarial Susceptibility, in the case where
both parameters and input dimensions are normally distributed.

We immediately find an approximately exponential relationship between the Adversarial Susceptibility and
the depth of the model that was expected based on equation [l however the slight dip upon moving from 32
to 64 layers is unexpected, and while exploring its potential causes and implications is outside of the scope
of this paper, it may warrant further experimentation and analysis.

Also of interest is the effect, or lack thereof, of increasing the number of channels in the Neural Network.
While a quadratic increase in the number of parameters in the model might be expected to increase its
Adversarial Susceptibility, especially in the absence of batch normalization operations, no experiment that
we performed yielded such a result. Our initial hypothesis followed this line of reasoning; taking two matrices
A and B composed of standard Gaussian noise and setting C' = AB, the standard deviation over all of the
entries in C' is proportional to the square root of the dimension shared by A and B, Analogizing A to the
weights of a layer, B to a small change in the hidden state, and C' to the resulting change in the next hidden
state, we expected the Lyapunov exponent produced by a model to be proportional to the logarithm of the
square root of the number of channels of that layer. But no such experimental evidence could be found for
this.

We repeated the Adversarial Susceptibility testing on the same model architectures, this time with trained
parameters, and with inputs from Food-101 that every single model agreed and was correct on. These results
are in Table [3] and replicated in Figure

The largest difference here is that, for every model, the susceptibility has increased by an order of magnitude,
if not several. Training and switching to a domain that contains information relevant to the model has
resulted in it being far, far more sensitive to attack. Yet, following up on earlier experiments, we can

no

na;

Zi:o i
n

1In order to increase the numerical stability of the geometric mean calculation, we use %/ H?:o a; =e

Under review as submission to TMLR

¥ (h,0)
Channels (C)
32 64 128 256
2 578.602 610.207 586.503 576.759
o 4 | 1470.399 1658.209 1631.561 1695.993
8 | 2144.418 2224.467 2536.745 2370.648
; 16 | 2361.251 2401.381 2485.030 2846.418
8 32 | 3162.568 3018.758 2987.640 3256.967
64 | 2045.765 2213.575 3103.335 2471.823

Table 3: Adversarial Susceptibility

of trained convolutional models with custom architectures on inputs

consisting of Food-101 samples that every model agreed on and were correct.

Mean Adversarial Susceptibility vs Number of Channels

by Model Depth (D)

5 2x10° — D=1 =
o R — D=4 o
u e —— o
a — — D=8 5
(] [
= — D=16 | 3
E D=32 | ®
S (A i
o — D=64 | ©
b, £
6x 10°
2 B4 128 56
Channels (C)
Figure 5:

Ix10°

2x10°

=

=
T
L

6x 10°

Mean Adversarial Susceptibility vs Model Depth
by Number of Channels (C)

Depth (D)

Graphical replication of Table

Under review as submission to TMLR

again see that the number of channels doesn’t effect the Adversarial Susceptibility of the model much, while
the number of layers increases it significantly. However, this time, the relationship between the number of
layers and the susceptibility has changed, to be almost logarithmic, rather than approximately exponential
in nature, and somewhat replicates the relationship found between depth and susceptibility in the trained
ResNet models. Interestingly, this is reasonably analogous to the testing accuracy of the models, where
increases in depth yield diminishing returns, and it may be theorized that both of these effects are due to
changes in the distributions of the weights. However, it must be noted that the increase in susceptibility
is greater than the increase in accuracy. Making models deeper makes them more vulnerable faster than it
makes them better, with additional costs in memory, runtime, and energy consumption.

6 Relationships to Other Metrics

6.1 Approximation of Certified Robustness Radii

In the work of Weber et al.| (2020) and [Li et al| (2020), they attempt to calculate what they refer to as
“Certified Robustness Radii." For a model with hard decision boundaries, e.g. a top-1 classification model,
its Certified Robustness Radius is the largest value €, such that, for any input z; and any adversarial
perturbation |dz,q4,|, the ultimate classification given by the model argmax h(6;x;) = argmax h(6;z; +
dzaqy,) for all perturbations with radius smaller than €. In their work, however, they state explicitly that
these values are incredibly computationally demanding to calculate for small models, and computationally
infeasible for larger models. However, using the Adversarial Susceptibility for a model, one can quickly
approximate this certified robustness radius for even very large models. It is simply the distance to the
nearest decision boundary, divided by the Adversarial Susceptibility.

Consider the following example: a five-class model outputs the following weights for a given input, § =
{2.1,0.6,0.1, —0.5, —1.1}. Thus, the nearest decision boundary occurs where the first and second classes
become equal, at §" = {1.35,1.35,0.1, —0.5, —1.1}. The modified Euclidean distance between these two is
0.4703. Suppose that this model has an Adversarial Susceptibility of W = 25.0. Its certified robustness radius
would then be estimated as e = 24793 — (,01897. One could then take the mean or minimum over these

25.0
values for every input in a dataset, and a number could be produced for the model as a whole.

Finally, an over-all criticism has to be made regarding the use of these certified robustness radii in general.
Consider two models used for a binary classification problem, inferring on the same input, which has been
perturbed by adversarial attacks of equal radii. The first model, moving from the vanilla to the adversarial
input, changes its output from {0.9,0.1} to {0.6,0.4}. The second model, under the same conditions, changes
its output from {0.55,0.45} to {0.45,0.55}. Using a certified robustness radius, you would say that the first
model is the more robust, while a more direct reading of the change in probabilities would declare the second
model to be more robust. These certified robustness radii wrap a lot of information about the model together
with information about the inputs and the distributions they are drawn from together, so it can be difficult
to use them as a metric. Imagine if, in the previous example, the first model was only so confident because it
was massively overfit, and the actual input is relatively non-separable. Although this improves its robustness
radius, it makes it more susceptible to attack in the field.

6.2 Post-Adversarial Accuracy

One of the more standard measures of adversarial robustness is to measure the accuracy of models on
adversarially perturbed inputs. If our analysis and experimental results thus far are correct, we should see
an inverse relationship between measured Adversarial Susceptibility and the post-adversarial accuracy for
any given attack radius. This is our fourth experimental result, shown in Figure [6] In it, we see that,
among ResNets, which all had very similar values of \il(h,), post-attack accuracies are relatively similar
between models, with an approximate but minor correspondence between higher susceptibilities and lower
post-attack accuracy. We also see, among the custom architectures, represented in Figure [6] by the subset of
models with 32 channels and in their entirety in Figure [d] a very close inverse relationship between higher
susceptibility and lower post-attack accuracy, especially at the 0.01 attack radius. We also see that the

Under review as submission to TMLR

Model Accuracies Post-Attack Model Accuracies Post-Attack
10 10
0.9 1 0.9 1
0.8 0.8
e e
= =
[T Y 0T A
% %
- -
g 06 4 % 0.6 1
E E = epnetC3202
o 051 ResNetls o 054 expnetC3204
& Reshet3d £ —— expnetC3208
041 — Reshetso 049 — epnetc32D16
R ResNet101 03 4 expnetC32032
Reshetl52 — expnetC32064
T T T T T T T T
0.0001 0.001 001 0.1 0.0001 0.001 001 0.1
Adversarial Attack Radius Adversarial Attack Radius

Figure 6: Post-Attack Accuracies

Adversarial Susceptibility versus Post-Attack Accuracy
for Custom Network Architectures

10 e C=32
& . e C=64
e C=128
= 097 . e =25
g R*=-0911
- 0_8 4
E
87
0.7
gs
1
T
L]
0.5 *
. L] .
T T T T T T
500 1000 1500 2000 2500 3000
Adversarial Susceptibility
Win, 8))

Figure 7: Relationship between Adversarial Susceptibility and Post-Attack Accuracy, with a radius of 0.01.
Linear best fit shown, with a correlation coefficient of -0.911.

custom architecture with D = 2, which experimentally had = 578.602, has a post-attack accuracy curve
that very closely resembles those of the ResNet models, each of which had a similar susceptibility.

7 Conclusions and Future Work

Our experiments have shown, with some variation due to the inscrutable black-box nature of Deep Learning,
that there is an extremely strong, analytically valuable, and experimentally valid connection between Neural
Networks and dynamical systems as they exist in Chaos Theory. We can use this connection to make accurate
and meaningful predictions about different Neural Network architectures, as well as efficiently measure how
susceptible they are to adversarial attacks. We have shown a correspondence, both experimentally and
analytically, between these new measurements, and those developed in prior works. Thus, a new tool has
been added to the toolbox of practitioners looking to make decisions about Neural Networks.

Future work will include further exploration in this area, and the pulling in of more advanced techniques and
analysis from Chaos Theory, as well as the development of new, more precise metrics that tell us even more
about how models are effected by adversarial attacks. Additionally, the relationship between Adversarial

10

Under review as submission to TMLR

Susceptibility and adversarial robustness training regimes deserves study, as well as the relationship with
different attack methodologies.

References

Kathleen T' Alligood, Tim D Sauer, James A Yorke, and David Chillingworth. Chaos: an introduction to
dynamical systems. SIAM Review, 40(3):732-732, 1998.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 — mining discriminative components
with random forests. In European Conference on Computer Vision, 2014.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled data
improves adversarial robustness. Advances in Neural Information Processing Systems, 32, 2019.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition,
2015. URL https://arxiv.org/abs/1512.03385.

Warren He, Bo Li, and Dawn Song. Decision boundary analysis of adversarial examples. In International
Conference on Learning Representations, 2018.

Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks. arXiv preprint
arXiv:2009.04131, 2020.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In Proceedings of
the 18th ACM International Conference on Multimedia, MM 10, pp. 1485-1488, New York, NY, USA,
2010. Association for Computing Machinery. ISBN 9781605589336. doi: 10.1145/1873951.1874254. URL
https://doi.org/10.1145/1873951.1874254.

Anibal Pedraza, Oscar Deniz, and Gloria Bueno. Approaching adversarial example classification with chaos
theory. Entropy, 22(11), 2020. ISSN 1099-4300. doi: 10.3390/e22111201. URL https://www.mdpi.com/
1099-4300/22/11/1201.

Vinay Uday Prabhu, Nishant Desai, and John Whaley. On lyapunov exponents and adversarial perturbation,
2018. URL https://arxiv.org/abs/1802.06927.

Jiirgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85-117, 2015.

Rulin Shao, Zhouxing Shi, Jinfeng Yi, Pin-Yu Chen, and Cho-Jui Hsieh. On the adversarial robustness of
vision transformers. arXiv preprint arXiv:21038.15670, 2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Tan Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. Analyzing the robustness of nearest neighbors to
adversarial examples. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5133-5142.
PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/wangl8c.htmll

Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. Rab: Provable robustness against backdoor
attacks. arXiv preprint arXiv:2003.08904, 2020.

Fan Wu, Linyi Li, Zijian Huang, Yevgeniy Vorobeychik, Ding Zhao, and Bo Li. Crop: Certifying robust
policies for reinforcement learning through functional smoothing. arXiv preprint arXiv:2106.09292, 2021.

11

https://arxiv.org/abs/1512.03385
https://doi.org/10.1145/1873951.1874254
https://www.mdpi.com/1099-4300/22/11/1201
https://www.mdpi.com/1099-4300/22/11/1201
https://arxiv.org/abs/1802.06927
https://proceedings.mlr.press/v80/wang18c.html

Under review as submission to TMLR

Fan Wu, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krishnaram Kenthapadi, Ding Zhao, and
Bo Li. Copa: Certifying robust policies for offline reinforcement learning against poisoning attacks. arXiv
preprint arXiv:2205.08398, 2022.

Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. Crfl: Certifiably robust federated learning against
backdoor attacks. In International Conference on Machine Learning, pp. 11372-11382. PMLR, 2021.

Chaoning Zhang, Philipp Benz, Chenguo Lin, Adil Karjauv, Jing Wu, and In So Kweon. A survey on
universal adversarial attack. In Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence. International Joint Conferences on Artificial Intelligence Organization, aug 2021. doi: 10.
24963 /ijcai.2021/635. URL https://doi.org/10.24963%2Fijcai.2021%2F635.

12

https://doi.org/10.24963%2Fijcai.2021%2F635

	Introduction
	Neural Networks as Dynamical Systems
	Dynamical Systems
	Neural Networks

	Experimental Design
	Hidden State Drift
	Architectural Effects on Adversarial Susceptibility
	Relationships to Other Metrics
	Approximation of Certified Robustness Radii
	Post-Adversarial Accuracy

	Conclusions and Future Work

