
Diversity Is Not All You Need: Training A Robust
Cooperative Agent Needs Specialist Partners

Rujikorn Charakorn
VISTEC

rujikorn.c_s19@vistec.ac.th

Poramate Manoonpong
VISTEC, SDU

poramate.m@vistec.ac.th

Nat Dilokthanakul
KMITL

nat.di@kmitl.ac.th

Abstract

Partner diversity is known to be crucial for training a robust generalist cooperative
agent. In this paper, we show that partner specialization, in addition to diversity,
is crucial for the robustness of a downstream generalist agent. We propose a
principled method for quantifying both the diversity and specialization of a partner
population based on the concept of mutual information. Then, we observe that the
recently proposed cross-play minimization (XP-min) technique produces diverse
and specialized partners. However, the generated partners are overfit, reducing their
usefulness as training partners. To address this, we propose simple methods, based
on reinforcement learning and supervised learning, for extracting the diverse and
specialized behaviors of XP-min generated partners but not their overfitness. We
demonstrate empirically that the proposed method effectively removes overfitness,
and extracted populations produce more robust generalist agents compared to the
source XP-min populations. This result highlights the importance of considering
both the diversity and specialization of training partners while carefully managing
their overfitness for training robust cooperative generalists.

1 Introduction

Multi-agent reinforcement learning (MARL) algorithms can generate a team of agents for solving
complex cooperative tasks [1, 2]. However, these agents tend to overfit to teammates seen during
training and cannot cooperate effectively with unseen team members [3, 4]. This problem is also
known as the ad-hoc teamwork problem [5]. A crucial aspect of building a robust cooperative
(generalist) agent is the diversity of training partners [6–10]. Recent state-of-the-art partner generation
methods utilize cross-play minimization technique (XP-min) [11–16] to produce diverse partners.

XP-min approaches generate partners that are behaviorally diverse by learning incompatible policies
via some measure of incompatibility, e.g., incompatible with other agents in the same population
[12, 14] or best response agents [15, 16]. Fundamentally, XP-min aims to maximize self-play (SP)
return and minimize return of cross-play (XP) trajectories, in which policies from different teams
interact. However, due to the nature of XP-min objective, generated partners are incentivized to learn
to identify the current partner and use the partner’s identity to decide to cooperate (maximize return)
or sabotage (minimize return). This behavior is also known as handshaking [17, 18]. Importantly,
handshakes—conventions used for handshaking—could be arbitrary and nonsensical, e.g., an agent
will cooperate only if the partner moves in the north direction in the first timestep. Handshaking
behaviors are undesirable if these partner agents were to be used for training a generalist agent,
simply because they overfit to random handshakes established during training. Thus, handshaking is
a form of overfitness, and we use the words “overfitness” and “handshaking” interchangeably.

The root cause of handshaking induced by XP-min is that the partners can learn to sabotage the game
if they identify that the current interaction is an XP trajectory. Recently, the problem of handshaking
behaviors has been tackled by [17, 18]. The core idea of these approaches is to regularize the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

diversified partners such that they still have high expected self-play (SP) return under XP trajectories,
effectively mixing the SP and XP experiences. That is, the partners should not sabotage the game as
they have to maximize the return even under XP trajectories. Therefore, the partners are no longer
incentivized to learn handshakes, and these partners should behave in good faith regardless of which
partner they interact with. We refer to this class of approaches as mixed-play regularization (MP-reg).

Sarkar et al. [18] find that it is possible for MP-reg to overcorrect the XP-min objective, resulting in a
less diverse partner population. We hypothesize that, even with the right amount of experience mixing
in MP-reg, the produced partners will have less specialization—the quality of an agent capable of
solving the problem only in specific ways. We refer to this problem as loss of specialization (LOS).

We hypothesize that a generalist agent who trains with diverse but unspecialized partners will not be
exposed to diverse experiences. That is because, during training, the generalist agent can pick and
choose specific solutions that give higher expected returns, ignoring other potential solutions in the
environment. Furthermore, the generalist agent is not required to understand the partner’s intention
when the partners are willing to cooperate regardless of the solution the generalist agent attempts.
Thus, we posit that the desiderata of training partners are not only diversity but also specialization.

Our main insight is that XP-min partners are not only diverse but also have rich specialized behaviors
that are useful for training a generalist agent. So, selectively using diversity and specialization of
XP-min partners while reducing handshaking could prove valuable for training a robust cooperative
agent. While MP-reg could increase the diversity and reduce the overfitness of generated partners,
it comes with the hypothesized LOS problem. Hence, we are interested in an alternative method
that satisfies both desiderata of good training partners. We propose a simple yet effective method
to transfer the knowledge to another set of newly initialized partners via reinforcement learning
(RL). Instead of reducing handshaking from XP-min partners via regularization, we could specifically
extract diverse and specialized knowledge from them after the training process. Importantly, we
aim to maintain their diversity and specialization but not the sabotaging behaviors. We call this
method specialization transfer via reinforcement learning (SpecTRL). Furthermore, we present
SpecTRL DAgger—a combination of SpecTRL and DAgger [19]—to stabilize the distillation process
and better maintain the diversity of the source population. Our key contributions are as follows:

• A set of measures that quantify the quality of a training population as a whole: diversity,
specialization, overfitness (Section 3).

• Investigation of the interaction between the proposed measures and the robustness of
downstream generalist agents. We find that overfitting and lower specialization have a
detrimental impact on the robustness of downstream generalist agents (Section 4).

• A novel method SpecTRL and SpecTRL DAgger that aims to transfer diversity and special-
ization while eliminating overfitness of XP-min partners (Section 5). Finally, we show that
SpecTRL DAgger effectively reduces the number of incapable distilled partners (Section 6).

2 Preliminaries

We focus on cooperative environments described as decentralized partially observable Markov
decision processes (Dec-POMDP, Bernstein et al. [20]). An N-player Dec-POMDP is defined by a
tuple (S, {Ai}, {Ωi}, T,O,R, γ,H), where S is the global state space. A ≡ ×iAi and Ω ≡ ×iΩi

are the joint-action and joint-observation spaces of all players. The probability of the next state
conditioned on a state and a joint action is given by the transition function T . Players’ local
observations are partial views of the current state given by the observation function O. The reward
function R outputs a global reward, γ is the discount factor, and H is the horizon length.

At timestep t, each player observes oit, a partial view of the global state st, and outputs an action ait ∼
πi(·|τ it), where τ it = {oi0, ai0, r0, ..., oit} is the local history of the trajectory of player i. Collectively,
all players produce a joint action at ∼ π =

∏
i π

i, where π is the joint policy. The global reward
is given as rt = R(st,at). The return of a joint trajectory τ ∈ T ≡ (Ω × A × R)H is G(τ) =∑H

t=0 γ
trt. The expected return of a joint policy π is J(π) = Eτ∼ρ(π)[G(τ)], where ρ(π) is the

distribution of joint trajectories under a joint policy π. We use bold letters to represent joint quantities.
We use subscripts and superscripts to indicate different joint policies and players, respectively. We
use π−i to represent all other agents except i, i.e., πA = {πi

A,π
−i
A }. We define the expected

2

return of self-play (SP) trajectories as JSP(πA) := J(πi
A,π

−i
A) and the expected return of cross-

play (XP) between two joint policies as JXP(πA,πB) := 1
N

∑i=N
i=1

[
J(πi

A,π
−i
B) + J(πi

B ,π
−i
A)

]
and the expected return of an ad-hoc team between a generalist policy πG and a joint policy π as
JAHT(πG,π) = 1

N

∑i=N
i=1 J(πG,π

−i). Note that πG is not a joint policy and does not have any
specific role assigned to it. So, it must cooperate with other agents by filling in the missing role.

We use the word “partner” for policies that are used for training or testing a generalist agent.
Our main interest is training a robust generalist agent πG that can cooperate with unseen partners.
Formally, given a population of training partners P , the training objective of πG is

max
πG

JAHT(πG;P) := Eπp∈P [JAHT(πG,πP)] (1)

In this work, we prioritize task completion over literal task performance. Thus, we describe the
robustness of πG as

R(πG,P test) := HM({SR(πG,π
−i
T) | πT ∈ P test}), (2)

SR(π) := Eτ∼ρ(π) [S(τ)], (3)

where HM(·) gives the harmonic mean of a set of scalars, SR(π) is the success rate of π and S,
identifies whether a joint trajectory is successful.

Cross-Play Minimization (XP-min): XP-min technique has been recently proposed to generate
diverse training partners [11–16]. Here, we describe the variant used by Charakorn et al. [12], by
which the partners learn to be incompatible with others in the same population:

max
πA

JXP-min(πA,P) =

High SP return︷ ︸︸ ︷
JSP(πA)

Low XP return︷ ︸︸ ︷
− λXPJXP(πA,π+) ; ∀πA ∈ P, (4)

π+ = argmax
π+∈(P \{πA})

JXP(πA,π+), (5)

where π+ is the policy that is the most compatible with πA. In short, the XP-min objective optimizes
a set of joint policies that are capable while being incompatible with other policies.

Mixed-Play Regularization (MP-reg): MP-reg [17, 18] aims to solve a fundamental problem of
XP-min, where Eq. 4 incentivizes the partners to overfit or learn handshakes. Here, we briefly explain
the MP-reg objective and how it helps reduce overfitness following the description of CoMeDi [18].

In addition to SP and XP episodes, MP-reg introduces mixed-play (MP) episodes, which have two
stages: state mixing and self-play. In state mixing, the first t′ timesteps of an episode will evolve
according to a cross-play policy, e.g., πXP = (πi

A,π
−i
+) or πXP = (πi

+,π
−i
A). Then, a typical SP

rollout happens right after the state mixing. The training objective of MP-reg is to maximize the
SP return starting from st′ produced by πXP: JMP(πA,π+). Intuitively, this objective regularizes
XP-min agents such that they do not “sabotage” the game when interacting under XP trajectories as
they still have to maximize SP return after t′ timesteps. The MP-reg objective of each πA is

max
πA

JMP-reg(πA,P) =

High SP return︷ ︸︸ ︷
JSP(πA)

Low XP return︷ ︸︸ ︷
− λXPJXP(πA,π+)

High MP return︷ ︸︸ ︷
+ JMP(πA,π+) ; ∀πA ∈ P, (6)

Mutual Information (MI) Objective: LIPO [12] uses both XP-min and MI to generate diverse
partners. Here, we briefly describe how MI objective can be used in XP-min training [12]. A joint
policy π is a latent-conditioned policy with the form π(a| τ) = Ez∼p(z)

∏
i π

i(ai|τ i, zi), where
z = {zi} is a joint latent variable and p(z) is the prior distribution of z. The MI objective is to
maximize the mutual information between the observation-action pair and the latent variable of each
policy: I({oi, ai}; zi). Since the objective is intractable, we then optimize the variational lower
bound of the objective:

I({oi, ai}; zi) ≥ H(zi) + Ezi,(oi,ai)[log qϕA
(zi|oi, ai)], (7)

where H(zi) is the entropy of the random variable zi, and qϕ is a neural network approximating the
true posterior p(zi|{oi, ai}).

3

3 Quantifying Partner Qualities

In this section, we present three measures that quantify the different qualities of a population of
partners. The purpose of these measures is to allow us to compare populations and predict which
ones are better at producing more robust generalists. First, we describe the characteristics of a
joint trajectory and a joint policy as follows. Given a function f : T → X , we can compute the
characteristic of a joint trajectory τ as x = f(τ), where X is the characteristic space. For instance,
x could represent the frequencies of certain events under a joint trajectory τ . Consequently, we can
think of the distribution of a random variable X under π, P (X | Π = π), as the characteristic of a
joint policy π. That is, the probability of observing x, P (X = x | Π = π), depends on the joint
policy π. This approach allows us to utilize domain knowledge through a well-crafted function f
for better interpretability or even learn the function when expert knowledge is unavailable. Next, we
present the first two partner qualities that affect the robustness of downstream generalists based on
the concept of the mutual information between X and Π: diversity and specialization.

We define the diversity of a population of partners P as how diverse the random variable X ∈ X
distributed under P . Then, the diversity of X under P can be calculated using the concept of entropy:

D(P) := H(X) = −
∑
x

P (x) log P (x) = −
∑
x

Eπ[P (x|π)] log (Eπ[P (x|π)]), (8)

We can see that D(P) has direct implication to the training distribution (Eq. 1) and, consequently,
the robustness of the generalist agent (Eq. 2). For instance, if the training population P train is
characteristically diverse (i.e., D(P train) is high), it is more likely that some characteristics in P test
will be covered by the training set of the generalists.

Diversity of P is not the only aspect that affects the robustness of a downstream generalist agent. We
expect that another quality that affects the robustness of the generalist agent is the specialization
of the training partners. We propose to measure the specialization of P by how single-minded each
partner π is. Mathematically, we can compute the specialization of a joint policy as the negative
entropy of the characteristic of that joint policy: −H(X | Π = π). Then, we can calculate the
specialization of a population by taking the average specialization of the joint policies:

S(P) : = −Eπ [H(X | Π = π)] = −H(X | Π), (9)

H(X | Π = π) = −
∑
x

P (x|π) log P (x|π) (10)

We argue that specialization directly impacts the robustness of the generalist agent based on the
following rationale. For a generalist agent to effectively cooperate with specialized partners (S(P train)
is high), it has to understand the partner’s intention and learn various strategies because each partner
is a specialist who solves the task in specific ways. In contrast, if the partners are not specialized
(S(P train) is low), the generalist no longer needs to understand the intention of the training partner
and find the easiest or the most rewarding path to complete the task.

Another crucial quality of training partners is their overfitness. We propose a way to quantify the
overfitness of policies in a population by evaluating them against an oracle generalist π∗

G, which
has been trained with a set of oracle specialists P∗

S . The oracle specialists in P∗
S are assumed to

be collectively diverse, individually specialized, and do not use handshakes. This means that π∗
G is

capable of solving the task in different ways thanks to the diversity and specialization of the oracle
specialists. However, π∗

G will not be able to cooperate with a partner π−i if the partner either uses
handshakes or is overfit. Thus, we can use π∗

G as an overfitness evaluator of generated partners.
Mathematically, we define the overfitness of a population as

O(P) = 1−R(π∗
G;P) (11)

Capable partners with handshaking and overfitness (O(P) is high) are not desirable because they
cannot cooperate even with the oracle generalist, which implies that they can only cooperate only if
the entire team behaves under specific state-action distribution. As a result, a downstream generalist
could be underfit because it might not discover the specific handshakes used by the partners.

4 Understanding Effects of Specialization and Overfitness

In this section, we aim to explore the relationship between the specialization and overfitness of
a population and the robustness of downstream generalist agents. Thus, we perform a control

4

experiment using oracle specialists as the starting population. Then, we derive two additional
populations with lower specialization and higher overfitness, respectively, while controlling the
diversity of the populations to be similar to the starting population.

Chopping
Station

Onion

Lettuce

Tomato

Delivery
Location

Carrot

Counter Plate

Players

(a)

Chopped Lettuce (R1)

Chopped Tomato (R3)

Tomato & Lettuce
Salad (R5)

Tomato & Carrot
Salad (R6)

Chopped Carrot (R4)

Chopped Onion (R2)

(b)

Figure 1: Overview of the multi-recipe Overcooked game.

We use the multi-recipe Overcooked
[12, 21, 22] (MIT License, Fig. 1) as
the experimental platform. In short,
multi-recipe Overcooked is a two-
player cooperative game where agents
play as chefs who aim to deliver one
of six possible recipes as fast as pos-
sible. An episode terminates when
a dish is delivered or the time hori-
zon is reached. We use a handcrafted
(partial) function f that extracts the
completed recipe of a joint trajectory.
Specifically, xi = f(τ) is a one-hot
vector representing the completed recipe in τ and X ≡ {xi}i=6

i=1 ∈ R6 is the completed recipe space.
Thus, P (X|Π = π) represents the recipe completion distribution of π and P (X = xi|π) is the
probability of a recipe xi being completed by the joint policy π. We assume that these partners are
capable, i.e., they have high SP returns. This means that we only consider partners that can complete
the task consistently. More details can be found in Appendices A and B.

To obtain the oracle specialists, we use reward-shaped self-play training in which each specialist
is trained to complete a specific recipe. We train four policies for each of the six specialist types.
We use three set of specialists as starting population (| P∗

S | = 18) and the other for robustness
evaluation (| P test | = 6). To generate a population with increased overfitness (P∗

overfit), we train
XP-min agents with a modified objective. Instead of maximizing SP return, each agent learns to
maximize return with a specialist. For a population with decreased specialization (P∗

unspec), we
train 18 generalist policies against P∗

S (see Appendix C for training details). Finally, we train 8
XP-min partners (PXP-min) using only the XP-min objective and put it in Table 1 and Fig. 2 for reference.

Table 1: Diversity (D), specialization (S), and
overfitness (O) of partner populations. The right-
most column shows the harmonic mean of success
of downstream generalist agents against P test. We
do not use FCP [8] in this experiment.

Populations D(P) S(P) O(P) R(πG,P test)

(•) P∗
S 1.79 −0.01 0.06 0.81± 0.05

(•) P∗
unspec 1.72 −1.64 0.01 0.49± 0.07

(•) P∗
overfit 1.79 −0.01 0.35 0.73± 0.01

(•) PXP-min 1.31 −0.12 0.51 0.49± 0.02

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Overfitness

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Sp
ec

ia
li

za
ti

o
n

D
ec

re
as

e
sp

ec
ia

li
za

ti
o

n

Increase overfitness

Starting population (P *
S)

Decreased specialization (P *
Unspec)

Increased overfitness (P *
Overfit)

PXP min

Figure 2: Relationship of training populations in
the 2D specialization-overfitness landscape.

R1 R2 R3 R4 R5 R6
0.0

0.2

0.4

0.6

R
el

at
iv

e
Fr

eq
ue

nc
y

R1 R2 R3 R4 R5 R6
0.0

0.2

0.4

0.6

R
el

at
iv

e
Fr

eq
ue

nc
y

R1 R2 R3 R4 R5 R6
0.0

0.2

0.4

0.6

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 3: The recipe distribution at the last train-
ing iteration of the generalist agents trained with
P∗

S (top), P∗
overfit (middle), and P∗

unspec (bottom).

5

Table 1 shows that the three control populations have comparable diversity, while P∗
overfit and P∗

unspec
have increased overfitness and reduced specialization, respectively. For each population, The right-
most column shows the performance of generalist agents trained with each population when evaluated
against P test. As expected, P∗

overfit and P∗
unspec produce much less robust generalists compare to P∗

S .

0 100 200 300 400 500

Training Iteration

5

0

5

10

15

A
ve

ra
g

e
R

et
ur

n

Self-play

G trained with P *
S

G trained with P *
overfit

G trained with P *
unspec

Figure 4: The average training returns of general-
ists trained with different oracle populations.

We can see the root cause of the lower robust-
ness of generalists trained with P∗

unspec in the
bottom subplot of Fig. 3. We can see that the
recipe distribution during the training of general-
ist agents is less diverse, condensing at recipe R6
(the error bars represent the standard deviations
over three random seeds). Furthermore, despite
learning to mostly use R5 and R6, the general-
ists cannot cooperate well even with specialists
that prefer R5 and R6 (see Appendix D for de-
tails). In Fig. 4, we can see that the generalists
overfit to the optimal ways for completing the
most rewarding recipes (R5 and R6), achieving
even higher return than self-play agents thanks
to generality and flexibility of training partners
in P∗

unspec (i.e., low S(P∗
unspec)). As a result,

they are not required to have partner understanding capability, which is crucial for generalization.
While P∗

overfit generate similar training recipe completion to P∗
S , the generalist agents are not as robust

as the ones trained with P∗
S . The orange training curve in Fig. 4 suggests that the generalists trained

with P∗
overfit is underfit. Thus, it has lower performance when matched with test partners. From these

results, we conclude that unspecialized or overfit partners are not good training partners.

5 Specialization Transfer

XP-min
Training

XP-min
Partners

Specialization
Transfer

Generalist
Training

Distilled
Partners

Generalist

Figure 5: An overview diagram showing the steps in the training pipeline.

In Table 1, we see that PXP-min has moderate diversity and high specialization but also high overfit-
ness. This observation suggests that an XP-min population can potentially be a desirable training
population if the overfitness is reduced. Therefore, we seek methods to reduce the overfitness while
maintaining the diversity and specialization of an XP-min population. We propose SpecTRL and
SpecTRL DAgger to further reduce the overfitness after the training process of XP-min agents.

SpecTRL distills the knowledge from a source population P into a distilled population P ′ with the
same number of agents using reinforcement learning. Specifically, each agent πA′ ∈ P ′ distills the
knowledge of a reference agent πA ∈ P with the reward maximization objective:

JSpecTRL(πA′) =

i=N∑
i=1

J(πi
A′ ,π−i

A) (12)

Intuitively, distilling via the reward maximization objective (Eq. 12) incentivizes the distilled partners
to “nudge” the source partners to perform cooperative behaviors (which gives high return) and away
from their sabotaging behaviors (which gives low return). Additionally, when the source partners
cooperate, they do so in specialized ways as they have already learned specialized behaviors with
XP-min. This means that the distilled partners must learn the preferences and specialization of the
XP-min partners but not their sabotaging behaviors.

SpecTRL can be further combined with DAgger [19], using XP-min partners as experts, resulting in
a knowledge transfer method that utilizes both RL and supervised learning. This combination is
especially beneficial when XP-min partners heavily utilize complex handshakes that are unlikely to

6

be discovered by random exploration. We refer to this approach as SpecTRL DAgger:

JSpecTRL DAgger(πA′) =

i=N∑
i=1

J(πi
A′ ,π−i

A) + λDAggerLDAgger(π
i
A′), (13)

LDAgger(π
i
A′) = −Eτ i

t∼ρ(πi
A′ ,π

−i
A) log πi

A′(âit|τ it), (14)

where âit is the expert action, given by the source policy πi
A, and λDAgger ≥ 0. The auxiliary

supervised objective Eq. 14 is useful for stabilizing the distillation process by directly transferring
the knowledge from the source policy, unlike SpecTRL that fully relies on random exploration of RL
training. A primary assumption of DAgger is that it requires access to experts’ policies.

6 Experiments

Table 2: Qualities of oracle partner populations and their respective downstream generalists’ robust-
ness. Green arrows (⇑,⇓), red arrows (⇓), and approximation symbol (≈) indicate the improvement,
degradation, and no significant changes over the source population (written between brackets), re-
spectively. We only use the arrows when the standard deviations do not overlap. ± represents the
standard deviation over three random seeds.

Populations D(P) ↑ S(P) ↑ O(P) ↓ R(πG,P test) ↑
*S 1.79 −0.01 0.06 0.82± 0.05
*Overfit 1.78 0.00 0.35 0.74± 0.02
*Unspec 1.72 −1.64 0.01 0.49± 0.08

[*Overfit] + SpecTRL
1.79 −0.01 0.16 0.78± 0.01
(≈) (≈) (⇓ 0.19) (⇑ 0.04)

Table 3: Qualities of learned populations and their respective downstream generalists’ robustness.
Populations D(P) ↑ S(P) ↑ O(P) ↓ R(πG,P test) ↑
SP 1.08± 0.05 −0.49± 0.12 0.08± 0.02 0.18± 0.08
XP-min 1.31± 0.08 −0.13± 0.05 0.51± 0.05 0.56± 0.07

[XP-min] + MP-reg
1.48± 0.03 −0.38± 0.16 0.47± 0.04 0.44± 0.04
(⇑ 0.17) (⇓ 0.25) (≈) (⇓ 0.12)

[XP-min] + MI
1.63± 0.03 −0.63± 0.12 0.54± 0.06 0.61± 0.02
(⇑ 0.32) (⇓ 0.50) (≈) (≈)

[XP-min] + MI + MP-reg
1.28± 0.05 −0.68± 0.21 0.34± 0.05 0.55± 0.04

(≈) (⇓ 0.55) (⇓ 0.17) (≈)

[XP-min] + SpecTRL
1.21± 0.10 −0.11± 0.08 0.25± 0.02 0.58± 0.08

(≈) (≈) (⇓ 0.26) (≈)

[XP-min] + SpecTRL DAgger
1.32± 0.09 −0.14± 0.04 0.29± 0.06 0.62± 0.01

(≈) (≈) (⇓ 0.22) (≈)

[XP-min + MI] + SpecTRL
1.44± 0.04 −0.45± 0.06 0.20± 0.06 0.62± 0.01
(⇓ 0.19) (⇑ 0.18) (⇓ 0.34) (≈)

[XP-min + MI] + SpecTRL DAgger
1.60± 0.02 −0.56± 0.08 0.30± 0.03 0.64± 0.01

(≈) (≈) (⇓ 0.24) (⇑ 0.03)

[XP-min + MI + SpecTRL DAgger] + 1.56± 0.02 −0.56± 0.09 0.27± 0.02 0.64± 0.11
SpecTRL DAgger (≈) (≈) (≈) (≈)

We aim to empirically investigate how different training objectives (XP-min, MI, MP-reg, SpecTRL,
and SpecTRL DAgger) affect the qualities of the generated partners. We use our implementation of
recently proposed CoMeDi [18] to represent the MP-reg approach. We also include self-play (SP)
as one of our baselines (see Appendix E for more details). Note that partner qualities presented in
Section 3 do not depend on the size of populations of interest. In theory, we can compare populations
with different sizes. For a fair comparison, we compare populations of the same size (|P| = 8). It
is possible that some generated partners are incapable due to training instability or unsuccessful

7

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Overfitness

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Sp
ec

ia
li

za
ti

o
n

Self-play

XP-min + MI

*S

*Unspec

*Overfit

XP-min

SpecTRL
SpecTRL DAgger
MP-reg

1.2

1.3

1.4

1.5

1.6

1.7

Figure 6: The partner quality landscape, representing partner qualities from Table 3 visually. The
color bar represents population diversity. The arrows show how different approaches improve partners’
qualities. XP-min + MI + SpecTRL DAgger population is marked with ⋆.

distillation. If that is the case, the proposed diversity and specialization measures are undefined for
incapable partners. So, we remove those partners from diversity and specialization calculation while
still keeping them in their population for training downstream generalist agents. Therefore, for a fair
comparison, we always incorporate Fictitious Co-Play (FCP) [8] when training a generalist. FCP
adds weaker partners to a training population, including random and incapable ones, by using past
checkpoints of the partners. For populations related to oracle specialists (marked with ∗), they have a
population size of 18, and we do not use FCP as they only serve as references.

Table 2 shows the effectiveness of SpecTRL at reducing the overfitness of the overfit oracle specialists.
Table 3 shows the qualities of learned populations and the robustness of corresponding downstream
generalists. We also visualize the populations in the partner quality landscape in Fig. 6, allowing us
to visually compare populations generated by SpecTRL, SpecTRL DAgger, and MP-reg.

Table 4: The number of capable distilled partners
when using SpecTRL and SpecTRL DAgger. Other
populations do not contain incapable partners.

Populations Capable Partners
XP-min 7.33± 0.47
XP-min + SpecTRL 6.00± 0.82
XP-min + SpecTRL DAgger 7.33± 0.47

XP-min + MI + SpecTRL 8.00± 0.00
XP-min + MI + SpecTRL 5.33± 1.25
XP-min + MI + SpecTRL DAgger 8.00± 0.00

SpecTRL and SpecTRL DAgger Consistently
Reduce Overfitness: SpecTRL consistently re-
duces overfitness of the input population as in-
tended. It successfully reduces the overfitness of
the overfit oracle specialists, thus improving the
robustness of generalists (see Table 2). However,
SpecTRL significantly reduces diversity when
used with XP-min + MI generated populations
(see Table 3). It is likely because of unsuccess-
ful distillation, resulting in incapable distilled
partners. SpecTRL DAgger fixes this problem
effectively (see Table 4). Thus, it maintains the
diversity of the source population while reducing overfitness. Although the reduction in overfit-
ness is smaller than SpecTRL, the robustness of downstream generalists is higher, thanks to the
preserved diversity. Interestingly, SpecTRL seems to increase the specialization of the partners while

8

SpecTRL DAgger does not. We believe that the source partners might have multi-modal behaviors,
but the distilled SpecTRL partners might not discover all the behavioral modes via random exploration.
So, the SpecTRL partners become more single-minded. On the other hand, SpecTRL DAgger does
not significantly increase specialization as the DAgger objective helps transfer multi-modal behaviors
directly from the source partners through the imitation learning objective.

MP-reg and MI Increase Diversity but Lose Specialization: We can see that XP-min populations
are much less diverse than the ones that incorporate either MP-reg or MI regularization during
the training process. This result agrees with Charakorn et al. [12] and Sarkar et al. [18] that find
MI and MP-reg to help increase the diversity of XP-min partners. Interestingly, we find that using both
MP-reg and MI simultaneously do not yield a more diverse population. However, both regularization
techniques significantly reduce the specialization of the generated partners. Therefore, despite the
increased diversity, the robustness of downstream generalists does not increase as the specialization
is also significantly reduced. This result confirms our hypothesis that adding a regularization during
XP-min training also comes with the loss of specialization (LOS) problem.

We believe that the LOS problem of both regularizations has different root causes. MP-reg incen-
tivizes the partners to complete the task despite not being aligned with their preferences, effectively
regularizing agents from having strong preferences and reducing how single-minded they are. On the
other hand, MI induces the generated partners to have multi-modal behaviors, which could correspond
to different high-level behaviors, e.g., completing different recipes.

Repeated Distillation Does Not Reduce Overfitness Further: So far, we can see that
SpecTRL DAgger is effective at reducing the overfitness of XP-min partners. This raises the question
of whether repeated distillation could further reduce the overfitness. We investigate and find that
repeating distillation does not further reduce overfitness (see the last row of Table 3). We hypothesize
that the sabotaging behavior has already been significantly reduced in the first round of distillation and
that SpecTRL DAgger is effective at removing sabotaging behavior but not other kinds of overfitness,
e.g., state distribution overfitness, which remains in all populations as shown in Table 3. Therefore,
repeating the distillation no longer reduces the overfitness.

7 Discussion

Although MP-reg and MI regularization methods have the LOS problem, they are still necessary
for increasing the diversity of the XP-min agents. Theoretical understanding of how regularization
during XP-min training changes their specialization would lead to better regularization techniques
that improve partner qualities, which will be crucial for building a robust cooperative agent.

The calculation for diversity (Eq. 8) and specialization (Eq. 9) depends on the probability of each π
being drawn from its population. Thus, we can alter the diversity and specialization of a population by
changing how the joint policies are drawn from the population. We believe it is possible to positively
modify the diversity and specialization of a population by changing how π are drawn. We leave this
investigation for future work.

The overfitness of a population O(P) presented in this paper does not separate handshakes and
state-action distribution overfitness. Future work could explicitly decouple types of overfitness for
further interpretability of the measure. We do not use any of the measures presented in this paper
to diversify; rather, we use them as a means to understand partner qualities and their relationship
to the robustness of generalist agents. Using the presented measures as diversification objectives,
potentially with domain knowledge, is a worthwhile future direction for much more efficient learning
algorithms. We will explore this direction in future work.

Finally, training the generalist agent with auxiliary objectives, e.g., opponent modeling, might improve
robustness. However, it is unclear how such training objectives affect the relationship between the
proposed measures and the downstream robustness. Understanding how these measures interact with
auxiliary objectives will be critical for building robust cooperative agents.

8 Limitations

We note that none of the presented measures alone are representative indicators of the quality of the
partners. For example, two populations could be equally diverse yet yield vastly different levels of

9

robustness of the generalist agent due to their difference in specialization or overfitness. There could
be other qualities that impact the robustness of generalists. We will investigate this in future work.

In the experiments, we use domain knowledge for the function f (i.e., how to extract the characteristic
of a trajectory) and for reward shaping of the training of the oracle specialists. Both of which affect the
partner quality measures. We acknowledge this as the main limitation of the experiments. Nonetheless,
evaluating models without expert knowledge is challenging and is not unique to cooperative multi-
agent systems. For example, evaluating LLMs requires domain knowledge to generate test scenarios
or human preferences. We do not aim to automate such a notorious challenge. Instead, our proposed
measures give us the option to use domain knowledge to evaluate the qualities of cooperative agents
while leaving an option for learning the function f as future work.

If f is not well-designed, it is possible that
∑

x P (x|π) < 1, which is not a valid probability distribu-
tion. Consequently, the diversity and specialization of the population containing π is undefined. For
example, an untrained π might have an invalid P (X|Π = π) if X is the space of reachable goals in
an environment because the policy is incapable of achieving any goal.

Our experiments are performed under only a single cooperative domain, multi-recipe Overcooked. We
acknowledge this limitation and aim to investigate different domains in future work. The performance
of SpecTRL and SpecTRL DAgger depends on the quality of the source partner populations. Hence,
the methods should not be expected to improve arbitrary partner populations.

9 Related Work

Generating Diverse Partners for Training Robust Cooperative Agents: In recent years, much
efforts in the ad-hoc teamwork literature have been put into generating diverse training partners.
Using domain-knowledge, one can generate diverse partners via hand-crafted policies [23–25],
domain-specific reward shaping [26–28], or Quality-Diversity (QD) algorithms [29]. On the other
hand, there are several techniques that can be used to generate diverse training partners without
using domain knowledge including using past checkpoints [30, 8], population-based training [3, 31],
a mutual information objective [32], trajectory-based diversification [33], or XP-min methods [11–
13, 15, 17, 18]. This paper conveys an important message that there are other qualities of training
partners that should be considered for training robust cooperate agents: Diversity is not all we need.

Partner Qualities That Affect Robustness: There are studies that explicitly aim to understand
variables that affect the robustness of cooperative agents [10, 13]. McKee et al. [10] and Wang et al.
[13] conclude that the number of training partners and diversity are critical factors for the robustness of
downstream agents. Our work studies a different set of partner qualities and shows that specialization
and overfitness are also crucial for training robust cooperative generalist agents. Notably, under the
competitive multi-agent setting, Vinyals et al. [34] show that learning against specialized training
opponents eases the learning process and increases robustness. Our work formulates the notion of
specialization mathematically and identifies that specialization is one of the key qualities of training
partners under the cooperative setting.

Reducing XP-min Partners’ Overfitness: MP-reg methods [17, 18] aim to reduce overfitness of
XP-min partners during their training process. The main idea is to mix SP and XP experiences such
that XP-min partners do not learn handshaking behaviors. Unlike MP-reg, the proposed method
reduces the overfitness of XP-min partners after the training by knowledge distillation.

Reducing Overfitness of Neural Networks: Using knowledge distillation for reducing overfitness is
also well known in the broad machine learning literature [35–37]. Typically, the goal of knowledge
distillation is to transfer knowledge of a teacher model to another student model to reduce the
overfitness of the model’s predictions. We use the same idea of knowledge distillation in the context
of extracting diversity and specialization of XP-min training (“teachers”) partners to another set of
(“students”) partners while reducing their overfitness.

10

Acknowledgement

This research was supported by the Vidyasirimedhi Institute of Science and Technology (VISTEC) and
Siam Commercial Bank (SCB). Additionally, it was partially funded by the Reinventing University-AI
Beyond Modeling project, supported by the Ministry of Higher Education, Science, Research, and
Innovation of Thailand. We thank anonymous reviewers for their thoughtful feedback.

References
[1] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and

Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=EcGGFkNTxdJ.

[2] Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. Advances in Neural
Information Processing Systems, 35:16509–16521, 2022.

[3] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

[4] Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi
challenge: A new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

[5] Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous
agent teams: Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

[6] Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Learning to cooperate with
unseen agents through meta-reinforcement learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1478–1479, 2021.

[7] Paul Knott, Micah Carroll, Sam Devlin, Kamil Ciosek, Katja Hofmann, Anca Dragan, and Rohin
Shah. Evaluating the robustness of collaborative agents. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’21, page 1560–1562,
Richland, SC, 2021. International Foundation for Autonomous Agents and Multiagent Systems.
ISBN 9781450383073.

[8] DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

[9] Darius Muglich, Luisa M Zintgraf, Christian A Schroeder De Witt, Shimon Whiteson, and
Jakob Foerster. Generalized beliefs for cooperative ai. In International Conference on Machine
Learning, pages 16062–16082. PMLR, 2022.

[10] Kevin R McKee, Joel Z Leibo, Charlie Beattie, and Richard Everett. Quantifying the effects
of environment and population diversity in multi-agent reinforcement learning. Autonomous
Agents and Multi-Agent Systems, 36(1):1–16, 2022.

[11] Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse
cooperative agents by learning incompatible policies. In ICML 2022 Workshop AI for Agent-
Based Modelling, 2022. URL https://openreview.net/forum?id=a7vLnGKGIjY.

[12] Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse
cooperative agents by learning incompatible policies. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=UkU05GOH7_

6.

11

https://openreview.net/forum?id=EcGGFkNTxdJ
https://openreview.net/forum?id=EcGGFkNTxdJ
https://openreview.net/forum?id=a7vLnGKGIjY
https://openreview.net/forum?id=UkU05GOH7_6
https://openreview.net/forum?id=UkU05GOH7_6

[13] Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and
Weinan Zhang. Quantifying zero-shot coordination capability with behavior preferring partners.
arXiv preprint arXiv:2310.05208, 2023.

[14] Arrasy Rahman, Elliot Fosong, Ignacio Carlucho, and Stefano V Albrecht. Generating team-
mates for training robust ad hoc teamwork agents via best-response diversity. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=l5BzfQhROl.

[15] Lei Yuan, Lihe Li, Ziqian Zhang, Feng Chen, Tianyi Zhang, Cong Guan, Yang Yu, and Zhi-Hua
Zhou. Learning to coordinate with anyone. In Proceedings of the Fifth International Conference
on Distributed Artificial Intelligence, pages 1–9, 2023.

[16] Muhammad Rahman, Jiaxun Cui, and Peter Stone. Minimum coverage sets for training robust
ad hoc teamwork agents. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17523–17530, 2024.

[17] Brandon Cui, Andrei Lupu, Samuel Sokota, Hengyuan Hu, David J Wu, and Jakob Nicolaus
Foerster. Adversarial diversity in hanabi. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=uLE3WF3-H_5.

[18] Bidipta Sarkar, Andy Shih, and Dorsa Sadigh. Diverse conventions for human-AI collaboration.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=MljeRycu9s.

[19] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

[20] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

[21] Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and Max
Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse
planning. Topics in Cognitive Science, n/a(n/a), 2021. doi: https://doi.org/10.1111/tops.12525.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525.

[22] David Rother, Thomas Weisswange, and Jan Peters. Disentangling interaction using maximu-
mentropy reinforcement learning in multi-agent systems. In European Conference on Artificial
Intelligence, 2023.

[23] Ahana Ghosh, Sebastian Tschiatschek, Hamed Mahdavi, and Adish Singla. Towards deployment
of robust cooperative ai agents: An algorithmic framework for learning adaptive policies. In
Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, pages 447–455, 2020.

[24] Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent
representations to influence multi-agent interaction. In Conference on Robot Learning, pages
575–588. PMLR, 2021.

[25] Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. Influencing towards
stable multi-agent interactions. In Conference on Robot Learning, pages 1132–1143. PMLR,
2022.

[26] Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scalable
evaluation of multi-agent reinforcement learning with melting pot. In International Conference
on Machine Learning, pages 6187–6199. PMLR, 2021.

[27] Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon
Du, Yu Wang, and Yi Wu. Discovering diverse multi-agent strategic behavior via reward
randomization. arXiv preprint arXiv:2103.04564, 2021.

12

https://openreview.net/forum?id=l5BzfQhROl
https://openreview.net/forum?id=l5BzfQhROl
https://openreview.net/forum?id=uLE3WF3-H_5
https://openreview.net/forum?id=MljeRycu9s
https://openreview.net/forum?id=MljeRycu9s
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525

[28] Chao Yu, Jiaxuan Gao, Weilin Liu, Botian Xu, Hao Tang, Jiaqi Yang, Yu Wang, and Yi Wu.
Learning zero-shot cooperation with humans, assuming humans are biased. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=TrwE8l9aJzs.

[29] Rodrigo Canaan, Xianbo Gao, Julian Togelius, Andy Nealen, and Stefan Menzel. Generating
and adapting to diverse ad hoc partners in hanabi. IEEE Transactions on Games, 15(2):228–241,
2022.

[30] Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Investigating partner
diversification methods in cooperative multi-agent deep reinforcement learning. In Neural
Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand,
November 18–22, 2020, Proceedings, Part V 27, pages 395–402. Springer, 2020.

[31] Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and
Wei Yang. Maximum entropy population-based training for zero-shot human-ai coordination.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 6145–6153,
2023.

[32] Keane Lucas and Ross E. Allen. Any-play: An intrinsic augmentation for zero-shot coor-
dination. In Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’22, page 853–861, Richland, SC, 2022. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN 9781450392136.

[33] Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
coordination. In International Conference on Machine Learning, pages 7204–7213. PMLR,
2021.

[34] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

[35] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 535–541, 2006.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[37] Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson.
Does knowledge distillation really work? Advances in Neural Information Processing Systems,
34:6906–6919, 2021.

13

https://openreview.net/forum?id=TrwE8l9aJzs
https://openreview.net/forum?id=TrwE8l9aJzs

Reproducibility Statement

We include additional information to reproduce the experimental results in the Appendices:

• Environment details (Appendix A)

• Experimental details (Appendix B)

• Oracle-related populations (Appendix C)

• Pseudocode, implementation details, and hyperparameters (Appendix E)

The source code is available at https://anonymous.4open.science/r/dinayn-spectrl-marl/.

Societal Impact

The paper provides additional insight into how specialization can impact the robustness of cooperative
generalist agents. Also, the proposed methods aim to reduce the overfitness of training partners to
better generalize generalist agents. We believe this paper will improve how future research tackles
the challenges of cooperative multi-agent systems. We also hope that the proposed methods will be
used to train more robust and capable generalist agents in the near future.

The choice of f and x can be biased, which can discriminate certain partners’ behaviors in downstream
uses of the partners. Finally, having a superhuman AI assistant in cooperative games might incentivize
human players to actively look for AI companions instead of learning to play with other human
players, which could harm their mental health and relationships in the long term.

A Multi-Recipe Overcooked

We use the multi-recipe version of the simplified Overcooked game from Charakorn et al. [1], which
is based on the work of Wu et al. [2], Rother et al. [3] (MIT License). The game has the following
cooking ingredients: lettuce, onion, tomato, and carrot. At the beginning of an episode, they are
randomly placed at pre-defined positions in the game. Specifically, lettuce and onion are randomly
placed on the left or the middle counter. tomato and carrot are randomly placed on the right or
the middle counter. These ingredients can be used in different recipes, making each ingredient
unique. Four recipes (LettuceSalad, TomatoSalad, ChoppedCarrot, ChoppedOnion) require
only a single ingredient, while the other two (TomatoLettuceSalad, TomatoCarrotSalad) require
two ingredients. The ingredients must be chopped at the chopping station before placing on the plate.
After the required ingredients are put on the plate, they must be delivered to the delivery station.

The players have the same egocentric observation and action spaces. The observation is a set of
hand-crafted features representing a local view of the environment. Specifically, we use the following
features: absolute position and facing direction, relative distance to the objects and the other agent,
state of the ingredients, four booleans indicating if the agent is next to a counter in four cardinal
positions, held items, the state of held items, and the type and state of the items in front of the agent.
These features are concatenated as a 1-D vector of length 54. At every timestep, each player has to
choose one of the six possible actions: no op, move {up, down, left, right}, and interact.

An episode lasts at most 200 timesteps and terminates immediately after a successful delivery.
An episode without delivery is considered unsuccessful. Consequently, f(τ) is undefined for
unsuccessful trajectories. The agents are incentivized to interact with the objects and deliver as fast
as possible with the following reward function:

rt = rinteract + rprogress + rcomplete − p, (15)

where rinteract is a shaped reward given when an agent interacts with an object for the first time in
an episode, rprogress is given when the players progress toward a recipe completion (i.e., chopping
required ingredients or putting chopped ingredients on the plate), rcomplete is given upon successful
delivery, and p is a penalty. We use rinteract = 0.5, rprogress = 1.0, rcomplete = 10, and p = 0.1. We note
that recipes with more than one ingredient will give only slightly higher rewards (rinteract + rprogress)
but are significantly harder to discover by random exploration than those with one ingredient.

14

https://anonymous.4open.science/r/dinayn-spectrl-marl/

B Additional Experimental Details

Since we use handcrafted characteristic function f that maps a trajectory to a one-hot vector represent-
ing a completed recipe, mathematically, f(τ) is undefined for some τ that is unsuccessful. Hence, f
is a partial function. From our experience, all capable agents always complete a recipe. If necessarily,
we remove trajectories that the agents fail to deliver a recipe (undefined f(τ)) so that P (X|Π = π)
is a valid probability distribution:

∑
x P (x|π) = 1. We remove incapable agents from all quality

measurements as they do not represent meaningful behaviors, though we still use them for training
generalist agents. We make sure that all populations include some weaker agents by always using FCP
[4] when training a generalist. We define a capable agent as an agent with more than 50% success
rate under SP trajectories. We estimate P (X|Π = π) for each π using 200 SP episodes. We estimate
the overfitness of each π using 200 ad-hoc episodes against the oracle generalist. We evaluate the
robustness of each generalist using 1200 ad-hoc episodes and 200 episodes for each test specialist.
Although the proposed specialization transfer approaches are not computationally expensive, they
require additional computation after training the source populations. For example, a single run of
SpecTRL or SpecTRL DAgger takes around 12 hours to distill a population of 8 XP-min agents using
a desktop PC with an AMD Ryzen 9 5950X 16-Core processor with 64GB of RAM.

The details provided here are used in both Section 4 and Section 6.

C Oracle-Related Populations in Section 4

Oracle Specialists (P∗
S): The oracle specialists are trained using self-play with a modified reward

function. For each oracle specialist, the completion reward rcomplete is given only when completing
an assigned recipe, which is unique for each specialist. We repeat the training of all six specialists
three times, resulting in the oracle specialists population with size 18 (| P∗

S | = 18).

Overfit Oracle Specialists (P∗
overfit): We train XP-min agents with a modified objective. Instead of

maximizing SP return, each agent learns to maximize return with a specialist while still minimizing
return when matched with other XP-min agents in the population. Specifically, we train three LIPO
populations instead of one with 18 agents because it requires lower computation and is easier to train.
This is justified since the starting population contains three copies of the six specialists. The training
objective for each πA in P∗

overfit can be written as
max
πA

JXP(πA,π
∗
SA

)− λXPJXP(πA,π+) ;∀(πA, πSA
) ∈ P, (16)

P = {(πA,πSA
) | πA ∈ P∗

overfit,π
∗
SA

∈ P∗
S , and A ∈ {1, ...,M}} (17)

π+ = argmax
π+∈(P∗

overfit \{πA})
JXP(πA,π+) (18)

Optimizing Eq. 16 creates a population P∗
overfit in which each partner learns to cooperate with a

specific oracle specialist while incentivized to use handshakes to reduce the XP term.

Unspecialize Oracle Specialists (P∗
unspec): We train 18 instances of generalist agents for this

population. The objective for training each generalist is
max
πG

Eπ∗
S∈P∗

S
JATH(πG,π

∗
S) ;∀πG ∈ P∗

unspec (19)

Note that the generalists are capable of completing all recipes, meaning that they have high diversity.
At the same time, they are willing to cooperate regardless of what the partner is attempting. This
means that they have very low specialization. The quantity of the diversity and specialization is given
in Table 1.

D Additional Results for The Control Experiment in Section 4

Fig. 7 shows the full evaluation performance of generalists trained with oracle-related populations
generated with domain knowledge and an XP-min population. Interestingly, generalists trained with
the unspecialized specialists P∗

unspec are less robust to unseen test partners who prefer R6 despite
the training recipe distribution heavily concentrates at R5 and R6 (Fig. 3). This result suggests that
unspecialized partners make downstream generalists prone to overfitting the most optimal trajectories
that maximize the return. Thus, the generalist cannot effectively cooperate with the test partners.

15

0.99
(0.01)

0.59
(0.01)

0.45
(0.00)

0.48
(0.02)

0.69
(0.01)

0.25
(0.03)

0.47
(0.02)

0.85
(0.02)

0.46
(0.01)

0.76
(0.01)

0.44
(0.02)

0.86
(0.02)

0.25
(0.03)

0.49
(0.01)

0.88
(0.05)

0.57
(0.05)

0.92
(0.04)

0.77
(0.09)

0.90
(0.01)

0.55
(0.05)

0.73
(0.06)

0.98
(0.00)

0.86
(0.06)

0.93
(0.02)

0.86
(0.05)

0.93
(0.02)

0.52
(0.07)

0.81
(0.06)

Lettuce (R1) Onion (R2) Tomato (R3) Carrot (R4)
Tomato

Lettuce (R5)
Tomato

Carrot (R6)
Harmonic

mean

XP-min

Unspecialized

Overfit Specialists

Specialists

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Test specialist partner

Tr
ai

ni
ng

 p
o

p
ul

at
io

n

Loading [MathJax]/extensions/MathMenu.js
Figure 7: Test success rate of generalists trained with oracle-related populations.

E Implementation Details

Our implementation is based on the codebase and hyperparameters provided by Charakorn
et al. [1], which uses the parameter sharing technique [5–7] and MAPPO [8] for training all
partners. We provide the pseudocode for the training of the XP-min + MI + MP-reg here.

Algorithm 1: Training process of LIPO (on-policy)
This pseudocode is based on self-play. Blue text is related to the MI objective. XP-min specific code is
highlighted in green. MP-reg related computation is in orange
Input: A Population P = {πA |1 ≤ A ≤ N}
while not done do

// This loop is fully parallelizable
for A ∈ {1, ..., N} do

// Collect self-play data and compute the objective
BSP ← CollectSPData(πA)
Compute JSP(πA) with BSP
// Find the most compatible policy
π+ ← argmaxπ+

JXP(πA,π+)

// Collect cross-play data and compute the objective
BXP ← CollectXPData(πA,π+)
Compute JXP(πA,π+) with BXP
// Collect mixed-play data and compute objective
BMP ← CollectMPData(πA,π+)
Compute JMP(πA,π+) with BMP
// Compute mutual information objective
Compute LMI (the MI lower bound, Eq. 7) using all experiences (BSP

⋃
BXP

⋃
BMP)

// Update the policy
θA ← θA −∇θA [−JSP(πA)+λXPJXP(πA,π+)+λMILMI+λMPJMP(πA,π+)]
// Update the MI posterior approximation
ϕA ← ϕA − λMI∇ϕALMI

Hyperparameters: We use the following hyperparameters:

• λXP = 0.3 (for XP-min objective)

• λMI = 0.5 (for MI lower bound objective)

• λMP = 0.1 (for MP-reg objective)

• λDAgger = 0.1 (for SpecTRL DAgger objective)

For populations that do not use all the training objectives, we set the corresponding coefficients to zero.
We use λXP and λMI based on the values provided by Charakorn et al. [1]. We do hyperparameter
search for λMP ∈ {0.1, 0.2} and λDAgger ∈ {0.01, 0.1, 0.2}, and report the best result.

16

F Conclusion

We propose a principled way to measure three qualities of training partners: diversity, special-
ization, and overfitness. We investigate how these qualities impact the robustness of downstream
generalists and find that, in addition to diversity, specialization and overfitness are essential factors
for training a robust generalist agent. We also observe that XP-min partners have the potential
to be good training partners if their overfit is reduced. Thus, we propose two simple methods,
SpecTRL and SpecTRL DAgger, to effectively reduce the overfitness while maintaining the diver-
sity and specialization of the partners. Empirically, the proposed methods successfully reduce
the overfitness of the partners. SpecTRL DAgger improves SpecTRL by stabilizing the distillation
process, reducing the number of incapable distilled partners. As a result, the generalists trained
with XP-min + MI + SpecTRL DAgger populations are the most robust. We also observe that using
MP-reg and MI regularizations during XP-min training increases diversity. However, they have the
LOS problem and, therefore, cannot directly increase the robustness of downstream generalists.
Although the analysis done in this work relies on domain knowledge, the insight presented here is
valuable for building a more robust cooperative agent in general.

References
[1] Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse coop-

erative agents by learning incompatible policies. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=UkU05GOH7_6.

[2] Sarah A. Wu, Rose E. Wang, James A. Evans, Joshua B. Tenenbaum, David C. Parkes, and
Max Kleiman-Weiner. Too many cooks: Coordinating multi-agent collaboration through inverse
planning. Topics in Cognitive Science, n/a(n/a), 2021. doi: https://doi.org/10.1111/tops.12525.
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525.

[3] David Rother, Thomas Weisswange, and Jan Peters. Disentangling interaction using maximu-
mentropy reinforcement learning in multi-agent systems. In European Conference on Artificial
Intelligence, 2023.

[4] DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
with humans without human data. Advances in Neural Information Processing Systems, 34:
14502–14515, 2021.

[5] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the tenth international conference on machine learning, pages 330–337, 1993.

[6] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[7] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 4295–4304.
PMLR, 2018.

[8] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of PPO in cooperative multi-agent games. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=YVXaxB6L2Pl.

17

https://openreview.net/forum?id=UkU05GOH7_6
https://onlinelibrary.wiley.com/doi/abs/10.1111/tops.12525
https://openreview.net/forum?id=YVXaxB6L2Pl
https://openreview.net/forum?id=YVXaxB6L2Pl

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract gives accurate overview and contributions of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in the Limitations and Discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

18

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We outline training and algorithmic details in the main paper and appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]
Justification: We provide access to the codebase.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide training and hyperparameter details in the paper and appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide standard deviation for the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the information in the appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the Code Of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a separate Societal Impact section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

21

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All trained agents are in simulated cooperative environments.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit the creators of environments used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

22

paperswithcode.com/datasets

Answer: [Yes]
Justification: We provide all assets used in this work along with the code publicly.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Preliminaries
	Quantifying Partner Qualities
	Understanding Effects of Specialization and Overfitness
	Specialization Transfer
	Experiments
	Discussion
	Limitations
	Related Work
	Multi-Recipe Overcooked
	Additional Experimental Details
	Oracle-Related Populations in sec:understanding
	Additional Results for The Control Experiment in sec:understanding
	Implementation Details
	Conclusion

