Under review as a conference paper at ICLR 2026

UMC: UNIFIED MALFUNCTION CONTROLLER FOR
DAMAGE-RESILIENT LEGGED LOCOMOTION

Anonymous authors
Paper under double-blind review

Sensor Status

Damaged @ Processor (I)

—@
. M
Observation l',"Jm.ﬁedC
Joint Damage Type Malfunction
Controller

(=18

Legged Robot

with
Joint Damage Reduced motor force @
Limited linear m Damage—‘Re3|I|ent
ve\ocity d Action

(a) From Malfunctions to Robust Actions (b) Comparison

Figure 1: (a) We consider diverse malfunction scenarios in legged robots, including different sensor
statuses and three types of joint damage. These malfunctions are reflected in the observation input.
Two-stage pipeline UMC employs a masking mechanism to filter corrupted signals and produces
damage-resilient actions. (b) Comparison with existing approaches. UMC achieves lower failure
rates and higher 3 unit performance across various malfunction scenarios, as illustrated by both
qualitative rollouts (red boxes highlight failure cases of baselines) and quantitative radar plots.

ABSTRACT

Adaptation to unpredictable damages is crucial for autonomous legged robots, yet
existing methods based on multi-policy or meta-learning frameworks face chal-
lenges like limited generalization and maintenance. In this work, we first provide
a systematic categorization of eight representative malfunction scenarios, cover-
ing both detectable and undetectable cases. Then, we propose a novel model-free
framework, Unified Malfunction Controller (UMC). UMC employs a two-stage
training pipeline: the first stage learns strong baseline locomotion in undamaged
environments, while the second stage fine-tunes the controller with mixed mal-
function scenarios to encourage adaptive and robust behavior. For detectable set-
tings, we introduce a masking strategy that explicitly filters corrupted signals, pre-
venting error propagation and enabling policies to rely on functional joints. UMC
is compatible with both transformer and MLP backbones. Experiments across
multiple humanoid and quadruped tasks show that UMC consistently reduces fail-
ure rates and improves task completion under diverse damage conditions. The
source code and trained models will be made available to the public.

1 INTRODUCTION

Legged robots have achieved remarkable progress due to their flexibility and adaptability across
diverse scenarios. Prior research has mainly focused on network design, leveraging observational
signals and proprioceptive states. However, robustness to diverse scenarios remains unexplored,
which is critical when joints or limbs malfunction, especially when human intervention is imprac-

tical or even impossible (Hutter et al. 2017; Bellicoso et al. 2018 [Wensing et al., [2022). For

example, in disaster recovery, a search-and-rescue robot navigating through rubble may suffer joint

Under review as a conference paper at ICLR 2026

failures caused by debris, making external assistance unsafe or impractical. Therefore, robustness is
essential for reliable real-world deployment.

Existing approaches address this challenge via multi-policy frameworks, model predictive control,
data augmentation (Kume et al., 2017} [Yang et al., 2021} [Hou et al., 2024; Mayne et al., [2005), or
meta-learning (Nagabandi et al., 2019} Raileanu et al., [2020; \Guo et al., 2023 |Chen et al., [2024)).
However, they often suffer from complex maintenance, limited generalization, and degraded per-
formance under out-of-distribution deployment. Recently, (Skand et al., [2024) present a masking
strategy that appends binary indicators of sensor failure to proprioceptive inputs, but it yields only
marginal gains. As shown in Fig. [T|b), methods trained under specific damage settings exhibit high
failure rates for both humanoid and quadruped robots in open-world tests.

To overcome these limitations, we take a systematic perspective on malfunction modeling and con-
troller design (Fig. [T(a)). First, we analyze multiple malfunction scenarios and categorize them
into eight types in Table |1} covering most practical cases. These both detectable and undetectable
malfunctions, characterized by three key parameters: position, velocity, and motor force, which
manifest as restricted range of motion, reduced motor force, and limited linear velocity. During
training, malfunctions are randomly applied to different joints, encouraging the model to generalize
across diverse combinations.

To this end, we propose a Unified Malfunction Controller (UMC), with a powerful two-stage train-
ing pipeline. Concretely, in Stage I, the model is trained under undamaged environments to acquire
strong ability under normal conditions. This step provides a stable initialization and avoids the insta-
bility that often arises when training directly under diverse malfunctions. In Stage II, the pretrained
model is fine-tuned with a mixture of malfunction scenarios, which can be regarded as structured
noise injection. This adaptation forces the policy to generalize across diverse impairments while
preserving the capabilities learned in Stage I.

For undetectable malfunctions, sensors remain functional while joints are impaired, and the network
adapt autonomously to different types of joint damage, improving robustness and generalization
under challenging conditions. For detectable malfunctions, sensor damage invalidates signals from
affected joints, posing greater challenges since the controller must operate without reliable feedback.
To handle this, we introduce a masking strategy that leverages the known malfunction information
to explicitly filter out the faulty inputs, preventing the network from being misled and enabling it to
exploit the remaining reliable signals. Our framework supports both transformer- and MLP-based
action networks, enabling effective adaptation under diverse failures.

Compared to previous methods, our approach reduces the average fail rates by 30% and 37% with
the base structure of the transformer and the MLP on three locomotion tasks, as shown in Fig. [T{b).
The main contributions are:

e We systematically analyze and categorize eight representative malfunction scenarios, in-
cluding detectable and undetectable malfunctions based on sensor status, all characterized
around the three key joint parameters: position, velocity, and motor force.

e We propose the Unified Malfunction Controller (UMC), a powerful two-stage training
pipeline. The first stage ensures strong baseline capabilities under normal conditions, while
the second stage fine-tunes the model under diverse damage scenarios to enhance robust-
ness and adaptability. For detectable malfunctions, we further introduce a masking strategy
that leverages explicit malfunction information to reduce the influence of damaged joints
on the network.

e We conduct extensive experiments on three locomotion tasks with both transformer-based
and MLP-based action networks, demonstrating that our method significantly reduces fail-
ure rates and generalizes effectively across all eight damage scenarios.

2 RELATED WORK

Reinforcement Learning in Legged Robots. In recent years, reinforcement learning (RL) has
gained traction in legged robots’ control and locomotion tasks (Strudel et al., [2020; Tang et al.,
2020). Some deep-learning-based RL methods are proposed to improve quadrupedal robots’ stabil-
ity across diverse terrains through combined simulated and real-world training (A & Jisha,2022). In

Under review as a conference paper at ICLR 2026

Stage 1
05 7 Kx —
€ Multi-Head Att :
Randomly sampled | s 76 ¥ r—> —
e — ; e > Add & Norm e]
malfunction types R T;)é;.n ':z =N TE’;’" :
e, FF Network r |
\ ! ||
a > Add & Norm —
0, — . |
Undamaged! Tokenizer Encoder Detokenizer N

Stage 11
O el f
e -
| g | o —> -
0 — e, o -

g 5 e-
PP e = |
- : — €m K : |
: T Y Enagder (€2) T —> —
DI e || —
L F

On = Tokenizer Mask Encoder Detokenizer L]
Damaged! A

Figure 2: UMC pipeline (Transformer-based): a two-stage policy for damage-resilient legged con-
trol. I' derives input-level masked observations 1 and an attention mask M from raw proprioception
O (plus a global flag F'). The tokenizer forms V' and projects to F; a K -layer mask encoder injects
M into attention logits; the detokenizer maps tokens to actions A.

this work, we utilize the Proximal Policy Optimization (PPO) algorithm provided by Legged Gym
for RL-based control of legged robots. Our approach focuses on enhancing locomotion control by
reconstructing the Actor model, improving performance in complex environments.

Self-recovering Robots. In recent years, self-recovering robots have attracted significant interest
in robotics research (Kawabata et al., 2002; |Guan et al.l, 2015} Nwaonumah & Samantal [2020). As
robotics technology matures, enabling legged robots to adapt to joint damage has become increas-
ingly critical. However, few studies address this directly, and existing approaches often lack gener-
alization, require excessive training data, or complex maintenance with conflicting strategies (Kume
et al.| 2017; Nagabandi et al.,[2019; Raileanu et al., 20205 |Yang et al., 2021} |Chen et al.| |2022; |Guo
et al., [2023). Therefore, we aim to handle a broad spectrum of damage conditions with a single,
unified policy, offering insights for future work.

Transformer Models in Robotics Transformers have gained sufficient popularity in various do-
mains, including natural language processing (Vaswani et al., [2023)), computer vision (Dosovitskiy
et al.;[2021)), and are now being explored in robotic control due to their ability to model sequential de-
pendencies and capture complex long-range relationships in data. Recent studies have also demon-
strated the effectiveness of transformer-based architectures in the robotics field (Chen et al., 2021}
Kurin et al., [2021}; \Gupta et al., [2022; [Hong et al., 2022; Radosavovic et al., [2024). While inspired
by BodyTransformer (Sferrazza et al., 2024), our work pursues a different objective—robustness
to damage. Consequently, BodyTransformer performs poorly under failure conditions, whereas our
approach achieves substantially better robustness.

3 PROPOSED METHOD

We aim to design a unified policy that enables the robot to complete tasks within various damage
conditions. We explore the robustness of legged robots by systematically analyzing various dam-
age factors and proposing a two-stage unified malfunction controller (UMC) framework to address
them. In the following, we first specify the malfunction scope in Sec. [3.1} then introduce the UMC

Under review as a conference paper at ICLR 2026

framework and its key components in Sec. [3.2] and finally present the two-stage training pipeline
and its generalization to MLP backbones in Sec.

3.1 MALFUNCTION SETTINGS

We consider eight damage scenarios span-
ning both sensor failures and joint impair-
ments, covering a broad range of real-
world conditions (Table [[). This ex-

Table 1: Eight Damage Scenarios for Legged Robots.

Scenario Sensor Status Joint Damage Type

tends prior work that focused only on self- 1 Functional None
diagnosis or limited damage types (Guan 2 Functional ROM Restriction

et al, 2015} [Quamar & Nasir, 2024). For i Iljumt}o“ai LRe‘,iucdei,MOtO{/ﬂ"rc,e
sensors, we define two statuses: Dam- unctiona imited Linear Velocity

. . 5 Damaged None

aged, where they fail to provide correct 6 Damaged ROM Restriction
observation and output only zeros (thus 7 Damaged Reduced Motor Force
detectable); Functional, where sensors 8 Damaged Limited Linear Velocity

provide accurate observation readings.

We consider three categories of joint damage: range-of-motion (ROM) restriction, reduced motor
force, and limited linear velocity. ROM restriction: the joint cannot traverse its normal range
(e.g., mechanical obstruction or controller-imposed limits). Reduced motor force: the available
torque/force output is diminished (e.g., wear or partial failure). Limited linear velocity: the joint
speed is capped, often by thermal protection or safety constraints. Further details of our malfunction
specification are provided in the Appendix [B]

3.2 UMC FRAMEWORK

Problem Formulation. We cast damage-robust legged control as a Markov Decision Process
(MDP) M = (S, A, P,r,v). Attime t, the agent observes a state s; € S built from per-joint
signals Oy = {(gi, ¢i,ait—1)}Y, € RYV*3, where ¢, ¢ and a are the joint’s position, velocity and
previous action. For 1-DoF (revolute) joints, the action space is A = R”, and the policy outputs
one scalar command per revolute joint, a; = m(s;) € RY (e.g., torque/position/velocity targets).
The environment transition is governed by the robot dynamics s¢11 ~ P(- | s, a¢), and the agent

. .. . T
receives a task reward r, = r(s, a;); we optimize the standard discounted return), vy,

We train an actor—critic with Proximal Policy Optimization (PPO). The critic Vi, (s;) shares the
base architecture with the actor but is used only during training to estimate returns/advantages. At
inference, we deploy the actor alone to produce action sequences.

3.2.1 TwO-STAGE TRAINING PIPELINE

As shown in Fig. 2] we adopt a two-stage training pipeline to ensure robustness in both normal and
damaged settings.

Stage I. The model is trained under normal conditions to acquire strong baseline capabilities, which
provides a solid foundation for subsequent adaptation.

Stage II. Building on the pretrained baseline, we fine-tune the model under diverse malfunction
conditions to enhance generalization. This stage can be viewed as injecting structured noise into
the system, forcing the model to learn robustness against potential failures. We consider two major
categories of malfunctions:

1. Undetectable malfunctions: Scenarios 2-4 in Table [I] where the sensors remain fully
functional but the joints themselves are impaired. In these cases, since the sensors remain
operational, no masking is applied, and the model is directly fine-tuned to adapt its policy
to the altered dynamics.

2. Detectable malfunctions: Scenarios 5-8 in Table I} which simulates partial limb damage
by adding joint and sensor damage to certain joints and allowing the detection of damage
information. To prevent corrupted observations from interfering with decision making, we
introduce a masking strategy that explicitly suppresses signals from failed joints.

Under review as a conference paper at ICLR 2026

During Stage II, detectable and undetectable malfunctions are mixed together with normal condition
(Senario 1 in Table|l) for training. This joint training scheme prevents the model from overfitting to
a single failure type and further improves its robustness across diverse scenarios.

3.2.2 ACTOR MODEL

we take the transformer structure as the base architecture for the UMC. For the actor model, as
shown in Fig. [2] it consists of three main components: tokenizer, encoder, and a detokenizer. The
tokenizer and detokenizer perform the transformation between the joint observation, a sequence of
tokens and the action sequence, enabling seamless encoding and decoding processes. For damaged
conditions, a masking strategy with mask encoder are designed to capture dependencies and refine
input representations using only the embeddings of well-functioning joints.

Base Structure. We use a vanilla Transformer with a tokenizer ®, a encoder {2, and a detokenizer
©. Given O € RY*3, the tokenizer applies a joint-wise linear projection to hidden size D and adds
learnable positional embeddings, producing

E = ®(0), E e RV*D, (1)

The encoder € consists of several stacked attention blocks where each block has a multi-head self-
attention and feed-forward network module. It outputs

R=Q(E), R e RV*P,)

Finally, the detokenizer © applies joint-specific linear heads to the first NV tokens (the flag token is
context-only) to produce actions:

A=0O(Ryy), AcRNXL 3)

Masking Strategy. For detectable malfunctions, the damage information (DI) is provided as part
of the input, i.e., we explicitly know which joints are non-functional. Among the NN joints, only M
remain functional. We construct

V.M =T(0, DI). (G))

where V' = {vl}f\g'l € ROM+1X3 the first M rows correspond to the observations of functional
joints, and the last row is a global flag token F' € {—1,1}!*3, with FF = [-1,—1,—1] if no
malfunction is present and F' = [1,1, 1] otherwise. This design provide the model with explicit
contextual information about the presence of damage.

The masking matrix M € RV+DX(NV+1) encodes joint malfunction information and is injected into
the self-attention module. Here, N denotes the number of joint embeddings in F, and the additional
+1 token corresponds to the global damage flag token. For damaged joints, the entries in M are set
to —oo, forcing the attention weights of these joints to zero after softmax and thereby eliminating
their influence. Formally, a self-attention layer computes

Q(E)K(E)'
Vdy,
where Q(FE), K(FE), and V(FE) are the query, key, and value projections of E, and dy, is the dimen-

sion of the Q(E) and K(E). This design explicitly suppresses the contribution of malfunctioning
joints, allowing the policy to focus on reliable signals.

Output = Softmax(+ M> V(E), 5)

Training Loss. The loss consists of actor and critic losses. Additionally, an entropy regulariza-
tion term is included to promote exploration, which encourages the agent to maintain a diverse set
of actions and avoid premature convergence to suboptimal policies. These components guide the
optimization of both the policy and value functions.

The total loss function in PPO is defined as:
L= ILJsurrogate + >\1 . ILJvalue + /\2 : IL‘emropy7 (6)

where A\; and A, denote weight parameters. Lgurogates Livalue and Leniropy are the loss of policy
surrogate, value function, and entropy regularization, respectively. Please refer to our Appendix [E]
for more details of the loss that are not the key points of our work.

Under review as a conference paper at ICLR 2026

Methods 1 unit 2 unit T 3 unit 4 unit 1 5 unit failed |
Trf-NM 81% 64% 54% 46% 38% 7%
MLP-NM 67% 54% 48% 43% 36% 23%
BodyTrf 84% 68% 56% 45% 36% 10%
TFQL 51% 43% 38% 33% 29% 19%
MLP-UMC (Ours) 93% 88% 83% 78% 66% 4%
Trf-UMC (Ours) 97 % 95% 91% 84% 72% 2%

Table 2: Average Performance of Models on the A1 Task Across Eight Damage Conditions.

3.3 GENERALIZING UMC TO AN MLP BACKBONE

UMC is architecture-agnostic and can be instantiated with a MLP backbone. Unlike the Transformer
variant, the MLP policy does not include self-attention and thus does not require tokenization or
attention-bias masking.

We reuse the detector I' to produce the input-level masked observations V' and the global flag F'
(Sec. : the attention-bias matrix M is simply not used in this instantiation. We form O’ =
concat(F, V) € RIN+D*3 and flatten it to O” = vec(0’) € R3 W™+ The MLP then maps this
vector to per-joint actions:

A:fMLP(OH), AeRle7

where fyp denotes an L-layer feed-forward network (e.g., GELU/ReLLU activations with optional
LayerNorm). This realization preserves UMC’s input-level masking and global damage context
while removing attention-specific components, demonstrating that the proposed masking strategy is
orthogonal to the choice of backbone.

4 EXPERIMENTS

In this section, we begin by describing the experimental setup, followed by evaluation metrics. Next,
we present both quantitative and qualitative comparison results with existing methods. Finally, we
conduct extensive ablation studies to validate the effectiveness of the proposed model.

Implementation Details. All models are trained on a single Nvidia A6000 GPU and evaluated using
PPO-based Reinforcement Learning (Schulman et al.l 2017) for three different robot locomotion
tasks, which are the Al1-Walk task from ParkourGym (Zhuang et al.l 2023) and the H1 and G1
tasks from Unitree. For SOTA work comparison, we selected the Solo8 task (Grimminger et al.,
2020). Among them, A1l and Solo8 are quadruped robots, while H1 and G1 are humanoid robots.
All these locomotion tasks are performed within the IsaacGym environment (Makoviychuk et al.,
2021)), managed by the Legged Gym Repository (Rudin et al., 2022)). We provide transformer-based
and MLP-based UMC architectures. Please refer to the Appendix [A] for more details on model
configurations, malfunction limits, and other parameters.

Damage Settings During Inference. During inference, we apply three distinct damage settings for
every task, all of which differ from those used during the training stage. First, for the rough terrain
task A1, the robots operate on a terrain that is different from those encountered during training. Sec-
ond, different joint combinations are randomly selected using various seeds to introduce damage.
Third, malfunctions are introduced at different times during inference to simulate more different
robot gaits when suffering damage and different combinations of joint damage, thereby preventing
the model from completely relying on the prior knowledge learned from the training set. For exam-
ple, in one environment, a robot may lift one of its front legs, whereas in another, the same leg may
point downward when its corresponding joints are damaged.

Evaluation Metrics After legged robots walk certain steps under normal conditions, we apply dam-
age to them and record the initial position. During the subsequent episodes, we record the following
comprehensive metrics to validate the locomotion capabilities of legged robots.

Specifically, we evaluate whether the robots can move beyond the radii of 1, 2, 3, 4, and 5 units
(0.5, 1, 1.5, 2, and 2.5 units for the Solo8 task) from their initial positions without falling. If the
robot can maintain its original trajectory despite the damage, this distance should correlate positively

Under review as a conference paper at ICLR 2026

Methods 1 unit 2 unit 3 unit 1 4 unit T S5 unit 1 failed |
Trf-NM 44% 43% 42% 39% 35% 56%
MLP-NM 33% 33% 31% 29% 25% 67%
BodyTrf 52% 51% 49% 45% 40% 48%
MLP-UMC (Ours) 86% 85% 80% 73% 64% 14%
Trf-UMC (Ours) 91% 90% 85% 79 % 70% 9%

Table 3: Average Performance of Models on the G1 Task Across Eight Damage Conditions.

Methods 1 unit T 2 unit T 3 unit T 4 unit 1 5 unit T failed |
Trf-NM 57% 56% 55% 51% 46% 43%
MLP-NM 57% 57% 55% 52% 47% 43%
BodyTrf 53% 53% 51% 48% 44% 47%
MLP-UMC (Ours) 97 % 97 % 94 % 88% 80% 3%
Trf-UMC (Ours) 95% 94% 90% 84% 75% 5%

Table 4: Average Performance of Models on the H1 Task Across Eight Damage Conditions.

Methods 0.5 unit 1 1 unit 4 1.5 unit 4 2 unit 1 2.5 unit 1 failed |
MT-FTC 39% 31% 30% 30% 29% 46%
Trf-UMC (Ours) 73% 67% 60% 52% 1% 12%

Table 5: Average Performance of Models on the Solo8 Task Across Eight Damage Conditions. ‘MT-

FTC’ is the method proposed in (Hou et al.,[2024).

al) H1-Baseline a2) H1-UMC

cl) G1-Baseline ¢2) G1-UMC

Figure 3: Qualitative Comparison Between Methods Under Damaged Scenarios. ‘Baseline’
refers to robots trained using baseline methods, while ‘UMC’ denotes robots trained with the UMC
method. Figure ‘b2)’ shows a snapshot of the original trajectory at a specific time point under un-
damaged conditions, while b1) and b3) are in damaged conditions.

with time. Therefore, a greater distance travelled indicates a more effective policy, as it allows the
robot to move further given the limited time. Additionally, legged robots that exhibit any falling
behaviour are excluded from the previous distance statistics and are instead counted in a separate
metric labelled as ‘failed’.

Under review as a conference paper at ICLR 2026

Ratios 1 unit T 2 unit T 3 unit T 4 unit 5 unit failed |
1:1:1:0 89% 84% 79% 73% 66% 10%
1:1:0:1 90% 83% 75% 65% 50% 2%
1:0:1:1 97% 94% 88% 80% 68% 2%
0:1:1:1 97% 95 % 90% 82% 69% 2%
1:2:2:1 97% 94% 89% 81% 68% 2%
1:3:3:1 97% 94% 87% 77% 66% 2%
1:1:1:1 (Ours) 97 % 94% 90 % 84% 74% 3%

Table 6: Average Performance of Transformer-Based UMC with Different Stage-II Environment
Settings. The ratios correspond to four training scenarios in Stage Il from left to right: ‘Undamaged’,
‘Sensor-only Damage’, ‘Detectable Joint Damage’, and ‘Undetectable Damage’.

4.1 EXPERIMENTAL RESUTLS

As shown in Tables 2] [3] and[4] we present the average performance for each task with our metrics.
The averaged results for each model are computed by summing performance across eight damage
scenarios and three inference settings, demonstrating the superiority of our UMC framework. More
statistics are shown in the Appendix [C]

The UMC significantly reduces the number of fall cases on the H1, G1, and A1 tasks, and performs
better against the BodyTransformer. Compared to the normally trained transformer, our baseline,
the transformer-based UMC achieves an average reduction in failure rates across eight types of
damage by 5%, 38%, and 47% in tasks A1, H1, and G1, respectively. Similarly, MLP-based UMC
demonstrates reductions of 19%, 40%, and 53%, respectively. UMC prompts robots to rely more on
their functional limbs when dealing with various failures, thereby effectively reducing the impact of
damaged joints on their actions.

For the task completion performance of the transformer architecture, taking the A1-Walk task as an
example, UMC improves the robot’s achievement rates across the 1-unit to 5-unit metrics by 16%,
31%, 37%, 38%, and 34%, respectively. For the MLP architecture, the robot also demonstrates
improvements of 38%, 38%, 35%, 33%, and 29% on the H1 task. The results show that the proposed
masking mechanism enables rapid adaptation to new types of damage without the need to switch to
a new policy. Therefore, robots can respond to sudden damage more quickly and adjust their gait
accordingly.

Fig. [3|indicates that UMC can handle various damage conditions and effectively maintains the in-
tended trajectory, which demonstrates that UMC can reduce the impact of damages from another
perspective. Moreover, Fig. [T[c) show that UMC retains and even slightly enhances the robot’s per-
formance under normal, undamaged conditions across three tasks. This improvement comes from
the design of our two-stage pipeline, which ensures that the trained robots maintain their perfor-
mance under normal conditions.

Compared to the existing method, MT-FTC (Hou et al.,[2024) in the Solo8 task, Table E]indicates
that UMC achieves a 26.8% improvement across 0.5-2.5 unit and reduces the fall rate by 34%
compared to MT-FTC. These results demonstrate that UMC exhibits greater flexibility in adapting
to various conditions compared to existing methods. We also compare our method with the other
approaches proposed by (Liu et al.l[2024) and (Skand et al.l2024) in Table 2] (abbreviated as TFQL
and SMS, respectively). The considerable performance degradation observed in TFQL is primarily
due to its reliance on corrupted sensor feedback, which adversely impacts the controller’s decision-
making. Moreover, its reliance on history rollback further exacerbates this issue. We attribute the
performance gap to our method’s advantage over SMS in treating each joint’s observation as an
independent sequence, enabling the transformer to better learn inter-joint relationships and produce
more reasonable actions.

Furthermore, Tables [2] 3] and] reveal that our baseline degrades less in humanoid robot tasks than
in quadruped robot tasks as the metric increases from 1 to 5 units. We attribute this to the structural
differences between humanoid robots and quadruped ones like Al. Unlike Al, which can easily
remain upright and stable despite finding it difficult to move forward due to damage, humanoid
robots face greater challenges in maintaining balance during movement.

Under review as a conference paper at ICLR 2026

Paradigms 1 unit 2 unit T 3 unit T 4 unit 5 unit failed |
Curriculum-Based 97% 93% 88% 80% 67% 1%
RMA-Based 95% 92% 88% 82% 2% 4%
Stage-Based (Ours) 97 % 94 % 90 % 84 % 74 % 3%

Table 7: Average performance of Transformer-based UMC under different training paradigms.
Paradigms include a curriculum schedule, an RMA-based adaptation scheme, and our two-stage
(stage-based) scheme.

4.2 ABLATION STUDY

In this section, we conduct ablation studies on training stages and sampling ratios. For more details
and ablation studies on masking value and foundational paradigms, please refer to the Appendix

Training Stage. The results are shown in e e ongn s Leaming teraion 0500 tertirs)
Fig.] The blue and green curves repre-
sent the two training stages in our method,
while the orange curve shows the one-
stage training, training solely on our Stage
II damaged environments. The curves
show that the one-stage setting eventu- s
ally fails to converge within 2500 itera-
tions in the G1 task, whereas the two-stage
approach proves effective across all three
tasks. We attribute this to the introduc-
tion of an overly complex training set in
the initial stage, which hindered the model’s convergence and ultimately prevented the discovery of
effective policies. Thus, we select the two-stage training process for our workflow.

(a) Episode vs. Iteration (b) Reward vs. Iteration

Figure 4: Comparison of One-Stage and Two-Stage
Training in the G1 Task.

Sampling Ratio. We further divide ‘undetectable damage’ into ‘sensor-only damage’ (scenario 5)
and ‘detectable joint damage’(scenario 6-8). Table [6] demonstrates that the default ratio of 1:1:1:1
achieves the best overall performance. The potential reason is two-fold. First, unlike conditions that
exclude certain subcategories (e.g., 1:1:1:0), the model could learn all four damaged scenarios with
the default ratio during Stage II. Second, compared to ratios that focus more heavily on detectable
damage (e.g. 1:2:2:1), the default ratio achieves better balance and thus enables the model to learn
to handle various types of damage more comprehensively.

Paradigms. Table [/| compares the results of different training paradigms of UMC. Besides the
stage-based pipeline, we evaluate an RMA-based (Kumar et al.l [2021) paradigm and a curriculum
learning strategy that gradually increases task difficulty (no damage to undetectable joint damage
to detectable joint damage). Curriculum learning underperforms the stage-based method, as its pro-
gressive focus on harder tasks reduces adaptability to easier cases. The RMA-based paradigm also
lags behind, since masking causes history rollbacks to lose critical information, making it difficult
to fit a reliable latent vector for environment representation.

5 CONCLUSION

In this paper, we present UMC, a unified, model-free framework that substantially improves the
resilience of legged robots facing various failure scenarios, including sensor malfunctions and joint
issues such as restricted motion, weakened motor, or limited velocity. The proposed UMC adopts
two training stages that enable fast adaptation to damaged conditions while maintaining good per-
formance in undamaged normal states. Specifically, UMC incorporates a masking strategy, isolat-
ing faulty joints, allowing the robot to compensate by emphasizing unaffected limbs and adapting
dynamically to diverse damage patterns. Experimental results validate that the proposed UMC con-
sistently improves both transformer and MLP architectures across different robot models and tasks,
markedly reducing failure rates and improving task success under variable damage conditions, fur-
ther improving the adaptability of robotic systems in challenging environments.

Under review as a conference paper at ICLR 2026

REFERENCES

Ancy A and V. R. Jisha. Reinforcement learning based control of a quadruped robot. 2022 IEEE
19th India Council International Conference (INDICON), pp. 1-6,2022. URL https://api.
semanticscholar.org/CorpusID:256945713.

Dario Bellicoso, Marko Bjelonic, Lorenz Wellhausen, Kai Holtmann, Fabian Giinther, Marco Tran-
zatto, Péter Fankhauser, and Marco Hutter. Advances in real-world applications for legged robots.
Journal of Field Robotics,35:1311 —1326,2018. URL https://api.semanticscholar.
org/CorpusID:117305362.

Ci Chen, Dongqi Wang, Jiyu Yu, Pingyu Xiang, Haojian Lu, Yue Wang, and Rong Xiong. Fast
adaptation dynamics model for robot’s damage recovery. In 2022 IEEE International Conference
on Real-time Computing and Robotics (RCAR), pp. 45-50, 2022. doi: 10.1109/RCAR54675.
2022.9872230.

Ci Chen, Chao Li, Haojian Lu, Yue Wang, and Rong Xiong. Meta reinforcement learning of loco-
motion policy for quadruped robots with motor stuck. IEEE Transactions on Automation Science
and Engineering, pp. 1-15, 2024. doi: 10.1109/TASE.2024.3424328.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling, 2021. URL https://arxiv.org/abs/2106.01345,

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.119209.

Felix Grimminger, Avadesh Meduri, Majid Khadiv, Julian Viereck, Manuel Wiithrich, Maximilien
Naveau, Vincent Berenz, Steve Heim, Felix Widmaier, Thomas Flayols, Jonathan Fiene, Alexan-
der Badri-Sprowitz, and Ludovic Righetti. An open torque-controlled modular robot architecture
for legged locomotion research. IEEE Robotics and Automation Letters, 5(2):3650-3657, 2020.
doi: 10.1109/LRA.2020.2976639.

Enguang Guan, Jian Fei, Gen Pan, Zhuang Fu, Weixin Yan, and Yanzheng Zhao. Fault self-diagnosis
for modular robotic systems using m-lattice modules. [International Journal of Advanced
Robotic Systems, 12, 2015. URL https://api.semanticscholar.org/CorpusID:
43325716.

Yanjiang Guo, Zheyuan Jiang, Yen-Jen Wang, Jingyue Gao, and Jianyu Chen. Decentralized motor
skill learning for complex robotic systems, 2023. URL https://arxiv.org/abs/2306.
17411,

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: Learning universal controllers
with transformers, 2022. URL https://arxiv.org/abs/2203.11931.

Sunghoon Hong, Deunsol Yoon, and Kee-Eung Kim. Structure-aware transformer policy for inho-
mogeneous multi-task reinforcement learning. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=fy_XRVHglyl

Taixian Hou, Jiaxin Tu, Xiaofei Gao, Zhiyan Dong, Peng Zhai, and Lihua Zhang. Multi-task learning
of active fault-tolerant controller for leg failures in quadruped robots, 2024. URL https://
arxiv.org/abs/2402.08996l

Marco Hutter, Christian Gehring, Andreas Lauber, Fabian Giinther, Dario Bellicoso, Vassilios Tsou-
nis, Péter Fankhauser, Remo Diethelm, Samuel Bachmann, Michael Blosch, Hendrik Kolvenbach,
Marko Bjelonic, Linus Isler, and Konrad Meyer. Anymal - toward legged robots for harsh environ-
ments. Advanced Robotics, 31:918 — 931, 2017. URL https://api.semanticscholar.
org/CorpusID:468634409.

10

https://api.semanticscholar.org/CorpusID:256945713
https://api.semanticscholar.org/CorpusID:256945713
https://api.semanticscholar.org/CorpusID:117305362
https://api.semanticscholar.org/CorpusID:117305362
https://arxiv.org/abs/2106.01345
https://arxiv.org/abs/2010.11929
https://api.semanticscholar.org/CorpusID:43325716
https://api.semanticscholar.org/CorpusID:43325716
https://arxiv.org/abs/2306.17411
https://arxiv.org/abs/2306.17411
https://arxiv.org/abs/2203.11931
https://openreview.net/forum?id=fy_XRVHqly
https://arxiv.org/abs/2402.08996
https://arxiv.org/abs/2402.08996
https://api.semanticscholar.org/CorpusID:46863449
https://api.semanticscholar.org/CorpusID:46863449

Under review as a conference paper at ICLR 2026

K. Kawabata, T. Akamatsu, and H. Asama. A study of self-diagnosis system of an autonomous
mobile robot: expansion of state sensory systems. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 2, pp. 1802-1807 vol.2, 2002. doi: 10.1109/IRDS.2002.
1044017.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots, 2021. URL https://arxiv.org/abs/2107.04034,

Ayaka Kume, Eiichi Matsumoto, Kuniyuki Takahashi, Wilson Ko, and Jethro Tan. Map-based multi-
policy reinforcement learning: Enhancing adaptability of robots by deep reinforcement learning,
2017. URL https://arxiv.org/abs/1710.06117.

Vitaly Kurin, Maximilian Igl, Tim Rocktischel, Wendelin Boehmer, and Shimon Whiteson. My
body is a cage: the role of morphology in graph-based incompatible control, 2021. URL https:
//arxiv.orqg/abs/2010.01856.

Dikai Liu, Jianxiong Yin, and Simon See. Towards fault-tolerant quadruped locomotion with rein-
forcement learning. In 2024 IEEE Conference on Artificial Intelligence (CAI), pp. 1438-1441,
2024. doi: 10.1109/CAI59869.2024.00257.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance gpu-based physics simulation for robot learning, 2021. URL https://arxiv.
org/abs/2108.10470.

D.Q. Mayne, M.M. Seron, and S.V. Rakovi¢. Robust model predictive control of constrained linear
systems with bounded disturbances. Automatica, 41(2):219-224, 2005. ISSN 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2004.08.019. URL https://www.sciencedirect.
com/science/article/pii/S0005109804002870.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning, 2019. URL https://arxiv.org/abs/1803.11347.

Ezebuugo Nwaonumah and Biswanath Samanta. Deep reinforcement learning for visual nav-
igation of wheeled mobile robots. In 2020 SoutheastCon, pp. 1-8, 2020. doi: 10.1109/
SoutheastCon44009.2020.9249654.

Md Muzakkir Quamar and Ali Nasir. Review on fault diagnosis and fault-tolerant control scheme
for robotic manipulators: Recent advances in ai, machine learning, and digital twin, 2024. URL
https://arxiv.org/abs/2402.02980.

Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat, Trevor Darrell,
Koushil Sreenath, and Jitendra Malik. Humanoid locomotion as next token prediction, 2024.
URLhttps://arxiv.org/abs/2402.194609.

Roberta Raileanu, Max Goldstein, Arthur Szlam, and Rob Fergus. Fast adaptation via policy-
dynamics value functions, 2020. URL https://arxiv.org/abs/2007.02879.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes us-
ing massively parallel deep reinforcement learning, 2022. URL https://arxiv.org/abs/
2109.11978.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL |https://arxiv.org/abs/1707.06347.

Carmelo Sferrazza, Dun-Ming Huang, Fangchen Liu, Jongmin Lee, and Pieter Abbeel. Body trans-
former: Leveraging robot embodiment for policy learning, 2024. URL https://arxiv.org/
abs/2408.06316!

Skand Skand, Bikram Pandit, Chanho Kim, Li Fuxin, and Stefan Lee. Simple masked training
strategies yield control policies that are robust to sensor failure. In 8th Annual Conference on
Robot Learning, 2024. URL https://openreview.net/forum?id=AsbyZRdgPv.

11

https://arxiv.org/abs/2107.04034
https://arxiv.org/abs/1710.06117
https://arxiv.org/abs/2010.01856
https://arxiv.org/abs/2010.01856
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://www.sciencedirect.com/science/article/pii/S0005109804002870
https://www.sciencedirect.com/science/article/pii/S0005109804002870
https://arxiv.org/abs/1803.11347
https://arxiv.org/abs/2402.02980
https://arxiv.org/abs/2402.19469
https://arxiv.org/abs/2007.02879
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2408.06316
https://arxiv.org/abs/2408.06316
https://openreview.net/forum?id=AsbyZRdqPv

Under review as a conference paper at ICLR 2026

Robin Strudel, Alexander Pashevich, Igor Kalevatykh, Ivan Laptev, Josef Sivic, and Cordelia
Schmid. Learning to combine primitive skills: A step towards versatile robotic manipulation,
2020. URL https://arxiv.org/abs/1908.00722.

Yujin Tang, Jie Tan, and Tatsuya Harada. Learning agile locomotion via adversarial training, 2020.
URLhttps://arxiv.org/abs/2008.00603.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL |https://arxiv.
org/abs/1706.03762.

Patrick M. Wensing, Michael Posa, Yue Hu, Adrien Escande, Nicolas Mansard, and Andrea Del
Prete. Optimization-based control for dynamic legged robots, 2022. URL https://arxiv.
org/abs/2211.11644.

Fan Yang, Chao Yang, Di Guo, Huaping Liu, and Fuchun Sun. Fault-aware robust control via ad-
versarial reinforcement learning. In 2021 IEEE 11th Annual International Conference on CYBER
Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 109-115, 2021. doi:
10.1109/CYBER53097.2021.9588329.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atkeson, Soren Schwertfeger, Chelsea Finn,
and Hang Zhao. Robot parkour learning. In Conference on Robot Learning (CoRL), 2023.

12

https://arxiv.org/abs/1908.00722
https://arxiv.org/abs/2008.00603
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.11644
https://arxiv.org/abs/2211.11644

Under review as a conference paper at ICLR 2026

A UMC IMPLEMENTATION DETAILS

In this section, as shown in table[8] we provide detailed experimental parameters of our UMC struc-
ture to facilitate reproducibility and related operations.

B MALFUNCTION AND EXPERIMENT SETTINGS

In this section, we use detailed statistics and Fig. [5]to illustrate our damage design further. We con-
ducted three sets of tests for each task with different damage conditions. The training and inference
parameters are provided in Table 0] Table [I0] Table[IT]and Table[T2] where:

Malfunction Timing refers to the specific episode we apply malfunctions to the robots. ROM Limit
indicates the range of motion for each joint in the environment is restricted to a certain percentage of
its original range. Motor Limit specifies that the motor strength for each joint is capped at a certain
value. Velocity Limit means the maximum speed of joint movement is a certain value. Random Dam-
age Range denotes the number of randomly selected joints damaged in each environment. Random
Malfunction Seed refers to the seed we use when randomly selecting which joints to be damaged for
each environment. Perlin Noise Seed, Track Width, Border Size and Track Block Length emphasize
that we test our methods on different terrain settings in Table[9]

During inference, each damage scenario is tested separately. Also, in each scenario, the malfunction
limits (ROM, Motor and Velocity) are applied to the joints under three malfunction setting groups
(the timing to add malfunction, different damage range, etc.). This approach ensures that the robot’s
limbs encounter a wide range of states, enhancing the robustness and rigour of the process. The
rationale is that the difficulty of overcoming obstacles and completing tasks significantly depends on
the robot’s posture. For example, a malfunction occurring when a limb is fully extended to support
the robot’s weight presents a greater challenge compared to when the limb is retracted during a
recovery phase. Therefore, we eventually set up various inference groups with different damage
settings to generate as many postures as possible.

Table 8: Detailed Parameters of the transformer-based and MLP-based Actor Model.

Parameter \ MLP Transformer
Stage-One Epochs 2500 2500
Stage-Two Epochs 2500 2500
Encoder Layers 4 4
Embedding Input Size N/A 120
Feedforward Size [256,512,256,256] 128
Attention Heads N/A 2
Total Parameters \ 345,100 366,164

Table 9: Malfunction Settings for Training and Inference in the A1-Walk Task.

(a) Training Parameters. (b) Inference Parameters.

Parameter | Values Parameter | Values
Num Envs 7400 Num Envs 4000
Random Damage Range [2,4] Random Damage Range [4,5]
ROM Limit Random 30% ROM Limit Random 10%
Motor Limit 5 Motor Limit 8
Velocity Limit 3 Velocity Limit 3
Track Width 1.6 Track Width 6.0
Track Block Length 2.0 Track Block Length 6.0
Border Size 8 Border Size 4
Perlin Noise Seed 1 Perlin Noise Seed [100, 25, 75]
Random Malfunction Seed 42 Random Malfunction Seed [1, 800, 50]
Episode Length 1000 Malfunction Timing [75, 100, 125]
Malfunction Timing N/A Episode Length 750

13

Under review as a conference paper at ICLR 2026

Joint Failure
Sensor Failure
ﬁM LIMIT

L B

1

1

1

! Motor LIMIT Max Power: 50 Max Power: 5

] o 6o G f f

1 -— -— -— -—
nu@n —_ 9

1

1 I U -V _4_

: Joint Obs :

P«

: dof_pos: 1.312 0 Vel LIMIT 50m/s Sm/s

1

~ NESRCORICY .

Figure 5: Demonstration of different damage conditions.

Table 10: Malfunction Settings for Training and Inference in the H1 Task.

(a) Training Parameters. (b) Inference Parameters.
Parameter | Values Parameter | Values
Num Envs 10000 Num Envs 8192
Random Damage Range [2,4] Random Damage Range [2,3]
ROM Limit Random 30% ROM Limit Random 30%
Motor Limit 10 Motor Limit 8
Velocity Limit 5 Velocity Limit 3
Random Malfunction Seed 42 Random Malfunction Seed [1, 50, 75]
Malfunction Timing N/A Malfunction Timing [75, 100, 125]
Episode Length 1000 Episode Length 750

C MORE EXPERIMENT RESULTS

In this section, we present all experimental results to highlight the overall superiority of our UMC
framework across various damage scenarios under different tasks.

In the body of the paper, we have presented the overall performance of all methods across all tasks
and damage conditions, so we will not repeat such details here. Instead, we display their perfor-

Table 11: Malfunction Settings for Training and Inference in the Unitree-G1 Task.

(a) Training Parameters. (b) Inference Parameters.
Parameter | Values Parameter | Values
Num Envs 8192 Num Envs 10000
Random Damage Range [2,4] Random Damage Range [2,4]
ROM Limit Random 30% ROM Limit Random 30%
Motor Limit for Hip Joints 8 Motor Limit for All Joints 5
Motor Limit for Knee Joints 13 Velocity Limit 3
Motor Limit for Ankle Joints 4 Random Malfunction Seed [1, 50, 75]
Velocity Limit 3 Malfunction Timing [75, 100, 125]
Random Malfunction Seed 42 Episode Length 750
Episode Length 1000
Malfunction Timing N/A

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Success Rate

Tunit 2 unit 3 unit 4 unit
Movement/Failure Categories

(a) Normal Condition

cio mmm Transformer NM

5 unit

= Transformer_UMC
- P NM
- MLP_UMC
== Body Transformer

Success Rate

o o 1w 0w o 0m s = Transformer_NM
== Transformer_UMC
- LP_NM
- LP_UMC
== Body Transformer

el
Lunit 2 unit 5 unit Tailed

3 unit 4 dnit
Movement/Failure Categories

(b) Sensor-Damaged Condition

Success Rate

Tunit 2 unit 3 unit 4 unit
Movement/Failure Categories

5 unit

(c) Detected ROM-Limit Condition

== Transformer NM
= Transformer_UMC
- P NM
- MLP_UNMC
== Body Transformer

Success Rate

== Transformer_NM
== Transformer_UMC
- LP_NM
- LP_UMC
== Body Transformer

L unit 2 unit 5 unit failed

3 unit 4 unit
Movement/Failure Categories

(d) Undetected ROM-Limit Condition

Success Rate

Lunit 2 unit 3 unit 4 unit
Movement/Failure Categories

5 unit

== Transformer NM
= Transformer_ UMC
- LPNM
—MLP_UMC
= Body Transformer

(e) Detected Motor-Limit Condition

Success Rate

w0 covooio0 wonomonco e om0 EEE Transformer NM
4 = Transformer_UMC

- LP_NM

- MLP_UMC

== Body Transformer

2 unit 5 unit

3 unit 4 unit
Movement/Failure Categories

(f) Undetected Motor-Limit Condition

Success Rate

Lunit 2 unit nit

3unit au
Movement/Failure Categories

5 unit

= Transformer_NM
= Transformer_UMC
— LM
- LP_UMC
= Body Transformer

falled

(g) Detected Velocity-Limit Condition

Success Rate

s 0m on oo oo = Transformer_NM
s Transformer UMC

— P NM

- MLP_UMC

== Body Transformer-

Lunit 2 unit 5 unit failed

3 unit 4 unit
Movement/Failure Categories

(h) Undetected Velocity-Limit Condition

Figure 6: Performance of Five Methods Under Different Damage Conditions in the A1-Walk Task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

= Transformer_NM
== Transformer_UMC
- P NM
- LP_UMC
= Body Transformer

= Transformer_NM
== Transformer_UMC
- LM
- LP_UMC
= Body Transformer

Success Rate
Success Rate

5 unit failed - Tuntt 2 unit

Lunit 2 unit 5 unit Tailed

3 unit 4 unit
Movement/Failure Categories

3 unit 4 unit
Movement/Failure Categories

(a) Normal Condition (b) Sensor-Damaged Condition

= Transformer_NM . B s = Transformer_NM

== Transformer_UMC o . = ool == Transformer_UMC
- PN 2=

o - MLP_UMC

== Body Transformer

- LP_NM
- LP_UMC
== Body Transformer

Success Rate
Success Rate

1 unit 2 unit 3 unit. 4 unit 5 unit. failed - 1 unit 2 unit 3 unit 4 unit. 5 unit. failed
Movement/Failure Categories Movement/Failure Categories
(c) Detected ROM-Limit Condition (d) Undetected ROM-Limit Condition
- LP_NM e L eSS - MLP_NM

- MLP_UMC as . - LP_UMC
== Body Transformer w o == Body Transformer

Success Rate
Success Rate

Lunit 2 unit 5 unit failed - L unit 2 unit

3 unit 4 unit 3 unit 4 unit
Movement/Failure Categories Movement/Failure Categories

(e) Detected Motor-Limit Condition (f) Undetected Motor-Limit Condition

== Body Transformer == Body Transformer

Success Rate
Success Rate

5 unit failed

5 unit failed - Tunit 2 unit

Lunit 2 unit

3 unit 4 unit 3 unit 4 unit
Movement/Failure Categories Movement/Failure Categories

(g) Detected Velocity-Limit Condition (h) Undetected Velocity-Limit Condition

Figure 7: Performance of Five Methods Under Different Damage Conditions in the Unitree-H1
Task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

= Transformer_NM
== Transformer_UMC

= Transformer_NM
== Transformer_UMC

- P NM - Le_NM
- LP_UMC - LP_UMC
= Body Transformer = Body Transformer

Success Rate
Success Rate

1 unit 2 unit 3 unit 4 unit 5 unit failed " 1 unit 2 unit 3 unit 4 unit 5 unit failed
Movement/Failure Categories Movement/Failure Categories

(a) Normal Condition (b) Sensor-Damaged Condition

= Transformer_NM B [o e = Transformer_NM
= Transformer_UMC == Transformer_UMC
- P NM - e
- MLP_UNC - LP_UMC

= Body Transformer == Body Transformer

Success Rate
Success Rate

1 unit 2 unit 3 unit. 4 unit 5 unit. failed - 1 unit 2 unit 3 unit 4 unit. 5 unit. failed
Movement/Failure Categories Movement/Failure Categories
(c) Detected ROM-Limit Condition (d) Undetected ROM-Limit Condition
o 0se 0s == Transformer_NM - 2 s 05 e == Transformer_NM
= Transformer_UMC s osi - = Transformer_UMC
= =

- MLP_UMC
== Body Transformer

- LP_UMC
== Body Transformer

Success Rate
Success Rate

5 unit failed - L unit 2 unit

Lunit 2 unit 5 unit failed

3 unit 4 unit 3 unit 4 unit
Movement/Failure Categories Movement/Failure Categories

(e) Detected Motor-Limit Condition (f) Undetected Motor-Limit Condition

= Transformer_NM
== Transformer_UMC
- - L _NM
- LP_UMC - 4LP_UNMC
o] = Body Transformer - or - == Body Transformer

Success Rate
Success Rate

S unit failed - Tunit 2 unit 5 unit failed

3unit Zunit 3 unit 4 unit
Movement/Failure Categories Movement/Failure Categories

(g) Detected Velocity-Limit Condition (h) Undetected Velocity-Limit Condition

Figure 8: Performance of Five Methods Under Different Damage Conditions in the Unitree-G1
Task.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Average Performance of Five Methods Under Different Damage Conditions Across Three

Average Value

Average Value

Average Value

Average Value

Transformer_NM
Transformer_UMC

= Body Transformer

3m am
Categories

(a) Normal Condition

= Transformer_NM
= Transformer_UMC
- Lp_NM
- MLP_UMC
== Body Transformer

3m am 5m failed
Categories

(c) Detected ROM-Limit Condition

= Transformer_NM

3m 4m 5m failed
Categories

(e) Detected Motor-Limit Condition

= Transformer_NM
== Transformer_UMC
- PN
- MLP_UMC
== Body Transformer

m 2m 3m 4m 5m failed
Categories

(g) Detected Velocity-Limit Condition

Tasks.

18

Average Value

Average Value

Average Value

Average Value

Transformer_NM
um

-
- umc

== Body Transformer

3m am
Categories

(b) Sensor-Damaged Condition

= Transformer_NM
= Transformer_UMC
—LP_NM
- L UMC
=== Body Transformer

3m am 5m failed
Categories

(d) Undetected ROM-Limit Condition

= Transformer_NM
== Transformer_UMC

3m am 5m failed
Categories

(f) Undetected Motor-Limit Condition

= Transformer_NM
== Transformer_UMC
- e

- Le_ume

2 W= sody Transformer

1m 2m 3m 4m 5m failed
Categories

(h) Undetected Velocity-Limit Condition

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Success Rate

Success Rate

T 25t Taed

15 ot 2unt T 250t
Movement/Failure Categories

15 it Znt
Movement/Failure Categories

(a) Normal Condition (b) Sensor-Damaged Condition

-—unc
- som

Success Rate.

Success Rate

3 25t Taed - 05 unt Tone e 250t ot

15 vt 2un 5 it 2on
Movement/Failure Categories Movement/Failure Categories

(c) Detected ROM-Limit Condition (d) Undetected ROM-Limit Condition

-—unc
—som

Success Rate

25t Taled - o5 unt Tone i 250t Tatles

15 ot 2unt ©5 it 2on
Movement/Failure Categories Movement/Failure Categories

(e) Detected Motor-Limit Condition (f) Undetected Motor-Limit Condition

Success Rate

Tsunt Tatea - 05wt Tunt

0Sunt Tunt

Tsunt Tatea

5 Zunt
Movement/Failure Categories

T5unt Zunt
Movement/Failure Categories

(g) Detected Velocity-Limit Condition (h) Undetected Velocity-Limit Condition

Figure 10: Performance Between UMC and ‘MT-FTC’ Under Different Damage Conditions in the
Solo8 Task.

19

Under review as a conference paper at ICLR 2026

Table 12: Malfunction Settings for Training and Inference in the Solo8 Task.

(a) Training Parameters. (b) Inference Parameters.
Parameter | Values Parameter | Values
Num Envs 4096 Num Envs 4096
Random Damage Range [1,3] Random Damage Range [2,4]
ROM Limit Random 30% ROM Limit Random 30%
Motor Limit 0.75 Motor Limit for All Joints 5
Velocity Limit 5 Velocity Limit 3
Random Malfunction Seed 42 Random Malfunction Seed 50
Malfunction Timing N/A Malfunction Timing 100
Episode Length 1000 Episode Length 1000

mance under each task’s eight damage scenarios. Specifically, Fig. [f]is for the A1-Walk task, Fig.
is for the Unitree-H1 task, Fig. is for the Unitree-G1 task, and Fig. is for the Solo8 task (SOTA
comparison). Additionally, we calculated the average performance of the three baselines and our
two UMC methods across three tasks for each damage condition and show the results in Fig. [9]
These statistics demonstrate the superior performance of our UMC framework.

Also, as addressed in the main text, Fig. [6a] Fig. [7aland Fig. [8a]illustrate that our UMC framework
does not compromise the robot’s mobility under normal conditions. On the contrary, as shown in
Fig. UMC even reduces the failure rate of the MLP model by 18% while also enhancing its
task-completion performance in the Unitree-G1 task under normal scenarios.

D MORE ABLATION DETAILS

Table 13: Inference Parameters for Ablations in section E] (except for the stage-count ablation).

Parameter | Values
Task Al
Num Envs 4000
Random Damage Range [4,5]
ROM Limit Random 10%
Motor Limit 8
Velocity Limit 3
Track Width 6.0
Track Block Length 6.0
Border Size 4
Perlin Noise Seed 100
Random Malfunction Seed 1
Malfunction Timing 75
Curriculum Update Threshold 1 unit

All ablations, except for the training-stage one, are conducted under the A1 task with one inference
damage setting under transformer-based UMC. Table |13|shows the parameter setting during those
ablations. We also give the ablation studies on masking value and foundational paradigms of UMC.

Masking Value. We ablate the masking value adopted in our masking mechanism, where the
value indicates the observation of the damaged joint. Table |14|shows that zero outperforms the two
out-of-distribution values ‘-100’ and ‘100’. We attribute this to out-of-distribution values exerting
greater influence on the model’s decision-making. For example, if an action in the observation
input is set to 100, though out of range, it still carries some information that the model can analyze.
And the impact of such information is greater than that of the default value of 0. Additionally,
excessively large values may result in disproportionate rewards or penalties, further affecting the
model’s performance.

20

Under review as a conference paper at ICLR 2026

Values 1 unit T 2 unit T 3 unit T 4 unit 1 5 unit T failed |
100 96% 93% 87% 79% 67% 3%
-100 95% 91% 86% 79% 68% 4%
Default (0) 97 % 94% 90% 84% 74% 3%

Table 14: Average Performance of Transformer-Based UMC with Different Masking Values. The
values denote the attention-bias magnitude applied to damaged keys in M (Default = 0).

E Loss

The total loss function in PPO adopted in our work is defined as:
L= Acsurrogate +)\1 : Evalue +)\2 : Eemropya (7)

where A and A\ denote weight parameters. Lurrogare 18 illustrated in eq. , Lyane 18 illustrated in
eq. @]) and Lenropy 1 an entropy regularization to encourage exploration.

The actor model in PPO is trained using a clipped surrogate loss to ensure stability in learning. The
loss function is defined as:

Lo = —E¢ [min (r4(0) - Ag, clip(r+(0),1 —e,14+¢€) - Ay)], (8)

e (at\st) . _
oy (ar]se) is the proba

bility ratio between the new policy 7y (a¢|s;) and the old policy g, (a¢|s:). The term A, represents
the advantage estimate at timestep ¢, which is computed as:

where t represents the timestep index within a trajectory. The ratio r;(0) =

oo

A=Y (N b, ®)

k=0

where d;, is the temporal difference residual at timestep ¢ + k, -y is the discount factor, and A
balances the bias-variance tradeoff in advantage estimation.

The critic model in UMC shares the same architecture as the actor model without the damage de-
tection module, and it is trained using the value function loss to minimize the error between the
predicted value V'(s;) and the target return Ry:

Lyawe = Ey [max ((V(St) - Rt)za

. , (10)

clip(V(st), Vou(st) — € Vou(st) +€) — Ry))],
where Voia(s;) is the previous value function estimate, and ¢ is the clipping threshold to ensure
stability during training.

F LIMITATIONS AND FUTURE WORKS

UMC assumes access to damage indicators produced by an external module I'" and does not per-
form fault detection itself. This modular design is intentional: it decouples fault detection from
fault tolerance, letting UMC plug into any detector (rule-based or learned), benefit from detector
upgrades without retraining the policy, and simplify safety validation. While UMC remains robust
under reasonable misclassification (cf. our noisy-detector ablations), systematic missed detections
can limit its effect, and latent faults that never trigger I' remain challenging. Future work includes (i)
replacing hard masks with probabilistic/uncertainty-aware masks derived from detector confidence,
(ii) joint or alternating training of the detector and UMC to co-adapt, (iii) self-supervised anomaly
scoring over multi-modal signals (current—torque mismatch, thermal, IMU) to extend coverage, (iv)
hardware studies on latency/jitter and energy-aware or safety-constrained control (e.g., CBF/MPC
guidance), and (v) inferring undetectable faults via latent-state belief tracking to further reduce de-
pendence on explicit flags.

21

Under review as a conference paper at ICLR 2026

G LLMS IN PAPER WRITING

Large language models (LLMs, e.g., GPT-4, GPT-5) were used only for refining grammar and sen-
tence structure, with the sole purpose of enhancing readability, clarity, and fluency. They did not
contribute to the research ideas, methods, results, or interpretations. All scientific and technical
content of this work was conceived, conducted, and written entirely by human authors.

22

	Introduction
	Related Work
	Proposed Method
	Malfunction Settings
	UMC Framework
	Two-Stage Training Pipeline
	Actor Model

	Generalizing UMC to an MLP Backbone

	Experiments
	Experimental Resutls
	Ablation Study

	Conclusion
	UMC Implementation Details
	Malfunction and Experiment Settings
	More Experiment Results
	More Ablation Details
	Loss
	Limitations and Future Works
	LLMs in Paper Writing

