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Abstract

We study a novel setting in offline reinforcement learning (RL) where a number of distributed
machines jointly cooperate to solve the problem but only one single round of communication
is allowed and there is a budget constraint on the total number of information (in terms of
bits) that each machine can send out. For value function prediction in contextual bandits,
and both episodic and non-episodic MDPs, we establish information-theoretic lower bounds
on the minimax risk for distributed statistical estimators; this reveals the minimum amount
of communication required by any offline RL algorithms. Specifically, for contextual ban-
dits, we show that the number of bits must scale at least as Ω(𝐴𝐶) to match the centralised
minimax optimal rate, where 𝐴 is the number of actions and 𝐶 is the context dimension;
meanwhile, we reach similar results in the MDP settings. Furthermore, we develop learning
algorithms based on least-squares estimates and Monte-Carlo return estimates and provide
a sharp analysis showing that they can achieve optimal risk up to logarithmic factors. Ad-
ditionally, we also show that temporal difference is unable to efficiently utilise information
from all available devices under the single-round communication setting due to the initial
bias of this method. To our best knowledge, this paper presents the first minimax lower
bounds for distributed offline RL problems.

1 Introduction

In this paper, we study a problem setting where each device can only send one message to the central server
and the number of information in terms of bits is constrained by a communication budget. After that one
transmission, no further communication is allowed; this setting models the situation where each device has
a limited connection to the central server. Examples of this problem are ubiqutous in the field of electronic
wearables and IoT devices, which are often low-powered and have limited access to internet. In such cases,
connection with global server is rare and can be effectively modelled as a one-shot. If one wants to use
Reinforcement learning approaches on such devices, each device would require access to large amounts of
past experiences to efficiently solve the task. Fortunately, if one combines the data gathered on all devices
in some region, within this collective experience we are likely to have explored enough of the environment
to achieve acceptable performance. However, to utilise the data from other devices the RL algorithm needs
to be able to communicate efficiently with other devices and learn from this collective experience in an
offline manner. It is expected that enforcing restrictions on the available communication will decrease the
overall performance for a given task. Yet, the research questions of how does the best possible performance
depend on the communication budget, and how does existing offline RL algorithms perform have never been
answered.

In this paper, we attempt to answer the above questions by studying distributed offline RL problems. Our
proof methods are based on reducing RL problems to statistical inference problems. After such reduction is
done we utilise framework developed by Zhang et al. (2013), which ties minimax risk to mutual information
of parameter and message sent. Intuitively, if a message carries little information about a certain parameter,
it will be difficult for the central server to perform accurate inference based on that message only. We thus
bound the mutual information to derive a lower bound on the risk any one-shot communication algorithm
must suffer. Under our setting, we start with the classical multi-armed bandits problem in the contextual
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Problems Algorithms Optimal Risk Bits Communicated
Parameter learning in LSE (Algorithm 1) O( 𝐴𝐶𝑅2

𝑚𝑛𝜆
) Θ(𝐴𝐶 log 𝑚𝑛𝜆

𝑅
)

linear contextual bandits Lower Bound Ω( 𝐴𝐶𝑅2

𝑚𝑛𝜆
) Ω(𝐴𝐶)

Value function prediction MC LSE (Algorithm 2) O(𝐶𝐻2𝑅2

𝑚𝑆𝐸𝜆
) Θ(𝐶 log 𝑚𝑆𝐸𝜆

𝐻𝑅
)

(Episodic MDP) Lower Bound Ω(𝐶𝐻2𝑅2

𝑆𝐸𝑚𝜆
) Ω( 𝐶

log𝑚
)

Value function prediction TD (Algorithm 3) O( 𝜈
1+(1−𝛾)2𝑛 ) Θ(𝐶 log 𝐶

𝜈
)

(Non-Episodic MDP) Lower Bound Ω( 𝐶𝑅2

(1−𝛾)2𝑚𝑆𝑛𝜋max𝜆
) Ω( 𝐶

log𝑚
)

Table 1: Summary of main results. 𝐴 denotes the cardinality action space, 𝑆 card. of state space, 𝐶 is
the dimensionality of context/feature vectors, 𝑚 is the number of cooperating machines, 𝑛 is the number of
samples, 𝐸 number of episodes, 𝜆 is the smallest rescaled eigenvalue of the feature/context covariance matrix,
𝐻 is the horizon length, 𝛾 denotes the discount factor. For the stationary distribution of states visited in
non-episodic MDP 𝜋, we assume that 𝜋max ≥ 𝜋(𝑠) ≥ 𝜋min. We define 𝜈 = max{ 𝑅2

𝑆𝜋min𝜆𝑚
, ∥θ − 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

0∥22},
where the second argument of max operator is the initial bias of TD method.

case, where we derive a lower bound on the risk of 𝐴𝐶𝑅2

𝑚𝑛𝜆
when the communication budget scales at least as

𝐴𝐶, where 𝐴 and 𝐶 are number of actions and dimensions of context respectively, 𝑅 is the maximum reward,
𝑚 and 𝑛 are numbers of machines and samples for each action and 𝜆 is the rescaled smallest eigenvalue
of the covariance matrix of context/feature vectors. We also present Algorithm 1 achieving optimal risk
with communication budget being optimal up to logarithmic factors. Existing analyses of communication in
multi-armed bandits problems (Wang et al. (2019), Huang et al. (2021)) define the communication cost as
the number of values transmitted rather than the number of bits, which unfortunately ignores the fact that
real communication can only occur with finite precision.

Apart from the bandits problem, we also analyse problem settings for Markov Decision Processes (MDPs)
and develop lower bounds for both episodic and non-episodic settings. To our best knowledge, we present
the first minimax lower bounds for distributed solving of MDPs. In the episodic setting, we develop a lower
bound of 𝐶𝐻2𝑅2

𝑚𝑆𝐸𝜆
of risk with 𝐶

log𝑚
communication budget, where 𝐻 is horizon length, 𝑆 is the cardinality

of state space and 𝐸 is the number of episodes we have for each state. We also prove that performing
distributed Monte-Carlo return estimates achieve optimal risk with communication budget being optimal
up to logarithmic factors. Additionally, we extend our results to the non-episodic cases and develop a lower
bound of 𝐶𝑅2

(1−𝛾)2𝑚𝑆𝑛𝜋max𝜆
with communication budget 𝐶

log𝑚
. Meanwhile, we also study the worst-case risk

of distributed temporal difference in this setting and show that with only one communication round, the
algorithm cannot efficiently utilise data stored on all machines due to its initial bias, i.e., the difference
between the average initial estimate and the true parameter value ∥θ− 1

𝑚

∑𝑚
𝑖=1 θ𝑖

0∥2, which does not decrease
with the number of machines.

We summarise our theoretical results in Table 1 and our contributions are listed as follows:

• We present information-theoretic lower bounds for distributed offline linear contextual bandits and
linear value function prediction in Markov Decision Processes. Our lower bounds scale with the
allowed communication budget 𝐵. To the best of the authors’ knowledge, these are the first lower
bounds in distributed reinforcement learning other than for bandit problems.

• We prove that a distributed version of the least-square estimate achieves optimal risk for the con-
textual bandit problem and a distributed version of Monte-Carlo return estimates achieves optimal
risk in episodic MDP. We show that both of these algorithms have communication budgets optimal
up to logarithmic factors.

• We show that the performance of distributed temporal difference in one communication round setting
does not improve when data from more machines is used if the initial bias is large
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2 Problem Formulation

We assume there are 𝑚 processing centres, and the 𝑖th centre stores gameplay history ℎ𝑖 of an agent inter-
acting with a particular environment within a framework of a Markov Decision Process. The distribution
of gameplay histories 𝑃(ℎ) belongs to some wider family of distributions P, which is taken to be a set of
all possible distributions that might have generated gameplay given that they satisfy assumptions of the
problem. We assume there is some parameter of interest θ : P → Θ embedded within that problem, which
might be a property of solely the environment or a result of the agent’s actions. All centres are supposed
to cooperate to jointly obtain an estimate θ̂, closest to the true value θ. Based on its gameplay history ℎ𝑖,
the 𝑖th centre can send a message 𝑌 𝑖 to the main processing centre (arbitrary chosen), according to some
communication protocol Π. There is only one communication round allowed, and the main centre cannot
send any message back to individual centres. After receiving messages from all centres 𝑌1, . . . , 𝑌𝑚 the main
centre outputs an estimate θ̂(𝑌1, . . . , 𝑌𝑚). We define the worst-case risk of that estimate in Definition 2.1.

Definition 2.1 For a problem of estimating a parameter θ : P → Θ, we define the worst-case risk of an
estimator θ̂ under communication protocol Π as

𝑊 (θ,P, θ̂,Π) = sup
𝑃∈P

𝔼
[
| |θ̂(𝑌1:𝑚) − θ(𝑃) | |22

]
where the expectation is taken over possible gameplay ℎ𝑖 histories generated by 𝑃 and messages 𝑌1:𝑚 sent by
the protocol Π based on them.

We now consider the case when each message 𝑌 𝑖 is constrained so that its length in bits 𝐿𝑖 is smaller than
some communication budget 𝐵. We define 𝐴(𝐵) to be the family of communication protocols under which
∀𝑖∈{1,...,𝑚}𝐿𝑖 ≤ 𝐵. We define the minimax risk as the best possible worst-case risk any algorithm can have
as stated by Definition 2.2.

Definition 2.2 For a class of problems where gameplay history is generated by a distribution 𝑝 ∈ P and we
wish to estimate a parameter θ : P → Θ, under a communication budget of 𝐵 we define the minimax risk to
be:

𝑀 (θ,P, 𝐵) = inf
Π∈𝐴(𝐵)

inf̂
𝜃

𝑊 (θ,P, θ̂,Π) = inf
Π∈𝐴(𝐵)

inf̂
𝜃

sup
𝑃∈P

𝔼
[
| |θ̂(𝑌1:𝑚) − θ(𝑃) | |22

]
where the second infimum is taken over all possible estimators.

Notably, a similar definition was adopted by Zhang et al. (2013) in the setting of distributed statistical
inference. The lower bounds we formulate are given in form of a hard instance of a problem. Formally,
we show that there exists an instance such that any algorithm has a minimax risk at least equal to the
bound we derive. We use a method described in Appendix A, which gives us a lower bound on minimax
risk, provided we can obtain an upper bound of mutual information the messages sent by machines carry
about the parameter 𝐼 (𝑌,𝑉). To this goal, we rely on inequality stated in Appendix A.3, which requires us
to construct a set such that if samples we receive fall into it, the likelihood ratio given different values of
the parameter is bounded. If we can additionally bound the probability that the samples do not fall into
this set, which in our proofs is done through the Hoeffding inequality, we obtain an upper bound on the
information. Intuitively, if the likelihood ratio is small, it becomes hard to identify a parameter and if this
also happens with large probability, then average information 𝐼 (𝑌,𝑉) messages carry about the parameter
must be small. We will now introduce the communication model assumed in this paper.

2.1 Information Transmitted and Quantisation Precision

In every algorithm we propose, we assume the following transmission model; we introduce quantisation
levels separated by 𝑃, which we call the precision of quantisation. We assume the transmitted values are
always within some pre-defined range (𝑉min, 𝑉max), hence we divide it into 𝑉max−𝑉min

𝑃
levels. Each value gets

quantised into the nearest level so that the difference between the original value and the level into which it was
quantised is smallest. Under such a scheme, the number of bits transmitted is, therefore 𝐵 = log

(
𝑉max−𝑉min

𝑃

)
.

We now proceed with the analysis of the first class of the distributed offline RL problems.

3



Under review as submission to TMLR

3 Parameter estimation in contextual linear bandits

In a classic multi-armed bandit problem, the agent is faced with a number of slot machines and is allowed
to pull the arm of only one of them at a given timestep. We can identify choosing each arm with choosing
an action 𝑎 ∈ A, where 𝐴 = |A| is the number of all arms. The reward obtained after each pull is stochastic
and is sampled from a distribution that depends on the machine. We do not specify the distribution of the
reward, but put a standard constraint on the maximum absolute value of rewards as stated by Assumption
3.1, restricting its support to [−𝑅max, 𝑅max].

Assumption 3.1 The maximum absolute value of the reward an agent can receive at each timestep 𝑡 is
bounded by some constant 𝑅max > 0, i.e. |𝑟𝑡 | ≤ 𝑅max.

Hence, the goal in such a task is to identify the arm with the highest average reward. In the contextual
version of this problem, at each time step, the agent is also given a context vector c𝑡 ∈ ℝ𝐶 , which influences
the distribution of the reward for each arm. Consequently, an arm that is optimal under one context need
not be optimal under a different context. We explicitly assume a linear structure between the context vector
and average reward for each arm, i.e. 𝔼[𝑟𝑡 |𝑎𝑡 ] = c𝑇𝑡 θ𝑎𝑡 , where θ𝑎 ∈ ℝ𝐶 is the parameter vector for the
arm associated with action 𝑎. We analyse the offline version of this problem where we have access to the
gameplay history ℎ = {c𝑙 , 𝑎𝑙 , 𝑟 𝑙}𝑁

𝑙=1, consisting of received context vectors, the arms agent have chosen in
response to them and rewards obtained after pulling the arm. We assume that within gameplay history the
agent has chosen each arm 𝑛 times so that 𝑁 = 𝐴𝑛. We make a further assumption regarding the context
vectors.

Assumption 3.2 Context vector for each sample is normalised, i.e. ∥c𝑖 ∥22 ≤ 1. If we form a matrix
𝑋 = (𝑐1, . . . , 𝑐𝑛) for any number of context vectors 𝑛, then the smallest eigenvalue of the matrix 𝑋𝑇𝑋 is 𝜂min
such that 0 < 𝜂min ≤ 1 and 𝜂min = 𝑛𝜆min for some constant 𝜆min.

Restricting the smallest eigenvalue is necessary as otherwise, the parameter θ𝑎 becomes unidentifiable, as
large changes in it will produce small changes in the average reward. Also, in practical problems, eigenvalues
of the covariance matrix naturally grow with the number of samples and the condition that 𝜂min = 𝑛𝜆min
has been adopted by similar analyses (Zhang et al. (2013)). We would like to obtain an estimator for
θ = (θ1, . . . , θ𝐴), which is a concatenated vector consisting of all parameter vectors for each 𝑎 ∈ A. We
now proceed with presenting the minimax lower bound for the estimation of θ. We assume the context
vectors machines receive are pre-specified and the only randomness is within the reward. We now present
our first lower bound on minimax risk in Theorem 3.3 and sketch its proof, describing a hard instance of the
contextual linear bandit problem.

Theorem 3.3 In a distributed offline linear contextual MAB problem with 𝐴 actions and context with di-
mensionality 𝐶 such that 𝐶𝐴 > 12 under assumptions 3.1 and 3.2, given m processing centres each with
𝑛 ≥ 𝐶 samples for each arm, with each centre having communication budget 𝐵 ≥ 1, for any independent
communication protocol, the minimax risk M is lower bounded as follows:

𝑀 ≥ Ω

(
𝐴𝐶𝑅2

max
𝑚𝑛𝜆min

min
{

max
{ 𝐴𝐶
𝐵

, 1
}
, 𝑚

})
Proof 3.4 (sketch): We present a sketch of proof here and defer the full proof to Appendix B.
We construct a hard instance of the problem and use it to derive a lower bound. For each arm, at each centre
we set the 𝑘th component of context vector in 𝑙th sample to 𝑐𝑙

𝑘
=
√
𝜆min𝑛𝟙𝑘=𝑙 for the first 𝐶 and we set context

vectors for remaining 𝑛 − 𝐶 samples to zero vectors. Although this construction might seem pathological at
first glance, it satisfies Assumption 3.2 and simplifies the analysis greatly. Under our construction we choose
the distribution of the reward 𝑟 𝑙

𝑗
for 𝑙th sample for 𝑗th arm to be 𝑅max with prob. 1

2 +
𝑐𝑙
𝑙
𝜃 𝑙
𝑗

2𝑅max
and −𝑅max

otherwise. We can observe that the expected reward is 𝔼[𝑟 𝑙
𝑗
] = 𝑐𝑙

𝑙
𝜃 𝑗 ,𝑙 = (c𝑙)𝑇θ 𝑗 , which satisfies the problem

formulation. The reward can also be rewritten as 𝑟 𝑙
𝑗
= (2𝑝𝑙

𝑗
−1)𝑅max, where 𝑝𝑙

𝑗
∼ Bernoulli( 12 +

𝑐𝑙
𝑘
𝜃 𝑗

2𝑅max
). Hence

the data received can be just reduced to the Bernoulli variables {𝑝𝑙
𝑗
}𝑛
𝑙=1 for each arm 𝑗 . We follow the method
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described in Appendix A. We study the likelihood ratio of 𝑝𝑙
𝑗

under 𝑣 𝑗 ,𝑘 and 𝑣′
𝑗 ,𝑘

= −𝑣 𝑗 ,𝑘 and show that it is

bounded by exp
{

17
√
𝑛𝜆min 𝛿𝑣𝑘
8𝑅max

}
. We can thus satisfy the conditions of Lemma A.4, with 𝛼 =

17
√
𝑛𝜆min 𝛿𝑣𝑘
8𝑅max

. We
observe that since we haven’t assumed anything about 𝑝𝑙

𝑗
to derive this bound, we get that this bound holds

with probability one and hence the second and third term in the bound resulting from Lemma A.4 are zero.
For the Bernoulli distribution we can easily study the KL-divergence and together with Lemma A.2 we get
that: 𝐼 (𝑉,𝑌 ) ≤ 17

8
𝛿2𝑚𝑛𝜆min

𝑅2
max

min
{

17
8 𝐵, 𝐶𝐴

2

}
. The rest of the proof consists of choosing such 𝛿 that produces

the tightest bound.

We observe that for the communication not be a bottleneck, we require a communication budget for each
machine of at least 𝐵 > Ω(𝐴𝐶). We also see that above this optimal threshold, increasing the communication
budget does not decrease the lower bound because of the max operator. On the other hand, for small
communication budgets, the min operator ensures that the performance cannot be worse than as if we only
used data from one machine. Both of these results are intuitive and show that our bound is thigh with
respect to the communication. Since the optimal communication budget scales with 𝐴, this lets us presume
that we can tackle this problem by performing 𝐴 separate least-squares estimations. Inspired by that, we
present Algorithm 1 and further show in Theorem 3.5 that it can match this lower bound up to logarithmic
factors.

Algorithm 1 (LSE) Distributed offline least-squares
Data: {c𝑙𝑎, 𝑟 𝑙𝑎}𝑛𝑙=1 for 𝑎 ∈ A
On individual machines compute:
for 𝑖 ∈ {1, . . . , 𝑚} do

for 𝑎 ∈ 𝐴 do
𝑋𝑎 ← (𝑐1

𝑎, . . . , 𝑐
𝑛
𝑎)𝑇 r𝑎 ← (𝑟1

𝑎, . . . , 𝑟
𝑛
𝑎)𝑇

θ̂𝑖
𝑎 ← (𝑋𝑇

𝑎 𝑋𝑎)−1𝑋𝑇
𝑎 r𝑎

end
Quantise each component of θ̂𝑎

𝑖 up to precision 𝑃 and send to central server.
end
At central server compute: θ̂𝑎 ← 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

𝑎 for 𝑎 ∈ A
return θ𝑎 for each 𝑎 ∈ A

Theorem 3.5 Let us define θ = (θ1, . . . , θ𝐴) to be the concatenated parameter vector for all actions. For
any value of θ, Algorithm 1 using transmission with precision 𝑃 achieves a worst-case risk upper bounded as
follows:

𝑊 < O
(
𝐴𝐶 max

{ 𝑅2
max

𝑚𝑛𝜆min
, 𝑃

})
Proof 3.6 (sketch): We present a sketch of proof here and defer the full proof to Appendix E. We start
by assuming the transmission is lossless (i.e. the number of bits is infinite) and then study how the MSE
changes when transmission introduces quantisation error. It is a well-known fact that for the least-Squares
estimate, the bias is zero, hence using the bias-variance decomposition, we get that the bound on estimator’s
variance is also the bound on its MSE. Some algebraic manipulations allow us to show that Var(𝜃𝑖

𝑎,𝑘
) ≤∑𝐶

𝑗=1
∑𝑛

𝑙=1
𝑄2

𝑗,𝑘
𝑉2

𝑗,𝑙

𝜆min𝑛
Var(𝑟 𝑙𝑎). We now observe that because of Assumption 3.1, we can use Popoviciu inequality

to obtain Var(𝑟 𝑙𝑎) ≤ 𝑅2
max. Substituting this back into the equation for MSE, we get 𝔼[(θ − θ̂)2] ≤ 𝐴𝐶𝑅2

max
𝑚𝑛𝜆min

.
Using the fact that each component is quantised up to precision 𝑃, the max error introduced by quantisation is
𝐴𝐶𝑃. Combining that with the bound on MSE of lossless transmission, we get the statement of the Theorem.

A direct conclusion of this result is that if we want the quantisation to not affect the worst-case performance
of Algorithm 1, the precision 𝑃 needs to scale as Θ( 𝑅2

max
𝑚𝑛𝜆 min

) and hence the number of transmitted bits 𝐵 must
scale as Θ(𝐴𝐶 log 𝑚𝑛𝜆min

𝑅2
max
). While enjoying the simplicity of analysis, the contextual bandit problem does not
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take into account that the current actions of the agent influence the future state of the environment. This
is an important consideration in personalised suggestions (Liao et al. (2020)), which is one of the problems
likely to be solved by a multitude of low-powered personal devices, fitting within our distributed processing
framework. Hence we proceed to study a more sophisticated model of reinforcement learning problems in
the next section, where we focus on parameter identification in full Markov Decision Processes.

4 Linear Value Function Prediction in Episodic MDP

We consider a Markov Decision Process (MDP) consisting of states 𝑠 ∈ S, actions 𝑎 ∈ A and rewards the
agent receives that we assume follow Assumption 3.1. We assume we observe the gameplay history of an
agent taking actions according to its policy 𝜋(𝑠 |𝑎) : (S,A) → [0, 1], hence the problem studied reduces to
a Markov Reward Process. In episodic setting, we define a return of a policy 𝜋 from state 𝑠 as the sum of
all rewards obtained while following the policy 𝜋 after having visited state 𝑠, i.e. 𝐺𝑠 = 𝔼[∑𝐻

𝑘=𝑡 𝑟𝑘 |𝑠𝑡 = 𝑠]. To
evaluate how good a certain policy is in a given Markov Decision Process, it is common to learn its value
function 𝑣(𝑠) : S → ℝ, which assigns the return to each state. In many cases, it is sufficient to model the
value function for each state as a linear combination of some features related to the given state, we will
denote a vector of such features as c𝑠. We assume those features are universally known beforehand and
introduce Assumption 3.2 regarding the feature vectors, similarly as in the multi-armed bandit problem.

Assumption 4.1 Feature vector for each state is normalised, i.e. ∥c 𝑗 ∥22 ≤ 1. If we form a matrix 𝑋 =

(𝑐1, . . . , 𝑐𝑛) with feature vectors for all states, then the smallest eigenvalue of the matrix 𝑋𝑇𝑋 is 𝜂min such
that 0 < 𝜂min ≤ 1 and 𝜂min = 𝑆𝜆min for some constant 𝜆min.

Although in practice, a linear model will most likely be just an approximation to the true value function,
within our problem setting we will assume that the problems we consider can be perfectly modelled in
this way, i.e. 𝑣(𝑠) = c𝑇𝑠 θ. We will now define our assumptions for episodic and non-episodic settings. We
shall assume that the maximum number of transitions within an episode (so-called "horizon" length) is
equal to 𝐻. We shall refer to the states that can be visited at step ℎ as ℎ-level states and denote a set
of such states as Sℎ and we denote 𝑆ℎ = |Sℎ |. Consequently the set of initial states is S0 and the set of
terminal states is S𝐻 . We introduce a different parameter vector to model the value function at each level.
Hence for states at level ℎ, we have that ∀𝑠∈𝑆ℎ𝐺𝑠 = c𝑇𝑠 θℎ. and the parameter of interest is θ = θℎ. The
inference is conducted based on the gameplay history, which consists of the steps made during 𝑁 episodes,
i.e. ℎ = {{(𝑠1, 𝑎1, 𝑟1), . . . , (𝑠𝑇𝑙 , 𝑎𝑇𝑙 , 𝑟𝑇𝑙 )}}𝑁

𝑙=1, where 𝑇 𝑙 ≤ 𝐻 is the length of the 𝑙th episode. Within this
section we conduct our analysis under Assumption 4.2, regarding the number of times we visit each state at
a given level within the history.

Assumption 4.2 Within gameplay history, for every state at a given level ℎ we have 𝐸 episodes where it
was visited.

This assumption might be treated as a strong one, however, without it, there exists a simple pathological
example, where there is a special feature equal to zero in every state except for one state that is almost never
visited. In such a case, no matter how many episodes we sample, unless we can guarantee that we have
visited this state at least some number of times, we cannot learn the parameter value for that special feature
with high certainty. We now present our lower bound on minimax risk of estimation of the parameter θℎ at
level ℎ in Theorem 4.3.

Theorem 4.3 In a distributed offline episodic linear value function approximation problem at level ℎ and
context with dimensionality 𝐶 and state space size of 𝑆ℎ, such that 𝑆ℎ ≥ 𝐶 > 12, under assumptions 3.1, 3.2
and 4.2, given m processing centres, with communication budget 𝐵 ≥ 1, for any independent communication
protocol, the minimax risk M is lower bounded as follows:

𝑀 ≥ Ω

(
𝐶 (𝐻 − ℎ)2𝑅2

max
𝑆ℎ𝐸𝑚𝜆min

min
{

max
{ 𝐶

𝐵 log𝑚 , 1
}
,

𝑚

log𝑚

})

6



Under review as submission to TMLR

Proof 4.4 (sketch): We present a sketch of proof here and defer the full proof to Appendix C. We proceed
similarly as in the proof of Theorem 3.3 and set the 𝑘th component of feature vector for 𝑗th state to 𝑐 𝑗 ,𝑘 =√
𝜆min𝑆ℎ𝟙𝑘= 𝑗 for the first 𝑆ℎ states and we set feature vectors for remaining 𝑛 − 𝑆ℎ states to zero vectors.

We consider the following Markov Decision Process: starting randomly in one of the states 𝑗 at level ℎ, the
agent chooses one of two actions. Choosing the "good" action causes the agent the receive a reward of 𝑅max
for the remaining (𝐻 − ℎ) steps until the episode ends, while the "bad" action causes the agent to receive
a reward of −𝑅max until the end. The agent draws a random variable 𝑝 𝑗 ∼ Bernoulli( 12 +

c𝑇
𝑗
θ

2(𝐻−ℎ)𝑅max
) and

selects "good" action if 𝑝 𝑗 = 1 and "bad" action otherwise. We follow similar steps as in Theorem 3.3 and
bound the likelihood ratio, however, under the condition that

∑𝐸
𝑙=1 (2𝑝𝑙𝑗 − 1) < 𝑎, where 𝑎 is a quantity we

control. We then use Hoeffding inequality to bound the probability that
∑𝐸

𝑙=1 (2𝑝𝑙𝑗 − 1) > 𝑎. We then derive
a bound on KL-divergence and use Lemma A.2 to derive a second bound on mutual information. We finish
the proof by combining two bounds and choosing such 𝛿 and 𝑎 that the bound is tightest.

Hence we get that for the risk not to depend on communication budget we need a number of at least
𝐵 > Ω( 𝐶

log𝑚
) bits. It might be surprising that the bound decreases as the state space 𝑆 increases, however,

because of Assumption 4.2 we have that each new state effectively increases the number of available samples
for the same number of features. Note that in practice, to obtain a sensible approximation, the dimension
of features is likely to grow with the size of state space.

We now show that this class of problems can be efficiently solved by using performing distributed Monte-
Carlo return estimates. We present Algorithm 2, which uses Monte-Carlo to obtain return estimates and
then least-squared to fit the parameters to feature vectors, which are then quantised and communicated to
the main centre. We prove that it can match this lower bound with communication budget optimal up to
logarithmic factors as stated by Theorem 4.5.

Algorithm 2 (MC LSE) Distributed offline least-squares with Monte-Carlo return estimates
Data: {(𝑠𝑙𝑡 , 𝑟 𝑙𝑡 , 𝑎𝑙𝑡 )

𝑇𝑙
𝑡=1}𝑁𝑙=1

On individual machines compute:
for 𝑖 ∈ {1, . . . , 𝑚} do
∀𝑠∈𝑆 𝑁𝑠 ← 0 𝐺𝑠 ← 0
for 𝑙 ∈ 1, . . . , 𝑁 do

for 𝑠 ∈ 𝑆 do
𝑓𝑠 ← step of first time visit to 𝑠 in episode 𝑙

𝐺𝑠 ← 𝐺𝑠 +
∑𝑇𝑙

𝑡= 𝑓𝑠
𝑟 𝑙𝑡 𝑁𝑠 ← 𝑁𝑠 + 1

end
end
∀𝑠∈𝑆 𝑔𝑠 ← 𝐺𝑠

𝑁𝑠

𝑋 ← (𝑐1, . . . , 𝑐𝑆)𝑇 g ← (𝑔1, . . . , 𝑔𝑆)𝑇
θ̂𝑖 ← (𝑋𝑇𝑋)−1𝑋𝑇g
Quantise each component of θ̂𝑖 up to precision 𝑃 and send to central server.

end
At central server compute: θ̂ ← 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

return θ

Theorem 4.5 For any value of θ, Algorithm 2 using transmission with precision 𝑃 achieves worst-case risk
upper bounded as follows:

𝑊 < O
(
𝐶 max

{ (𝐻 − ℎ)2𝑅2
max

𝑚𝑆ℎ𝐸𝜆min
, 𝑃

})
Proof 4.6 We observe that the return is always within the range (−(𝐻 − ℎ)𝑅max, (𝐻 − ℎ)𝑅max), hence by
Popoviciu inequality we get Var(𝑔𝑙𝑠) ≤ (𝐻 − ℎ)2𝑅2

max and thus Var(𝑔𝑠) ≤ 1
𝐸
(𝐻 − ℎ)2𝑅2

max. Following similar
steps as in the proof of Theorem 3.5 we get the statement of the Theorem.

7
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Hence, the number of bits transmitted 𝐵 must scale as Θ(𝐶 log 𝑚𝑆𝐸𝜆min
(𝐻−ℎ)𝑅max

) for Algorithm 2 to achieve minimax
optimal performance. While the episodic setting can be used to model many problems, in applications related
to electronic wearables or IoT, we would usually be interested in continuous problems, as by design those
devices are meant to accompany user all the time and constantly improve their quality of life. We thus build
on the results we derived so far and conduct an analysis of the non-episodic problem setting in the next
section.

5 Linear Value Function Prediction in Non-episodic MDP

Contrary to the episodic Markov Reward Processes, in non-episodic setting we asumme all states share the
same parameter vector, which defines a linear relationship between the value function and features of a state.
In non-episodic setting we introduce a discount factor 𝛾 ∈ (0, 1), and define the return as a discounted sum
of rewards starting from state 𝑠 and following policy 𝜋 afterwards, i.e. 𝐺𝑠 = 𝔼[∑∞𝑘=0 𝑟𝑡+𝑘𝛾

𝑘 |𝑠𝑡 = 𝑠] = c𝑇𝑠 θ
and θ is the parameter we would like to conduct inference about. We define the received gameplay history
as i.i.d. samples of single steps made by the agent, where the initial state 𝑠 sampled from the stationary
distribution 𝜋(𝑠) under its policy, i.e. ℎ = {((𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+))}𝑛𝑡=1, where 𝑠𝑡 ∼ 𝜋(𝑠). We introduce Assumption
5.1 to ensure 𝜋(𝑠) exists.

Assumption 5.1 The Markov Chain describing states visited by the agent’s policy is aperiodic and ir-
reducible, so that the stationary distribution 𝜋 exists. We assume that for each state 𝑠 ∈ 𝑆 we have
𝜋min ≤ 𝜋(𝑠) ≤ 𝜋max and there is at least one state which frequently visited, i.e. 𝜋max > 0.01.

Theorem 5.2 In a distributed linear value function approximation problem with context dimensionality of
𝐶 > 12, state space size of 𝑆 ≤ 𝐶 and discount factor of 0 < 𝛾 < 0.99, under assumptions 3.1, 4.1 and
5.1, given 𝑚 processing centres each with gameplay history, with each centre having a communication budget
𝐵 ≥ 1, the minimax risk 𝑀 of any algorithm is lower bounded as:

𝑀 ≥ Ω

(
𝐶𝑅2

max
(1 − 𝛾)2𝜋max𝑆𝑛𝑚𝜆min

min
{

max
{𝐶 log𝑚

𝐵
, 1

}
,

𝑚

log𝑚

})
Proof 5.3 (sketch): We present a sketch of proof here and defer the full proof to Appendix D.
We consider the following MDP: from each state 𝑗 , regardless of the agent’s action it either states in the
same state with probability 1− 𝑝 and receives a reward with a mean of 𝑟 𝑗 or moves to any other states chosen
with a probability of 𝑝

𝑆−1 and receives a reward 𝑟0. We see that because of the consistency equation for value
functions we have:

𝑣( 𝑗) = (1 − 𝑝)𝑟 𝑗 + 𝑝𝑟0 + 𝛾
∑︁

𝑠′∈𝑆{ 𝑗 }
𝑣(𝑠′) 𝑝

𝑆 − 1 + 𝛾𝑣( 𝑗) (1 − 𝑝)

We now set 𝑟0 = −𝛾∑
𝑠′∈𝑆{ 𝑗 }

𝑣 (𝑠′ )
𝑆−1 to get that 𝑟 𝑗 =

𝑣 ( 𝑗 ) (1−𝛾+𝑝𝛾)
1−𝑝 . We set feature vectors and parameters in

the same way as in the proof of Theorem 4.3. We also set 𝑟 𝑗 = (2𝑝 𝑗 − 1)𝑅max where 𝑝 𝑗 ∼ Bernoulli( 12 +√
𝜆min𝑆𝑣𝑘 𝛿
2𝑅max

1−𝛾+𝑝𝛾
1−𝑝 ). We thus have a similar situation as in the proof of Theorem 4.3, where the data received

can be reduced to outcomes of Bernoulli trials. We proceed in the same way to obtain a bound that depends on
𝑝 and gets tighter as 𝑝 → 0. We now can index data generating distribution by 𝑝 and obtain their supremum,
which gives the statement of the Theorem.

While we can extend the lower bound to the non-episodic case while following a similar method as in the
episodic one, we see that because Monte-Carlo estimators for return cannot be used in the non-episodic
setting, we cannot extend Algorithm 2 in the same way. In this new setting, an algorithm needs to utilise
the consistency of the value function. We thus propose Algorithm 3, which is a distributed variant of
temporal difference learning. We build on the analysis conducted by Bhandari et al. (2018) to upper bound
its worst-case performance in Theorem 5.4.

8
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Algorithm 3 (TD) Distributed offline temporal difference learning
Data: (c𝑡 , 𝑟𝑡 , 𝑎𝑡 , c𝑡+)𝑇𝑡=1
On individual machines compute:
for 𝑖 ∈ {1, . . . , 𝑚} do

θ̂𝑖 ← θ0
for 𝑡 ∈ 1, . . . , 𝑁 do

g𝑡 ← (𝑟𝑡 + 𝛾c𝑇𝑡+θ̂
𝑖 − c𝑇𝑡 θ̂𝑖)c𝑡

θ̂𝑖 ← θ̂𝑖 + 𝛼𝑡g𝑡

end
Quantise each component of θ̂𝑖 up to precision 𝑃 and send to central server.

end
At central server compute: θ̂ ← 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

return θ̂

Theorem 5.4 The worst-case risk of Algorithm 3 run with a learning rate of 𝛼𝑡 =
𝛽

Λ+ 𝑡
𝜔

with 𝛽 = 2
(1−𝛾)𝜔

and Λ = 16
(1−𝛾)2𝜔 is upper bounded as follows:

𝑊 ≤ O
(

max
{

max{ 𝑅2
max

𝑆𝜋min𝜆min𝑚
, ∥θ − 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

0∥22}
1 + (1 − 𝛾)2𝑛 , 𝐶𝑃

})
Proof 5.5 (sketch): We present a sketch of proof here and defer the full proof to Appendix F.
We define θ̄𝑡 := 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

𝑡 to be the average vector from all machines at timestep 𝑡. Note that this vector
is never actually created, except for the last step when we average all final results. We can see that it must
satisfy the following recursive relation:

θ̄𝑡+1 =
1
𝑚

𝑚∑︁
𝑖=1

θ̂𝑖
𝑡+1 =

1
𝑚

𝑚∑︁
𝑖=1
[θ̂𝑖

𝑡 + 𝛼𝑡g
𝑖
𝑡 ] = θ̄𝑡 + 𝛼𝑡

1
𝑚

𝑚∑︁
𝑖=1

g𝑖
𝑡

We utilise Lemmas H.1 and H.3 to show that:

𝔼[∥θ − θ̄𝑡+1∥22] ≤ 𝔼[∥θ − θ̄𝑡 ∥22] (1 − 2𝛼𝑡𝜔(1 − 𝛾) + 𝛼2
𝑡 ) +

𝛼2
𝑡

𝑚
𝑅2

max

where we define 𝜔 to be the smallest eigenvalue of the covariance matrix weighted by the stationary distri-
bution, i.e. smallest eigenvalue of

∑
𝑠∈𝑆 𝜋(𝑠)c𝑠c

𝑇
𝑠 . We then finish the proof by induction and observing that

by concavity of eigenvalues we have 𝑆𝜋min𝜆min ≤ 𝜔 ≤ 𝜆min ≤ 1.

We see that there are essentially two terms contributing to the worst-case risk, the term 𝑅2
max

𝑆𝜋min𝜆min𝑚
resulting

from gradient’s variance and the term ∥θ − 1
𝑚

∑𝑚
𝑖=1 θ̂𝑖

0∥22 resulting from initial bias. We see that increasing
the number of machines 𝑚 will only decrease the variance term, but will not decrease the overall worst-case
risk if the initial bias is larger. This result has a practical implication, as we essentially show that using
more devices within a network is not necessarily going to improve our estimate. It might spuriously appear
that this algorithm is contradicting the lower bound as the worst-case risk has no explicit dependence on
the dimensionality of the features. However, we can easily show (explicitly derived in Appendix G) that the
initial bias will scale at least as O( 𝑆𝑅2

𝜆min (1−𝛾) ), which is consistent with the bound stated in Theorem 5.2, as
we assumed 𝐶 ≤ 𝑆.

In comparison to existing distributed versions of TD learning where gradients are communicated between
machines at each step, in our version only the final estimates are communicated, hence the initial bias cannot
be cancelled by introducing data from more machines. This is, however, due to the difficulty of our problem
setting. With one communication round, it is not possible to constantly transmit information about the
gradient updates. This issue would come up in practice, whenever the devices we run our algorithm on are

9
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not constantly connected to the network and communication in real-time, during the algorithm runtime is
not possible.

It might come as a surprise that although we can easily propose an optimal algorithm for the episodic case,
the same is not true for the non-episodic setting. In fact, we can see that for any unbiased algorithm that
has optimal risk in a non-distributed version, its distributed version averaging results from all machines will
also have optimal risk as long as the lower bound scales as the inverse of the number of machines 𝑚. In
the non-episodic setting, however, we cannot directly obtain estimates of the return and hence need to rely
on a method utilising the temporal structure of the problem. Although in the non-distributed version, the
temporal difference can often be superior to Monte-Carlo methods even in the episodic case due to smaller
variance, we see that in a single-round communication setting, the bias is preventing the algorithm from
efficiently utilising data available on all machines.

6 Discussions

We have studied three offline RL problems in a special case of distributed processing. We have identified a
lower bound on minimax risk in each problem and proposed algorithms that match these lower bound up to
logarithmic factors in the cases of contextual linear bandits and episodic MDP. In the case of non-episodic
MDP, we have proposed a distributed version of temporal difference learning and analysed its worst-case
risk. We have shown that its worst-case risk decreases with the number of cooperating machines only until
some point, where the risk due to initial bias starts to dominate over the risk caused by variance.

Notably, our work studies a different problem from Federated Learning (Konečnỳ et al. (2015)) wherein
a typical setting assumes one can send parameter values to the central server while minimising the total
number of communication rounds. In our setting, we assume more restrictive conditions with regards to
communication by limiting the communication round to be only one and by further restricting the number
of information (i.e., the bits) each machine can send.

Moreover, we would like to emphasise that our bounds are developed on the risk in estimating the parameter
values rather than on the regret (Wang et al., 2019). We note that there are problems where learning the
parameter values might be of greater interest than just minimising the regret of actions. Recalling the
example of physical activity suggestion in the Introduction, we not only want to learn the optimal way of
suggesting the activities, but also analyse which factors influence how healthy the lifestyle of an individual
is. Hence, it would be more beneficial to estimate the parameters of, for example, the value function and
decrease the risk of those estimates.

In this paper, we have derived the first lower bound for distributed RL problems other bandits. Our method
relies on constructing hard instances and converting them to statistical inference problems. This approach
can be easily applied to other settings such as state-action value estimation or off-policy learning, which
constitutes one of the directions of future work. We also identified a weakness of TD learning resulting from
its initial bias. Can this bias be estimated in practice so that we do not unnecessarily utilise data from more
machines than needed? Can we correct for initial bias so that worst-case risk always decreases with more
machines? Can it match the derived lower bound? We leave these questions open to future research.
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A General methods for deriving lower bounds

Let us define a set V = {−1, 1}𝑑 and sample 𝑉 uniformly from V. Conditioned on 𝑉 = 𝑣 we sample 𝑋1 from
𝑃𝑋1 (·|𝑉 = 𝑣) so that 𝜃𝑣 = 𝜃 (𝑃𝑥 (·|𝑣)) = 𝛿𝑣 where 𝛿 > 0 is a fixed quantity we control. Consider a Markov
chain 𝑉 → 𝑋1 → · · · → 𝑋𝑛 → 𝑌 → 𝜃. Under these conditons, it was proven by Zhang et al. (2013) that for
𝑑 > 12 we have:

𝑀 (𝜃, 𝑃, 𝐵) ≥ 𝛿2
(
⌊ 𝑑6 ⌋ + 1

) (
1 − 𝐼 (𝑌,𝑉) + log 2

𝑑
6

)
Hence, if we can choose a 𝛿 such that 𝐼 (𝑌,𝑉) is upper bounded, this directly translates to a lower bound
on the minimax risk. It hence remains to upper bound the mutual information any possible message 𝑌 can
carry about v, so that we can use it to obtain a lower bound on minimax risk. To that goal, we will use
the inequalities described in subsequent subsections and combine them into one upper bound on mutual
information. After that, it remains to find such a 𝛿 that this upper bound remains constant or is at most
linear in the dimensionality of the problem.

A.1 Tensorisation of information

Lemma A.1 (Tensorisation of information property in Zhang et al. (2013)) If 𝑉 is a parameter
of distribution we wish to make inference about and the message 𝑌𝑖 send by the 𝑖th processing centre is
constructed based only on the data 𝑋𝑖 then the following is true:

𝐼 (𝑉 ;𝑌1:𝑚) ≤
𝑚∑︁
𝑖=1

𝐼 (𝑉 ;𝑌𝑖)

A.2 Bound on mutual information by KL-divergence

Within this section, we present another bound on mutual information, which utilises the KL-divergence of
data-generating distribution.

Lemma A.2 Let 𝑉 → 𝑋 𝑖 → 𝑌 𝑖 form a Markov Chain and 𝑌 = (𝑌1, . . . , 𝑌𝑚). Let 𝑉 be a 𝑑-dimensional
vector with each component sampled uniformly from {𝑣 𝑗 , 𝑣

∗
𝑗
}. Let each 𝑋 𝑖 consist of (𝑅1, . . . , 𝑅𝑑) where every

𝑅1 = (𝑅1
1, . . . , 𝑅

𝑛
1). Let every 𝑅𝑙

𝑗
be sampled from the same distribution parametrised by 𝑣 𝑗 . Then:

𝐼 (𝑌,𝑉) ≤ 𝑚𝑛

4

𝑑∑︁
𝑗=1

(
KL[𝑝(𝑅1

𝑗 |𝑣), 𝑝(𝑅1
𝑗 |𝑣∗)] +KL[𝑝(𝑅1

𝑗 |𝑣∗), 𝑝(𝑅1
𝑗 |𝑣)]

)
Proof A.3 From tensorisation of information (Lemma A.1) and data-processing inequality we get:

𝐼 (𝑌,𝑉) ≤ 𝑚𝐼 (𝑌 𝑖 , 𝑉) ≤ 𝑚𝐼 (𝑋 𝑖 , 𝑉)

We now observe that 𝑅 𝑗 are independent, hence:

𝐼 ((𝑅1, . . . , 𝑅𝑑), 𝑉) =
𝑑∑︁
𝑗=1

𝐼 ((𝑅1
𝑗 , . . . , 𝑅

𝑛
𝑗 ), 𝑉) =

𝑑∑︁
𝑗=1

𝑛∑︁
𝑙=1

𝐼 (𝑅𝑙
𝑗 , 𝑉 |𝑅1:𝑙−1

𝑗 ) =

=

𝑑∑︁
𝑗=1

𝑛∑︁
𝑙=1
[𝐻 (𝑅𝑙

𝑗 |𝑅1:𝑙−1
𝑗 ) − 𝐻 (𝑅𝑙

𝑗 |𝑉, 𝑅1:𝑙−1
𝑗 )] ≤

𝑑∑︁
𝑗=1

𝑛∑︁
𝑙=1
[𝐻 (𝑅𝑙

𝑗 ) − 𝐻 (𝑅𝑙
𝑗 |𝑉)] = 𝑛

𝑑∑︁
𝑗=1

𝐼 (𝑅1
𝑗 , 𝑉)

Where the last inequality is true since conditioning can only reduce entropy and 𝑅𝑖
𝑗

are independent given 𝑉 .
We know focus on the mutual information:

𝐼 (𝑅1
𝑗 , 𝑉) = KL[𝑝(𝑅1

𝑗 , 𝑉), 𝑝(𝑅1
𝑗 )𝑝(𝑉)] = KL[𝑝(𝑅1

𝑗 |𝑉)𝑝(𝑉), 𝑝(𝑅1
𝑗 )𝑝(𝑉)]
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=
∑︁
𝑣

𝑝(𝑣)KL[𝑝(𝑅1
𝑗 |𝑣), 𝑝(𝑅1

𝑗 )] =
∑︁
𝑣

𝑝(𝑣)KL[
∑︁
𝑣′

𝑝(𝑅1
𝑗 |𝑣)𝑝(𝑣′),

∑︁
𝑣′

𝑝(𝑅1
𝑗 |𝑣′)𝑝(𝑣′)]

Because of convexity of KL-divergence we get:

𝐼 (𝑅1
𝑗 , 𝑉) ≤

∑︁
𝑣,𝑣′

𝑝(𝑣)𝑝(𝑣′)KL[𝑝(𝑅1
𝑗 |𝑣), 𝑝(𝑅1

𝑗 |𝑣′)] =

=
1
4
(
KL[𝑝(𝑅1

𝑗 |𝑣), 𝑝(𝑅1
𝑗 |𝑣∗)] +KL[𝑝(𝑅1

𝑗 |𝑣∗), 𝑝(𝑅1
𝑗 |𝑣)]

)
A.3 Bound on mutual information by set construction

We present a first bound on mutual information, which can requires constructing a set such that the samples
belong to it with some probability.

Lemma A.4 (Lemma 4 in Zhang et al. (2013)) Let V be sampled uniformly from {−1, 1}𝑁 . For any
(𝑖, 𝑗) assume that 𝑋 𝑖

𝑗
is independent of {𝑉 𝑗′ : 𝑗

′
≠ 𝑗} given 𝑉 𝑗 . Let 𝑃𝑋 𝑗

be the probability measure of 𝑋 𝑗 and
let 𝐵 𝑗 be a set such that for some 𝛼:

sup
𝑆∈𝜎 (𝐵 𝑗 )

𝑃𝑋 𝑗
(𝑆 |𝑉 = 𝑣)

𝑃𝑋 𝑗
(𝑆 |𝑉 = 𝑣′) ≤ exp(𝛼)

Define random variable 𝐸 𝑗 = 1 f 𝑋 𝑗 ∈ 𝐵 𝑗 and 0 otherwise. Then

𝐼 (𝑉,𝑌 𝑖) ≤
𝑁∑︁
𝑗=1

𝐻 (𝐸 𝑗 ) +
𝑁∑︁
𝑗=1

𝑃(𝐸 𝑗 = 0) + 2(𝑒4𝛼 − 1)2𝐼 (𝑋 𝑖 , 𝑌 𝑖)

Additionally if 𝛼 < 1.2564
4 , then the following is also true:

𝐼 (𝑉,𝑌 𝑖) ≤
𝑁∑︁
𝑗=1

𝐻 (𝐸 𝑗 ) +
𝑁∑︁
𝑗=1

𝑃(𝐸 𝑗 = 0) + 128𝛼2𝐼 (𝑋 𝑖 , 𝑌 𝑖)

Proof A.5 The first statement is Lemma 4 of Zhang et al. (2013).
The second statement directly follows from it, as for 𝑥 < 1.2564, it holds that exp(𝑥) − 1 < 2𝑥

B Proof of Theorem 3.3

Theorem 3.3 In a distributed offline linear contextual MAB problem with 𝐴 actions and context with di-
mensionality 𝐶 such that 𝐶𝐴 > 12 under assumptions 3.1 and 3.2, given m processing centres each with
𝑛 ≥ 𝐶 samples for each arm, with each centre having communication budget 𝐵 ≥ 1, for any independent
communication protocol, the minimax risk M is lower bounded as follows:

𝑀 ≥ Ω

(
𝐴𝐶𝑅2

max
𝑚𝑛𝜆min

min
{

max
{ 𝐴𝐶
𝐵

, 1
}
, 𝑚

})
Proof B.1 Where we omit indexing by the machine index 𝑖, this means that statement holds for all machines.
Let us consider a problem where we set the parameter vector for 𝑗th arm as θ 𝑗 = 𝛿v 𝑗 where 𝛿 is a quantity
we will specify later, v 𝑗 is a vector sampled uniformly from {−1, 1}𝐶 and the 𝑘th element of context vector
for the 𝑙th sample is set to 𝑐𝑙

𝑘
=
√
𝜆min𝑛𝟙𝑘=𝑙, so that Assumption 3.2 is satisfied.

Let V be a concatenated vector defined as V = (v1, . . . , v𝐶 )𝑇 about which we would like to perform inference.
Let 𝑟 𝑙

𝑗
be the reward received after pulling 𝑗th arm for the 𝑙th time. We now define the underlying process for

generating the reward as follows, let 𝑟 𝑙
𝑗
= (2𝑝𝑙

𝑗
− 1)𝑅max, where 𝑝𝑙

𝑗
= Bernoulli( 12 +

𝛿𝑣𝑇
𝑗
𝑐𝑙

2𝑅max
). We see that under

such construction, the reward is always within [−𝑅max, 𝑅max] and its expected value is 𝔼[𝑟 𝑙
𝑗
] = 𝛿v𝑇

𝑗
c𝑙 = θ 𝑗c

𝑙.

13
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Let 𝑌 𝑖 be the message send by the 𝑖th processing centre and 𝑋 𝑖 be all 𝑟 𝑙
𝑗

for all 𝑗 and 𝑙 stored on the 𝑖th
processing centre and let us define 𝑃𝑖 in the same way for 𝑝𝑙

𝑗
. We observe that 𝑉 → 𝑃𝑖 → 𝑋 𝑖 → 𝑌 𝑖 forms a

Markov Chain. We see that this scenario satisfies the assumptions required to use the method from Appendix
A with 𝑑 = 𝐴𝐶. Hence we would like to find a bound on 𝐼 (𝑉,𝑌1:𝑚). First let us consider the likelihood ratio
of 𝑝𝑙

𝑗
for 𝑙 = {1, . . . , 𝑛} given 𝑣 𝑗 ,𝑘 and 𝑣′

𝑗 ,𝑘
= −𝑣 𝑗 ,𝑘. We observe that for our construction of c𝑘 we essentially

have v𝑇
𝑗
c𝑘 = 𝑐𝑘

𝑘
𝑣 𝑗 ,𝑘. Hence the likelihood ratio can be expressed as:( 1

2 +
𝑐𝑘
𝑘
𝑣 𝑗,𝑘 𝛿

2𝑅max

1
2 −

𝑐𝑘
𝑘
𝑣 𝑗,𝑘 𝛿

2𝑅max

) 𝑝𝑘
𝑗
( 1

2 −
𝑐𝑘
𝑘
𝑣 𝑗,𝑘 𝛿

2𝑅max

1
2 +

𝑐𝑘
𝑘
𝑣 𝑗,𝑘 𝛿

2𝑅max

)1−𝑝𝑘
𝑗

=

( 1
2 +

𝑐𝑘
𝑘
𝑣 𝑗,𝑘 𝛿

2𝑅max

1
2 −

𝑐𝑘
𝑘
𝑣 𝑗,𝑘 𝛿

2𝑅max

)2𝑝𝑘
𝑗
−1

(1)

For 𝑥 < 1
4 we have that 1+𝑥

1−𝑥 ≤ exp{ 17
8 𝑥}, hence when 𝑐𝑘

𝑘
𝑣𝑘 𝛿

𝑅max
≤ 1

4 (satisfied when 𝑣𝑘 𝛿
√
𝐶𝜆min

𝑅max
≤ 1

4), the ratio
above is bounded by:

≤ exp
{17𝑐𝑘

𝑘
𝛿𝑣 𝑗 ,𝑘

8𝑅max

(
2𝑝𝑘𝑗 − 1

)}
= exp

{17
√
𝑛𝜆min𝛿𝑣𝑘
8𝑅max

(
2𝑝𝑘𝑗 − 1

)}
We observe that we always have

�����2𝑝𝑘𝑗 − 1
����� ≤ 1, hence the ratio is bounded by exp{ 17𝛿

√
𝑛𝜆min

8𝑅max
}. We can thus

satisfy the conditions of Lemma A.4 with 𝛼 =
17𝛿
√
𝑛𝜆min

8𝑅max
if we define 𝐵 𝑗 ,𝑘 = {𝑝𝑘

𝑗
: 2𝑝𝑘

𝑗
−1 ≤ 1}, where we have

that 𝑃(𝑝𝑘
𝑗
∈ 𝐵 𝑗 ,𝑘) = 1. If we can set 𝛿 such that 17𝛿

√
𝑛𝜆min

8𝑅max
< 1.2564

4 , then we get:

𝐼 (𝑉,𝑌 𝑖) ≤ 289𝜆min𝑛𝛿
2

64𝑅2
max

𝐼 (𝑋 𝑖 , 𝑌 𝑖)

Note that we use a two-dimensional index for 𝑋, whereas in Lemma A.4, the index is one dimensional. This
is just a matter of notation and those two types of indexing are mathematically equivalent. We see that we
can bound 𝐼 (𝑋 𝑖 , 𝑌 ) as follows:

𝐼 (𝑋 𝑖 , 𝑌 𝑖) ≤ 𝐻 (𝑌 𝑖) ≤ 𝐵

Combining this with the tensorisation of information (Lemma A.1) we get:

𝐼 (𝑉,𝑌 ) ≤ 289𝜆min𝑚𝑛𝛿2

64𝑅2
max

𝐵 (2)

We now develop a second inequality for 𝐼 (𝑉,𝑌 ). We observe for the distribution of 𝑝𝑘
𝑘

we have the following:

KL[𝑝(𝑝𝑘𝑘 |𝑣), 𝑝(𝑝
𝑘
𝑘 |𝑣
∗)] =

(1
2 +

𝑐𝑘
𝑘
𝛿

2𝑅max

)
log

( 1
2 +

𝑐𝑘
𝑘
𝛿

2𝑅max

1
2 −

𝑐𝑘
𝑘
𝛿

2𝑅max

)
+

(1
2 −

𝑐𝑘
𝑘
𝛿

2𝑅max

)
log

( 1
2 −

𝑐𝑘
𝑘
𝛿

2𝑅max

1
2 +

𝑐𝑘
𝑘
𝛿

2𝑅max

)
=

=

(1
2 +

𝑐𝑘
𝑘
𝛿

2𝑅max
− 1

2 +
𝑐𝑘
𝑘
𝛿

2𝑅max

)
log

( 1
2 +

𝑐𝑘
𝑘
𝛿

2𝑅max

1
2 −

𝑐𝑘
𝑘
𝛿

2𝑅max

)
=

𝑐𝑘
𝑘
𝛿

𝑅max
log

( 1
2 +

𝑐𝑘
𝑘
𝛿

2𝑅max

1
2 −

𝑐𝑘
𝑘
𝛿

2𝑅max

)
Same as before we use the fact that for 𝑥 < 1

4 we have that 1+𝑥
1−𝑥 ≤ exp{ 17

8 𝑥}, we get:

KL[𝑝(𝑝𝑘𝑘 |𝑣), 𝑝(𝑝
𝑘
𝑘 |𝑣
∗)] ≤ 17

8
(𝑐𝑘

𝑘
)2𝛿2

𝑅2
max

=
17
8
𝑛𝜆min𝛿

2

𝑅2
max

(3)

Hence by Lemma A.2 with 𝑑 = 𝐴𝐶 and identifying 𝑅𝑘 = (𝑝𝑘
𝑘
) we get:

𝐼 (𝑉,𝑌 ) ≤ 17
8
𝑚𝑛𝐴𝐶𝛿2𝜆min

𝑅2
max

(4)

14
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Combining inequalities 2 and 4 we get:

𝐼 (𝑉,𝑌 ) ≤ 17
8

𝛿2𝑚𝑛𝜆min

𝑅2
max

min
{17

8 𝐵,
𝐶𝐴

2

}
We can now set:

𝛿2
𝐴 ≤

1
10

𝐶𝐴𝑅2
max

17
8 𝑚𝑛𝜆min min

{
17
8 𝐵, 𝐶𝐴

2

} =
1
10

𝑅2
max

17
8 𝑚𝑛𝜆min min

{
17
8

𝐵
𝐶𝐴

, 1
2

}
𝛿2
𝐵 ≤

1
10

𝑅2
max

17
8 𝑛𝜆min

𝛿 = min{𝛿𝐴, 𝛿𝐵}

We see that under such construction we have 𝛿
√
𝑛𝜆min
𝑅max

< 1
4 and 17𝛿

√
𝑛𝜆min

8𝑅max
< 1.2564

4 and we can also bound the
mutual information as follows:

𝐼 (𝑉,𝑌 ) ≤ 𝐶𝐴

10
We now remind the Assumption of the Theorem that 𝐴𝐶 > 12, which allows us to show:(

1 − 𝐼 (𝑌,𝑉) + log 2
𝐴𝐶
6

)
≥

(
0.65 − 𝐼 (𝑌,𝑉)

𝐴𝐶
6

)
≥

(
0.65 − 6

10

)
≥ 0 (5)

Which together with the method from Appendix A completes the proof.

C Proof of Theorem 4.3

Theorem 4.3 In a distributed offline episodic linear value function approximation problem at level ℎ and
context with dimensionality 𝐶 and state space size of 𝑆ℎ, such that 𝑆ℎ ≥ 𝐶 > 12, under assumptions 3.1, 3.2
and 4.2, given m processing centres, with communication budget 𝐵 ≥ 1, for any independent communication
protocol, the minimax risk M is lower bounded as follows:

𝑀 ≥ Ω

(
𝐶 (𝐻 − ℎ)2𝑅2

max
𝑆ℎ𝐸𝑚𝜆min

min
{

max
{ 𝐶

𝐵 log𝑚 , 1
}
,

𝑚

log𝑚

})
Proof C.1 We consider the following Markov Decision Process: starting randomly in one of the states 𝑖

at level ℎ, the agent chooses one of two actions. Choosing the "good" action causes the agent the receive a
reward of 𝑅max for the remaining (𝐻 − ℎ) steps until the episode ends. Choosing the "bad" action causes
the agent to receive a reward of −𝑅max until the end of episode. The agent draws a random variable 𝑝 𝑗 ∼
Bernoulli( 12 +

c𝑇
𝑗
θ

2(𝐻−ℎ)𝑅max
) and selects "good" action if 𝑝 𝑗 = 1 and "bad" action otherwise.

We see that with such construction, the maximum absolute value of the reward can never be greater than
𝑅max and the mean of the return from state 𝑗 is 𝔼[𝐺 𝑗 ] = 𝔼[∑𝐻

𝑡=ℎ 𝑟 𝑗 (𝑡)] = 𝔼[∑𝐻
𝑡=ℎ 𝑟 𝑗 (𝑡) |𝑝 𝑗 = 1]𝑃(𝑝 𝑗 =

1) + 𝔼[∑𝐻
𝑡=ℎ 𝑟 𝑗 (𝑡) |𝑝 𝑗 = 0]𝑃(𝑝 𝑗 = 0) = c𝑇

𝑗
θ and hence the value function of state 𝑗 is 𝑣( 𝑗) = c𝑇

𝑗
θ.

Let us now define the parameters as θ = 𝛿v, where v is sampled uniformly from {−1, 1}𝐶 . For every episode,
gameplay history contains (𝐻 − ℎ) tuples (c𝑡 , 𝑎𝑡 , 𝑟𝑡 ). Hence, we can just treat the received information as 𝐸

samples of 𝑝 𝑗 and context c 𝑗 for each state 𝑗 ∈ 𝑆ℎ. We can see that this construction satisfies the problem
setting of Appendix A, with 𝑑 = 𝐶. We select context elements as 𝑐 𝑗 ,𝑘 =

√
𝑆𝜆min𝟙 𝑗=𝑘 so that Assumption 3.2

is satisfied. Let us now consider the likelihood ratio of {𝑝𝑙
𝑘
}𝐸
𝑙=1 given 𝑣𝑘 = −𝑣′

𝑘
, defining 𝑛𝑙

𝑘
= 1 − 𝑝𝑙

𝑘
we have:

𝐸∏
𝑙=1

( 1
2 +

𝑐 𝑗,𝑘𝑣𝑘 𝛿

2𝑅max (𝐻−ℎ)
1
2 −

𝑐 𝑗,𝑘𝑣𝑘 𝛿

2𝑅max (𝐻−ℎ)

) 𝑝𝑙
𝑘
( 1

2 −
𝑐 𝑗,𝑘𝑣𝑘 𝛿

2𝑅max (𝐻−ℎ)
1
2 +

𝑐 𝑗,𝑘𝑣𝑘 𝛿

2𝑅max (𝐻−ℎ)

)1−𝑝𝑙
𝑘

=

𝐸∏
𝑙=1

( 1
2 +

𝑐 𝑗,𝑘𝑣𝑘 𝛿

2𝑅max (𝐻−ℎ)
1
2 −

𝑐 𝑗,𝑘𝑣𝑘 𝛿

2𝑅max (𝐻−ℎ)

) 𝑝𝑙
𝑘
−𝑛𝑙

𝑘
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For 𝑥 < 1
4 we have that 1+𝑥

1−𝑥 ≤ exp{ 17
8 𝑥}, hence when 𝑐 𝑗,𝑘𝑣𝑘 𝛿

𝑅max (𝐻−ℎ) ≤
1
4 (satisfied when 𝑣𝑘 𝛿

√
𝑆𝜆min

𝑅max (𝐻−ℎ) ≤
1
4), the

ratio above is bounded by:

≤ exp
{ 17𝛿𝑣𝑘
8𝑅max (𝐻 − ℎ)

𝐸∑︁
𝑙=1

𝑐 𝑗 ,𝑘

[
𝑝𝑙𝑘 − 𝑛

𝑙
𝑘

]}
≤ exp

{ 17
√
𝑆𝜆min𝛿𝑣𝑘

8𝑅max (𝐻 − ℎ)

����� 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘

�����} (6)

If it holds that

����� ∑𝐸
𝑙=1 𝑝𝑙

𝑘
− 𝑛𝑙

𝑘

����� ≤ 𝑎 then we have that the ratio is bounded by exp{ 17𝛿
√
𝜆min

8𝑅max (𝐻−ℎ) 𝑎}. Hence we can

satisfy the conditions of Lemma A.4 with 𝛼 =
17𝛿
√
𝑆𝜆min𝑎

8𝑅max (𝐻−ℎ) if we define 𝐵𝑘 as:

𝐵𝑘 =

{
(𝑝𝑙𝑘 , . . . , 𝑝

𝑙
𝑘)}

𝐸
𝑙=1 ∈ ℤ

𝐸
+ :

����� 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘

����� < 𝑎

}
To complete proof it remains to bound:

𝑃(𝐸𝑘 = 0) = 1
2

(
𝑃

( 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘 > 𝑎

���𝑣𝑘 = 1
)
+ 𝑃

( 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘 > 𝑎

���𝑣𝑘 = −1
)

+𝑃
( 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘 < −𝑎 |𝑣𝑘 = 1

)
+ 𝑃

( 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘 < −𝑎

���𝑣𝑘 = −1
))

We now notice that due to symmetry, the first and fourth time are equal and so are second and third. We
also notice that the first term must be greater or equal to the second. This gives:

𝑃(𝐸𝑘 = 0) ≤ 2𝑃
( 𝐸∑︁
𝑙=1

𝑝𝑙𝑘 − 𝑛
𝑙
𝑘 > 𝑎

���𝑣𝑘 = 1
)

We notice that the mean of
∑𝐸

𝑙=1 𝑝𝑙
𝑘
− 𝑛𝑙

𝑘
is 𝜇𝑘 =

𝑣𝑘 𝛿

(𝐻−ℎ)𝑅max

∑𝐸
𝑙=1 𝑐𝑘 =

𝛿𝐸𝑣𝑘
√
𝑆𝜆min

(𝐻−ℎ)𝑅max
. We can subtract it from

both side of inequality and divide them by 𝐸:

𝑃(𝐸𝑘 = 0) ≤ 2𝑃
(

1
𝐸

[
𝐸∑︁
𝑙=1

𝐻∑︁
𝑡=𝐻−ℎ

𝑝𝑙𝑘 (𝑡) − 𝑛
𝑙
𝑘 (𝑡)

]
− 𝜇𝑘

𝐸
>

𝑎

𝐸
− 𝜇𝑘

𝐸

���𝑣𝑘 = 1
)

Since 𝑝𝑙
𝑘
(𝑡) are independent given 𝑣𝑘, we can use Hoeffding inequality with the number of variables equal to

𝐸, each being confined to [0, 1]. Thus if 𝑎 > 𝜇𝑘:

𝑃(𝐸𝑘 = 0) ≤ 2 exp
{
−

2𝐸2 ( 𝑎
𝐸
− 𝜇𝑘

𝐸
)2

𝐸

}
= 2 exp

{
− 2(𝑎 − 𝜇𝑘)2

𝐸

}

= 2 exp
{
−

2
(
𝑎 − 𝛿 𝐸

√
𝑆𝜆min

(𝐻−ℎ)𝑅max

)2

𝐸

}
(7)

Same as in Equation 3, we can bound the KL-divergence as follows:

KL[𝑝(𝑝𝑙𝑘 |𝑣), 𝑝(𝑝
𝑙
𝑘 |𝑣
∗)] ≤ 17

8
(𝑐𝑘

𝑘
)2𝛿2

(𝐻 − ℎ)2𝑅2
max

=
17
8

𝜆min𝛿
2

(𝐻 − ℎ)2𝑅2
max

We now use Lemma A.2 with 𝑑 = 𝐶 and identifying 𝑅𝑙
𝑘
= 𝑝𝑙

𝑘
to obtain:

𝐼 (𝑌,𝑉) ≤ 17𝑚𝑆𝐸

16
𝐶𝜆min

(𝐻 − ℎ)2𝑅2
max

𝛿2 (8)

16
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Combining inequalities 6, 7 and 8 we get:

𝐼 (𝑌,𝑉) ≤ 17𝛿2𝑚𝜆min

8(𝐻 − ℎ)2𝑅2
max

min
{17

8 𝑎2𝐵,
𝑆𝐸𝐶

2

}
+

+𝐶𝑚ℎ

(
2 exp

{
−

2
(
𝑎 − 𝛿 𝐸

√
𝑆𝜆min

2(𝐻−ℎ)𝑅max

)2

𝐸

})
+ 2𝐶𝑚 exp

{
−

2
(
𝑎 − 𝛿 𝐸

√
𝑆𝜆min

2(𝐻−ℎ)𝑅max

)2

𝐸

}
We can now set:

𝛿2
𝐴 ≤

1
100

8𝐶 (𝐻 − ℎ)2𝑅2
max

17𝑚𝜆min𝑆𝐸 min{ 17
4

𝐵𝑎2

𝐸
, 𝐶2 }

=
1

100
8𝐶 (𝐻 − ℎ)2𝑅2

max

17𝑚𝜆min𝑆𝐸 min{ 17
4

𝐵𝑎2

𝐶𝐸
, 1

2 }

𝛿2
𝐵 ≤

8𝑅2
max (𝐻 − ℎ)2

17𝐸𝑆𝜆min log𝑚

𝛿 = min{𝛿𝐴, 𝛿𝐵}

𝑎 = 100
√︁
𝐸 log 100𝑚

We see that under such choice we have 𝑣𝑘 𝛿
√
𝑆𝜆min

𝑅max (𝐻−ℎ) ≤
1
4 and 𝑎 > 𝜇𝑘. We now have that:

17𝛿2
𝐴
𝑚𝜆min

8(𝐻 − ℎ)2𝑅2
max

min
{17

8 𝑎2𝐵,
𝑆𝐸𝐶

2

}
≤ 0.01𝐶

Since 𝑎 > 𝜇𝑘 we have that:

(𝑎 − 𝛿𝐵
𝐸
√
𝑆𝜆min

2(𝐻 − ℎ)𝑅max
)2 ≥ (100

√︁
𝐸 log 100𝑚 −

√
𝐸

log𝑚 )
2

= 100𝐸 (1 − 1
log𝑚 )

2 log 100𝑚 ≥ 𝐸 log 100𝑚

We can use this to bound the third term as follows:

2𝑚𝐶 exp
{
−

2
(
𝑎 − 𝛿𝐵

√
𝑆𝜆min

2(𝐻−ℎ)𝑅max

)2

𝐸

}
≤ 2𝑚𝐶 exp{−2𝐸 log 100𝑚

𝐸
} = 2𝑚𝐶 exp{−2 log 100𝑚} ≤ 0.0002𝐶

𝑚

For the second term we proceed similarly by observing that for binary entropy function we have ℎ(𝑞) ≤ 6/5√𝑞
for 𝑞 > 0, which gives:

𝑚𝐶ℎ

(
2 exp

{
−

2
(
𝑎 − 𝛿𝐵

√
𝑆𝜆min

2(𝐻−ℎ)𝑅max

)2

𝐸

})
≤ 𝑚𝐶ℎ( 0.0002

𝑚2 ) ≤ 6
5𝐶
√

0.0002 ≤ 0.02𝐶

Hence we get that:

𝐼 (𝑌,𝑉) ≤ 0.01𝐶 + 0.0002𝐶
𝑚

+ 0.02𝐶 ≤ 0.04𝐶 ≤ 0.10𝐶

We can now obtain an inequality similar to the one in Equation 5 and proceed as in the proof of Theorem
3.3 mutatis mutandis, which completes the proof.

17
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D Proof of Theorem 5.2

Theorem 5.2 In a distributed linear value function approximation problem with context dimensionality of
𝐶 > 12, state space size of 𝑆 ≤ 𝐶 and discount factor of 0 < 𝛾 < 0.99, under assumptions 3.1, 4.1 and
5.1, given 𝑚 processing centres each with gameplay history, with each centre having a communication budget
𝐵 ≥ 1, the minimax risk 𝑀 of any algorithm is lower bounded as:

𝑀 ≥ Ω

(
𝐶𝑅2

max
(1 − 𝛾)2𝜋max𝑆𝑛𝑚𝜆min

min
{

max
{𝐶 log𝑚

𝐵
, 1

}
,

𝑚

log𝑚

})
Proof D.1 We consider the following MDP: from each state 𝑖, regardless of the agent’s action it either
states in the same state with probability 1 − 𝑝 and receives a reward 𝑟 𝑗 with a mean of 𝑟 𝑗 or moves to any
other states chosen with a probability of 𝑝

𝑆−1 and receives a reward 𝑟0. We see that because of the consistency
equation for value functions we have:

𝑣(𝑖) = (1 − 𝑝)𝑟𝑖 + 𝑝𝑟0 + 𝛾
∑︁

𝑠′∈𝑆{𝑖}
𝑣(𝑠′) 𝑝

𝑆 − 1 + 𝛾𝑣(𝑖) (1 − 𝑝)

Similarily as in previous proofs, we set the 𝑘-th element of context vector for the 𝑖th state as 𝑐𝑖,𝑘 =
√
𝜆min𝑆𝟙𝑘=𝑖

so that Assumption 3.2 is satisfied. We also set the 𝑘th element of parameter vector to be 𝜃𝑘 = 𝛿𝑣𝑘, where
𝑣𝑘 is sampled uniformly from {−1, 1}. We now set 𝑟0 = −𝛾∑

𝑠′∈𝑆{𝑖}
𝑣 (𝑠′ )
𝑆−1 to get that:

𝑣(𝑖) = (1 − 𝑝)𝑟𝑖 + 𝛾𝑣(𝑖) (1 − 𝑝)

𝑟𝑖 =
𝑣(𝑖) (1 − 𝛾 + 𝑝𝛾)

1 − 𝑝

For states 𝑖 > 𝐶 we can just deterministicaly set 𝑟𝑖 = 0, for other states we get that:

𝑟𝑖 =

√
𝜆min𝑆(1 − 𝛾 + 𝑝𝛾)

1 − 𝑝

We now set 𝑟𝑖 = 1
99 (2𝑝𝑖 − 1)𝑅max where 𝑝𝑖 ∼ Bernoulli( 12 +

99
√
𝜆min𝑆𝑣𝑘 𝛿
2𝑅max

1−𝛾+𝑝𝛾
1−𝑝 ). We see that under this

construction expected return from each state is c𝑇θ and |𝑟𝑖 | ≤ 𝑅max. Since under this construction the
maximum value of the value function for any state 𝑠 is 𝑣(𝑠) ≤ 0.99𝑅max

1−𝛾 , we also have that |𝑟0 | ≤ 𝛾
0.99𝑅max

1−𝛾 ≤
𝑅max. We thus have a similar situation as in the proof of Theorem 4.3, where the data received can be reduced
to outcomes of Bernoulli trials. Same as in that proof, we can show that the likelihood ratio given 𝑣𝑘 = −𝑣′

𝑘

is bounded by exp
{

17
√
𝑆𝜆min 𝛿𝑣𝑘
8𝑅max

1−𝛾+𝑝𝛾
1−𝑝

��� ∑𝑁𝑘

𝑙=1 𝑝𝑙
𝑘
− 𝑛𝑙

𝑘

���}, where 𝑁𝑘 is the number of visits to state 𝑘 in gameplay

history. We notice that the mean of
∑𝑁𝑘

𝑙=1 𝑝𝑙
𝑘
− 𝑛𝑙

𝑘
is 𝜇𝑘 =

99𝛿𝜋 (𝑘 )𝑛𝑣𝑘
√
𝑆𝜆min

𝑅max

1−𝛾+𝑝𝛾
1−𝑝 and we can derive a similar

Hoeffding bound as in Equation 7 with 𝑛 variables confined to [0, 1], where if 𝑁𝑘 < 𝑛 for the last 𝑁𝑘 − 𝑛

variables we set 𝑝𝑙
𝑘
= 𝑛𝑙

𝑘
= 0. This gives us the following inequality:

𝑃(𝐸𝑘 = 0) ≤ 2 exp
{
−

2
(
𝑎 − 𝛿 99𝑛𝜋 (𝑘 )

√
𝑆𝜆min

𝑅max

1−𝛾+𝑝𝛾
1−𝑝

)2

𝑛

}
We can also develop a bound on KL divergence. We denote by 𝑃𝑘 all 𝑝𝑙

𝑘
for 𝑙 = 1, . . . , 𝑁𝑘 and note that

through convexity of KL divergence we get:

KL[𝑝(𝑃𝑘 |𝑣), 𝑝(𝑃𝑘 |𝑣∗)] ≤
𝑛∑︁

𝑁𝑘=1
KL[𝑝(𝑃𝑘 |𝑣, 𝑁𝑘), 𝑝(𝑃𝑘 |𝑣∗, 𝑁𝑘)]𝑝(𝑁𝑘)

Since distribution of 𝑃𝑘 is Binomial(𝑛,𝜋(𝑘)) we get:

KL[𝑝(𝑃𝑘 |𝑣), 𝑝(𝑃𝑘 |𝑣∗)] ≤
𝑛∑︁

𝑁𝑘=1
𝑝(𝑁𝑘) log

( 1
2 + 𝑞
1
2 − 𝑞

)
𝑁𝑘𝑞

18
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Where we used 𝑞 =
99
√
𝜆min𝑆𝑣𝑘 𝛿
2𝑅max

1−𝛾+𝑝𝛾
1−𝑝 . Same as before we use the fact that for 𝑥 < 1

4 we have that 1+𝑥
1−𝑥 ≤

exp{ 17
8 𝑥}:

KL[𝑝(𝑃𝑘 |𝑣), 𝑝(𝑃𝑘 |𝑣∗)] ≤
17
8 𝑞2

𝑛∑︁
𝑁𝑘=1

𝑝(𝑁𝑘)𝑁𝑘 =
17
8 𝑞2𝑛𝜋(𝑘) ≤ 17

8 𝑞2𝑛𝜋max

From Lemma A.2 with 𝑑 = 𝐶 and 𝑅𝑘 = 𝑃𝑘 we get:

𝐼 (𝑌,𝑉) ≤ 𝐶𝑚

2

(17
8

99
√
𝜆min𝑆𝑣𝑘𝛿

2𝑅max

1 − 𝛾 + 𝑝𝛾
1 − 𝑝

)2
𝑛𝜋max

Proceeding as in the proof of Theorem 4.3 mutandits mutatis we get that:

𝐼 (𝑌,𝑉) ≤ 17𝛿2𝑚𝑆𝜆min

8𝑅2
max

(1 − 𝛾 + 𝑝𝛾
1 − 𝑝

)2
min

{17
8 𝑎2𝐵,

𝐶𝑛𝜋max
2

}
+

+𝐶𝑚ℎ

(
2 exp

{
−

2
(
𝑎 − 𝛿 𝑛𝜋 (𝑘 )

√
𝑆𝜆min

𝑅max

1−𝛾+𝑝𝛾
1−𝑝

)2

𝑛

})
+ 𝐶𝑚2 exp

{
−

2
(
𝑎 − 𝛿 𝑛𝜋 (𝑘 )

√
𝑆𝜆min

𝑅max

1−𝛾+𝑝𝛾
1−𝑝

)2

𝑛

}
Hence we can set:

𝑎 ∝
√︁
𝑛𝜋max log𝑚

𝛿2
𝑎 ∝

𝐶𝑅2
max

𝑚𝜆min𝑆 min{𝐵𝑎2, 𝐶𝑛𝜋max}

(1 − 𝛾 + 𝑝𝛾
1 − 𝑝

)2

𝛿2
𝑏 ∝

𝑅2
max

𝑛𝑆𝜋max𝜆min log𝑚

(1 − 𝛾 + 𝑝𝛾
1 − 𝑝

)2

𝛿 = min{𝛿𝑎, 𝛿𝑏}
Proceeding similarly as in the proof of Theorem 4.3 we get:

𝑀 ≥ Ω

(
𝐶𝑅2

max (1 − 𝑝)2
(1 − 𝛾 + 𝑝𝛾)2𝑆𝜋max𝑛𝑚𝜆min

min
{

max
{𝐶 log𝑚

𝐵
, 1

}
,

𝑚

log𝑚

})
We observe that the bound gets tighter as 𝑝 → 0. We can now index distributions for 𝑟𝑖 with 𝑝 and observe
that since the bound is defined as a supremum over the set of considered distributions, we get the statement
of the Theorem.

E Proof of Theorem 3.5

Theorem 3.5 Let us define θ = (θ1, . . . , θ𝐴) to be the concatenated parameter vector for all actions. For
any value of θ, Algorithm 1 using transmission with precision 𝑃 achieves a worst-case risk upper bounded as
follows:

𝑊 < O
(
𝐴𝐶 max

{ 𝑅2
max

𝑚𝑛𝜆min
, 𝑃

})
Proof E.1 We start by assuming the transmission is lossless (i.e. the number of bits is infinite) and then
study how the MSE changes when transmission introduces quantisation error. Using the bias variance de-
composition, we get:

MSE(θ̂) =
∑︁
𝑎∈𝐴

𝐶∑︁
𝑘=1

bias(𝜃𝑎,𝑘)2 +
∑︁
𝑎∈𝐴

𝐶∑︁
𝑘=1

Var(𝜃𝑎,𝑘)

It is a well-known fact that for least-squares estimate, the bias is zero, hence bias(𝜃𝑖
𝑎,𝑘
) = 0 and their average

𝜃𝑎,𝑘 is also unbiased. Because of the properties of the variance of average values we get:

MSE(θ̂) = 1
𝑚

∑︁
𝑎∈𝐴

𝐶∑︁
𝑘=1

Var(𝜃1
𝑎,𝑘)
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Using eigendecomposition and singular value decomposition we get:

𝑋𝑇
𝑎 𝑋𝑎 = 𝑄𝑇Λ𝑄

𝑋𝑇
𝑎 = 𝑄𝑇Σ𝑉𝑇

Where we choose such 𝑄 and 𝑉 such that all left and right singular vectors have a norm of 1. Since 𝑄 is
orthogonal, it follows that:

θ̂𝑖
𝑎 = (𝑄𝑇Λ𝑄)−1𝑄𝑇Σ𝑉𝑇 = 𝑄𝑇Λ−1𝑄𝑄𝑇Σ𝑉𝑇r𝑎 = 𝑄𝑇Λ−1Σ𝑉𝑇r𝑎

Writing this equation in terms of matrix elements gives:

𝜃𝑖𝑎,𝑘 =

𝐶∑︁
𝑗=1

𝑄 𝑗 ,𝑘

√︁
𝜆 𝑗

𝜆 𝑗

𝑛∑︁
𝑙=1

𝑟 𝑙𝑎𝑉 𝑗 ,𝑙 =

𝐶∑︁
𝑗=1

𝑛∑︁
𝑙=1

𝑄 𝑗 ,𝑘

1√︁
𝜆 𝑗

𝑟 𝑙𝑎𝑉 𝑗 ,𝑙 ≤
𝐶∑︁
𝑗=1

𝑛∑︁
𝑙=1

𝑄 𝑗 ,𝑘

1
√
𝜆min𝑛

𝑟 𝑙𝑎𝑉 𝑗 ,𝑙

Where 𝜆𝑖 are the eigenvalues. The last inequality follows from Assumption 3.2. We can now easily bound
the variance:

Var(𝜃𝑖𝑎,𝑘) ≤
𝐶∑︁
𝑗=1

𝑛∑︁
𝑙=1

𝑄2
𝑗 ,𝑘
𝑉2
𝑗 ,𝑙

𝜆min𝑛
Var(𝑟 𝑙𝑎)

We now observe that due to Popoviciu inequality and Assumption 3.1 we get: Var(𝑟 𝑙𝑎) ≤ 𝑅2
max. This gives

us:

Var(𝜃𝑖𝑎,𝑘) ≤
𝑅2

max
𝜆min𝑛

𝐶∑︁
𝑗=1

𝑄2
𝑗 ,𝑘

𝑛∑︁
𝑙=1

𝑉2
𝑗 ,𝑙 =

𝑅2
max

𝜆min𝑛

Where the last equality is due to singular vectors having norm of 1. Substituting this back into the equation
for MSE, we get:

𝑀𝑆𝐸 (θ̂) ≤ 𝐴𝐶𝑅2
max

𝑚𝑛𝜆min
Using the fact that each component is quantised up to precision 𝑃, the max error introduced by quantisation
is 𝐴𝐶𝑃, hence:

𝑀𝑆𝐸 (θ̂) ≤ O
(
𝐴𝐶 max

{ 𝑅2
max

𝑚𝑛𝜆min
, 𝑃

})
F Proof of Theorem 5.4

Theorem 5.4 The worst-case risk of Algorithm 3 run with a learning rate of 𝛼𝑡 =
𝛽

Λ+ 𝑡
𝜔

with 𝛽 = 2
(1−𝛾)𝜔

and Λ = 16
(1−𝛾)2𝜔 is upper bounded as follows:

𝑊 ≤ O
(

max
{

max{ 𝑅2
max

𝑆𝜋min𝜆min𝑚
, ∥θ − 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

0∥22}
1 + (1 − 𝛾)2𝑛 , 𝐶𝑃

})
Proof F.1 We define θ̄𝑡 := 1

𝑚

∑𝑚
𝑖=1 θ̂𝑖

𝑡 to be the average vector from all machines at timestep 𝑡. Note that
this vector is never actually created, except for the last step when we average all final results. We define 𝜔

to be the smallest eigenvalue of the covariance matrix weighted by the stationary distribution, i.e. smallest
eigenvalue of

∑
𝑠∈𝑆 𝜋(𝑠)c𝑠c

𝑇
𝑠 . By convexity of eigenvalues we have 𝑆𝜋min𝜆min ≤ 𝜔 ≤ 𝜆min ≤ 1. We can see

that the averaged parameter vector must satisfy the following recursive relation:

θ̄𝑡+1 =
1
𝑚

𝑚∑︁
𝑖=1

θ̂𝑖
𝑡+1 =

1
𝑚

𝑚∑︁
𝑖=1
[θ̂𝑖

𝑡 + 𝛼𝑡g
𝑖
𝑡 ] = θ̄𝑡 + 𝛼𝑡

1
𝑚

𝑚∑︁
𝑖=1

g𝑖
𝑡

Hence we can write:

𝔼[∥θ − θ̄𝑡+1∥22] = 𝔼[∥θ − θ̄𝑡 ∥22] −
2𝛼𝑡

𝑚
𝔼

[ 𝑚∑︁
𝑖=1
(θ − θ̄𝑖

𝑡 )𝑇g𝑖
𝑡

]
+ 𝛼2

𝑡 𝔼[
1
𝑚2 ∥

𝑚∑︁
𝑖=1

g𝑖
𝑡 ∥22]
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We now focus on the second term:

2𝛼𝑡

𝑚

𝑚∑︁
𝑖=1

𝔼

[
(θ − θ̄𝑖

𝑡 )𝑇g𝑖
𝑡

]
=

2𝛼𝑡

𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝔼

[
(θ − θ̂

𝑗
𝑡 )𝑇𝔼

[
g𝑖
𝑡

���θ̂𝑖
𝑡

] ]
using Lemma H.1 we have that

2𝛼𝑡

𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝔼

[
(θ − θ̂

𝑗
𝑡 )𝑇𝔼

[
g𝑖
𝑡

���θ̂𝑖
𝑡

] ]
≥ 2𝛼𝑡𝜔(1 − 𝛾)

𝑚2 𝔼

[ 𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
∥θ − θ𝑖

𝑡 ∥2∥θ − θ
𝑗
𝑡 ∥2

]
We now decompose the third term, while using the notation θ̂𝑡 = (θ̂1

𝑡 , . . . , θ̂
𝑚
𝑡 ):

𝔼[∥ 1
𝑚

𝑚∑︁
𝑖=1

g𝑖
𝑡 ∥22] = 𝔼[𝔼[∥ 1

𝑚

𝑚∑︁
𝑖=1

g𝑖
𝑡 ∥22 |θ̂𝑡 , c

𝑖
𝑡 , c

𝑖
𝑡+]]

= 𝔼[ 1
𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝔼[g𝑖
𝑡 |θ̂𝑡 , c

𝑖
𝑡 , c

𝑖
𝑡+]𝑇𝔼[g

𝑗
𝑡 |θ̂𝑡 , c

𝑖
𝑡 , c

𝑖
𝑡+] + Tr( 1

𝑚2

𝑚∑︁
𝑖=1

Var(𝑔𝑖𝑡 |θ̂𝑡 , c
𝑖
𝑡 , c

𝑖
𝑡+))]

The expected value can be upper-bounded as follows:

𝔼[g𝑖
𝑡 ] = 𝔼[(𝑟 𝑖𝑡 + 𝛾(c𝑖𝑡+)𝑇θ𝑖

𝑡 − (c𝑖𝑡 )𝑇θ𝑖
𝑡 )c𝑖𝑡 ] =

= 𝔼[(𝑟 𝑖𝑡 + 𝛾(c𝑖𝑡+)𝑇θ − c𝑖𝑡θ + 𝛾(c𝑖𝑡+)𝑇 (θ𝑖
𝑡 − θ) − (c𝑖𝑡 )𝑇 (θ𝑖

𝑡 − θ))c𝑖𝑡 ] =

= (𝔼[𝑟 𝑖𝑡 ] + 𝛾θ𝑇c𝑖𝑡+ − θ𝑇c𝑖𝑡 )c𝑖𝑡 + (𝛾c𝑖𝑡+ − c𝑖𝑡 )𝑇 (θ𝑖
𝑡 − θ)c𝑖𝑡

By the definition of value function we have that 𝔼[𝑟 𝑖𝑡 ] = θ𝑇c𝑖𝑡 −𝛾θ𝑇c𝑖𝑡+. Hence the expression above simplifies
to (𝛾c𝑖𝑡+ − c𝑖𝑡 )𝑇 (θ𝑖

𝑡 − θ)c𝑖𝑡 . We thus have:

𝔼[𝑔𝑖𝑡 ]𝑇𝔼[𝑔
𝑗
𝑡 ] = (𝛾c𝑖𝑡+ − c𝑖𝑡 )𝑇 (θ𝑖

𝑡 − θ) (c𝑖𝑡 )𝑇c
𝑗
𝑡 (𝛾c

𝑗
𝑡+ − c

𝑗
𝑡 )𝑇 (θ

𝑗
𝑡 − θ) ≤

≤ ∥𝛾c𝑖𝑡+ − c𝑖𝑡 ∥2∥θ𝑖
𝑡 − θ∥2∥c𝑖𝑡 ∥2∥c

𝑗
𝑡 ∥2∥𝛾c

𝑗
𝑡+ − c

𝑗
𝑡 ∥2∥θ

𝑗
𝑡 − θ∥ ≤ ∥θ𝑖

𝑡 − θ∥2∥θ 𝑗
𝑡 − θ∥2

Finally, we also bound the variance:

Var(𝑔𝑖𝑡 |θ̂𝑡 , c
𝑖
𝑡 , c

𝑖
𝑡+) = Var((𝑟 𝑖𝑡 + 𝛾(θ𝑖

𝑡 )𝑇c𝑖𝑡+ − (θ𝑖
𝑡 )𝑇c𝑖𝑡 )c𝑖𝑡 |θ̂𝑡 , c

𝑖
𝑡 , c

𝑖
𝑡+) = Var(𝑟 𝑖𝑡c𝑖𝑡 |θ̂𝑡 , c

𝑖
𝑡 , c

𝑖
𝑡+) ≤

≤ c𝑖𝑡Var(𝑟 𝑖𝑡 |θ̂𝑡 , c
𝑖
𝑡 , c

𝑖
𝑡+) (c𝑖𝑡 )𝑇 ≤ c𝑖𝑡 (c𝑖𝑡 )𝑇𝑅2

max

Hence we have:

Tr( 1
𝑚2

𝑚∑︁
𝑖=1

Var(𝑔𝑖𝑡 |θ̂𝑡 , c
𝑖
𝑡 , c

𝑖
𝑡+)) ≤

𝑅2
max
𝑚

Hence we obtain a recursive inequality:

𝔼[∥θ − θ̄𝑡+1∥22] ≤ 𝔼[∥θ − θ̄𝑡 ∥22]−

−
(
2𝛼𝑡𝜔(1 − 𝛾) − 𝛼2

𝑡

𝑚2

)
𝔼

[ 𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
∥θ − θ𝑖

𝑡 ∥2∥θ − θ
𝑗
𝑡 ∥2

]
+
𝛼2
𝑡

𝑚
𝑅2

max

We can now use a Lemma H.3 to get:

𝔼[∥θ − θ̄𝑡+1∥22] ≤ 𝔼[∥θ − θ̄𝑡 ∥22] (1 − 2𝛼𝑡𝜔(1 − 𝛾) + 𝛼2
𝑡 ) +

𝛼2
𝑡

𝑚
𝑅2

max

We now set 𝛼𝑡 =
𝛽

Λ+ 𝑡
𝜔

with 𝛽 = 2
(1−𝛾)𝜔 and Λ = 16

(1−𝛾)2𝜔 . We observe that since 𝛼𝑡 ≤ (1 − 𝛾)𝜔 we have that

−2𝛼𝑡𝜔(1 − 𝛾) + 𝛼2
𝑡 𝑅

2
max = 𝛼𝑡𝜔(1 − 𝛾) (−2 + 𝛼𝑡𝑅

2
max

𝜔 (1−𝛾) ) ≤ 𝛼𝑡𝜔(1 − 𝛾) (−2 + 1) = −𝛼𝑡𝜔(1 − 𝛾). Let us now define
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𝜈 = max{𝛽2 𝑅2
max
𝑚

,Λ∥θ − 1
𝑚

∑𝑚
𝑖=1 θ̂𝑖

0∥22} and observe that we have 𝔼[∥θ − θ̄0∥22] ≤
𝜈
Λ

. Proceeding by induction,
let us suppose that 𝔼[∥θ − θ̄𝑡 ∥22] ≤

𝜈

�̂�
, where �̂� = 𝜔𝑡 + Λ. We then have:

𝔼[∥θ − θ̄𝑡+1∥22] ≤ 𝔼[∥θ − θ̄𝑡 ∥22] (1 − 𝛼𝑡𝜔(1 − 𝛾)) +
𝛼2
𝑡 𝑅

2
max
𝑚

≤ 𝜈

�̂�
(1 − 𝛽𝜔(1 − 𝛾)

�̂�
) + 𝑅2

max𝛽
2

�̂�2𝑚
=
�̂� − 1
�̂�2

𝜈 +
𝑅2

max𝛽
2

𝑚
− ((1 − 𝛾)𝜔𝛽 − 1)𝜈

�̂�2

=
�̂� − 1
�̂�2

𝜈 +
𝑅2

max𝛽
2

𝑚
− 𝜈

�̂�2

We now observe that by definition of 𝜈 we have 𝑅2
max𝛽

2

𝑚
≤ 𝜈 and that �̂�2 ≥ (�̂� − 1) (�̂� + 1). Thus we have:

𝔼[∥θ − θ̄𝑡+1∥22] ≤
𝜈

�̂� + 1
≤ 𝜈

�̂� + 1
𝜔

By induction this proves that:

𝔼[∥θ − θ̄∥22] ≤ O
(

max
{

max{ 𝑅
2
max
𝜔𝑚

, ∥θ − 1
𝑚

∑𝑚
𝑖=1 θ̂𝑖

0∥22}
1 + (1 − 𝛾)2𝑛 , 𝐶𝑃

})
We now use the fact that 𝜔 ≤ 𝑆𝜋min𝜆min to get the statement of the Theorem.

G Analysis of worst-case TD initial bias

Given the average initial parameter value θ̂0, assume we are faced with a problem where the features of states
are chosen so that θ̂0 is an eigenvector of the 𝑋𝑇𝑋 matrix with eigenvalue 𝜆min. We see that if we form
vector u consisting of value function for each state we get ∥𝑢∥22 ≤ O(

𝑆𝑅2
max

(1−𝛾)2 ). We choose the true parameter

vector θ to be parallel to θ̂0, hence ∥𝑋𝑇θ∥22 ≤ 𝜆min∥θ∥22 ≤ O(
𝑆𝑅2

max
(1−𝛾)2 ). We thus have ∥θ∥22 ≤ O(

𝑆𝑅2
max

(1−𝛾)2𝜆min
).

We can now set θ = −θ̂0 and observe that we have ∥θ − θ̂0∥22 = 4∥θ∥22 ≤ O(
𝑆𝑅2

max
(1−𝛾)2 ).

H Lemmas for TD learning

Within this appendix, we propose Lemma H.1, which is a more general version of Lemma 1 and 3 from
Bhandari et al. (2018). We also propose Lemma H.3, which is a simple consequence of the triangle inequality.
Both of these Lemmas consistute very useful tools for our analysis of distributed TD learning.

Lemma H.1 For TD value function approximation problem in a MDP with discount factor 𝛾, with 𝜔 being
the smallest eigenvalue of the feature matrix weighted by the stationary distribution, for 𝑔𝑖𝑡 = (𝑟𝑡 + 𝛾c𝑇𝑡+θ̂

𝑖 −
c𝑇𝑡 θ̂𝑖)c𝑡 being the gradient step, we have that:

(θ − θ𝑖
𝑡 )𝑇𝔼[g

𝑗
𝑡 |θ̂

𝑗
𝑡 ] ≥ 𝜔(1 − 𝛾)∥θ − θ𝑖

𝑡 ∥2∥θ − θ
𝑗
𝑡 ∥2

Proof H.2 Let us define 𝜉𝑖 = (θ − θ̂𝑖
𝑡 )c𝑖𝑡 , 𝜉′𝑖 = (θ − θ̂𝑖

𝑡 )c𝑖𝑡+ and 𝜉𝑖, 𝑗 = (θ − θ̂𝑖
𝑡 )c

𝑗
𝑡 . Observing that the expected

gradient is zero at the optimal value of θ we get:

𝔼[g 𝑗
𝑡 |θ̂

𝑗
𝑡 ] = 𝔼[g 𝑗

𝑡 |θ̂
𝑗
𝑡 ] − 𝔼[(𝑟

𝑗
𝑡 + 𝛾θ𝑇c

𝑗
𝑡+ − θ𝑇c

𝑗
𝑡 )c𝑡 |θ̂

𝑗
𝑡 ] = 𝔼[c 𝑗

𝑡 (𝛾c
𝑗
𝑡+ − c

𝑗
𝑡 ) (θ̂

𝑗
𝑡 − θ) |θ̂ 𝑗

𝑡 ] =

= 𝔼[c 𝑗
𝑡 (c

𝑗
𝑡 − 𝛾c

𝑗
𝑡+) |θ̂

𝑗
𝑡 ]

Hence we get:

(θ − θ̂𝑖
𝑡 )𝑇𝔼[g

𝑗
𝑡 |θ̂

𝑗
𝑡 ] = 𝔼[𝜉𝑖, 𝑗 (𝜉 𝑗 − 𝛾𝜉′𝑗 ) |θ̂

𝑗
𝑡 , θ̂

𝑖
𝑡 ] = 𝔼[𝜉𝑖, 𝑗𝜉 𝑗 |θ̂ 𝑗

𝑡 , θ̂
𝑖
𝑡 ] − 𝛾𝔼[𝜉𝑖, 𝑗𝜉′𝑗 |θ̂

𝑗
𝑡 , θ̂

𝑖
𝑡 ]
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Since c
𝑗
𝑡 and c𝑖𝑡 are independent we have that given estimate of parameter vectors 𝜉𝑖, 𝑗 and 𝜉 𝑗 are also

independent. Moreover by Cauchy-Schwarz we have that

𝔼[𝜉𝑖, 𝑗𝜉′𝑗 |θ̂
𝑗
𝑡 , θ̂

𝑖
𝑡 ] ≤

√︃
𝔼[𝜉2

𝑖, 𝑗
|θ̂ 𝑗

𝑡 , θ̂
𝑖
𝑡 ]𝔼[(𝜉′𝑗 )2 |θ̂

𝑗
𝑡 , θ̂

𝑖
𝑡 ]

. We now observe that:
𝔼[𝜉𝑖, 𝑗𝜉 𝑗 |θ̂ 𝑗

𝑡 , θ̂
𝑖
𝑡 ] =

∑︁
𝑠∈𝑆

𝜋(𝑠) (θ − θ̂𝑖
𝑡 )𝑇c𝑖𝑡 (θ − θ̂

𝑗
𝑡 )𝑇c𝑖𝑡

= (θ − θ̂𝑖
𝑡 )𝑇Σ(θ − θ̂

𝑗
𝑡 ) ≤ (θ − θ̂𝑖

𝑡 )𝑇 (θ − θ̂
𝑗
𝑡 )𝜔 ≤ 𝜔∥θ − θ̂𝑖

𝑡 ∥2∥θ − θ̂
𝑗
𝑡 ∥2

Moreover by similar argument we can show that: 𝔼[𝜉2
𝑖, 𝑗
|θ̂ 𝑗

𝑡 , θ̂
𝑖
𝑡 ] ≤ 𝜔∥θ − θ̂𝑖

𝑡 ∥22 and 𝔼[𝜉2
𝑗
|θ̂ 𝑗

𝑡 , θ̂
𝑖
𝑡 ] ≤ 𝜔∥θ − θ̂

𝑗
𝑡 ∥22

which complete the proof.

Lemma H.3 ∥θ − θ̄𝑡 ∥22 ≤
1
𝑚2

∑𝑚
𝑖=1∥θ − θ̂𝑖

𝑡 ∥2
∑𝑚

𝑗=1∥θ − θ̂
𝑗
𝑡 ∥2

Proof H.4

∥θ − θ̄𝑡 ∥22 = ∥θ − 1
𝑚

𝑚∑︁
𝑖=1

θ̂𝑖
𝑡 ∥22 =

(
∥ 1
𝑚

𝑚∑︁
𝑖=1
(θ − θ̂𝑖

𝑡 )∥2
)2

=
1
𝑚2

(
∥

𝑚∑︁
𝑖=1
(θ − θ̂𝑖

𝑡 )∥2
)2

By triangle inequality we have:

∥θ − θ̄𝑡 ∥22 ≤
1
𝑚2

( 𝑚∑︁
𝑖=1
∥(θ − θ̂𝑖

𝑡 )∥2
)2

=
1
𝑚2

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1
∥(θ − θ̂𝑖

𝑡 )∥2∥(θ − θ̂
𝑗
𝑡 )∥2
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