
Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced
with Low Cost

Marina Knittel 1 Max Springer 1 John Dickerson 1 Mohammad Hajiaghayi 1

Abstract

Clustering is a fundamental building block of
modern statistical analysis pipelines. Fair clus-
tering has seen much attention from the machine
learning community in recent years. We are some
of the first to study fairness in the context of hi-
erarchical clustering, after the results of Ahma-
dian et al. from NeurIPS in 2020. We evaluate
our results using Dasgupta’s cost function, per-
haps one of the most prevalent theoretical metrics
for hierarchical clustering evaluation. Our work
vastly improves the previous O(n5/6poly log(n))
fair approximation for cost to a near polylogarith-
mic O(nδpoly log(n)) fair approximation for any
constant δ ∈ (0, 1). This result establishes a cost-
fairness tradeoff and extends to broader fairness
constraints than the previous work. We also show
how to alter existing hierarchical clusterings to
guarantee fairness and cluster balance across any
level in the hierarchy.

1. Introduction
Fair machine learning, and namely clustering, has seen a re-
cent surge as researchers recognize its practical importance.
In spite of the clear and serious impact the lack of fair-
ness in existing intelligent systems has on society (Angwin
et al., 2016; Rieke & Bogen, 2018; Ledford, 2019; Sweeney,
2013), and despite significant progress towards fair flat (not
hierarchical) clustering (Ahmadian et al., 2020b; Backurs
et al., 2019; Bera et al., 2019a;b; Brubach et al., 2020;
Chakrabarti et al., 2021; Chen et al., 2019; Chierichetti
et al., 2017; Esmaeili et al., 2021; 2020; Kleindessner et al.,
2019a; Rösner & Schmidt, 2018), fairness in hierarchical
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Figure 1: On the left is a 3-clustering, in the center is a
hierarchical clustering, and on the right is its dendrogram.

clustering has only received some recent attention (Ahma-
dian et al., 2020a; Chhabra & Mohapatra, 2020). Thus, we
are some of the first to study this problem.

Hierarchical clustering (Figure 1) is the well-known exten-
sion to clustering, where we create a hierarchy of subclusters
contained within superclusters. This structure forms a tree
(a dendrogram), where leaves represent the input data. An
internal node v corresponds to the cluster of all the leaves
of the subtree rooted at v. The root is the cluster of all data.

Hierarchical clusterings more completely illustrate data re-
lationships than flat clusterings. For instance, they are com-
monly used in phylogenetics to depict the entire evolutionary
history of species, whereas a clustering would only depict
species similarities. It also has a myriad of other uses in ma-
chine learning applications such as search (Cai et al., 2004;
Ferragina & Gulli, 2005; Kou & Lou, 2012), social network
analysis (Leskovec et al., 2014; Mann et al., 2008), and
image recognition (Arifin & Asano, 2006; Lin et al., 2018;
Pan et al., 2016). On top of this, hierarchical clusterings
can also be used to solve flat clustering when the number
of clusters is not given. To do this, we extract clusterings
at different resolutions in the hierarchy that all “agree” (if
two points are together in a cluster, then they will also be
together in any larger cluster) and select the one that best
fits the application.

Hierarchical clusterings can be evaluated using a number of
metrics. Perhaps most notably, Dasgupta (2016) introduced
cost (Definition 2.2), an intuitive and explainable metric
which exhibits numerous desirable properties and has be-
come quite popular and well-respected (Charikar & Chatzi-
afratis, 2017; Charikar et al., 2019; Chatziafratis et al., 2018;
Cohen-Addad et al., 2017; Roy & Pokutta, 2016). Unfortu-
nately, it is difficult to approximate, where the best existing
solutions require semi-definite programs (Dasgupta, 2016;
Charikar & Chatziafratis, 2017), and it is not efficiently
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O(1)-approximable by the Small-Set Expansion Hypothe-
sis (Charikar & Chatziafratis, 2017). The revenue (Moseley
& Wang, 2017) and value (Cohen-Addad et al., 2018) met-
rics, both derived from cost, exhibit O(1)-approximability,
but are not as explainable or appreciated.

Only two papers have explored fair hierarchical cluster-
ing (Ahmadian et al., 2020a; Chhabra & Mohapatra, 2020).
Both extend fairness constraints from fair clustering litera-
ture that trace back to Chierichetti et al. (2017)’s disparate
impact. Consider a graph G = (V,E,w), where each point
has a color, which represents a protected class (e.g., gender,
race, etc.). On two colors, red and blue, they consider a clus-
tering fair if the ratio between red and blue points in each
cluster is equal to that in the input data. This ensures that
the impact of a cluster on a protected class is proportionate
to the class size. The constraint has been further general-
ized (Ahmadian et al., 2019; Bercea et al., 2019): given a
dataset with λ colors and constraint vectors α⃗, β⃗ ∈ (0, 1)λ,
a clustering is fair if for all ℓ ∈ [λ] and every cluster C,
αℓ|C| ≤ ℓ(C) ≤ βℓ|C|, were ℓ(C) is the number of points
in C of color ℓ. Naturally, then, a hierarchical clustering
is fair if every non-singleton cluster in the hierarchy satis-
fies this constraint (with nuances, see Section 2.2), as in
Ahmadian et al. (2020a).

This work explores broad guarantees, namely cost approx-
imations, for fair hierarchical clustering. The only pre-
vious algorithm is quite complicated and only yields a
O(n5/6 log5/4 n) fair approximation for cost (where an
O(n)-approximation is trivial) (Ahmadian et al., 2020a),
and it assumes two, equally represented colors. This reflects
the inherent difficulty of finding solutions that are low-cost
as opposed to high-revenue or high-value, both of which
exhibit fair O(1)-approximations (Ahmadian et al., 2020a)).
Our algorithms improve previous work in quite a few ways:
1) we achieve a near-exponential improvement in approxi-
mation factor, 2) our algorithm works on O(1) instead of
only 2 colors, 3) our work handles different representational
proportions across colors in the initial dataset, 4) we simulta-
neously guarantee fairness and relative cluster balance, and
5) our methods, which modify a given (unfair) hierarchy,
have measurable, explainable, and limited impacts on the
structure of the input hierarchy.

1.1. Our Contributions

This work proposes new algorithms for fair and balanced
hierarchical clustering. A summary of our work can be
found in Table 1.

We introduce four simple hierarchy tree operators which
have clear, measurable impacts. We show how to compose
them together on a (potentially unbalanced and unfair) hier-
archy to yield a fair and/or balanced hierarchy with similar
structure. This process clarifies the functionality of our al-

Figure 2: Our algorithms take a potentially unfair hierarchi-
cal clustering, apply our tree operators, and yield fair and/or
balanced hierarchies.

gorithms and illustrates the modifications imposed on the
hierarchy. Each of our four proposed algorithms starts with
a given γ-approximate (unfair) hierarchical clustering algo-
rithm (i.e., Dasgupta (2016)’s O(

√
log n)-approximation)

and then builds on top of each other, imposing a new oper-
ator to achieve a more advanced result. Additionally, each
algorithm stands alone as a unique contribution.

Our first algorithm produces a 1/6-relatively balanced hier-
archy that 3

2γ-approximates cost (see Theorem 4.1).1 Here,
ϵ-relative balance means that at each split in the hierarchy,
a cluster splits in half within a proportional error of up to
1 + ϵ (see Definition 3.1). Starting at the root, the algorithm
recursively applies our tree rebalance (see Definition 3.4)
operator. This restructures the tree by moving some subtree
up to become a child of the root. It preserves much of the
hierarchy’s structure while achieving relative balance.

Our next result refines this to achieve ϵ-relative balance for
any ϵ ∈ (0, 1/6) that 9

2ϵγ-approximates cost (see Theo-
rem 4.5). This can get arbitrarily close to creating a per-
fectly balanced hierarchy. To achieve this, we simply run
our first algorithm and then apply a limited number of sub-
tree deletion and insertion operators (see Definition 3.5).
This operator selects a subtree, removes it, and reinserts
elsewhere. It again preserves much of T ’s structure.

Third, we propose an algorithm for stochastically fair hi-
erarchical clustering (see Definition 2.4). Under certain
stochastic parameterizations and arbitrarily many colors,
the algorithm achieves stochastic fairness and O(γ log n)-
approximates cost (see Theorem 4.9). This is quite impres-
sive, as the best previous fair approximation (albeit, for
deterministic colors) was poly(n) (Ahmadian et al., 2020a).
To achieve this novel result, we first find an O(1/ log n)-
relatively balanced hierarchy and then apply our level ab-
straction operator once to the bottom layers of the hierarchy.
This operator removes selected layers, setting much lower
descendants of a vertex as direct children. While this re-
moves details in the hierarchy, the remaining structure still
agrees with the original tree. This simple addition guaran-

1Repeated sparsest cuts achieves this with similar cost. Our al-
gorithms, though, can be used explainably on top of existing unfair
algorithms and may perform better as unfair research progresses.
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Qualities Achieved Approximation Fairness Colors Color ratios Explainable?
Previous Deterministic fairness O(n5/6poly log n) Perfect 2 50/50 only No
This work Deterministic fairness O(nδpoly log n) Approximate O(1) O(1) Yes

Stochastic fairness O(log3/2 n) Approximate O(1) O(1) Yes
ϵ-relative balance O(

√
log n/ϵ) N/A N/A N/A Yes

1/6-relative balance O(
√
log n) N/A N/A N/A Yes

Table 1: Our versus previous work. Note δ ∈ (0, 1/6) is parameterizable, trading approximation factor for fairness. Our
algorithms are explainable in that the alterations made to the hierarchy are clear and well-defined.

tees fairness under stochastic color assignment.

Our main result finds an approximately fair hierarchical
clustering that O(nδpoly log n)-approximates cost (see The-
orem 4.14), where δ ∈ (0, 1) is a given constant. This is a
near-exponential improvement over previous work which
only achieves a O(n5/6poly log(n)) approximation on two
equally represented colors. On top of that, our algorithm
works on many colors, with many different color ratios, and
achieves a simultaneously balanced hierarchy in an explain-
able manner. The algorithm, FairHC (Algorithm 3), builds
on top of our stochastic algorithm (parameterized slightly
differently, see Section 4.4) before applying a new operator:
tree folding. Tree folding maps isomorphic trees on top
of each other. In hierarchical clustering, this means taking
two subtrees, mapping clusters in one tree to the other, and
then merging clusters according to the mapping. Matching
up clusters with different proportions of colors helps bal-
ance out the color ratios across clusters, which gives us our
fairness result.

2. Preliminaries
Our input is a complete weighted graph G = (V,E,w)
where w : E → R+ is a similarity measure. A hierarchical
clustering can be defined as a hierarchy tree T , where its
leaves are leaves(T ) = V , and internal nodes represent the
merging of vertices into clusters and clusters into superclus-
ters.

2.1. Optimization Problem

We use Dasgupta (2016)’s cost function as an optimization
metric. For simplicity, we let nT (e) denote the size of
smallest cluster in T containing both endpoints of e. In other
words, for e = (u, v), nT (e) = |leaves(T [u ∧ v])|, where
u∧v is the lowest common ancestor of u and v in T and T [u]
for any vertex u is the subtree rooted at u. We additionally
denote nT (u) = |leaves(T [u])| for internal node u. Also
we let root(T ) be the root of T , and leftT (u) and rightT (u)
access left and right children respectively. We can evaluate
the cost contribution of an edge to a hierarchy.

Definition 2.1. The cost of e ∈ E in a graph G = (V,E,w)
in a hierarchy T is costT (e) = w(e) · nT (e).

We strive to minimize the sum of costs across all edges.

Definition 2.2 (Dasgupta (2016)). The cost of a hierarchy
T on graph G = (V,E,w) is:

cost(T ) =
∑
e∈E

costT (e)

Dasgupta (2016) showed that we can assume that all unfair
trees optimizing for cost are binary. Note that we must
consider non-binary trees when we incorporate fairness as
it may not allow binary splits at its lowest levels.

2.2. Fairness and Stochastic Fairness

We consider the fairness constraints based off those intro-
duced by Chierichetti et al. (2017) and extended by Bercea
et al. (2019). On a graph G with colored vertices, let ℓ(C)
count the number of ℓ-colored points in cluster C.

Definition 2.3. Consider a graph G = (V,E,w) with ver-
tices colored one of λ colors, and two vectors of parameters
α, β ∈ (0, 1)λ with αℓ ≤ βℓ for all ℓ ∈ [λ]. A hierarchy T
on G is fair if for any non-singleton cluster C in T and for
every ℓ ∈ [λ], αℓ|C| ≤ ℓ(C) ≤ βℓ|C|. Additionally, any
cluster with a leaf child has only leaf children.

Notice that the final constraint regarding leaf-children sim-
ply enforces that a hierarchy must have some “baseline” fair
clustering (e.g., a fairlet decomposition (Chierichetti et al.,
2017)). Consider a tree that is just a stick with individual
leaf children at each depth. While internal nodes may rep-
resent fair clusters, you cannot extract any nontrivial fair
flat clustering from this, since it must contain a singleton,
which is unfair. We view such a hierarchy This is clearly un-
desirable, and our additional constraint prevents this issue.

In the stochastic problem, points are assigned colors at
random. We must ensure that with high probability (i.e., at
least 1− 1/polylog(n)) all clusters are fair.

Definition 2.4. Consider the same context as Definition 2.3
with an additional function pℓ : v → (0, 1) denoting the
probability v has color ℓ such that

∑λ
ℓ=1 pℓ(v) = 1 and each

vertex has exactly one color. An algorithm is stochastically
fair if, with high probability, it outputs a fair hierarchy.
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3. Tree Properties and Operators
This work is interested in both fair and balanced hierarchies.
Balanced trees have numerous practical uses, and in this
paper, we show how to use them to guarantee fairness too.

Definition 3.1. A hierarchy T is ϵ-relatively balanced if
for every pair of clusters C and C ′ that share a parent cluster
Cp with |Cp| ≥ 1/(2ϵ) in T , (1/2 − ϵ)|Cp| ≤ |C|, |C ′| ≤
(1/2 + ϵ)|Cp|.

Notice that we only care about splitting clusters Cp with
size satisfying |Cp| ≥ 1/(2ϵ). This is because, on smaller
clusters, it may be impossible to divide them with relative
balance. For instance, if |Cp| = 3, we know we can only
split it into a 1-sized and 2-sized cluster, yielding a minimum
relative balance of 1/6. For smaller ϵ, we require larger
cluster sizes to make this possible.

We will often discuss the “separation” of edges in our pro-
posed operators. It refers to occasions when a point is added
to the first cluster that contains both endpoints. We do not
care if points are removed.

Definition 3.2. An edge e = (u, v) is (or its endpoints are)
separated by an operator which changes hierarchy T to T ′

if clusterT (u ∧ v) ̸⊇ clusterT ′(u ∧ v).

Almost definitionally, if an edge is not separated by an oper-
ator, then the cluster size at its lowest common ancestor does
not increase. Thus, its cost contribution does not increase.

3.1. Tree Operators

Our work uses a number of different tree operations to mod-
ify and combine trees (Figure 3). These illustrate exactly
how our algorithms alter the input. We show how many
operators of each type each of our algorithms use and to
what extent they affect the hierarchy through a metric we
propose here. Notably, for each proposed algorithm on an
input T , it transforms T into output T ′ by only applying our
four tree operators: tree rebalance, subtree deletion and
insertion, level abstraction, and subtree folding.

Each operator has an associated operation cost, which mea-
sures the proportional increase in cost of each edge sepa-
rated by the operation. We present lemmas that bound the
operation cost of each operator in the Appendix.

Definition 3.3. Assume we apply some tree operation to
transform T into T ′. The operation cost is an upper bound
∆ such that for any edge e that is separated by the operation,
then costT ′(e) ≤ ∆costT (e).

The first operation is a tree rebalance, which rotates in a
descendant of the root to instead be a direct child. This
defines our first result in Theorem 4.1, as clever use of the
tree rebalance operator allows us to find a relatively balanced
tree. This is illustrated in the top left panel of Figure 3.

Figure 3: We depict our tree operators: tree rebalance (top
left), subtree deletion and insertion (top right), level abstrac-
tion (bottom left), and tree folding (bottom right).

Definition 3.4. Consider a binary tree T with internal nodes
v, v’s descendant u, and v’s children a and b. A tree rebal-
ance of u at v (tree rebalance(u, v)) puts a new node c in
between v and sibling nodes a and b. It then removes T [u]
from T [a] and sets u to be v’s other child.

Tree rebalancing will only yield 1/6-relatively balanced
trees, which is interestingly something Dasgupta (2016)’s
sparsest cut algorithm, one of the current best cost approxi-
mations, achieves via a similar analysis. To refine this, we
use subtree insertion and deletion (Figure 3, top right). At
a root with large child a and small child b, we can move a
small subtree from a to b to improve the balance.

Definition 3.5. Consider a binary tree T with internal nodes
u, some non-ancestor v, u’s sibling s, and v’s parent g.
Subtree deletion at u removes T [u] from T and contracts s
into its parent. Subtree insertion of T [u] at v inserts a new
parent p between v and g and adds u as a second child of p.
The operator del ins(u, v) deletes u and inserts T [u] at v.

We will also need to abstract away (Figure 3, bottom left)
certain levels of the hierarchy to simplify it. This involves
taking vertices at depth d2 and iteratively merging them
into their parents until they reach depth d1. In other words,
ignore tree structure between two levels of the hierarchy.

Definition 3.6. Consider a binary tree T with two param-
eters d1 and d2 such that d1 < d2 < height(T ). Level ab-
straction between levels d1 + 1 and d2 (abstract(d1, d2))
involves taking all internal nodes between depths d1+1 and
d2 in T and contracting them into their parents.

To achieve fairness in Section 4, we use tree folding (Fig-
ure 3, bottom right). Given multiple isomorphic trees (ig-
noring leaves), we map the topologies of the trees together.

Definition 3.7. Consider a set of subtrees T1, . . . , Tk of
T such that all trees Ti without their leaves have the same
topology, and all root(Ti) have the same parent p in T .
This means that for each i ∈ [k], there is a tree isomorphism
ϕi : Ii → Ik where Ii and Ik are the internal nodes of
the corresponding trees. A tree folding of trees T1, . . . , Tk

(fold(T1, . . . , Tk)) modifies T such that all T1, . . . , Tk are
replaced by a single tree Tf whose root(T ) is made a child
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of p and Tf has the same internal topology as Ik such that
for any leaf ℓ of any tree Ti with parent pi in Ti, we set its
parent to ϕi(pi).

4. Fair and Balanced Reductions
We now present our main algorithms, which sequentially
build on top of each other, adding new operators in a limited,
measureable capacity to achieve new results.

4.1. Relatively Rebalanced Trees

Our first algorithm guarantees 1/6-relative balance. It only
modifies the tree through a series of limited tree rebalances
(Definition 3.4). We can show that this only incurs a small
constant factor proportionate increase in cost.

Theorem 4.1. Given a γ-approximation for cost, we can
construct a 3

2γ-approximation for cost which guarantees
1
6 -relative balance. It only modifies the tree by applying tree
rebalance operators of operation cost 3/2, and every edge
is only separated by at most one such operator.

Algorithm 1 RebalanceTree

Input: A hierarchy tree T of size n, with smaller cluster
always on the left.

Output: A 1
6 -rebalanced T -tree.

1: r, v = root(T )
2: A = leaves(leftT (v))
3: while |A| ≥ 2

3n do
4: v ← leftT (v)
5: A← leaves(leftT (v))
6: end while
7: T ← T.tree rebalance(v, r)
8: Let T ′

l = RebalanceTree(T [leftT (r)])
9: Let T ′

r = RebalanceTree(T [rightT (r)])
10: Return T ′ with root r with left(r) = root(T ′

l ) and
right(r) = root(T ′

r)

This idea was first introduced by Dasgupta (2016) as an
analytical tool for their algorithm. However we use it more
explicitly here to take any given hierarchy and rearrange it
to be balanced. The basic idea is to start with some given
tree T . Draw T from top to bottom such that the smaller
cluster in a split is put on the left. Let A1 and B1 be our first
split. Continue working on the left side, splitting A1 into
A2 and B2 and so on. Stop when we find the first cluster Bk

such that |Bk| ≥ n/3. This defines our first split: partition
V into Ak and B = ∪ki=1Bi. Then recurse on each side.

It is not too hard to see that this yields a 1
6 -relatively bal-

anced tree. Our search stopping conditions enforce this.

Lemma 4.2. Algorithm 1 produces a 1
6 -relatively balanced

tree.

The next property also comes from the fact that once an
edge is separated, it will never be separated again.

Lemma 4.3. In Algorithm 1, every edge is separated by at
most one tree rebalance operator.

Finally, the operation cost of the rebalance operators comes
from our stopping threshold.

Lemma 4.4. In Algorithm 1, every tree rebalance operator
has operation cost at most 3/2.

In Theorem 4.1, the relative balance comes from Lemma 4.2,
the operator properties come from Lemmas 4.3 and 4.4
respectively, and the approximation factor comes from
Lemma 4.3 and Lemma 4.4 together.

4.2. Refining Relatively Rebalanced Trees

We now propose a significant extension of Algorithm 1
which allows us to get a stronger balance guarantee. Specif-
ically (where ϵ may be a function of n):

Theorem 4.5. Given a γ-approximation for cost, we can
construct a 9γ

2ϵ -approximation for cost which guarantees
ϵ-relative balance for 0 < ϵ ≤ 1/6. In addtition to Theo-
rem 4.1, it only modifies the tree by applying subtree deletion
and insertion operators of operation cost 3

ϵ , and every edge
is only separated by at most one such operator.

To do this, we first apply RebalanceTree. Then, at each
split starting at the root, we execute SubtreeSearch (Al-
gorithm 4 in Appendix C.2), which searches for a small
subtree below the right child, deletes it, and moves it be-
low the left child in order to reduce the error in the relative
balance. If we do this enough, we can reduce the rela-
tive balance to ϵ. We call our algorithm, in Algorithm 2,
RefineRebalanceTree.

Algorithm 2 RefineRebalanceTree

Input: A 1
6 -relatively balanced hierarchy tree T of size

n, with smaller cluster always on the left, and balance
parameter ϵ ∈ (0, 1/6).

Output: An ϵ-relatively balanced tree.
1: if ϵ ≤ 1/(2n) then
2: Return T
3: end if
4: v = root(T )
5: Let Tbig = T [leftT (v)], Tsmall = T [rightT (v)]
6: while |leaves(Tbig)| ≥ (1/2 + ϵ)n do
7: δ ← (|leaves(Tbig)| − n/2)/n
8: Let Tbig = SubtreeSearch(Tbig, δn)
9: end while

10: Tbig ← RefineRebalanceTree(Tbig, ϵ)
11: Tsmall ← RefineRebalanceTree(Tsmall, ϵ)
12: Return T ′ with root r with left(r) = root(Tbig) and

right(r) = root(Tsmall)

5
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We can show that this algorithm creates a nicely rebalanced
tree. SubtreeSearch specifically guarantees a proportional
2/3 reduction in relative balance (see Appendix C.2). There-
fore, enough executions of SubtreeSearch will make the
split ϵ-relatively balanced, and recursing down the tree guar-
antees that the entire tree is ϵ-relatively balanced.
Lemma 4.6. Algorithm 2 produces an ϵ-rebalanced tree.

To bound the operators on top of those used by Algorithm 1,
note that we only apply the subtree deletion and insertion
operators. Additionally, each edge cannot be separated more
than once.
Lemma 4.7. In Algorithm 2, every edge is separated by at
most one subtree deletion and insertion operator.

Finally, we can also limit the operation cost of the subtree
deletion and insertion operator. This is because we limit
the depth of the SubtreeSearch function as it will never be
given a parameter below ϵn.
Lemma 4.8. In Algorithm 2, every subtree deletion and
insertion operator has operation cost at most 3/ϵ.

For Theorem 4.5, the relative balance comes from
Lemma 4.6, the operator properties com from Lemmas 4.7
and 4.8 respectively, and the approximation factor comes
from Lemma B.2, Lemma 4.7, and Lemma 4.8 together.

4.3. Stochastically Fair Hierarchical Clustering

At this point, we almost have enough tools to solve stochasti-
cally fair hierarchical clustering. For this, however, we need
a simple application of level abstraction (Definition 3.6). We
introduce StochasticallyFairHC, which simply imposes
one level abstraction: T ′ = T.abstract(t, hmax) on the
bottom levels of the hierarchy. Here, t is a parameter and
hmax is the max depth in T . Notice that we require the
input to be relatively balanced to achieve this result.
Theorem 4.9. Given a γ-approximation for cost and any
ϵ = 1/(c log2 n), c, λ = O(1), and δ ∈ (0, 1), in the
stochastic fairness setting with 1

1−δαℓ ≤ pℓ(v) ≤ 1
1+δβℓ

for all v ∈ V and ℓ ∈ [λ], there is a e4/(c(1−o(1)) ·
3(1−δ) ln(cn)
δ2 minℓ∈[λ] αℓ

· 9γ
2ϵ fair approximation that succeeds with

high probability. On top of the operators of Theorem 4.5, it
only modifies the tree by applying one level abstraction of
operation cost at most e4/(c(1−o(1)) · 3 ln(cn)

aδ2 .

Theorem 4.9 with constant αℓ for all ℓ ∈ [λ], c,
and δ yields a O(γ log n) approximation. Since γ =
O(
√
log n) (Charikar & Chatziafratis, 2017; Dasgupta,

2016), this becomes O(log3/2 n). It is quite impressive, as
the best previous fair (albeit, deterministic) approximation
was poly(n) (Ahmadian et al., 2020a). Also, δ exhibits an
important tradeoff: increasing δ increases success probabil-
ity but also decreases the range of acceptable pℓ(v) values.

It might be tempting to suggest applying
StochasticallyFairHC to any existing hierarchy, as
opposed to one that is ϵ-relatively balanced. However, if we
consider, for instance, a highly unbalanced tree where all
internal nodes have at least one leaf-child, the algorithm
would only merge the bottom t internal nodes into a single
cluster, thereby not guaranteeing fairness. The resulting
structure would also not be particularly interesting. This is
why the rebalancing process is important.

Obviously, since we only apply level abstraction once, edge
separation only happens once per edge in the algorithm. To
bound the operation cost, we explore the relative size of
clusters at a specified depth in the hierarchy. The follow-
ing guarantee is achieved by considering a root-to-vertex
path where we always travel to maximally/minimally sized
clusters according to the tree’s relative balance.

Lemma 4.10. Let T be an ϵ-relatively balanced tree and
u and v be internal nodes at depth i in T . Then (1/2 −
ϵ)in ≤ nT (u), nT (v) ≤ (1/2 + ϵ)in, which also implies
nT (u)
nT (v) ≤

(1+2ϵ)i

(1−2ϵ)i . Additionally, if i ≤ log1/2−ϵ(x/n) for
some arbitrary x ≥ 1 and ϵ = 1/(c log2 n) for a constant c,
then the maximum cluster size is at most e4/(c(1−o(1)))x.

This yields our operation cost, since it bounds the size of
clusters at certain depths.

Lemma 4.11. In StochasticallyFairHC, the level abstrac-
tion has operation cost at most (1/2 + ϵ)tn.

To get our fairness results, we need to use a Chernoff bound,
thus we must guarantee that all internal nodes have suf-
ficiently large size. This too comes from our bounds on
cluster sizes.

Lemma 4.12. In StochasticallyFairHC, for any internal
node v, nT ′(v) ≥ (1/2− ϵ)tn.

Finally, we must show the fairness guarantee. Since the
union of two fair clusters is fair, we only need to show this
for the clusters at height 1 in the hierarchy, as this would
imply fairness for the rest of the hierarchy. This comes from
a Chernoff bound.

Lemma 4.13. The resulting tree from
StochasticallyFairHC with t = log1/2−ϵ

(
3(1−δ) ln(cn)

aδ2n

)
for a = minℓ∈[λ] αℓ and any δ > 0 is stochastically fair for
given parameters αℓ, βℓ for all colors ℓ ∈ [λ] with high
probability if with 1

1−δαℓ ≤ pℓ(v) ≤ 1
1+δβℓ for all v ∈ V

and ℓ ∈ [λ] for λ = O(1).

This is sufficient to show Theorem 4.9. The fairness is a
result of Lemma 4.13, the operator properties are a result of
Lemma 4.11 and the obvious fact that we only apply one
level abstraction, and the approximation factor comes from
Lemma B.3 and Lemma 4.11 together.
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4.4. Deterministically Fair Hierarchical Clustering

Finally, we have our main results on the standard, determin-
istic fair hierarchical clustering problem. This algorithm
builds on top of the results from Theorem 4.5 and uses
methods similar to Theorem 4.9. In addition to previous
algorithms, it uses more applications of level abstraction
and introduces tree folding.

Theorem 4.14. Given a γ-approximation for cost over
ℓ(V ) = cℓn = O(n) vertices of each color ℓ ∈ [λ] with
h = nδ for any constants c, δ, k, there is an algorithm that
yields a hierarchy T ′ that:

1. Is a e
4 log2 n

c(1−o(1))λ log2 h
+ 2

c+
4

c(1−o(1)) · 9c2γ
4 · nδ log22 n-

approximation for cost.

2. Is fair for any parameters for all ℓ ∈ [λ]: βℓ ≥

cℓ

(
e4/c

kcℓ
+ e6/c

)1/δ

and αℓ ≤ cℓ
e(6/c) logh(n) .

On top of the operators of Theorem 4.9, it only modifies the
tree by applying level abstraction of operation cost at most
e2/cnδ and tree folding of operation cost ke4/(c(1−o(1)) on
k subtrees, and each edge is separated in at most one level
abstraction operator and in at most λ/δ tree fold operators.

This algorithm runs in O(n2 log n) time.

Since γ = O(
√
log n), this becomes O(nδ log5/2 n) for

any constant c, δ ∈ (0, 1), and k which greatly improves
the previous O(n5/6 log5/4(n))-approximation (Ahmadian
et al., 2020a). Additionally, the previous work only con-
sidered 2 colors with equal representation in the dataset.
Our algorithm greatly generalizes this to both more colors
and different proportions of representation. While we do
not guarantee exact color ratio preservation as the previous
work does, our algorithms can get arbitrarily close through
parameterization and we no longer require the ratio between
colors points in the input to be exactly 1.

In terms of fairness, all of the variables here are parameter-
izeable constants. Increasing k, c, and δ will all make these
values get closer to the true proportions of the colors in the
overall dataset, and this can be done to an arbitrary extent.
Therefore, based off the parameterization, this allows us
to enforce clusters to have pretty close to the same color
proportions as the underlying dataset.

The goal of this algorithm is to recursively abstract away the
top log2 h depth of the tree, where we end up setting h = nδ .
Each time we do this, we get a kind of “frontier clustering”,
which is an h-sized clustering whose parents in the tree are
all the root after level abstraction. Since the subtrees rooted
at each cluster have the same topology (besides their leaves,
this is due to our level abstraction at the lowest levels in
the tree), we can then execute tree folding on any subset

of them. We select cluster subtrees to fold together such
that, once we merge the appropriate clusters, the clustering
at this level will be more fair. Then, as we recurse down
the tree, we subsequently either eliminate clusters (via level
abstraction) or fold them to guarantee fairness. For more
information, see Algorithm 3.

Algorithm 3 FairHC

Input: An ϵ = 1/(c log2 n) relatively balanced hierarchy
tree T of size n on red and blue points, and param-
eters h = 2i and k = 2j for some 0 < j < i <
log1/2−ϵ(1/(2nϵ))

Output: A fair tree.
1: Let T ← T.abstract(0, i)
2: if T is height 1 then
3: Return T
4: end if
5: Let V be the children of root(T )
6: for each color ℓ ∈ [λ] do
7: Order V = {vi}i∈[h] decreasing by ℓ(leaves(vi))

|leaves(vi)|
8: For all i ∈ [k], T ← T.fold({T ′[vi+(j−1)k] : j ∈

[h/k]})
9: end for

10: for each child v of root(T ) do
11: Replace T [v]← FairHC(T [v])
12: end for
13: Return T ′

To see why this creates a fair, low-cost hierarchy, we first
bound the metrics on the operators used. When we exe-
cute level abstraction, we can leverage relative balance and
Lemma 4.10 to show that during FairHC, we can bound the
abstraction operation cost.
Lemma 4.15. In Algorithm 3, the level abstraction has
operation cost at most e2/ch.

Our tree folding operation cost bound also comes from the
balance of a tree, since any two vertices that are folded
together must be at similar depths.
Lemma 4.16. In Algorithm 3, each tree folding has opera-
tion cost at most ke4/(c(1−o(1)) and acts on k trees.

In order to bound the cost, we need to first know how many
times an edge will be separated. We notice that an edge
that is separated by level abstraction can no longer be sep-
arated on a subsequent recursive step. Additionally, the
number of tree fold operators is proportionally bounded by
the recursive depth, as it only happens λ times each step.
Lemma 4.17. In Algorithm 3, an edge e is separated by
at most 1 level abstraction and λ log2(n)/ log2(h) tree
folds. The maximum recursion depth is also at most
log2(n)/ log2(h).

Fairness comes from the ordering over ℓ-colored vertices

7



Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost

and the way select subtrees to fold together. One recursive
step of FairHC incurs a small constant factor proportionate
loss in potential fairness, and the number of times this loss
occurs is bounded by the depth of recursion. We desire these
fractions to be close to the true color proportions, which we
can get arbitrarily close to by setting parameters c, k, and h.
Lemma 4.18. For an ϵ-relatively balanced hierarchy T
over ℓ(V ) = cℓn = O(n) vertices of each color ℓ ∈ [λ],
Algorithm 3 yields a hierarchical clustering T ′ such that the
amount of each color ℓ ∈ [λ] in each cluster (represented
by vertex v) is bounded as follows:

cℓ
e2 logh n/c

≤ ℓ(v)

nT (v)
≤ cℓ · (e4/c/(kcℓ) + e6/c)logh n.

In Theorem 4.14, fairness is a result of Lemma 4.18, the op-
erator properties are a result of Lemmas 4.15, 4.16, and 4.17,
and the approximation factor has already been worked out
by Lemma C.5.

5. Experiments
This section validates our algorithms from Section 4. Our
simulations demonstrate that our algorithm incurs only a
modest loss in the hierarchical clustering objective and ex-
hibits increased fairness. Specifically, the approximate cost
increases as a function of Algorithm 3’s defining parameters:
c, δ, and k.

Datasets. We use two data sets, Census and Bank, from
the UCI data repository (Dua & Graff, 2017). Within each,
we subsample only the features with numerical values. To
compute the cost of a hierarchical clustering we set the simi-
larity to be w(i, j) = 1

1+d(i,j) where d(i, j) is the Euclidean
distance between points i and j. We color data based on
binary (represented as blue and red) protected features: race
for Census and marital status for Bank (both in line with the
prior work of Ahmadian et al. (2020a)). As a result, Census
has a blue to red ratio of 1:7 while Bank has 1:3.

We then subsample each color in each data set such that
we retain (approximately) the data’s original balance. We
use samples of size 256. For each experiment, we do 10
replications and report the average results. We vary the
parameters c ∈ {2i}5i=0, δ ∈ ( 18 ,

7
8 ), and k ∈ {2i}4i=1

to experimentally validate their theoretical impact on the
approximate guarantees of Section 4.

Implementation. The Python code for the following ex-
periments are available in the Supplementary Material. We
start by running average-linkage, a popular hierarchical clus-
tering algorithm. We then apply Algorithms 1 - 3 to modify
this structure and induce a fair hierarchical clustering that
exhibits a mild increase in the cost objective.

Figure 4: Cost ratio of Algorithm 3 as compared to average-
linkage. (i) Ratio increase as a function of the parameter
c, (ii) ratio increase as a function of the parameter δ, and
(iii) ratio increase as a function of k. Blue lines indicate
the result for Census dataset whereas red indicates the Bank
dataset results.

Metrics. In our results we track the approximate cost
objective increase as follows: Let G be our given graph,
T be average-linkage’s output, and T ′ be Algorithm 3’s
output. We then measure the ratio RATIOcost =

costG(T ′)
costG(T ) .

Results. We first note that the average-linkage algorithm
must construct unfair trees since, for each data set, the
algorithm induces some monochromatic clusters. Thus, our
resultant fair clustering is of considerable value in practice.

In Figure 1, we plot the change in cost ratio as the parame-
ters (c, δ, k) are varied for the two datasets. Supporting our
theoretical results, increasing our fairness parameters leads
to a modest increase in cost. This is an empirical illustration
of our fairness-cost approximation tradeoff according to our
parameterization. Note that the results are consistent across
tested datasets.

We additionally illustrate the resulting balance of our hier-
archical clustering algorithm by presenting the distribution
of the cluster ratios of the projected features (blue to red
points) in Figure 5 for the Census data. The output of
average-linkage naturally yields an unfair clustering of the
data, yet after applying our algorithm on top this hierarchy
we see that the cluster’s balance move to concentrate about
the underlying data balance of 1:7. An equivalent figure for
the Bank dataset is provided in the appendix due to space
constraints.
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A. Limitations
The main limitations this work suffers from encapsulate
the general limitations of study in theoretical clustering
fairness. Our work strives to provide algorithms that are ap-
plicable to many hierarchical clustering applications where
fairness is a concern. However, our work is inherently
limited by its focus on a specific fairness constraint (i.e.,
the extension of disparate impact originally used to study
fair clustering (Chierichetti et al., 2017)). While disparate
impact has received substantive attention in the clustering
community and is seen as one of the primary fairness def-
initions/constraints (see, e.g., Ahmadian et al., 2020a;b;
Bera et al., 2019a; Brubach et al., 2020; Kleindessner et al.,
2019b), it is just one of many established fairness constraints
for problems in clustering (Chakrabarti et al., 2021; Chen
et al., 2019; Esmaeili et al., 2021; Kleindessner et al., 2019a).
When applying fair machine learning algorithms to prob-
lems, it is not always clear which fairness constraints are
the best for the application. This, and the fact that the ap-
plication of fairness to a problem can cause harm in other
ways (Ben-Porat et al., 2021), means that the proposal of
theoretical fair machine learning algorithms always has the
potential for improper or even harmful use. While this work
proposes purely theoretical advances to the field, we direct
the reader to (Barocas et al., 2019) for a broader view on
the field.

Our results are also limited by the theoretical assumptions
that we make. For instance, in the stochastic fairness algo-
rithm, we assume that the probabilities of a vertex being a
certain color are within the same bounds across all vertices.
This may not be realistic, as there could be higher variance
in the distribution of color probabilities, and even though the
probabilities may lie outside of our assumed bounds, it still
may be tractable to find a low-cost hierarchical clustering.

In our main theorem, we assume that there are only two
colors (protected classes), and that they subsume a constant
fraction of the general population. The former assumption
is clearly limited in that in many cases, protected classes
may take on more than two values. The constant fraction
assumption is actually highly relevant and is reflected in
other clustering literature, but it is a potential limitation that
may rule out a handful of applications nevertheless.

Finally, our results are limited to the evaluation of hierar-
chical clustering quality based off cost. While this is a
highly regarded metric for hierarchy evaluation, there may
be situations where others are appropriate. It also neglects
the practicality of empirical study in that many important
machine learning algorithms we use today cannot provide
guarantees across all data (which our results necessarily
do), but they perform much better on most actual inputs.
However, we leave it as an open question to further evaluate
the practicality of our algorithms through empirical study.

B. Proofs: Tree Properties and Operators
Here we present all our proofs and theoretical results regard-
ing our tree operator properties.

We start by discussing our tree rebalance operator. Effec-
tively, any edge whose end points are separated by a tree
rebalance operator was contained in a cluster of size nT (u),
and now we guarantee they are in a cluster of size nT (v).

Lemma B.1. Given a tree T , let T ′ = tree rebalance(u, v)
for a node u and an ancestor node v. The only edges sep-
arated by this are e = (x, y) such that x ∈ cluster(u) and
y ∈ cluster(a) \ cluster(u). The operation cost is bounded
above by ∆ = nT (v)/nT (p), where p is the parent of u.

Proof of Lemma B.1. Let e = (x, y) be an edge that is sep-
arated by a tree rebalance operator tree rebalance(u, v) for
some internal nodes u and v. Let’s consider when we exe-
cute the rebalance. Let V = cluster(v) be the set of vertices
corresponding to V . Traverse down the tree from v to u. La-
bel the clusters we come across A1, A2, . . . , Ak−1 and their
corresponding un-traversed children B1, B2, . . . , Bk−1. Let
Ak = cluster(u), and Bk be the cluster for its only sibling.

When we rebalance, our first split will now divide V into Ak

and B := ∪i∈[k]Bi. For e to be separated by the rebalance
of u with respect to v, it must be that x ∈ cluster(u) and
y ∈ B = cluster(a) \ cluster(u) (without loss of general-
ity). This means that their lowest common ancestor was on
the path between u and v (excluding u), which means the
smallest nT (e) could be is nT (p) where p is the parent of u.
That means costT (e) = w(e) · nT (p).

In T ′, their lowest common ancestor is v, thus nT ′(e) =
nT ′(v) = nT (v), following from the observation that v’s
cluster does not change. Thus, costT ′(e) ≤ w(e) · nT (v).
Putting these together, we find costT ′(e) ≤ nT (v)

nT (p)costT (e).

For our subtree deletion and insertion, the idea is that an
edge that is separated costs at least nT (v) in the original
tree, but may cost up to nT (u ∧ v) in the modified tree.

Lemma B.2. Given a tree T , let T ′ = del ins(u, v) for
two nodes u and v, where u is not an ancestor of v. The
only edges separated by this are e = (x, y) such that
x ∈ cluster(u) and y ∈ cluster(u ∧ v) \ cluster(u). The
operation cost is bounded above by ∆ = nT (u∧ v)/nT (u).

Proof of Lemma B.2. Let e = (x, y) be an edge that is
separated by a subtree deletion and insertion operators
del ins(u, v) for some appropriate internal nodes u and v.
Let’s consider when we execute the subtree deletion and in-
sertion. For x and y to be separated, x must be in cluster(u)
and y must be in cluster(u ∧ v) \ cluster(u) (without loss

11



Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost

of generality). The first part is true because only the sub-
tree T [u] is moved, otherwise their least common ancestor
would be unaffected. The second part is true because oth-
erwise y is either in T [u] too, in which case their relative
position remains the same in the subtree, or y /∈ T [u ∧ v],
in which case still the move still does not affect their least
common ancestor (which is higher in the tree than u ∧ v).

Now, since x ∈ T [u] and y /∈ T [u], x∧y must be an ancestor
of u, thus nT (e) ≥ nT (u). This means that costT (e) ≥
w(e) · nT (u). In T ′, their least common ancestor must still
remain below u ∧ v, since all the points in T [u ∧ v] remain
somewhere below u ∧ v. Also note no points are added to
T [u∧v] over the two operators. Thus nT ′(e) ≤ n′

T (u∧v) =
nT (u ∧ v). This means costT ′(e) ≤ w(e) · nT (u ∧ v), so
costT ′(e) ≤ nT (u∧v)

nT (u) costT (e). Thus, ∆ = nT (u∧v)
nT (u) .

The level abstraction operator is somewhat more compli-
cated, as it modifies entire levels of the tree, instead of
individual splits. However, we can still use our notion of
operation cost to bound the operator’s impact. This just
becomes a bit more vague because we have to look at the
largest and smallest clusters between depths h1 and h2 in
T .

Lemma B.3. Say we apply the level abstraction operator
between heights h1 and h2 on hierarchy T to yield T ′. An
edge is separated by the operator if and only if the least
common ancestor of its endpoints is between h1 and h2. Its
operation cost is at most ∆ ≤ nT (u)

nT (v) , where u and v are two
clusters that are abstracted away that maximize this ratio.

Proof of Lemma B.3. Let e = (x, y) be an edge that is sep-
arated by a level abstraction operator abstract(h1, h2) for
some depths h1 and h2 with h1 < h2. Let’s consider when
we execute the abstraction. For x and y to be separated,
x ∧ y must be merged into its parent by the operator. That
means it is between depth h1 and h2. Let v be the vertex
with the smallest nT (v) between depths h1 and h2. Then
nT (x ∧ y) ≥ nT (v), and so costT (e) ≥ w(e) · nT (v).

The ancestor it eventually gets contracted into must be of
depth h1, because we stop contracting after that point. Al-
though its tree structure is altered below it, its cluster size
remains the same since no vertices are moved away or to its
subtree. Let u be the vertex with the largest nT (u) between
depths h1 and h2. Then we get nT ′(x ∧ y) ≥ nT (u), and
so costT ′(e) ≤ w(e) · nT (u).

This has shown us that costT ′(e) ≤ nT (u)
nT (v) costT (e). Notice

that u and v are precisely the internal nodes that maximize
the ratio, so costT ′(e) ≤ nT (u)

nT (v) costT (e).

Tree folding is a bit more complicated because we are merg-

ing multiple clusters on top of each other. Thus we have to
factor in the value k on top of considering varying cluster
sizes. Ultimately, however, the product of the ratio between
cluster size and k bound the proportional increase in cost.

Lemma B.4. Say we apply the tree folding operator on
hierarchy T to yield T ′. Its operation cost is at most ∆ ≤
k nT (u)
nT (v) , where u and v are two clusters that are mapped to

each other away that maximize this ratio.

Proof of Lemma B.4. Let e = (x, y) be an edge that is
separated by a tree folding operator fold(T1, . . . , Tk) for
subtrees T1, . . . , Tk of T satisfying the operator condi-
tions. Let’s consider when we execute the folding. For
x and y to be separated, x ∧ y must be in one of the
subtrees, say T1 without loss of generality. This means
costT (e) ≥ w(e) · nT (x ∧ y).

Now we consider the cost in T ′. Clearly, x∧ y becomes the
single vertex in Tf corresponding to ϕ1(x∧y). A leaf vertex
in T2 (without loss of generality) is only a descendant of
ϕ1(x∧y) if it has an ancestor a such that ϕ2(a) = ϕ1(x∧y).
Therefore:

nT ′(x ∧ y) = nT ′(ϕ1(x ∧ y)) ≤
∑
i∈[k]

nT (ϕ
−1
i (ϕ1(x ∧ y))

If u = max{nT (u) : u ∈ Ti, i ∈ [k], ϕi(u) = ϕ1(x ∧ y)},
then we further have:

nT ′(x ∧ y) ≤
∑
i∈[k]

nT (u) = knT (u)

This means that costT ′(e) ≤ w(e) · knT (u). Putting
these together gives costT ′(e) ≤ nT (x∧y)

nT (v) kcostT (e) ≤
nT (u)
nT (v)kcostT (e) where u and v are the vertices merged to-
gether that maximize this ratio.

C. Proofs: Results
In this section, we prove all lemmas, theorems, and missing
algorithmic discussion regarding our main results.

C.1. RebalanceTree

This section contains the proofs regarding RebalanceTree.

Proof of Lemma 4.2. By our definition of Ai and Bi for all
i ∈ [k], |Ak−1| ≥ 2n/3, implying |Ak| ≥ 1

2 |Ak−1| ≥ n/3,
and also that |Ak| ≤ n/3 since |Bk| ≥ n/3. Thus n/3 ≤
|Ak|, |B| ≤ 2n/3. Since we rearrange our first split to be

12
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this way, that means our first tree rebalance creates a first
split that satisfies the relatively balanced condition. From
here, we recurse on each side, guaranteeing that one split
after another satisfies the condition. Thus, the entire tree is
1
6 -relatively balanced.

Proof of Lemma 4.3. Consider an edge e = (x, y) that is
first rebalanced at some recursive step in Algorithm 1. By
Lemma B.1, x and y must now be separated at the current
tree’s root. Therefore, at any further level of recursion,
only one of e’s endpoints will be present, so it cannot be
separated again.

Proof of Lemma 4.4. The rebalance operator is applied to
v (the node found) at r. Notice that v’s parent p must be
such that nT (p) ≥ 2

3nT (r), otherwise the loop would have
stopped earlier. Therefore, by Lemma B.1, the operation
cost is nT (r)/nT (p) ≤ 3/2.

Proof of Theorem 4.1. Let T ∗ be the optimal tree, let T1 be
our guaranteed γ-approximation on T , and let T ′ be our
output. By Lemma 4.2, T ′ is 1/6-relatively balanced. By
Lemmas 4.3 and 4.4, every edge is separated by at most one
tree rebalance operator of length at most 3/2. Because of
this, costT ′(e) ≤ (3/2)costT1

(e). Summing over all edges
yields cost(T ) ≤ (3/2)cost(T1) ≤ γcost(T ∗).

C.2. RefineRebalanceTree

This section contains the proofs regarding
RefineRebalanceTree as well as the algorithmic de-
scription of SubtreeSearch.

As discussed in the body, at a given split, SubtreeSearch
traverse the tree below the larger cluster further down in
a similar manner until we find a sufficiently small cluster.
This cluster must be smaller than the current balance error, ϵ.
We simply do this by always traversing to the larger cluster
as in Algorithm 4 until its smaller child is sufficiently small.
We then remove that subtree, traverse back to the top of the
tree, and try to reinsert the subtree by recursing down the
right children.

This exhibits nice properties with respect to relative balance.

Lemma C.1. SubtreeSearch preserves 1
6 -relative balance.

Proof of Lemma C.1. Consider T , the tree at the beginning
of the algorithm, and let v be the vertex whose subtree we
end up moving. To start, we only consider the deletion, and
then we will consider the reinsertion of v’s subtree. The
only vertices whose corresponding cluster sizes are altered
(specifically, reduced) are v’s ancestors. Note that they are
all right children (i.e., the bigger sibling at the start) and
they are reduced by size nT (v).

Algorithm 4 SubtreeSearch

Input: A 1
6 -relatively balanced hierarchy tree T of size

n, with smaller cluster always on the left and error
parameter s.

Output: Modified 1
6 -relatively balanced T by a subtree

deletion and insertion of a subtree of size between s/3
and s

1: v = root(T )
2: while |leaves(leftT (v))| > s do
3: v ← rightT (v)
4: end while
5: v ← leftT (v)
6:
7: u← root(T )
8: while |leaves(rightT (u))| ≥ |leaves(v)| do
9: u← leftT (u)

10: end while
11: T ′ ← T.del ins(u, v)
12: Return T

Let p be the parent of v. Since v = leftT (p), we know
nT (v) ≤ 1

2nT (p). Since we remove that many vertices,
nT (p) is at worst halved. Since p is a right child, say with
sibling node q, nT (p) ≥ nT (q) at the start. Then at the
end, nT ′(p) ≥ 1

2nT ′(q). This implies that, in the end, the
clusters are between 1/3 and 2/3 the size of their parent.
Thus relative balance is held on this split. For ancestor
nodes a of p in T , this argument holds since nT (a) > nT (p)
both before and after, and a is also a right child. Therefore,
the entire tree is still 1

6 -relatively balanced after subtree
deletion.

Now we consider the second half of the algorithm, where
we reinsert T [v]. Let u be the vertex we select to in-
sert at, p be its new parent, g be its old parent (now its
grandparent), and r = rightT (g) be its old sibling. Be-
fore insertion, we know that nT (r) ≥ nT (v) by the while
loop condition. Since T is 1

6 -relatively balanced still,
and r is u’s sibling, nT (u) ≥ 1

2nT (r). Since the algo-
rithm did not stop at p, then nT (r) ≥ nT (v), thus imply-
ing nT (u) ≥ 1

2nT (v). Additionally, since the algorithm
stopped on u, nT (rightT (u)) ≤ nT (v). Since that is u’s
larger child, nT (u) ≤ 2nT (rightT (u)) ≤ 2nT (v). Since v
is u’s new sibling, and one is not more than twice the size
of the other, we have 1

6 -relative balance at that split.

The only other vertices impacted by the insertion are u’s
ancestors. For an ancestor node a of u in T , the argu-
ment also holds since nT (a) ≥ nT (p) ≥ nT (v) mean-
ing nT ′(a) ≤ 2nT (a) and a must be a left (and therefore
smaller) child. Therefore, the relative balance is kept at
all splits involving ancestors of u, thus we have relative
balance.

13
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Our other guarantee is that we find a subtree of size at least
s/2 to move. This comes from our first loop’s end condition.

Lemma C.2. In Algorithm 4, s/3 ≤ nT (v) ≤ s.

Proof of Lemma C.2. When the first loop stops, this is the
first visited vertex whose left child, which ends up being
the final v, is at most s. Thus nT (v) ≤ s. Since this was
the first such instance, if g is the grandparent of v, this
means nT (leftT (g)) > s since the loop continued after g.
Since right children are larger and v’s parent p is rightT (g),
nT (p) ≥ nT (leftT (g)) > s. Since we have 1

6 -relative
balance, nT (v) ≥ 1

3nT (p) ≥ 1
3s.

Proof of Lemma 4.6. At each iteration of Algorithm 2, as
long as the relative balance is above ϵ, we move a subtree
of size at least 1

3δn and at most δn by Lemma C.2 where δ
is the current relative balance. This means that the relative
balance of the first split reduces by a factor of 2

3 , and by
Lemma C.1, the rest of the tree remains 1

6 -relatively bal-
anced. This is simply done until the relative balance of the
first split is small enough. When we recurse, we are still
guaranteed 1

6 -relatively balance, and we can then ensure all
sufficiently large splits are ϵ-relatively balanced.

Proof of Lemma 4.7. Consider an edge e that is first sep-
arated by some subtree deletion and insertion operator at
some recursive step in Algorithm 2. Notice e must now be
separated at the current tree’s root. This means that at any
further level of recursion, only one of e’s end points will be
present, so it cannot be separated again.

Proof of Lemma 4.8. The subtree deletion and insertion op-
erator is applied at u of T [v] when u ∧ v is the root, i.e.,
nT (u ∧ v) = nT (r) ≤ n where r is the current tree’s root
and n is our original data set size. We never allow the
algorithm to continue with δ ≤ ϵ, therefore the smallest
tree size T [v] that we move is 1

3nϵ by Lemma C.2. Thus
the operation cost is at most nT (u ∧ v)/nT (v) ≤ 3

ϵ by
Lemma B.2.

Proof of Theorem 4.5. Let T ∗ be the optimal tree, let T1 be
our 1/6-relatively balanced 3γ/2 approximation guaranteed
by Theorem 4.1, and let T ′ be our output. By Lemma 4.6, T ′

is ϵ-relatively balanced. By Lemmas 4.7 and 4.8, every edge
is separated by at most one subtree deletion and insertion
operator of operation cost at most 3/ϵ. Because of this and
because of Lemma B.2, costT ′(e) ≤ 3

ϵ costT1
(e). Summing

over all edges yields cost(T ) ≤ 3
ϵ cost(T1) ≤ 9γ

2ϵ cost(T
∗).

C.3. StochasticallyFairHC

This section contains the proofs regarding
StochasticallyFairHC.

Proof of Lemma 4.10. Since T is ϵ-relatively balanced, any
cluster A that splits into clusters B and C satisfies (1/2−
ϵ)|A| ≤ |C| ≤ |B| ≤ (1/2 + ϵ)|A|, without loss of gener-
ality. This means that the maximum cluster size that can
be found at level i is bounded above by traversing the tree
from root down assuming that we always traverse to a maxi-
mally sized child, e.g., if p is a parent of w on our path, then
nT (w) ≤ (1/2 + ϵ)nT (p).

Since we traverse i levels, we get for any i-level vertex u,
nT (u) ≤ (1/2 + ϵ)in. By the reverse logic (i.e., traversing
from the root to a minimally sized child), for any i-level
vertex v, nT (v) ≥ (1/2− ϵ)in. Then their ratio must be at
most nT (u)

nT (v) ≤
(1+2ϵ)i

(1−2ϵ)i .

Finally, consider if i ≤ log1/2−ϵ(x/n). We can just assume
it is at the maximum possible level, because this will clearly
give the loosest bounds. We already know the smallest
cluster size at level i is at least (1/2 − ϵ)in, and the ratio
between the largest and smallest cluster sizes is at most(

1+2ϵ
1−2ϵ

)i

. Therefore, for a vertex u at level i:

nT (u) ≤
(
1 + 2ϵ

1− 2ϵ

)log1/2−ϵ(n/x)

(1/2− ϵ)log1/2−ϵ(x/n)n

The second term in the product obviously simplifies to x.
For the first term, we can see that since ϵ = 1/(c log2 n):

1 + 2ϵ

1− 2ϵ
= 1 +

4ϵ

1− 2ϵ
= 1 +

4

c(1− 2ϵ) log2 n

We can also bound the exponent. Note that we raise a value
that is at least 1 to the exponent, so to create an upper bound,
we must upper bound the exponent as well. We leverage
the fact that 1/(1/2 − ϵ) > 2 because ϵ ∈ (0, 1/2). This
implies log2(1/(1/2− ϵ)) > 1.

log1/2−ϵ(x/n) =
log2(x/n)

log2(1/2− ϵ)

=
log2(n/x)

log2(1/(1/2− ϵ))

≤ log2(n/x)

≤ log2(n)

Where the last step comes from the fact taht x ≥ 1. We can
now put this all together.

nT (u) ≤
(
1 +

4

c(1− 2ϵ) log2 n

)log2(n)

x ≤ x·e4/(c(1−o(1))

14
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Proof of Lemma 4.11. By Lemma 4.10, the smallest cluster
at depth i ≥ t is at most (1/2 + ϵ)tn. If we assume a
trivial cluster size lower bound of 1, this implies for any
contracted internal nodes u and v in the level abstraction,
nT (u)/nT (v) ≤ (1/2 + ϵ)tn.

Proof of Lemma 4.12. By Lemma 4.10, the largest cluster
at depth i ≤ t in T is at least (1/2− ϵ)tn. When we execute
level abstraction, this cluster size is not changed, but we
know all other potentially smaller clusters are contracted
into their parents. Thus, this is the smallest cluster size in
T ′.

Proof of Lemma 4.13. Consider a vertex v at height 1. By
Lemma 4.12, nT ′(v) ≥ (1/2− ϵ)tn = 3(1−δ)

aδ2 ln(cn). Fix
some ℓ ∈ [λ]. Let Xℓv count the number of vertices of
color ℓ in leaves(v). Note this is a sum of Bernoullis, so
E[|Xℓv|] =

∑
u∈cluster(v) pℓ(u). Note that we are given

that pℓ(u) ≥ 1
1−δαℓ for all u. This gives us the following

bounds from Lemma 4.12:

E[Xℓv] ≥
3(1− δ)

aδ2
ln(cn) · 1

1− δ
a =

3

δ2
ln(cn)

E[Xℓv] ≥
1

1− δ
αℓnT ′(v)

E[Xℓv] ≤
1

1 + δ
βℓnT ′(v)

Then by a Chernoff bound with δ as the error parameter:

P (|Xℓv − E[Xℓv]| ≥ δE[Xℓv])

≤2 exp(−E[Xℓv]δ
2/3)

=2 exp(− 3

δ2
ln(cn)δ2/3)

=
2

cn

Thus with probability at least 1− 2
cn :

Xℓv − E[Xℓv] ≤δE[Xℓv]

Xℓv ≤(1 + δ)E[Xℓv]

≤(1 + δ) · 1

1 + δ
βℓnT ′(v)

≤βℓnT ′(v)

In other words, the cluster leaves(v) satisfies the upper
bound for color ℓ. We also find that:

−Xℓv + E[Xℓv] ≥δE[Xℓv]

Xℓv ≥(1− δ)E[Xℓv]

≥(1− δ) · 1

1− δ
αℓnT ′(v)

≥αℓnT ′(v)

Which means it also satisfies the upper bound. Let y be the
number of internal nodes with leaf-children. Since we al-
ready saw the minimum such cluster size is O(log n) (since
a, δ = O(1)), then y = O(n/ log n). Notice, also, that the
vertices counted by y are the only ones we need to prove
are fair, since taking the union of two fair clusters is fair.
Thus, to show this is true for all ℓ and v, we take a union
bound over all λ values of ℓ and y values of v. We then find
that with probability at least 1− 2λn/ logn

cn = 1− 2
logn , all

height 1 clusters must be fair, meaning the entire hierarchy
must be fair by the union-bound property.

Proof of Theorem 4.9. Let T ∗ be the optimal tree, let T1 be
our ϵ-relatively balanced 9γ

2ϵ approximation guaranteed by
Theorem 4.5, and let T ′ be our output. By Lemma 4.13, T ′

satisfies our fairness constraints. By Lemmas 4.11 and the
fact that we only apply one operator, every edge is separated
by at most one level abstraction operator of operation cost at
most (1/2 + ϵ)tn, but we know from Lemma 4.10 that this
is bounded above by e4/(c(1−o(1)) · 3(1−δ) ln(cn)

aδ2 . Because
of this, costT ′(e) ≤ e4/(c(1−o(1)) · 3(1−δ) ln(cn)

aδ2 costT1
(e).

Summing over all edges yields cost(T ) ≤ e4/(c(1−o(1)) ·
3(1−δ) ln(cn)

aδ2 cost(T1) ≤ e4/(c(1−o(1)) · 3(1−δ) ln(cn)
aδ2 ·

9γ
2ϵ cost(T

∗).

C.4. FairHC

This section contains the proofs and additional theoretical
discussion regarding FairHC.

Lemma C.3. StochasticallyFairHC with t =
log1/2−ϵ(1/(2nϵ)) outputs a hierarchy where the ϵ-
relatively balanced guarantee holds for all splits except
those forming the leaves. Additionally, it admits a propor-
tional cost increase of at most 1

2ce
4/(c(1−o(1)) log2 n.

Proof of Lemma C.3. Say T is our input (i.e., it is ϵ-
relatively balanced). Notice that StochasticallyFairHC
only modifies T ’s structure below depth log1/2−ϵ(1/(2nϵ)),
which means any balance guarantees hold up to
that level. By Lemma 4.10, for any vertex v at
depth log1/2−ϵ(1/(2nϵ)) or above, nT (v) ≥ (1/2 −
ϵ)log1/2−ϵ(1/(2nϵ))n = 1/(2ϵ). By the definition of ϵ-
relative balance, this means that the balance guarantee holds
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for the split at this vertex. Since all internal vertices in
the resulting tree T ′ are at or above this level, all internal
vertices except those with leaf children exhibit the relative
balance guarantee.

In order to bound the proportional increase in cost, we
must bound the operation cost of the level abstraction. The
minimum depth in the abstraction is log1/2−ϵ(1/(2nϵ)). By
Lemma 4.10, this means the maximum cluster size is at
most e4/(c(1−o(1)))/(2ϵ) = 1

2ce
4/(c(1−o(1)) log2 n. Since

the smallest cluster size involved is at least 1, we can then
bound the operation cost by this max cluster size, giving our
result.

Lemma C.4. If T is ϵ-relatively balanced besides the final
layer of splits, then the subtrees rooted at all of the root’s
children in FairHC after tree folding are as well.

Proof of Lemma C.4. Tree folding only involves overlaying
the topology of isomorphic trees (ignoring their leaves).
Consider a non-root vertex v in FairHC after tree folding
that is also not a parent of leaves. It is the result of merging k
vertices v1, . . . , vk, and its left and right children l and r are
the result of merging l1, . . . , lk and r1, . . . , rk respectively.
Due to this:

nT ′(v) =
∑
i∈[k]

nT (vi)

nT ′(l) =
∑
i∈[k]

nT (li)

nT ′(r) =
∑
i∈[k]

nT (ri)

We also have, by relative balance, for any i ∈ [k]:

(1/2− ϵ)nT (vi) ≤ nT (li), nT (ri) ≤ (1/2 + ϵ)nT (vi)

A simple combination of these shows that:

(1/2− ϵ)nT (v) ≤ nT (l), nT (r) ≤ (1/2 + ϵ)nT (v)

This means the split from v to l and r is relatively balanced.
We can apply this to all such splits to find the entire new
subtree is relatively balanced.

Proof of Lemma 4.15. By Lemma 4.10, for any vertex v at
depth i ≥ log2 h, nT (v) ≥ (1/2 − ϵ)log2 hn. This can be
further simplified using that ϵ = 1/(c log n) and h ≤ n.

nT (v) ≥
1

2log2 h

(
1− 2

c log2 n

)log2 h

n ≥ e−2/cn/h

Obviously, the largest nT (u) for any u within our depth
bounds is n. Thus the level abstraction operation cost is at
most n/(e−2/cn/h) = e2/ch.

Proof of Lemma 4.16. That it acts on k trees is obvious. To
prove the operation cost, consider u, v in trees Ti and Tj

respectively where ϕi(u) = ϕj(v). Since we are using the
tree isomorphism between the trees, this means that u and v
have the same height in Ti and Tj respectively, which also
means that they had the same height in the original tree T ,
as the roots of Ti and Tj are both at height log2(h) in T .
Since u and v are on the same level i ≤ log1/2−ϵ(1/(2nϵ)),
Lemma 4.10 tells us:

nT (u)

nT (v)
≤ e4/(c(1−o(1))

Since this holds for all such pairs u and v, this also bounds
the tree folding operation cost. Note that when we do this
operator, the ϵ-relative balance is held by Lemma C.4. Thus,
this argument holds across all tree folds in the for loop.

Proof of Lemma 4.17. If an edge e = (u, v) is separated
by the level abstraction, that means u ∧ v is above depth
log2 h. Notice that we recurse on clusters at depth log2 h,
which means on any recursive instance here forward, e will
not be contained within the trees, so e cannot be separated.
Therefore, e can only be separated by one level abstraction.

Otherwise, notice that the depth of the last internal node is
log1/2−ϵ(1/(2nϵ)) by assumption. At each recursive step,
we reduce the depth by log2 h since we start at subtrees of
depth h in the previous tree. Therefore, there are at most
log1/2−ϵ(1/(2nϵ))/ log2 h levels of recursion. To simplify
this, we use similar methods to Lemma 4.16. which allows
us to bound the recursive depth by log2(n)/ log2(h).

At each level of recursion, since e is contained in only one
tree, it is only separated by λ tree folds. This means e may
only be separated by λ log2(n)/ log2(h) tree folds.

Lemma C.5. For an ϵ-relatively balanced hierarchy T ,
Algorithm 3 outputs a tree T ′ such that:

cost(T ′) ≤ e
4λ log2(n)

c(1−o(1)) log2 h
+ 2

c · hcost(T )

Proof of Lemma C.5. Lemmas 4.15, 4.16, and 4.17 tell us
an edge e must only be involved in at most 1 level abstraction
of operation cost at most e2/ch and λ log2(n)/ log2(h) tree
folds of operation cost at most e4/(c(1−o(1)) on k trees. By
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Lemmas B.3 and B.4, this will incur a total proportional
cost increase of:

costT ′(e)

costT (e)
≤ (e4/(c(1−o(1)))λ log2(n)/ log2(h) · e2/ch

Which, summed over all edges, is equivalent to the desired
result.

Lemma C.6. For an ϵ-relatively balanced hierarchy T over
ℓ(V ) = cℓn = O(n) vertices of each color ℓ ∈ [λ], FairHC
before recursion ensures that the clustering induced on each
depth-1 internal node v of the output tree T ′ each have
cℓ

e6/c
≤ ℓ(v)

leaves(v) ≤ cℓ · (e4/c/(kcℓ)+ e6/c) for each ℓ ∈ [λ].

Proof of Lemma C.6. We start by looking at one tree fold
operator. Assume the color we are trying to sort is red.
Consider the ordering of the vertices {vi}i∈[h] from Algo-
rithm 3, and let ri the number of red points from leaves(vi)
and R be the total number of red vertices.

Fix some i and let v′i be the root vertex of the resulting
subtree in the ith fold (i.e., the one all the subtrees are
mapped onto). We know the vertices involved in this were
vi+(j−1)k for all j ∈ [h/k]. Because of the ordering, we
know that:

ri+(j−1)k/nT (vi+(j−1)k) ≤ry+(j−2)k/nT (vy+(j−2)k),
(1)

ri+(j−1)k/nT (vi+(j−1)k) ≥ry+jk/nT (vy+(j−2)k) (2)

for all y ∈ [h/k] assuming j > 1 for (1) and j < k for
(2). Since these three vertices are at the same height, say h′

(with respect to T after rebalancing and before the algorithm
began), Lemma 4.10 gives us that:

nT (vi+(j−1)k)/nT (vy+(j−2)k) ≤
(1 + 2ϵ)log2 n

(1− 2ϵ)log2 n
,

nT (vi+(j−1)k)/nT (vy+jk) ≥
(1− 2ϵ)log2 n

(1 + 2ϵ)log2 n

Combining these with the previous inequalities yield:

ri+(j−1)k ≤
(1 + 2ϵ)log2 n

(1− 2ϵ)log2 n
ry+(j−2)k,

ri+(j−1)k ≥
(1− 2ϵ)log2 n

(1 + 2ϵ)log2 n
ry+jk

for all y ∈ [h/k]. Since ϵ = 1/(c log2 n), this bound can be
further simplified to:

e−4/cry+jk ≤ ri+(j−1)k ≤e4/cry+(j−2)k

Since these hold for all y, we can say that:

k

h
e−4/c

∑
y∈[h/k]

ry+jk ≤ ri+(j−1)k ≤
k

h
e4/c

∑
y∈[h/k]

ry+(j−2)k

Another way to think of this is partitioning the vertices (in
order) into contiguous chunks of size h/k. Then vi+(j−1)k

is the ith vertex in the jth chunk, and we know it has a
lower of fraction of red points than clusters in the previous
((j − 2)th) chunk and a higher fraction than clusters in the
next (jth) chunk.

Now let Rj−1 be the number of reds in the entire jth chunk
(i.e., Rj−1 =

∑
y∈[h/k] ry+(j−1)k) Additionally, we can

make a comparison between the reds in all chunks and R,
namely,

∑
j∈[k] Rj−1 = R.

Putting our two previous results together, for our fixed i:

∑
j∈[k]

ri+(j−1)k ≤ri +
k

h
e4/c

∑
j∈[k]

Rj−1

=ri +
k

h
e4/cR,∑

j∈[k]

ri+(j−1)k ≥rh−h/k+i +
k

h
e−4/c

∑
j∈[k]

Rj−1

=
k

h
e−4/cR

Notice that if everything were perfectly balanced, k
hR is

exactly the number of reds we would want in leaves(v′i). We
now must bound ri. Unfortunately, it could be an entirely
red cluster, so this is only bounded by the size of the cluster
at depth log2 h, which we get from Lemma 4.10.

ri ≤nT (vi)

≤(1/2 + ϵ)log2 hn

=2− log2 h(1 + 2ϵ)log2 hn

≤e2/cn/h

Note the final inequality comes from the fact that h ≤ n
and ϵ = 1/(c log n). Now note that we are given R = cRn
for some cR = O(1). We can sub this in.
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ri ≤ e2/cR/(cRh)

Now, notice we are actually looking for the fraction of
red points in the cluster. Since Lemma 4.10 gives us
that nT ′(v′i) ≥ k(1 − 2ϵ)log2 hn/h ≥ ke−2/cn/h and
nT ′(v′i) ≤ k(1 + 2ϵ)log2 hn/h ≤ ke2/cn/h (applying the
same logic as the upper bound to nT (vi), k times), we get:

∑
j∈[k] ri+jk

nT ′(v′i)
≤
e2/cR/(cRh) +

k
he

4/cR

ke−2/c(n/h)

=
R

n
·
(
e4/c/cR

k
+ e6/c

)
,∑

j∈[k] ri+jk

nT ′(v′i)
≥

k
he

−4/cR

ke2/c(n/h)

=
R

n
· 1

e6/c

This completes the proof for one tree fold under the obser-
vation that R

n = cℓ if red is ℓ. The same (if not stronger)
bounds hold for all subsequent λ tree folds for each color.
Note that as we proceed, this bound will not be disrupted
since merging two clusters that guarantees the same upper
bound on the fraction of red points still guarantees the same
bound.

Proof of Lemma 4.18. Clearly, the most imbalanced clus-
ters in this process will be the clusters in the final level of
the hierarchy. By Lemma C.6, when we recurse, we have at
most an cℓ

e6/c
≤ ℓ(v)

leaves(v) ≤ cℓ · (e4/c/(kcℓ)+ e6/c) fraction
of vertices of color ℓ for each ℓ ∈ [λ]. Clearly, after at
most log2 n/ log2 h = logh n recursive levels guaranteed
by Lemma 4.17, our bound becomes:

cℓ
e6t logh n/c

≤ ℓ(v)

leaves(v)
≤ cℓ · (e4/c/(kcℓ) + e6/c)logh n.

Proof of Theorem 4.14. Let T ∗ be the optimal tree, let T1

be our input tree which is a ce4/(c(1−o(1)) log2 n ·
9γ
4ϵ ap-

proximation guaranteed by Theorem 4.9 but using t =
log1/2−ϵ(1/(2nϵ)) (this was shown more explicitly in
Lemma C.3), and let T ′ be our output. By Lemma 4.18, T ′

satisfies our fairness constraints. By Lemmas 4.15, 4.16,
and 4.17, every edge is separated by at most 1 level abstrac-
tion of max operation cost e2/cn/h and log2(n)/ log2(h)
tree folds of operation cost at most e4/(c(1−o(1)) on k sub-
trees. Lemma C.5 immediately tells us:

cost(T ′) ≤ e
4λ log2 n

c(1−o(1)) log2 h
+ 2

c · hcost(T1)

Combining this with the approximation guaranteed by T1:

cost(T ′)

≤ e
4λ log2 n

c(1−o(1)) log2 h
+ 2

c · hce4/(c(1−o(1)) log2 n ·
9γ

4ϵ
cost(T ∗)

Simplifying and plugging in h = nδ, ϵ = 1/(c log2 n)
yields the desired result.

D. Runtime
Here we analyze the runtime of our four algorithms. Recall
that before each of these algorithms, we run a black-box
cost-approximate hierarchical clustering algorithm as well
as all previous algorithms. For simplicity, here we will
present the contribution of each algorithm to the runtime.

Theorem 4.1: This algorithm starts at the root, traverses
down one side of the tree until a certain sized cluster is
found, and then applies a tree rebalance. It then recurses
on each child. The length of traversal is bounded by O(n),
and a single tree rebalance operation requires some simple
constant-time pointer operations. As this is run from each
vertex in the tree, the total runtime is O(n2).

Theorem 4.5: As in the previous algorithm, here we do
a computation at each of the O(n) nodes in the tree. At
each node, we apply subtree search until the desired balance
is achieved. If δ is the current balance, we reduce this
to at most 2δ/3 at each step. Thus, this will require a
total of O(log(1/ϵ)) steps to complete. Each subtree search
operation requires two, O(n)-length traversals to find the
place to insert and delete. Otherwise, it is constant-time
pointer math. Thus, the algorithm runs in O(n2 log(1/ϵ))
time.

Theorem 4.9: This algorithm is quite, simple, as we are
simply deleting some set of low nodes in the tree. Thus it
only requires O(n) time.

Theorem 4.14: Again, we execute a computation for at
most O(n) nodes in the tree. By a similar logic as before,
tree abstraction steps require O(n) time. It is not too hard
to see that computing the fraction of red and blue vertices in
each considered cluster and then sorting them accordingly
also requires O(n) time. Finally, we fold the vertices on
top of each other. The isomorphism used for folding can
be found by simply indexing the vertices in each subtree,
and then applied quite directly, which also takes O(n) time.
Thus this requires only O(n2) time.

Therefore, the entire final algorithm (without the blackbox
step) is bounded by the computation time from Theorem 4.5,
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which is O(n2 log(1/ϵ)). Intuitively, ϵ is bounded by ϵ >
1/n, thus this becomes O(n2 log n).

E. Additional Experiments
We here provide the figures and results omitted from the
main text due to space constraints.

E.1. Bank Data

We begin with the supplementary figure that complements
Figure 5 in the final section. This figure depicts the fairness
of each clusterin the hierarchy constructed by Algorithm 3
on the Bank data. We see an equivalent concentration about
the true balance ratio of 1:3.

Figure 6: Histogram of cluster balances after tree manip-
ulation by Algorithm 3. The left plot depicts the balances
after applying the average- linkage algorithm and the right
shows the result of applying our algorithm. The vertical red
line indicates the balance of the dataset. Parameters were
set to c = 4, δ = 3

8 , k = 4 for the above clustering result.

E.2. Fairness Results for Parameter Sweep

We additionally provide the fairness results presented in
Figure 5 for the other parameter sets plotted in Figure 4 for
completeness.

Figure 7: Parameters set to c = 1, k = 8, δ = 3
8 .

Figure 8: Parameters set to c = 2, k = 8, δ = 3
8 .

Figure 9: Parameters set to c = 4, k = 8, δ = 3
8 .

Figure 10: Parameters set to c = 8, k = 8, δ = 3
8 .

Figure 11: Parameters set to c = 16, k = 8, δ = 3
8 .

Figure 12: Parameters set to c = 4, k = 4, δ = 7
8 .

Figure 13: Parameters set to c = 4, k = 8, δ = 7
8 .
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Figure 14: Parameters set to c = 4, k = 16, δ = 7
8 .

Figure 15: Parameters set to c = 4, k = 4, δ = 3
8 .

Figure 16: Parameters set to c = 4, k = 4, δ = 4
8 .

Figure 17: Parameters set to c = 4, k = 4, δ = 5
8 .

Figure 18: Parameters set to c = 4, k = 4, δ = 6
8 .

Figure 19: Parameters set to c = 4, k = 4, δ = 7
8 .
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F. Further Experimentation (Rebuttal Draft)
We here present further experimental results on a higher-dimensional data sample as compared to the main text. We first
present the histogram of cluster balances after application of the average linkage algorithm for n = 1024 samples.

Figure 20: Average linkage balances for n = 1024 samples

We now proceed to apply our fair hierarchical clustering algorithm (Algorithm 3) on the constructed base cluster tree from
average linkage resulted from the above. The algorithm was run with a wide variety of parameter tuples (c, h, k) where,
as noted in the text, h = nδ. To further reiterate: the parameter c is used to define the ε cluster balance, h the number of
clusters and k the number of trees folded in the rebalance procedure.

Figure 21: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (1, 4, 2).

G. Runtime and Cost Experiments
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Figure 22: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (1, 8, 2).

Figure 23: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (1, 16, 2).

Figure 24: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (2, 4, 2).
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Figure 25: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (2, 8, 2).

Figure 26: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (2, 16, 2).

Figure 27: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (4, 4, 2).
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Figure 28: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (4, 8, 2).

Figure 29: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (4, 16, 2).

Figure 30: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (8, 4, 2).
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Figure 31: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (8, 8, 2).

Figure 32: Result of running Algorithm 3 on n = 1024 samples with parameter tuple (c, h, k) = (8, 16, 2).

c h k Runtime (s) Cost
1 4 2 1.483 129.916
1 8 2 1.351 164.475
1 16 2 1.314 201.268
2 4 2 1.535 146.919
2 8 2 1.351 149.92
2 16 2 1.313 208.099
4 4 2 1.534 150.02
4 8 2 1.353 156.071
4 16 2 1.305 224.063
8 4 2 1.454 136.179
8 8 2 1.302 225.995
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