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Abstract

Despite tremendous successes of large language models (LLMs), their internal neural repre-
sentations remain opaque. Here we characterize the geometric properties of language model
representations and their impact on few-shot classification of concept categories. Our work
builds on Sorscher et al. (2022)’s theory, previously used to study neural representations
in the vision domain. We apply this theory to embeddings obtained at various layers of a
pre-trained LLM. We mainly focus on LLaMa-3-8B, while also confirming their applicabil-
ity to OpenAI’s text-embedding-3-large. Our study reveals geometric properties and their
variations across layers that are unique to language models, and provides insights into their
implications for understanding concept representation in LLMs.

1. Introduction and Methodological Background

Large language models (LLMs) have recently demonstrated impressive capabilities in ma-
nipulating human language (Brown et al., 2020). Elucidating how they internally represent
various linguistic concepts is one of the central questions to understanding their mechanisms.

A recent study by Sorscher et al. (2022) proposed a geometric theory of few-shot learning
and applied it to the visual domain, demonstrating that the performance of prototype-based
classifiers can be predicted by four key geometric properties of concept manifolds in the
representational space of neural networks trained for image classification.

Here we apply this theory to study concept representations in LLMs. By analyzing the
geometry of concept embeddings and its implications for few-shot category classification
performance, we aim to provide a theoretical foundation for understanding geometrical
representations of concepts in language models.

Method. Our work builds on Sorscher et al. (2022)’s theory of representational geometry
of concepts, which states that few-shot learning performance of the prototype-based clas-
sifier is governed by four simple and readily measurable geometric quantities. Given two
concepts (a, b), with m example representations of dimension N for each concept, their the-
ory predicts that the average classification error of a test example of concept a is given by
Ea = H(SNRa), where H(·) is the tail function of the standard Gaussian distribution. The
quantity SNRa is the signal-to-noise ratio (SNR) for concept manifold a, whose dominant
terms are given by:
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N ) are principal axes, and (Ra,1, . . . , Ra,N ) are the corresponding radii. We refer

to Sorscher et al. (2022) for further technical details and derivations (note that equations
in their main text contain several typos).

Both the SNR and generalization error for few-shot learning is governed by the following
key quantities.
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along which the concept manifold varies significantly (called “participation ratio”).

• Signal-noise overlap: ∥(xa
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0)Ua∥2 and ∥(xa
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0)Ub∥2 represents the overlap be-
tween the signal direction and the manifold axes of variation.

In our study, the “representations” are obtained by embedding sentences representing
the corresponding concept using a large language model. We provide further details in the
following section.

2. Experimental Results

Basic Settings. Here we describe how we apply the theory above to a language model.
We conduct our main experiments using LLaMa-3-8b (Touvron et al., 2023), which is a
32-layer auto-regressive model with the embedding dimension of N = 4096.

We first define “concepts” by curating a set of 25 categories (e.g., ‘plants’ and ‘bever-
ages’) and use GPT-4 (Achiam et al., 2023) to generate 200 representative sentences for
each category (e.g., ‘The poppy flowers sway in the breeze with their delicate petals.’ for
the category ‘plants’). Further details can be found in Appendix A.1.

Each example representation of the concept is obtained by feeding one of these sentences
to the language model; we first extract token embeddings from all the positions at the given
layer (at the output of the feedforward block; Vaswani et al. (2017)), and then average
them to obtain a single vector. The resulting collection of sentence embeddings for a given
category forms what we call a “concept manifold”.

Few-shot Concept Classification. For pair-wise classification, we employ the simple
prototype learning rule as in Sorscher et al. (2022), i.e., we compute the mean of the training
examples (called prototypes), and a test sentence is classified by comparing the distance of
its embedding to each prototype and assigning it to the nearest one.

Here we apply this method to LLaMa-3-8b (Touvron et al., 2023). Our experiments on
25 categories show that prototype learning achieves an average test accuracy of 98.6% using
the top-layer representations, using only m = 5 training examples per concept. Notably,
the method achieves an average test accuracy of 92.6% using the input layer representation,
suggesting that even early representations contain substantial information about the con-
cepts they encode. This contrasts with results in the visual domain, where representations
at the input layer are much less representative of the abstract concept.
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(a) All manifold pairings (b) Focus on ‘Jewelry’ manifold

Figure 1: Few-shot Concept Classification Error vs SNR

Error Prediction by the Geometric Theory. Here we confirm that the empirical
classification errors show strong agreement with the theory. The corresponding results are
shown in Figure 1. Figure 1(a) displays the generalization error as a function of SNR for all
concept pairs, at the input and top layers. Each point represents the average generalization
error of one pair of concepts. In Figure 1(b), we focus on the generalization error for one
category, ‘Jewelry’, against all others, at the top layer. We find that discriminating ‘jewelry’
concept from ‘clothing’ is easier than from ‘food’, which is intuitive. Analogous figures for
more concept categories can be found in Appendix A.2. In Appendix A.3, we provide
ablation studies on the effect of number of training examples and total samples.

Analyzing Representations across Layers. Given the observed increase in SNR (and
respective reduction in prediction error) from the input to the top layer, it might be expected
that these trends would exhibit monotonic behavior across intermediary layers. However,
our analysis reveals a more complex pattern: SNR initially decreases in the intermediate
layers before rising sharply, while error undergoes an initial surge before subsequently drop-
ping (Fig. 2(a), “Original”). To investigate this non-monotonic behavior, we examine each
underlying geometrical component of the data manifolds (Fig. 3).

Our findings indicate a marked reduction in dimensionality (Fig. 3(a), “Original”)
within the initial layers, followed by a significant expansion in the final layers. This shift in
dimensionality provides insight into the observed fluctuations in SNR and error. To explain
this effect, we explore the correlation between sentence length—a very generic property of
language data—and the principal component scores, focusing on the component associated
with the largest eigenvalue of the entire dataset. We identified a significant Pearson correla-
tion score of over 0.97 in the intermediate layers, suggesting that sentence length is a major
factor contributing to the variance in these layers. We observed a smaller correlation of 0.35
at the input layer and 0.62 at the top layer (Figure 8 in the appendix). To mitigate the
impact of sentence length, we generate adjusted embeddings by subtracting the projection
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(a) SNR (b) Error

Figure 2: SNR and Error as a function of depth/layer

(a) Dimension (b) Signal (c) Overlap (d) Bias

Figure 3: Geometrical quantities as a function of depth. Before (‘Original’) and after (‘Up-
dated’) substraction of the first principal component (Sec. 2).

of the original embeddings onto the primary principal component. With these adjusted
embeddings, we see a much smaller reduction in dimensionality (Figure 3(a), ‘Updated’).
Note that changes in SNR and error across layers are still not monotonic (Figure 2(a));
finding an explanation for this trend requires further exploration.

Analysis using another model. We also conducted similar analysis using OpenAI’s
text-embedding-3-large (OpenAI, 2024). Results can be found in Appendix A.4.

3. Conclusion

We studied neural representations of concepts in large language models using tools from the
geometrical manifold theory of Sorscher et al. (2022). We demonstrated that this theory
accurately predicts classification errors of a prototype-based classifier based on sentence
embeddings from a pre-trained language model, and we characterized representations in
different layers through key geometrical quantities provided by the theory. We hope to
extend this study to classification of “novel” linguistic concepts using LLMs in future work.
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Appendix A. Extra Experimental Details and Results

A.1. List of concepts

The full list of 25 concepts used in our study is: animals, furniture, food, sports, cloth-
ing, professions, plants, electronics, jewelry, transportation, music, beverages, literature,
countries, buildings, work tools, body parts, games, weather, mythical creatures, natural
phenomena, historical events, celestial bodies, art movements, and culinary techniques.

Representative sentences about a specific category were generated by using GPT-4 with
the following prompt: “Write 200 varied sentences about [category] (either about a specific
example of [category] or about [category] in general, but do not use the word [category]).
Make these normal, simple sentences that can easily classified to be about [category]”.

These initial sets of 200 sentences were refined to 170 sentences per category, by ensuring
no sentence repetition and removing any sentences that were ambiguous or could reasonably
belong to multiple categories. In the current work, we did this process manually to ensure
the data quality; however, in future work, we expect this could be automated by using some
large language model too.

An illustration for these manifolds are presented in Figure 4.

Figure 4: An illustration of a concept manifold

A.2. Error vs SNR plots for more concepts

In Figure 5, we show plots displaying error vs SNR for two more concepts.

A.3. Effect of number of training examples and total samples

Here we present the effect of changing the number of sentences used as a few training samples
and the total number of sentences from which they are sampled. We find that increasing
the total sample size P does not significantly alter the signal; with error, bias, and overlap
following similar patterns (Figure 6). However, the dimensionality of the embedding space
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exhibits a monotonic increase with P (Fig 6(b)). Based on these findings, we use all P = 170,
which appears near the inflection point where dimensionality begins to level off.

As the number of training examples m increases, the estimated prototypes converge
more closely to the true centroids of the underlying manifold. However, even with precise
centroid estimation, the inherent signal-to-noise ratio remains non-negligible, leading to
a generalization error that asymptotically approaches a finite value rather than vanishing
entirely. This behavior aligns well with the empirical results presented in Figure 6(c). For
all the few-shot classification experiments, we use m = 5.

A.4. Results for the OpenAI Embedding Model

We selected the LLaMa-3-8b model for the main study due to its widespread adoption and
open-source availability. As it is an autoregressive language model, it is not specifically
optimized to generate “sentence embeddings” in the same manner as models such as BERT
(Devlin et al., 2019) or other dedicated embedding models. To account for this limitation, we
also compared the performance of LLaMa-generated embeddings with those from OpenAI’s
text-embedding-3-large model (OpenAI, 2024). Both models were used to encode identical
sentences across the same categories, followed by an evaluation in the few-shot classification
setting. Interestingly, the embeddings produced by OpenAI’s model did not exhibit a
substantial performance improvement over those generated by LLaMa (Fig. 7); both mean
error and mean SNR were found to be smaller for OpenAI’s model embeddings.

A.5. Exploring alternative embedding/manifold construction methods

In the main text, we defined the sentence embedding by averaging token embeddings across
all positions in the sentence. This is a reasonable yet somewhat arbitrary choice. For the
sake of completeness, here we present two additional methods for constructing embeddings
(and therefore the manifolds), which we studied in our preliminary experiments. Our sole
goal is to show their qualitative trends (they differ in too many details to be compared side
by side).

Next Token Manifold (NTM). The Next Token Manifold is built from categories
from six categories: dog, apple, painting, soccer, earring, fork. Each category is made up of
sentences that are incomplete, ending just before the category word (e.g., He always keeps
a leash for his). The categories and sentences are distinct from those used to define the
concept manifolds in the main text. The embedding of the last token is used to represent the
sentence. The corresponding results are shown in Figures 9(a) and 10. The NTM displays
a distinct geometry, characterized by a nearly monotonic decrease in error and a monotonic
increase in SNR, aligning closely with trends observed in the vision domain (Sorscher et al.,
2022).

Masked Average Manifold (MAM). The Masked Average Manifold uses the same
categories as NTM but in sentences for MAM, the category word is masked (e.g., The loyal
[MASK] wagged its tail.), and embeddings are averaged across all tokens. The results are
shown in Figures 9(b) and 11. The MAM setting exhibits significantly lower top-layer SNR
and higher error compared to both the NTM and “category manifold” (used in main text)
settings, with similar non-monotonic changes in geometry across layers as the category
manifold setting, suggesting that token averaging may cause this effect.
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(a) ‘Games’ manifold (b) ‘Beverages’ manifold

Figure 5: Generalization Error vs SNR for ‘Games’ and ‘Beverages’ manifolds

(a) Signal vs P (b) Dimension vs P (c) Error vs m

(d) Error vs P (e) Bias vs P (f ) Overlap vs m

Figure 6: Effect of number of total number of sentences P and training examples m used
for few-shot classification on the geometrical quantities (see Sec. A.3).
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Figure 7: Error vs SNR comparing LLaMa (top layer) and OpenAI embeddings

Figure 8: Pearson correlation scores between sentence length and the dominant principal
component as a function of depth/layer
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(a) Next Token Manifold (b) Masked Average Manifold

Figure 9: Generalization Error vs SNR using alternative manifold construction methods
(Appendix A.5)
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(a) Error vs Depth (b) SNR vs Depth

(c) Dimension vs Depth (d) Signal vs Depth

(e) Bias vs Depth (f ) Overlap vs Depth

Figure 10: Next Token Manifold: Geometrical quantities as a function of depth
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(a) Error vs Depth (b) SNR vs Depth

(c) Dimension vs Depth (d) Signal vs Depth

(e) Bias vs Depth (f ) Overlap vs Depth

Figure 11: Masked Average Manifold: Geometrical quantities as a function of depth
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