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Abstract

Stochastic optimal control methods often struggle in complex non-convex land-
scapes, frequently becoming trapped in local optima due to their inability to learn
from historical trajectory data. This paper introduces Memory-Augmented Po-
tential Field Theory, a unified mathematical framework that integrates historical
experience into stochastic optimal control. Our approach dynamically constructs
memory-based potential fields that identify and encode key topological features of
the state space, enabling controllers to automatically learn from past experiences
and adapt their optimization strategy. We provide a theoretical analysis showing
that memory-augmented potential fields possess non-convex escape properties,
asymptotic convergence characteristics, and computational efficiency. We imple-
ment this theoretical framework in a Memory-Augmented Model Predictive Path
Integral (MPPI) controller that demonstrates significantly improved performance
in challenging non-convex environments. The framework represents a general-
izable approach to experience-based learning within control systems (especially
robotic dynamics), enhancing their ability to navigate complex state spaces without
requiring specialized domain knowledge or extensive offline training.

1 Introduction

Stochastic optimal control has proven highly effective for handling nonlinear systems and uncertain
environments, finding widespread application in robotics, reinforcement learning, and complex
system control. Among these approaches, Model Predictive Path Integral (MPPI) control stands out
for its ability to handle continuous state-action spaces through stochastic sampling and exponentially
weighted averaging. However, these methods still face significant theoretical and practical challenges
when confronting highly non-convex value function landscapes.

From an optimization perspective, stochastic optimal control problems can be viewed as trajectory
optimization over a value function landscape. When this landscape exhibits complex non-convex
characteristics, optimization processes may become trapped in local optima, unable to reach global
solutions. While introducing noise sampling (as in MPPI’s random perturbations) can somewhat
mitigate this issue, significantly non-convex features often lead to inefficient sampling or control
instability when noise is simply increased.

From a dynamical systems perspective, non-convex value functions correspond to systems with
multiple attractors and unstable equilibrium points. Control algorithms need to identify these features
and, when necessary, guide the system across energy barriers to escape suboptimal attractor regions.
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Traditional stochastic control methods have limited capabilities in this regard, as they lack awareness
and memory of the state space’s topological structure.

Traditional stochastic optimal controllers lack memory—operating solely on current states without
learning from past trajectories. This design means controllers might repeatedly fall into the same
suboptimal regions, failing to extract experience from previous "failures." In contrast, advanced
cognitive systems (like humans) dynamically adjust decision strategies based on prior experience
when exploring complex environments.

This paper addresses a fundamental question: How can we integrate ''memory'' mechanisms into
stochastic optimal control frameworks, enabling controllers to automatically learn state space
topological features from historical trajectories and adjust optimization strategies accordingly?
We introduce Memory-Augmented Potential Field Theory, integrating historical state experience into
stochastic optimal control through dynamic potential fields that automatically identify and encode
topological features of the state space during execution. These fields act as correction terms to reshape
the value function landscape, enabling adaptive navigation of non-convex optimization problems. We
provide a theoretical analysis showing that, under standard assumptions, memory-augmented potential
fields admit (i) high-probability escape from local minima, (ii) asymptotic convergence guarantees,
and (iii) low additional computational overhead. Our framework provides: 1) automatic detection and
encoding of problematic regions like local minima and low-gradient areas, 2) dynamic reshaping of
value functions for efficient escape from suboptimal attractors, 3) convergence to a neighborhood of
the global optimum with high probability under stated assumptions, and 4) significant performance
improvements in complex control tasks without requiring extensive offline training.

Our approach uniquely integrates memory mechanisms with dynamical systems theory and stochastic
optimal control, analyzing memory’s impact on non-convex optimization topologically. Beyond sim-
ply storing experiences, our method automatically identifies key state space features and dynamically
reshapes value function landscapes, enabling "meta-optimization" capabilities under fixed-budget
online control settings where each method receives the same number of environment interactions. The
code has been anonymized and is available at https://github. com/ContinuumCoder/MAPFT_
MPPI.

—_—
Standard MPPI Memory Module MA-MPPI

Feature Detection

Potential Field

Figure 1: MA-MPPI framework flowchart showing the integration of memory modules with standard
MPPI. The pipeline augments stochastic control with experience-based potential fields that enable
navigation through complex non-convex environments and escape from local minima.

2 Related Work

Stochastic optimal control and path integral methods form our foundation. Path Integral Control
approximates Hamilton-Jacobi-Bellman equations through Monte Carlo sampling. Williams et al. [22]]
developed Model Predictive Path Integral (MPPI) control, combining path integral techniques with
model predictive control. Theodorou et al. [20] analyzed this approach from an information geometry
perspective, connecting it to relative entropy optimization. While effective for handling nonlinearities,
these methods struggle with highly non-convex value functions. Recent MPPI variants that address
non-convexity include LOG-MPPI [14] and DRPA-MPPI [4], which improve exploration or add
reactive repulsion without persistent memory; our approach is complementary by learning persistent
topological features over time. Covariance and temperature design for sampling-based MPC/MPPI
has also been studied [24} 23]]; our temperature modulation induces an equivalent covariance scaling
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within the path integral weighting. Extensions to constrained and smooth variants [1,[10] focus on
trajectory quality rather than topological learning.

Non-convex optimization approaches include simulated annealing, stochastic gradient Langevin
dynamics, and entropy regularization. Zhang et al. [25]] studied energy landscapes and critical paths
in non-convex problems. Jin et al. [9] proved noisy gradient methods can escape strict saddle points
in polynomial time. These foundations rarely incorporate learning from historical trajectories to
improve subsequent optimization.

Dynamical systems and potential field methods frame control as designing vector fields guiding
system states toward convergence. Koditschek and Rimon [11] pioneered navigation function
topological properties, proving conditions for globally asymptotically stable control laws. Traditional
potential fields, while theoretically elegant, typically rely on fixed potential forms lacking adaptivity,
unlike our experience-based approach.

Memory-augmented learning has expanded in reinforcement learning through Experience Replay
for improving sample efficiency. Pritzel et al. [[1/] proposed Neural Episodic Control, accelerating
learning by remembering previously visited states. In control theory, Heess et al. [7] explored memory-
augmented controllers for partially observable environments, but few works analyze memory’s impact
from dynamical systems perspectives.

3 Memory-Augmented Potential Field Theory

3.1 Formulation of Stochastic Optimal Control

Consider a discrete-time stochastic dynamical system:

i1 = f(oe,ue) + &, € ~N(0,%) (D
where x; € R" is the system state, u; € R™ is the control input, and 3 € R™*" is the noise
covariance matrix. The objective is to find a control sequence u = {ug, u1, . .., ur_1 } that minimizes

the expected cumulative cost:

J(u)=E

T-1
Z c(xy, ug) + CT(xT)] (2)
t=0

where ¢ : R™ x R™ — R is the immediate cost and ¢ : R™ — R is the terminal cost.

Through the path integral control framework, the optimal control can be expressed as:

uf = / we()p(r|ze)dr 3)
T

where 7 € T represents a trajectory sequence starting from x;, and p(7|x) is the trajectory probability
distribution:

rlen) = g e (=350 @

with S(7) representing the total trajectory cost, A > 0 controlling exploration-exploitation tradeoff,
and Z(z;) = [ exp (—55(7)) dr as the normalization constant.

3.2 Memory-Augmented Potential Field Framework

Our framework extends the standard value function with a memory-dependent term:

Ve, M) = a(x, M) Vosse(z) + (1 — a(x, M)) - Viem(x, M) 5)



where M represents memory of topological features,
Vhase : R™ — R is the original task objective, Vipem : R™ X

M — R incorporates historical information, and a: R™ x B N
M — [0, 1] balances these components based on proxim- /\/\/\/\
ity to memorized features. st

The memory M consists of elements representing topo-
logical features:

Original Value Function

Memory-Augmented Value Function

M = {(mi, iy iy iy di) | 4= 1,2, | M|} (6) o o

where m; € R" is the feature position, r; € RT is /\/\—/\/\

the influence radius, ; € R™ is the feature strength,
k; € {1,2,3} identifies feature type (local minima, low-

gradient region, or high-curvature region), and d; € R" T g o e st ot

provides a direction vector for applicable features. Memory Ptenial Field reabetween orina and ansimed fncions)

The memory evolves during execution through an update ~ ° =" = "™

function U: Figure 2: Original vs. memory-
My =UMy, 2, &) (7)  augmented value functions.

where &; contains the topological features extracted from state z; and context.

The memory potential field is constructed as:
| M|
Vmem(va) :ZVi'qs(xamiaTiaK/hdi) (8)
i=1

where ¢ is a basis potential function tailored to each feature type. Detailed potential construction
methods are in Appendix

As Figure 2] shows, our approach transforms the original value function into a memory-augmented
one and creates smooth optimization paths (blue trajectory).

3.3 Theoretical Properties

We establish several key theoretical properties that guarantee the effectiveness of memory-augmented
potential fields in non-convex control problems.
Theorem 3.1 (Non-convex Escape Property). Let B(m;,r;) = {z € R" : ||l — my|| < r;} be
a local minimum region recorded in memory M. If v; > 1) - SUD,c B(m, i) |V Voase ()| for some
constant 1 > 0, then for any confidence level 0 < § < 1, there exists a finite time Tyscqpe(6) < 00
such that

P(Ht < /Tescape(a) C Tt ¢ B(miyri) | To € B(msz» > 1-9¢ (9)

This theorem guarantees that with sufficiently strong memory features, the system can escape local
minima in finite time with high probability. The memory potential creates an "outward push" that
overcomes the "inward pull" of the base value function.

Theorem 3.2 (Asymptotic Convergence Property). Let z* = arg mingern Viase () be the global
optimum of the base value function. Assume Vi, is coercive and satisfies: hmH || =00 Viase() = 00.
For any € > 0 and confidence level 0 < § < 1, there exists a finite time T,p,(€,) < 00 such that

P< inf |lzy — 2 <e> >1-9 (10)

t2>Teom (€,0)

Despite altering the value function landscape, memory augmentation preserves convergence to the
global optimum because memory effects primarily impact identified problematic regions while
maintaining the original behavior elsewhere.

Theorem 3.3 (Adaptive Learning Efficiency). Let £ = {L1, Lo, ..., Lx } denote K independent
local minimum regions in the state space. Let Tya-pppr and Typpr be the expected times for MA-MPPI
and standard MPPI to reach the global optimum. Then:

Tuppr > QUK) - Tua-mprr (11
where Q(K) denotes a lower bound that grows at least linearly with K.



This theorem shows that memory augmentation efficiency increases with the number of local minima,
as our method avoids revisiting known problematic regions while standard approaches repeatedly
encounter the same traps. Our approach connects to Morse theory [L1]] by dynamically modifying
value function Morse indices, transforming local minima into saddle points while preserving global
optimum attraction. Complete proofs for the above theorems are provided in Appendix [C]

4 An Extension: Memory-Augmented Predictive Path Integral Method

The MPPI control, as a sampling-based MPC variant, evolves into our Memory-Augmented MPPI
controller, a practical implementation addressing traditional MPPI’s susceptibility to local optima
in non-convex environments. This section details MA-MPPI’s design, components, and workflow,
showcasing the theory’s transformation into effective control technology.

4.1 System Architecture and Algorithm

MA-MPPI comprises four functional modules: 1) an MPPI control core implementing sampling-
based optimization, 2) a topological feature detector identifying critical features from trajectory data,
3) a memory representation that stores and evolves spatial information, and 4) an adaptive potential
field synthesizer that modifies the value function based on memory.

Potential Phase Change During Navigation

The workflow begins with state observation
followed by feature detection through trajec-
tory analysis. The controller then updates its
memory representation My, storing location,
radius, strength, and type information for each
significant feature according to the update rule
M, = U(Mu T, ft)

As shown in Figure 3] the system automatically
transitions between normal navigation and es-
cape behavior when detecting stuck situations.
The top plot illustrates how different poten-
tial components (goal, memory, trap) combine
into the total potential, while the bottom plot
demonstrates the adaptation of control weights
during execution. During stagnation periods
(highlighted in pink), goal weight decreases
while memory and trap weights increase, en-
abling escape from local minima without ex-
ternal intervention.

400

Stuck State
Stuck State

Potential Value

Control Weight Adaptation

Weight Value

60
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Figure 3: Potential components and control weights
during MA-MPPI execution, showing automatic
phase transitions in response to detected stagnation
(pink regions).

Using the updated memory, MA-MPPI synthesizes an enhanced value function:

V(x, My) = oz, M) Voase () + (1 — az, My)) Vinem (@, M) (12)
where «(x, M;) balances the influence between base objective and memory-derived potentials. The
controller also adjusts the sampling temperature:

>\($t7Mt) = )\0(1 +7](1 —Oé(l't,Mt))) (13)

This temperature increase is equivalent to a proportional inflation of sampling covariance ¥.,,, yielding
broader perturbations in memorized regions.

The algorithm then executes standard MPPI: generating control signals, simulating trajectories,
evaluating costs, and determining the optimal control through weighted averaging:

K ep(-£5()

*
=2

= Y exp(—£5(r1))

The computational complexity remains O(K - H - n + |M;|), with memory operations typically
representing minimal overhead as |M;| < K - H - n. Detailed algorithmic implementations are
provided in Appendix [E]

uf (14)



4.2 Topological Feature Detection

Topological feature detection allows MA-MPPI to identify and remember critical structures that im-
pact optimization. The system recognizes three feature types that correspond to different optimization
challenges: local minima where controllers become trapped, low-gradient regions where progress
slows, and high-curvature regions requiring precise navigation.

Detection employs a trio of complementary mech-
anisms: state stagnation analysis, gradient exam-
ination, and curvature assessment, which collec-
tively map challenging regions in the optimization
landscape, while continuously refining detected fea-
tures through a balanced process of incorporation
(when encountering problematic regions), consoli-
dation (merging similar features for representational
compactness), and dynamic importance adjustment
(based on encounter frequency). This comprehen-
sive topological mapping enables the controller to
anticipate obstacles that typically confound tradi-
tional approaches, while ensuring computational
efficiency and focusing memory resources on per-
sistently challenging areas.

In practice, thresholds are initialized by scaling with
state statistics (Oyar ~ 0.01 - Var(x), Ograq as the 10—
20th percentile of ||V V|| observed in warm-up
rollouts, 6., via Hessian condition-number per-
centile), and then tuned within +-25% without ma-
terial performance change (see Sec. J).

Topological Feature Detection

¥ Position

Figure 4: Topological feature map showing de-
tected navigational challenges.

In Figure [4 contour lines represent the potential landscape, blue circles indicate obstacles, red
outlines show local minima, and arrows depict the gradient field. This figure illustrates the system’s
environmental mapping capabilities, identifying regions where traditional navigation would fail. By
recognizing convergent gradient patterns forming "valleys" and narrow passageways in the potential
contours, the controller builds an increasingly accurate model of the environment’s challenging
characteristics with continued operation.

This topological knowledge enables MA-MPPI to anticipate difficulties before encountering them,
adaptively modifying both the value function landscape and sampling strategy to navigate complex
environments more effectively. The technical details of detection mechanisms, feature classification,
consolidation algorithms, and dynamic memory management are provided in Appendix [

4.3 Adaptive Potential Field Synthesis

The enhanced value function combines the base objective with memory-derived potentials through an
adaptive weighting mechanism:

Vix, My) = a(x, My)Voase () + (1 — a(z, My))Vinem (2, My) (15)

where oz, M) € [0, 1] balances the influence between objectives based on proximity to memory
features.

The memory potential Vi, employs type-specific implementations for different topological features:
radially decreasing functions for local minima, directional guidance functions for low-gradient
regions, and saddle-point functions for high-curvature areas. This type-specific approach enables
tailored responses to different environmental challenges.

Beyond value function enhancement, the system also dynamically adjusts the MPPI temperature
parameter via
Mz, My) =Xo- (141 (1 —a(z, My))) (16)

This dual-layer adaptation increases exploratory behavior near problematic regions, enhancing the
system’s ability to escape local optima through intelligently directed sampling. Technical details



Memory Module Influence Visualization

The adaptive potential field synthesis mod-
ule transforms memory into control influence,
bridging the memory system with the control
algorithm. This critical component generates
z enhanced value functions that enable efficient
: navigation around known problematic areas
5 while maintaining global objective pursuit.
£ As shown in Figure [5] the memory module
generates a spatially-aware force field that
guides the robot away from previously prob-
lematic regions. The orange and yellow ar-
rows represent repulsive forces, with color
intensity indicating magnitude. Red circles
; ; 7 g ; w0 mark identified trap regions with their asso-

X Fositon ciated strength values, showing how the sys-
Figure 5: Memory-based potential field visualization tem’s experience shapes its navigational be-

showing repulsive forces (arrows) and identified trap havior.
regions (purple circles).

0

regarding potential function formulations, feature-specific implementations, and computational
optimizations are provided in Appendix [G|

S Experimental Evaluation in Robotic Control Environments

We evaluated MA-MPPI on benchmark robotic control tasks, comparing against state-of-the-art
algorithms to validate the advantages of memory augmentation in complex control landscapes.

5.1 Experimental Setup

We selected four environments of increasing complexity: Pendulum-v1 [2]], BipedalWalker-v3 [2],
HalfCheetah-v4 [21]], and Humanoid-v4 [21]]. These environments present varying degrees of non-
convexity and dimensionality, ranging from the simple pendulum swing-up to a 376-dimensional
humanoid control task with numerous local optima.

MA-MPPI was implemented with environment-appropriate prediction horizons: 15 steps for
Pendulum-v1, 20 steps for BipedalWalker-v3, 25 steps for HalfCheetah-v4, and 35 steps for
Humanoid-v4, reflecting the increasing dynamics complexity. We compared against standard MPPI
[22], modern reinforcement learning approaches (SAC [3]], PPO [[18]], DDPG [12]), and traditional op-
timal control methods (iLQR [19], MPC [15]). All methods operate under the same online-interaction
budget of 2000 environment steps. For model-free RL (SAC/PPO/DDPG), we do not allow extra
environment interactions beyond this budget; training is strictly on-policy/within-budget to ensure
fairness to sampling-based controllers that already perform heavy internal simulations per step. For
all experiments, we conducted 30 independent runs with different random seeds, each consisting of
2000 control steps. Detailed environment specifications and implementation settings are provided in

Appendix

Our evaluation protocol consisted of two phases: an Adaptation Phase measuring learning efficiency
during the first 500 environment interactions, and a Stability Phase assessing asymptotic performance
after 2000 total interactions. This approach enables fair comparison between methods with different
learning characteristics.

5.2 Results and Analysis

We report learning curves over the 2000-step budget, and summarize performance via (i) AUC-2000
(area under the learning curve over 2000 steps), and (ii) Final-2000 (average return over the last 200
steps). This avoids extrapolating asymptotes inappropriate for within-budget RL.



Table 1: Performance comparison: Average cumulative rewards (£

Table [I] presents the represents standard deviation).

asymptotic  performance

. MA-MPPI Method Pendulum-vl  BipedalWalker-v3  HalfCheetah-v4  Humanoid-v4
comparison. - MA-MPPI (Ours) ~ -152.449.7 298.417.2 5893.7+156.4  4978.5+283.1
demonstrates consistent MPPI -165.8+10.9 241.7+19.1 5027.9+148.6  2914.24318.7
. SAC -192.6+11.3 112.64+28.4 1763442142 936.7+354.9
improvements under the PPO 20514120 9634317 1287.54237.9 612343296
fixed-budget setting across DDPG 214.7£13.5 74.8+35.9 1149242618 381.4+402.7

. . iLQR -258.9+15.8 184.2426.5 3614.84205.7  1927.5+411.2
all environments, with the MPC 18831106 219.6£223  4127.6+1923  2784.1+306.8

advantage amplifying in
more complex domains. The performance gap is particularly pronounced in Humanoid-v4, where
MA-MPPI outperforms the best RL method (i.e., SAC) by 27%.

Key robustness results (lo-

o Table 2: Local optima escape rates (%) from challenging initial states.
cal minima escape) are

h . Tabl E] ( . Method Pendulum-vl  BipedalWalker-v3  HalfCheetah-v4 Humanoid-v4
shown 1n lable main MA-MPPI (Ours)  89.244.1 83.5+5.2 76.8+6.4 723+7.8
text). We define Local Op- MPPI 483457 41,6464 36.247.2 29.4+8.6
: SAC 65.7+4.8 58.345.7 51.5+6.8 467474
tima Escape Rate (P eSCﬂPe) PPO 59.445.2 52.746.1 453+7.3 38.6+8.2
as the percentage of suc- DDPG 53.8+5.6 46.9+6.5 39.747.4 32.5+8.7
_ iLQR 27.646.3 214472 16.348.1 11.849.3
cessful escapes from prede MPC 425159 38346.7 31447.6 24,9489

fined trap states, where a
trap state is defined as any state from which the expected return falls below 50% of the maxi-
mum achievable value, and the agent remains within a small neighborhood for at least 50 time steps
without improvement. As shown in Table 2] MA-MPPI achieves significantly higher escape rates
across all environments, demonstrating that memory augmentation effectively reshapes the value
landscape around trap states, creating "tunnels" that guide the controller toward more promising
regions.

During normal operation, standard MPPI encountered trap states approximately 2.8x more frequently
than MA-MPPI (5.7 vs. 2 trapped episodes per 100 episodes), confirming the proactive trap-avoidance
capability conferred by spatial memory. For detailed trap frequency analysis and occurrence patterns
across environments, see Appendix

Ablation studies reveal memory as the critical component (42-58% performance decrease when
removed), with increasing importance in complex environments (see Appendix [H.4]for complete
component analysis). Our hyperparameter sensitivity analysis demonstrates the algorithm’s
robustness to parameter variations, with performance generally stable within +25% parameter
ranges (see Appendix [J). MA-MPPI’s advantages stem from trap identification and avoidance, value
landscape reshaping, and memory-guided exploration, all with modest computational overhead
(12-18%, detailed in computational performance analysis in Appendix [H.5).

Control quality analysis revealed an unexpected benefit: the production of smoother control
trajectories with fewer oscillations, yielding more energy-efficient motion, particularly valuable for
physical robots. The online adaptation capability provides fundamental advantages for deployment
in unknown environments, contrasting with RL methods that require extensive offline training (see
comparative learning analysis in Appendix). This addresses a fundamental limitation in sampling-
based control: the inability to learn from past failures.

The memory term only reshapes the objective; it composes with constrained/smoothed MPPI. In
our pilot study, MA+Constrained-MPPI improved repetitive-task success by ~15% at unchanged
violation rate; MA+Smooth-MPPI cut escape time by ~23% while preserving smoothness.

6 Further Experiments on Complex Engineering Systems

To validate the effectiveness of our Memory-Augmented Potential Field Theory in real-world domains,
we conducted two types of experiments on complex systems: 1) a power system control problem and
2) an unmanned aerial vehicle (UAV) obstacle avoidance task.

6.1 Evaluation Methods

We compared our MA-MPPI approach against several state-of-the-art methods: standard MPPI [22]],
Diffusion Policy [3]], Motion Transformer [8l], MLP-based MPC [15]], and DKO-based MPC [13}6].



Performance evaluation focused on success rates, solution optimality, computational efficiency, and
local minima escape capability. See Appendix [[.T]for detailed experimental protocols.

Cost functions are harmonized across controllers:

J = u}goal'”pT*p’.< “2+wobs'z (rb(dmin(l’ta ObStaC1eS))+wctrl’Z ||ut||2+wsm00ﬂl'z ||ut7ut—1 ||2

t t t

a7

where ¢(d) = 1(d < Tsafe) * (Tsare — d) 2, terminal collision penalty = 1000. MPPI-style methods
use J directly; RL baselines use reward r = —.J (same weights); constrained MPC uses barrier

equivalents; iLQR uses quadratic approximations. Weights were selected by grid search on standard
MPPI and fixed across all methods; sensitivity +25% shows no change in ranking.

6.2 Experiment I: Power System Control

We evaluated our approach on power system stability using the benchmark model from Paolone et al.
[16]. The power system dynamics are represented as & = f(x, u,d) and y = g(z), where zz € R"
is the system state, u € R™ represents control inputs, d € R? represents disturbances, and y € R?
represents measured outputs. The control objective is min,, ,_, ZtT;Ol c(x, uy) + er(zr) subject
to system constraints.

We tested against three critical disturbances: (1) three-phase short circuit fault on a 345kV transmis-
sion line, (2) sudden load increase of 25% at key buses, and (3) trip of a 650MW generator. These
represent challenging operational scenarios requiring rapid response while maintaining stability.

We aSSeSSed performance using COnStraint Vi()— o Power System Stability Response to Critical Disturbances
lation rate V, = JJ\\,Z” x 100%, economic effi- w0
s

ciency E, = %, stability margin S,,, = o
ming dist(x;, OS), computation time T, and dis-
turbance recovery time 7,.. See Appendix [[.4for
detailed experimental parameters.

Figure [6]shows system performance during three
major events: a three-phase fault at 04:00, a 25%
load change at 10:00, and a 650MW generator P S I T I F S
trip at 16:00. MA-MPPI (blue line) demonstrates
superior recovery speed and stability. Shaded  Figure 6: Power system stability response to
areas represent confidence intervals. critical disturbances.

System Stability Index

Normal Operation Range
— NAMPPI (urs)
— a

YT G50MW)

Table 3] shows that MA-

MPPI significantly reduced Table 3: Performance comparison on power system control tasks

. . . Method Constraint Economic  Stability Compute Disturbance
constraint violations (2.3% Violations (%) Efficiency Margin Time (ms) Recovery (s)
vs.  5.7% for standard MA-MPPI (Ours) 23 1.06 0.187 345 42

: : : Standard MPPI [22] 57 113 0.112 27.8 8.7

MPPI) . Whlle . 1mproving Diffusion Policy [3] 4.1 1.09 0.143 46.2 6.3
economic efficiency (1.06 Motion Transformer 8] 35 1.08 0.158 52.1 5.5
G _ MLP-based MPC [I3] 62 1.16 0.103 31.2 9.6

vs. 1.13) and stability mar DKO-based MPC [13] 48 111 0.131 36.7 71

gin (0.187 vs. 0.112). Most
importantly, MA-MPPI achieved faster disturbance recovery (4.2s vs. 8.7s), particularly during severe
events like generator trips.

6.3 Experiment II: UAV Obstacle Avoidance

The environment featured
cylindrical obstacles cre-
ating navigation scenarios

Table 4: Performance comparison on UAV obstacle avoidance (aver-
aged over 100 trials)

. Method Success Path Control Compute Local Minima
with narrow passages and Rate (%) Optimality Smoothness Time (ms) Escapes (%)
potential local minima. As MA-MPPI (Ours) 943 112 0.27 126 87.5

: . Standard MPPI [22] 728 145 034 10.2 342

shown mn .Table A MA Diffusion Policy [3 79.6 1.37 031 18.4 56.8
MPPI significantly outper- Motion Transformer [§] ~ 83.5 1.24 029 227 63.1
- MLP-based MPC [I5 68.2 1.53 0.42 143 419

formed baseline methods, 1 i Ve (13 76.4 131 0.38 158 493

with a 94.3% success rate



We implemented a physics-based UAV simula-
tion with realistic aerodynamics following the 575
standard quadrotor model:

p=v
. 1
vV=g+—R-f—kq|vlv

m
R=R-© (18)

w=J Y1 —wx Jw)

where p € R is position, v € R is velocity, Figure 7: UAV obstacle avoidance with MA-
R € SO(3) is orientation, w € R? is angular MPPI. The visualization shows the reference
velocity, f € R is thrust, 7 € R? is torque, m is  Path (blue), valid trajectory rollouts (green), col-
mass, J is inertia matrix, ¢ is gravity, kq is drag ~ lision rollouts (red), the selected optimal trajec-
coefficient, and & is the skew-symmetric matrix ~ tory (yellow), and target waypoints (magenta).
of w.

compared to 72.8% for standard MPPI. Most notably, MA-MPPI achieved an 87.5% local minima
escape rate, far exceeding standard MPPI’s 34.2%. This translates to better path optimality and
control smoothness with only modest computational overhead. For detailed performance analysis,
refer to Appendix [[.3]

7 Discussion and Limitations

Although Memory-Augmented Potential Field Theory demonstrates robust performance across
domains through its topological learning and adaptive optimization capabilities, several limitations
remain. The current MA-MPPI approach shows restricted generalization between similar features (see
Appendix [K), lacks sophisticated memory management for extended operations, and doesn’t leverage
multi-agent knowledge sharing. (i) We assume full-state feedback; extending to state-estimation
uncertainty (e.g., UAV localization noise) via memory-aware filters is future work. (ii) Rapidly
time-varying traps require faster decay and change-point detection; our dynamic environment pilot
supports this but full theory remains open. (iii) Semantics-induced traps motivate learning-based
feature detectors; we plan to hybridize rule-based topology with learned representations. Importantly,
Memory-Augmented Potential Field Theory is not intended to replace learning-based methods but
can complement them: potential integration with reinforcement learning could combine the theory’s
advantageous memory structures with RL’s policy optimization capabilities. This hybrid approach
could leverage the strengths of both paradigms while addressing their individual limitations in
complex non-convex control problems.
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A Broader Impacts

Memory-Augmented Potential Field Theory has several potential societal implications that warrant
thoughtful consideration. As a framework that enhances control systems’ ability to navigate complex
environments, this technology could significantly improve reliability and safety in critical applications,
including medical robotics, autonomous transportation, industrial automation, and disaster response
systems. The demonstrated capabilities in disturbance recovery and obstacle avoidance could
protect infrastructure during emergencies and reduce accident risks in human-machine environments.
Additionally, the smoother control trajectories generated by our approach may contribute to energy
efficiency and reduced mechanical wear, supporting sustainability efforts when deployed at scale.

Beyond direct applications, our approach reduces the need for specialized domain knowledge and ex-
tensive offline training compared to many reinforcement learning methods, potentially democratizing
access to advanced control capabilities across a broader range of applications and organizations. This
could create new opportunities for innovation in resource-constrained settings that cannot support
extensive model training or system identification.

However, similar to many advances in automation, enhanced control capabilities could accelerate
workforce transitions in sectors relying on manual control operations. While likely creating new
opportunities in system design and supervision, such transitions require thoughtful management to
avoid disproportionate impacts on certain worker populations. Additionally, the improved navigation
capabilities in complex environments could potentially be applied to autonomous systems with dual-
use concerns, including surveillance technologies or unmanned vehicles with security applications.

As control systems become increasingly capable, there’s also risk of overreliance leading to skill
atrophy among human operators, potentially creating vulnerabilities during system failures when
human intervention becomes necessary. The memory-based adaptation mechanism, while powerful,
introduces additional complexity in understanding and predicting system behavior under novel
conditions, which may create challenges for safety verification and accountability.

We believe these considerations should guide the development and deployment of memory-augmented
control systems. Strategies including open-source implementations, human-centered design princi-
ples, interdisciplinary collaborations with ethicists and policy experts, educational initiatives, and
engagement with appropriate regulatory frameworks can help maximize the positive impacts of this
technology while mitigating potential risks. Our goal is to contribute to the responsible development
of advanced control technologies that serve the broader social good while minimizing negative
consequences.

B Detailed Memory Framework

B.1 Memory Representation Components

The memory representation M consists of elements representing significant topological features
encountered during system execution. Each memory element (m;, ;,v;, ki, d;) contains five compo-
nents that capture different aspects of critical features:

The feature position m; € R" identifies locations in state space where the system encountered
significant dynamics, typically areas where optimization became challenging. These positions mark
critical points in the value function landscape.

The influence radius r; € R* defines the spatial extent around each feature position where the
memory effect should be applied. This radius is determined adaptively based on the local geometry
of the value function and observation of system behavior near the critical point.

The strength parameter v; € R™ controls the magnitude of the memory feature’s influence on the
composite value function. This parameter evolves dynamically during execution according to the
frequency and duration of system stagnation near the feature, with the update rule:

7(t+1) ) min(ymax, fyi(t) + A7), if ||xy —my|| < r; and stagnating (19)

t .
71( ) : Bdecay, if th - ml” > T fort > tthreshold
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The type identifier x; € {1,2, 3} classifies features into three categories: 1) local minima, 2) low-
gradient regions, or 3) high-curvature regions. This classification enables type-specific potential field
designs tailored to the particular topological challenge each feature represents.

The direction vector d; € R™ provides guidance for optimization, particularly important for low-
gradient regions where directional information helps the system overcome plateaus in the value
function landscape. This vector is computed based on historical escape directions that successfully
navigated away from the problematic region.

B.2 Memory Update Mechanism

The memory update function U/ operates by detecting topological features through three primary
mechanisms:

State stagnation detection identifies when the system state variance falls below a threshold 6,,, over a
sliding window, indicating potential entrapment in a local minimum:

Var({xt,w, Tt—w41y ey xt}) < Byar (20)

Gradient magnitude monitoring detects areas where the gradient norm of the value function falls
below a threshold 0,4, signaling low-gradient regions:

||V%ase(xt)“ < Ggrad (21)
Curvature analysis identifies high-curvature regions by examining the eigenvalues of the Hessian
matrix: )
)\max(v Vbase(xt))
> Ocury (22)
)\min(vz%ase(mt)) o

When a new feature is detected, it is added to the memory representation if it is sufficiently distinct
from existing features:

o omin oy — ml| > Oaist (23)
i€{1,2,..,| M|}

B.3 Potential Field Construction

The memory potential field is constructed as a weighted sum of basis potential functions, each tailored
to address specific topological challenges:

| M|
Vinem (7, M) = > i - $(a, mi, 74, i, i) (24)
i=1

The basis potential function ¢ is selected based on the feature type x;:

¢1($7mi7ri)7 lf'k‘:z =1
oz, my, 1, Ky dy) = § do(x,my,1i,d;), if Ky =2 (25)
¢3($7mi,'ri,di), lfﬁ‘,l = 3

For local minima (x; = 1), we employ a repulsive function that generates outward forces, enabling
escape from the local minimum basin:

—mal2\ 2
o1(x, m;, ;) = max (07 (1 - W) ) (26)

L

For low-gradient regions (k; = 2), we use a directional function that provides guidance along
previously successful escape directions:

T

¢a(x, my, 15, d;) = max (07 (1 — W) (d; - (x— ml))) (27)
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For high-curvature regions (x; = 3), we use a saddle-like potential that facilitates navigation through
narrow passages:

lz = ma*

dalavm ) = mae (0, (1= ) (- o mo? = 17 - @l - mol)
(28)

3
The adaptive weight function a(z, M) modulates the influence of memory based on proximity to
memorized features:

a(z,M)=0 (ﬂ - min x—mz||> (29)

ief{l,...,|M|} T

where o(z) = H% is the sigmoid function and 5 > 0 controls the sharpness of the transition
between memory-dominated and base-dominated regions.

C Theoretical Proofs

C.1 Proof of Theorem Non-convex Escape Property

To prove the non-convex escape property, we analyze the gradient of the combined value function
V(z, M) within the local minimum region B(m;, ;).

Proof. For any point x € B(m;, r;), the gradient of the value function in (5)) can be:

VV(z,M)=a(z,M) V() + (1 — a(x, M)) - VViem(z, M)
+ Va(z, M) - (Voase(2) — Vinem(z, M)) (30)

Since x € B(m;,r;), we have ||z — m;|| < r;, and the dominant memory feature is precisely the
one at m;. For points near local minima, a(x, M) becomes small due to the proximity to a memory
feature. Within B(m;, r;), the gradient contribution from the memory term becomes

vvmem(xaM) %f)/iv@ﬁl(xvmiyri) (31)

For the repulsive potential ¢, the gradient points outward from the center m;:

4 —my|]?
Vorlnmari) = =27 (1 - Im”) (z —m) 32)

Given that y; > 1 SUDP,c B(m,,ri) |V Voase ()|, the outward force from the memory term dominates

the gradient of the base value function. The resulting effective gradient guides the system away from
the local minimum.

Let piou be the minimum outward gradient magnitude within B(m;, ;). The discrete-time dynamics
with this outward gradient can be modeled as a biased random walk with drift p4, and variance o?
from the system noise.

For such a process, the first-passage time 7 to exit the region has expectation bounded by E[T] < %
(from standard results on biased random walks). By Markov’s inequality, for any ¢ > O:
E[T 2r;
P>y < B0 2 (33)
t Hout * t
Solving for the time needed to ensure P(T > t) < §, we get:
2r;
t> (34)
/Lout : 5
Therefore, we can set T, escape(é ) = lfi’f 5» establishing that the system will escape the local minimum
region within finite time with probability at least 1 — 4. O
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C.2  Proof of Theorem[3.2; Asymptotic Convergence Property

Proof. We first partition the state space R” into two regions: R; = U‘Zfll B(my, r;), the union of
all memory feature regions, and R = R™ \ R, the complement region.

In region R ¢, the adaptive weight function «(z, M) approaches 1 as the distance to memory features
increases. This means the value function behaves similarly to the base value function:

lim a(z,M)=1 (35)

d(a?,R]u)*)OO

where d(z, Rr) denotes the distance from x to set R ;.

By the coercivity assumption on V4, for any bounded region B C R™ containing the global optimum
a*, there exists a finite time 77 (6/2) such that:

PRt <Ti(6/2) i 2 € B) >1—5/2 (36)

Once in the bounded region B, the system follows a stochastic gradient process toward the global
optimum. If 53 is chosen sufficiently small so that it contains no local minima of Vi, except x*,
and if BN Ry = (), then standard stochastic approximation results guarantee convergence to a
neighborhood of z*.

For any € > 0, there exists a time T%(e, §/2) such that

P (tsz?ef,a/z) e ="l < e e € B) 21-0/2 GD

By applying the law of total probability and noting that for any events A and B, P(AN B) =
P(A|B)P(B), we have:

P ( inf |z, — ™| < e) (38)
t>T1(5/2)+T2(€,6/2)

2P <t>T2h(15f:6/2) lar — 2" < €] 27y(5/2) € B) - P (27,(5/2) € B)
> (1-6/2)-(1—5/2)
2

— 164 —
Jr4

>1-9 (39)
Defining the convergence time as Teony (€,9) := T1(6/2) + To(€,5/2), we establish that

P( inf ||z — 2] §e> >1-946 (40)
tZTcon\'(Q(S)

which completes the proof.

C.3 Proof of Theorem 3.3} Adaptive Learning Efficiency

Proof. Consider K independent local minimum regions £ = {Lj, Lo, ..., Lx}. Let p; be the
probability that a random trajectory enters region L;, and let T} be the expected time to escape from
L; once entered.

For standard MPPI without memory, the expected total time spent in local minima regions can be
expressed as

E[Tyep] = Y Ni T, (41)
i=1
where N; is the expected number of times region L; is entered.
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For a random search process without memory, each local minimum can be encountered multiple
times, and we can model N; as a geometrlc random variable with parameter (1 — g;), where g; is the

probability of returning to L; after escaping. This gives E[N;] = fq»
For Memory-Augmented MPPI, after a local minimum region is identified and added to memory, the
probability of re-entering decreases signiﬁcantly Under ideal conditions:

E[Tyiaper) = Z Tt 4 Z Z pl 1! (42)

i=1 j=2
where T is the escape time on first encounter, and Tij for j > 2 are subsequent escape times
(typically much shorter due to memory, i.e., 7/ < Tt

Since pg < 1 for j > 2 (system rarely returns to memorized traps), we have:
E[T\iXpe] Z ™ < Z N; - T; = E[T] (43)

The total expected convergence time consists of time spent in traps plus time spent in normal gradient
search. For environments with significant local minima, the trap time dominates. The ratio of
expected convergence times is approximately:

T N T
MPPL 217{1 > Q(K) 44)
Tva-mper 30 Tt

This establishes that Memory-Augmented MPPI provides an efficiency improvement that scales at
least linearly with the number of local minimum regions in the state space. O

D Connections to Related Mathematical Frameworks

The memory-augmented potential field framework has deep connections to several mathematical
frameworks in optimization, differential geometry, and learning theory.

Memory-augmented potential fields can be viewed through the lens of Morse theory, which studies
the relationship between the topology of a manifold and the critical points of smooth functions defined
on it. For a smooth function f : R™ — R with non-degenerate critical points, the Morse index at a
critical point p is defined as the dimension of the negative eigenspace of the Hessian V2 f(p). Our
memory mechanism effectively transforms local minima (index 0) into saddle points (index > 1) or
regular points, fundamentally altering the topological structure of the optimization landscape.

From a dynamical systems perspective, our approach modifies the vector field induced by the
gradient of the value function. The base value function generates a gradient flow & = —V Ve ()
with attractors at local minima. The memory-augmented system generates a modified flow & =
—VV (xz, M) where previously stable equilibria become unstable or are eliminated entirely, creating
new flow patterns that guide the system away from problematic regions.

The adaptive weight function «(z, M) acts as a topological surgery operator, smoothly transitioning
between the original value function and the memory-augmented version. This creates a composite
manifold that preserves the global structure of the original optimization landscape while locally
modifying its topology around critical features.

The construction of memory features bears a resemblance to the concept of persistent homology
in topological data analysis, which studies how topological features persist across different scales.
Our method dynamically identifies and preserves significant topological features (local minima,
low-gradient regions) that impede optimization progress, effectively learning the persistent features
of the value function landscape through system interaction.

E MA-MPPI Algorithm Details

MA-MPPI begins with an empty memory My = ) and a nominal control sequence. At each
iteration, the controller detects topological features through three mechanisms: (1) state stagnation
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detection when trajectory variance falls below threshold 6,,,, (2) gradient monitoring for regions
where ||V Viase(2¢)| < Ograa, and (3) curvature analysis examining Hessian eigenvalue structure.
These detection mechanisms capture different aspects of challenging control landscapes that might
impede optimization.

The memory update involves three operations: adding new features when encountering novel prob-
lematic regions, merging similar features when their normalized distance falls below Opyerge, and
dynamically adjusting feature strengths based on encounter frequency. The strength parameter evolves

according Eq.(T9):

(t+1) ) min(Ymax, 7§t) + A7), if ||zy — m;|| < r; and stagnating
Vi =3 _ @ .
Y 5decaya if th - m’LH > 1 for t > tinreshold

ensuring that frequently encountered obstacles gain prominence while rarely visited regions fade.

The enhanced value function combines the base task objective with memory potentials through
an adaptive weighting mechanism that transitions smoothly between them based on proximity to
memorized features. The gradient of this enhanced function becomes Eq. (I9):

VV(x, M) = a(z, M)V Viase(z) + (1 — a(z, M3))V Viem (2, M)
+ VO((J?, Mt) : (V;Jase(x) - Vmem(mv Mt))
This gradient guides trajectory optimization, creating escape routes from local minima when combined
with adaptive sampling.
The sampling process is enhanced through memory-based modifications to both temperature and
distribution. When operating near memory features, the sampling covariance increases according to

Sulae, My) =30 (14 p- (1 — oz, My))) 45)

enabling more aggressive exploration in challenging regions. For low-gradient regions with directional
information, the sampling incorporates bias along stored direction vectors.

The control sequence optimization follows the path integral formulation, where the optimal control is
the expectation over weighted samples:

K

* Wy k
U = Epriay [ ()] = Z =K W (46)
k=1 D i1 Wi

with weights wy, = exp(— /\%S (7%)) determined by trajectory costs and adaptive temperature.

This integration of memory-based value function enhancement with adaptive sampling creates
a control system that effectively navigates complex environments by learning from experience.
The dynamic memory representation continuously evolves based on system interactions, enabling
increasingly efficient navigation through challenging control landscapes.

F Topological Feature Detection Details

F.1 Detection Mechanisms

MA-MPPI employs three complementary detection mechanisms to identify topological features that
impact optimization performance.

State stagnation detection identifies local minima by calculating the statistical variance of states
within a fixed time window:

t

1
Var(X,) = - S -zl (47)
i=t—K+1

where X, contains the most recent K states, and &, is the average state within the window. When this
variance falls below threshold 6y, the system is considered stagnant, typically indicating entrapment
in a local minimum. The appropriate value of 6, depends on the characteristic scale of the state
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space and is typically set to 6y, = 0.01 - 02, where o2 represents the expected state variance during
normal operation.

Gradient analysis examines both magnitude and directional properties of the value function gradient.
For magnitude analysis, the system computes ||V Vi, (24 )|| and identifies low-gradient regions when
this value falls below threshold fg,q. For directional analysis, the system calculates the angle change
between consecutive gradient vectors:

Vvaase(l‘t) : v‘/Iaase(xt—l) )>_1
Ab; = 48
' ( (||vvbase<xt>| TV Voase(@e 1)) (48)

When A#, exceeds the threshold 0, the region is identified as a high-curvature area requiring
special attention.

Curvature analysis provides a more comprehensive understanding of the local landscape geometry
by examining the eigenvalue structure of the Hessian matrix V2 Vpas (7). Specifically, the system
calculates the condition number:

Amax
I‘E(VQVLQSE(ZL})) = )\7 (49)

where Apax and Api, are the maximum and minimum eigenvalues of the Hessian. High condition
numbers indicate regions with significant anisotropy, such as narrow valleys or ridges.

F.2 Feature Classification and Representation

Each detected feature is classified into one of three types based on the detection mechanism that
identified it:

Type 1 (Local Minima): Identified primarily through state stagnation, these features represent regions
where the controller becomes trapped. They are characterized by low state variance and persistent
inability to make progress despite control effort.

Type 2 (Low-Gradient Regions): Identified through gradient magnitude analysis, these features
represent plateaus in the value function landscape. They are characterized by gradient magnitudes
below threshold 6,4 despite the system not being at a true minimum.

Type 3 (High-Curvature Regions): Identified through gradient direction changes or Hessian analysis,
these features represent areas with challenging geometric properties such as narrow valleys, sharp
ridges, or saddle points.

Each feature is represented as a tuple (m;, r;, Vs, ki, d;) Where:

* m; € R" is the feature position in state space

» r; € RT is the influence radius defining the feature’s spatial extent
* ~; € RT is the strength parameter indicating importance

ki € {1,2,3} is the type identifier

* d; € R"™ is the direction vector (for types 2 and 3) providing guidance information

The classification determines which potential function is applied in the memory-augmented value
function, with each type receiving a specially designed potential to address its particular challenges.

F.3 Feature Consolidation

To maintain computational efficiency, MA-MPPI employs feature clustering and merging mechanisms.
When a newly detected feature point m.y is spatially close to existing features of the same type, a
merging operation is performed according to the following criteria:

[[Mnew — 14|

Merge if: < Omerge and Knew = K (50)

i

where Omerge 18 typically set to 1.5, representing a significant overlap between feature influence
regions.
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When merging features, the system computes weighted averages for position and influence radius:

Yi * My + Ynew * Mnew

Mimerged = Vi + Vnew GD
Tmerged = MAX (Ti, Thews M + min(r;, Tnew)) (52)

The strength parameter is accumulated to reflect the combined importance:
Ymerged = Vi T Tnew (53)

For features with direction vectors (types 2 and 3), the merged direction is computed as a weighted
average, then normalized:

’Yi : dz + "Ynew ° dnew
H’Yi . dz + “new * dnew”

dmerged = (54

F.4 Dynamic Feature Strength Update
Feature strength parameters evolve dynamically based on system experience. The update rule follows:

min(’ymax,'yi(t) + A7), if ||z — my]| < r; and Var(X;) < Oyar
’7i<t) : ﬂdecayz if ||-'L't - mz“ > 1 for t > tinreshold (55)

’yi(t) , otherwise

%_(tﬂ) _

Here, Ymax is the maximum allowable strength (typically 5.0), A~ is the increment per stagnation
event (typically 0.1), Baecay is the decay factor (typically 0.99), and ¢reshola is the time period after
which decay begins (typically 100 time steps).

When a feature’s strength falls below removal threshold v, (typically 0.1), it is removed from the
memory representation. This ensures that only persistently relevant features are maintained, while
those that become obsolete gradually fade away.

F.5 Implementation Considerations

The detection mechanisms operate at different time scales to balance computational efficiency with
detection accuracy. State stagnation analysis occurs continuously, as it directly impacts control
performance. Gradient analysis is performed at regular intervals (typically every 5-10 control steps)
to identify developing problematic regions before they cause stagnation. Curvature analysis, being
more computationally intensive, is performed selectively when gradient analysis indicates potential
high-curvature regions, or periodically at longer intervals (typically every 20-30 control steps).

To manage computational complexity in high-dimensional state spaces, dimensionality reduction tech-
niques can be applied before feature detection. Principal Component Analysis (PCA) or task-relevant
subspace identification methods help focus detection on the most critical dimensions. Additionally,
incremental detection algorithms allow the system to update feature estimates progressively rather
than recomputing them from scratch at each step.

The detection thresholds 0yar, grad, and Oy can be adaptively tuned based on observed system
performance. During initial operation, more conservative thresholds ensure that important features
are not missed. As the system accumulates experience, thresholds can be adjusted to focus on the
most significant features, improving computational efficiency while maintaining detection of critical
obstacles.

G Adaptive Potential Field Synthesis Details

G.1 Feature-Specific Potential Functions

MA-MPPI employs type-specific potential functions to address different topological challenges. For
each feature f; = (my, r4, Vi, K4, d;) in the memory representation, the contribution to the memory
potential depends on its type x;:
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Type 1: Local Minimum Features These employ a radially decreasing function that creates a
repulsive potential field:

—ma 12\ 2
o1 (x, my, ;) = max (0, (1 — W) ) (56)

This function reaches its maximum at the feature center and smoothly decreases to zero at the
boundary of the influence radius. The resulting gradient creates a repulsive force pushing the system
away from known trap regions.

Type 2: Low-Gradient Features These use a directional guiding function that provides navigation
cues:
— m.l|?
¢o(x,my,7i,d;) = max (0, (1 — W) (d; - (2 — mi))> (57)

T

where d; is the preferred direction vector. This function creates an asymmetric potential field that
guides the system along favorable directions through problematic regions.

Type 3: High-Curvature Features These employ a saddle-point function that helps navigate
complex terrain:

d3(x, mi, s, d;) = max <0, (1 - ”x_;n"|2> : <(di : (x_"L';))z —5)) (58)

T ||z —m;

where 8 € (0, 1) controls the saddle shape. This function creates channels through high-curvature
regions, enabling traversal of narrow corridors or mountain passes in the potential landscape.

G.2 Memory Potential Construction

The complete memory potential combines contributions from all features:

| M|
Vmem X, Mt Z'Yz ¢m z mzarzadz) (59)

where +; is the strength parameter indicating the feature’s importance. This formulation ensures that
more frequently encountered or persistent challenges have stronger influence on the enhanced value
function.

G.3 Adaptive Weighting Mechanism

The weighting function «(z, M;) balances base and memory potentials:

do
M) =min |1, ——— 60
oz, M) mm< ’(5(30,Mt)+6> (60)
where (z, M;) measures proximity to memory features:

| M|

8z, M) = Z% Inax(()l 2 ml') 61)

do 1s a scaling parameter (typically 0.5), and € is a small positive constant preventing division by zero.

This formulation ensures smooth transition between navigation modes: when far from memory
features, o =~ 1 and the system follows the base objective; when near significant features, o ~ 0 and
memory guidance dominates.

G.4 Temperature Adaptation Mechanism

The adaptive temperature parameter adjusts sampling exploration:
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where )\ is the base temperature (typically 1.0) and 7 is the enhancement coefficient (typically
2.0-5.0).

This mechanism increases exploration specifically in challenging regions, with the sampling distribu-
tion variance scaling proportionally:

)\(.’II, Mt)

Eu('ra Mt) = Zu70 : >\0

(63)

where ¥, o is the nominal control sampling covariance.

The dual-layer adaptation (value function + temperature) creates a synergistic effect: the modified
value function shapes the landscape to avoid problematic regions, while increased exploration helps
discover alternative paths that might not be apparent in the base potential.

G.5 Computational Optimizations

Several optimizations ensure efficient implementation:

Sparse Computation Feature potentials are only evaluated for features whose influence regions
contain the query point:
O, (X, my, i, d;) = 0if ||l — myl] > 7y (64)

This reduces computation when the memory contains many features.

Spatially-Indexed Memory Features are organized in a spatial data structure (typically a k-d tree)
enabling efficient querying of relevant features for any state point.

Gradient Caching When computing trajectories, gradients of the enhanced value function are
cached and reused when evaluating nearby states, reducing redundant computation.

Approximate Field Synthesis For very large memory representations, the potential field can be
pre-computed on a grid and interpolated, trading accuracy for speed in scenarios where the memory
contains hundreds of features.

These optimizations ensure that the memory enhancement mechanism maintains real-time perfor-
mance even as the memory grows with system experience. In practice, the computational overhead
remains minimal compared to the MPPI sampling process, typically adding less than 10% to the
overall computation time.

H Additional Details of Robotic Control Experiments

H.1 Experimental Details
H.1.1 Environment Specifications

We selected four representative control environments from OpenAl Gym [2] and MuJoCo [21]:

Pendulum-vl A classic control task involving swinging up a pendulum from a random initial
position to an upright position and balancing it there. The challenge arises from limited torque and
nonlinear dynamics. The state space is 3-dimensional (angle, angular velocity), and the action space
is 1-dimensional (torque).

BipedalWalker-v3 A 2D walking simulation that requires controlling a robot to traverse terrain
with obstacles. The state space is 24-dimensional (position, velocity, joint angles, etc.), and the
action space is 4-dimensional (joint torques). The reward function encourages forward progress while
penalizing energy consumption and harsh landings.

HalfCheetah-v4 A MuJoCo-based 2D running robot simulation with 6 rotational joints. The state
space is 17-dimensional (position, velocity, joint angles), and the action space is 6-dimensional (joint
torques). The reward function encourages forward velocity while minimizing control effort.
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Humanoid-v4 Our most complex task, featuring a 3D humanoid robot with 17 joints. The state
space is 376-dimensional (position, velocity, joint angles, contact forces), and the action space is
17-dimensional (joint torques). The reward function encourages maintaining an upright posture and
forward motion while minimizing energy consumption.

H.1.2 Implementation Details

MA-MPPI Configuration For MA-MPPI implementation, we used environment-appropriate pre-
diction horizons: 15 steps for Pendulum-v1, 20 steps for BipedalWalker-v3, 25 steps for HalfCheetah-
v4, and 35 steps for Humanoid-v4, reflecting the increasing dynamics complexity. The memory
module was configured to store up to 100 topological features, with the feature strength decay factor
set to 0.95. The feature detection thresholds were tuned for each environment: state stagnation
threshold 6,,,, = [0.01,0.05,0.03, 0.08], gradient threshold 8,,q = [0.005,0.01,0.01,0.02], and
curvature threshold 6., = [0.5,0.4,0.6,0.8] for Pendulum-v1, BipedalWalker-v3, HalfCheetah-
v4, and Humanoid-v4 respectively, where the values in brackets indicate the environment-specific
parameters listed in the same order as the environments. The MPPI temperature parameter was set
to Ap = 0.1 with enhancement coefficient n = 2. For all experiments, we used 1000 samples per
control iteration.

Baseline Configurations Standard MPPI was implemented with identical sampling parameters but
without memory augmentation. For reinforcement learning baselines, we used implementations from
Stable Baselines3 with the following configurations:

+ SAC: Twin Q-networks with automatic entropy tuning, learning rates of 3 x 10~*, batch
size of 256, and replay buffer size of 1,000,000.

* PPO: GAE-) with A = 0.95, value function coefficient of 0.5, entropy coefficient of 0.01,
and learning rate of 3 x 10~%.

« DDPG: Ornstein-Uhlenbeck noise with o = 0.2, learning rates of 1 x 10~ for critic and
1 x 10~* for actor, and replay buffer size of 1,000,000.
For traditional optimal control baselines, we used the following configurations:
* iLQR: Regularization parameter of le-6, line search parameter of 0.5, and convergence
threshold of 1e-6.

* MPC: Black-box dynamics model trained with a neural network, using a 5-step history for
prediction, a batch size of 128, and a learning rate of le-3.

Computational Resources All experiments were conducted on a computing cluster with Intel
Core 19-12900K CPUs (3.20GHz) and NVIDIA RTX 3070 GPUs. The MPPI-based methods were
implemented in Python with JAX for GPU acceleration. The reinforcement learning baselines utilized
PyTorch.

H.1.3 Evaluation Metrics

We employed properly defined metrics to capture both adaptation efficiency and asymptotic perfor-
mance:

Sample Efficiency (Ngg,) Defined as the minimal number of environment interactions required to
reach 80% of asymptotic performance:

Ngoy, = min{n : R(n) > 0.8 - Ryymp} (65)
where R(n) is the average reward after n € Z" interactions and Rysymp is the average reward during

the stability phase.

Cumulative Reward (R.,m) Represents the total reward in an episode:

T
Reym = T(St, a't) (66)
t=0
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Local Optima Escape Rate (FPescape) Quantifies the controller’s ability to escape from predefined
trap states. We define a trap state sy,p as any state from which the expected return falls below
o - Vinax (Where @ = 0.5 and Vi, is the maximum achievable value) and the agent remains within a
neighborhood A/ (strap) for at least Tinresnola = DO time steps without improvement. The escape rate is

Nes
Pescape = 100% 67)

trials

where Negcape 1 the number of successful escapes from intentionally initialized trap states and Njq1s
is the total number of evaluation trials starting from predefined trap states.
Trap Frequency (Fiap) Measures how often a method becomes trapped during normal operation:
Nyuck
Fraap = ———— - 100% (68)
N, episodes

where Ny counts episodes containing identified trap states and Nepisoges 1S the total number of
evaluation episodes conducted.

Computational Efficiency Assessed through average computation time per control step:
1
Tcomp = N ; t; (69)

Value Consistency (py) Evaluates prediction accuracy:
PV = COI'I'(V;)red, Ractual) (70)

where Vjrq is the value predicted by the controller, Racwal is the actual discounted return, and Corr
represents the Pearson correlation coefficient measuring the linear correlation between the two
variables.

H.2 Sample Efficiency Analysis

Table [5| presents the complete sample efficiency comparison, showing the number of environment
interactions required to reach 80% of asymptotic performance for each method and environment.

Table 5: Complete sample efficiency comparison: Environment interactions required to reach 80% of
asymptotic performance.

Method Pendulum-vl  BipedalWalker-v3  HalfCheetah-v4 Humanoid-v4
MA-MPPI (Ours) 78+12 183+24 324+42 568+73
MPPI 124+18 352441 586468 9844127
SAC 267432 624+58 1248+106 1875£215
PPO 312441 736167 1456+163 2105273
DDPG 293437 684+L75 1368+142 19534246
iLQR 185423 426152 1188+131 1730+£201
MPC 15619 387146 753491 1236156

The sample efficiency advantage of MA-MPPI is particularly notable in more complex environments.
For Humanoid-v4, MA-MPPI requires only 568 interactions to reach 80% performance, compared
to 1875 for SAC (3.3x improvement) and 984 for standard MPPI (1.7x improvement). This pattern
suggests that the memory mechanism becomes increasingly valuable as task complexity increases,
providing the greatest benefit in high-dimensional, highly non-convex control problems.

H.3 Trap Frequency Analysis

Table [6] presents the trap frequency for each method across all environments, showing how often each
controller becomes trapped during normal operation.

24



Table 6: Trap frequency analysis: Percentage of episodes containing trap states.

Method Pendulum-vl  BipedalWalker-v3  HalfCheetah-v4 Humanoid-v4
MA-MPPI (Ours) 1.2+0.4 1.740.5 2.3+0.7 2.8+0.9
MPPI 3.8+0.7 4.6+0.9 6.2+1.2 8.1+1.8
SAC 2.5+0.5 3.240.7 4.1£+1.0 5.3+1.4
PPO 2.9+0.6 3.7+0.8 4.8+1.1 6.2+1.6
DDPG 3.3+0.6 4.1+0.9 5.4+1.2 7.3+1.7
iLQR 5.24+0.9 6.8+1.3 8.7£1.9 11.4+2.4
MPC 3.5+0.7 4.3+0.9 5.8+1.3 7.6+£1.8

The trap frequency results demonstrate MA-MPPTI’s ability to proactively avoid problematic states
based on past experience. In Humanoid-v4, MA-MPPI encounters trap states 2.9x less frequently
than standard MPPI and 1.9x less frequently than SAC. This proactive avoidance translates directly
to better real-world performance, as robots using MA-MPPI spend significantly less time in recovery
behaviors and more time making progress toward goals.

H.4 Ablation Study Results

Table [/] presents the complete ablation study, showing the performance impact when removing
different components of MA-MPPIL.

Table 7: Complete ablation study: Performance impact when removing components (% decrease
from full MA-MPPI).

Configuration Pendulum-vl  BipedalWalker-v3  HalfCheetah-v4 Humanoid-v4
Full MA-MPPI 0.0% 0.0% 0.0% 0.0%
No adaptive weights 18.3% 20.6% 22.4% 25.1%
No feature detection 31.5% 34.2% 37.6% 40.3%
No memory module 42.7% 46.5% 52.3% 58.1%

The ablation results reveal the relative importance of each component:

* The memory module provides the largest contribution, with removal causing a 42.7-58.1%
performance decrease

 Feature detection is the second most important component (31.5-40.3% decrease when
removed)

» Adaptive weights provide a significant but smaller contribution (18.3-25.1% decrease)

The increasing impact of all components with environment complexity indicates that MA-MPPI’s
design is particularly well-suited for challenging control problems, with each component contributing
more significantly as the task becomes more difficult.

H.5 Computational Overhead Analysis

Table [§] presents the average computation time per control step for each method and environment,
along with the percentage increase relative to standard MPPL

MA-MPPI introduces a modest computational overhead compared to standard MPPI, ranging from
12.0% for Pendulum-v1 to 18.2% for Humanoid-v4. This overhead includes the cost of feature
detection, memory updates, and enhanced value function computation. The increasing overhead with
environment complexity reflects the growing memory size and more complex feature interactions in
higher-dimensional spaces.

We also observed that MA-MPPI tends to produce smoother control trajectories with fewer high-
frequency oscillations compared to standard MPPI. Analysis of control signal frequency content
showed a 24-37% reduction in high-frequency components across environments. This smoother
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Table 8: Computational overhead analysis: Average computation time per control step (ms).

Method Pendulum-vl BipedalWalker-v3  HalfCheetah-v4  Humanoid-v4
MA-MPPI 8.4 (+12.0%) 12.7 (+14.4%) 18.3 (+16.5%) 24.6 (+18.2%)
MPPI 7.5 11.1 15.7 20.8
SAC (inference) 1.2 2.3 3.8 5.7
PPO (inference) 1.1 2.1 3.5 5.2
DDPG (inference) 1.2 2.2 3.7 5.6
iLQR 6.3 9.8 14.2 19.5
MPC 10.2 15.9 22.7 314

control behavior is particularly beneficial for physical robot systems, where rapid oscillatory control
can cause mechanical wear, energy inefficiency, and undesirable dynamics.

It’s worth noting that while RL methods have faster inference times, they require extensive offline
training that isn’t captured in these measurements. MA-MPPI’s online learning approach elimi-
nates this offline training requirement, making it more suitable for deployment in new or changing
environments.

H.6 Memory Size and Feature Type Analysis

Table 9] presents the average memory size (number of stored features) at different time points during
operation for each environment.

Table 9: Memory size analysis: Average number of stored features at different time points.

Time Point Pendulum-vl BipedalWalker-v3  HalfCheetah-v4 Humanoid-v4

500 steps 8.3+1.2 12.6£2.1 17.4£2.8 23.1£3.7
1000 steps 14.5+1.8 21.242.7 29.6+3.5 38.4+4.6
1500 steps 17.2£2.0 26.8£3.1 35.7£3.9 452452
2000 steps 18.5+2.1 28.3+3.2 38.1+4.1 48.6£5.5

Table[I0] presents the distribution of feature types detected in each environment, showing the percent-
age of features classified as local minima (Type 1), low-gradient regions (Type 2), and high-curvature
regions (Type 3).

Table 10: Feature type distribution: Percentage (%) of each feature type detected.

Environment Type 1 (Local Minima) Type 2 (Low Gradient) Type 3 (High Curvature)
Pendulum-v1 52.3% 28.6% 19.1%
BipedalWalker-v3 44.7% 32.5% 22.8%
HalfCheetah-v4 38.2% 35.8% 26.0%
Humanoid-v4 35.6% 37.2% 27.2%

The memory size increases rapidly during initial exploration, then stabilizes as feature consolidation
and forgetting mechanisms balance new feature detection. The final memory size scales with
environment complexity, reflecting the greater number of challenging regions in higher-dimensional
control problems.

The feature type distribution reveals an interesting pattern: simpler environments like Pendulum-v1
have more distinct local minima (Type 1 features), while complex environments like Humanoid-v4
have a more balanced distribution with higher proportions of low-gradient (Type 2) and high-curvature
(Type 3) regions. This aligns with the intuition that high-dimensional control problems tend to have
more plateaus and saddle points rather than clear local minima.
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I Additional Details of Complex Engineering Systems Experiments

I.1 Evaluation Methods and Metrics

We comprehensively evaluated our method against several state-of-the-art baselines, each carefully
configured to ensure fair comparison:

 Standard MPPI [22]: Implemented following the original formulation with an exponentially
weighted averaging scheme over sampled trajectories. For UAV experiments, we used 1000
trajectory samples with optimization horizon of 25 steps and temperature parameter A = 0.1.
For power systems, we used 800 samples with 30-step horizon. Control limits were enforced
through sigmoid transformation of unbounded control samples.

Diffusion Policy [3]]: Implemented using a conditional diffusion model with 8 denoising
steps. The architecture consisted of a UNet backbone with 4 residual blocks, dropout rate
of 0.1, and channel widths of [128, 256, 512, 1024]. For UAV control, we used a context
window of 10 historical states, while power system experiments used 15 historical states.
The model was trained on 100,000 demonstration trajectories collected from a mixture of
expert controllers for 500,000 gradient steps using the Adam optimizer with learning rate
3e-4 and batch size 256.

* Motion Transformer [8]: We employed an encoder-decoder architecture with 6 transformer
layers, 8 attention heads, and embedding dimension of 512. For UAV experiments, posi-
tional encodings incorporated obstacle information, while power system experiments used
frequency and voltage measurements as key variables for attention. The model was trained
using teacher forcing with a cross-entropy loss for 300,000 gradient steps using AdamW
optimizer with weight decay le-4, learning rate le-4, and batch size 128.

* MLP-based MPC [15]: We implemented a neural network dynamics model consisting of
4 hidden layers [1024, 512, 256, 128] with ReLU activations. The model was trained to
predict next-state deltas using a dataset of 200,000 state-action-state transitions collected
from system interaction. Training used the MSE loss with the Adam optimizer, learning
rate le-3, batch size 256, and ran for 100,000 gradient steps with early stopping based on
validation error. The dynamics model was integrated with a receding-horizon controller
using CEM (Cross-Entropy Method) optimization with 500 samples per iteration and 5
iterations.

* DKO-based MPC [13,16]: The Deep Koopman Operator approach used an encoder-decoder
architecture with 3 hidden layers [256, 512, 256] for embedding states into a 128-dimensional
linear latent space. The Koopman operator was represented as a 128x128 matrix learned
jointly with the encoder-decoder networks. For UAV control, we used a lifting dimension
of 128, while power systems used 256 dimensions to capture the more complex dynamics.
Training employed a composite loss function combining reconstruction error, prediction
error, and linearity constraints with weights [0.4, 0.4, 0.2]. The model was trained on
150,000 transitions for 200,000 steps using RMSProp optimizer with a learning rate of 5e-4
and a batch size of 128.

In all experiments, we conducted 30 independent trials with different random seeds to ensure statistical
robustness. Statistical significance was assessed using paired t-tests with Bonferroni correction for
multiple comparisons, establishing significance at p < 0.01. We ensured all methods had access to
identical system information and operated under the same control frequency constraints.

Performance metrics were carefully selected to provide a comprehensive evaluation across multiple
dimensions:
 Task success: Binary success/failure metrics specific to each domain

* Solution optimality: Quantitative measures of solution quality relative to theoretical opti-
mum

* Control smoothness: L2 norm of control acceleration and jerk to assess motion quality
* Computational efficiency: Wall-clock time per control step, measured on identical hardware

* Local minima escape capability: Success rate when initialized in challenging configura-
tions

27



All experiments were conducted on a homogeneous computing cluster with Intel Core i9-12900K
CPUs (3.2GHz, 16 cores) and NVIDIA RTX 3070 GPUs (8GB VRAM). Implementation used JAX
0.4.1 for GPU acceleration of sampling-based computations, with PyTorch 1.13.1 for neural network
baselines. To ensure reproducibility, we used fixed random seeds for environment initialization while
maintaining separate seeds for controller stochasticity.

L2 UAV Obstacle Avoidance - Experimental Setup

The UAV experiments featured 20 distinct navigation scenarios with increasing complexity, from
simple obstacle arrangements to maze-like environments with narrow passages, dead-ends, and
multiple possible routes.

The UAV had a mass of 1.5kg and maximum thrust of 30N, with a diagonal inertia matrix J =
diag(0.0125,0.0125,0.0225) kg-m?2. The drag coefficient was set to kg = 0.1. Control inputs were
constrained to f € [0,30] N and 7 € [—0.5,0.5] Nm.

For MA-MPPI configuration, we used a prediction horizon of 25 steps with 1000 trajectory samples
per control iteration. The memory module was configured to store up to 50 topological features with
detection thresholds 6,4, = 0.05, 04,04 = 0.01, and 6., = 0.4. The feature strength decay factor
was set to 0.95.

I.3 UAV Obstacle Avoidance - Detailed Analysis

L.3.1 Success Rate Analysis

The success rate advantage of MA-MPPI (94.3% vs. 72.8% for standard MPPI) increased with
environment complexity. In the most challenging scenarios with multiple narrow passages, MA-
MPPI maintained an 89.5% success rate while standard MPPI dropped to 58.7%.

Success rate improvements stemmed from three key capabilities:

* Proactive avoidance of previously identified trap regions
» Adaptive sampling strategy that focused exploration where needed
* Accumulating knowledge of environment topology over time
We observed that after encountering a particular obstacle configuration once, MA-MPPI significantly

improved its performance when facing similar configurations again, demonstrating effective learning
from experience.

1.3.2 Local Minima Escape Analysis

The most significant advantage of MA-MPPI was in local minima escape capability (87.5% vs. 34.2%
for standard MPPI). We further analyzed this capability in three specific trap scenarios:

e Corner traps: MA-MPPI escaped in 91.3% of trials (vs. 42.8% for standard MPPI)

» U-shaped obstacles: MA-MPPI achieved an 84.7% escape rate (vs. 31.5% for standard
MPPI)

* Narrow corridors: MA-MPPI successfully navigated through in 86.2% of trials (vs. 27.6%
for standard MPPI)

Analysis of trajectory data revealed that MA-MPPI’s memory-based potential fields created "tunnels"
through challenging regions, guiding sampling toward promising escape routes. Additionally, the
adaptive temperature mechanism increased exploration specifically in identified trap regions, enabling
discovery of solutions that standard methods missed.

1.3.3 Computational Efficiency Analysis

MA-MPPI introduced a 23.5% computational overhead compared to standard MPPI (12.6ms vs.
10.2ms per control step). This overhead consisted of:

* Feature detection and memory updates: 1.1ms (8.7%)
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* Memory-augmented potential field computation: 0.8ms (6.3%)

* Enhanced trajectory evaluation: 0.5ms (4.0%)
Despite this overhead, MA-MPPI remained more computationally efficient than learning-based
approaches (Diffusion Policy: 18.4ms, Motion Transformer: 22.7ms). Crucially, the computation

time stabilized after approximately 500 time steps as the memory consolidation mechanisms balanced
new feature detection with forgetting of less important features.

1.4 Power System Control - Experimental Setup

We used the IEEE 39-bus New England test system with 10 generators and 39 buses. The system
operates at a nominal frequency of 60Hz with base power of I00MVA. The three critical disturbances
were:

* Three-phase fault on the line connecting buses 16-17, cleared after 150ms
* Load increase of 25% at buses 4, 12, and 20, ramping over 200ms

* Trip of the 650MW generator at bus 33, with instantaneous power loss

The power system was simulated using a variable-step solver with a maximum step size of 10ms.
Control inputs included generator output adjustments, transformer tap settings, and capacitor bank
switching operations.

For MA-MPPI configuration, we used a prediction horizon of 30 steps with 800 trajectory samples.
The memory module stored up to 75 features with detection thresholds 6,4, = 0.08, 04rqq = 0.02,
and 0., = 0.6. The control interval was 100ms for normal operation, automatically reducing to
50ms during detected disturbances.

L5 Power System Control - Detailed Analysis
I.5.1 Constraint Violation Analysis

MA-MPPI achieved a 59.6% reduction in constraint violations compared to standard MPPI (2.3% vs.
5.7%). This advantage was most pronounced during the three-phase fault scenario, where MA-MPPI
kept violations to 4.7% compared to 12.3% for standard MPPI.

Analysis by constraint type revealed:

* Voltage violations: MA-MPPI 1.8% vs. standard MPPI 6.2% (71.0% reduction)
¢ Thermal violations: MA-MPPI 4.3% vs. standard MPPI 7.8% (44.9% reduction)
* Stability violations: MA-MPPI 0.7% vs. standard MPPI 4.1% (82.9% reduction)
The memory mechanism effectively identified regions of state space associated with constraint

violations, creating repulsive potential fields that guided the controller away from these regions
preemptively.

L.5.2 Disturbance Recovery Analysis

MA-MPPI achieved 51.7% faster recovery from disturbances compared to standard MPPI (4.2s vs.
8.7s). Recovery performance by disturbance type:

* Three-phase fault: MA-MPPI 4.8s vs. standard MPPI 8.3s (42.2% faster)

* Load change: MA-MPPI 4.1s vs. standard MPPI 8.4s (51.2% faster)

* Generator trip: MA-MPPI 3.7s vs. standard MPPI 9.4s (60.6% faster)
The most significant advantage was observed in the generator trip scenario, where MA-MPPI quickly
redistributed power flows while maintaining frequency stability. The memory-augmented controller

effectively learned patterns from previous disturbances, enabling it to recognize and respond to
similar situations more effectively over time.
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The consistency in performance was particularly notable, with a standard deviation in recovery
time of 0.6s for MA-MPPI versus 1.9s for standard MPPI, indicating more reliable and predictable
disturbance responses.

J Hyperparameter Sensitivity Analysis

To assess the robustness and practicality of the MA-MPPI algorithm, we conducted a comprehensive
sensitivity analysis on key hyperparameters. This analysis is crucial for understanding the algorithm’s
adaptability in different scenarios and providing parameter tuning guidelines for practical applications.

J.1 Key Hyperparameters and Testing Methodology
We identified four groups of key hyperparameters that significantly influence MA-MPPI performance:

1. Feature detection thresholds: 0, (state stagnation detection), 04,4 (gradient magnitude
monitoring), and 6., (curvature analysis)

2. Memory feature parameters: influence radius multiplier ., initial feature strength -y,
and decay factor Bgecay

3. Adaptive weight parameters: scaling parameter dy and transition sharpness parameter S in
the balancing function

4. Temperature adaptation parameters: base temperature \y and enhancement coefficient n

For each parameter, we varied its value by +50% around the central value while keeping other pa-
rameters fixed, testing performance on the Humanoid-v4 environment. Each parameter configuration
was evaluated through 30 independent experiments, recording success rate, cumulative reward, and
local minima escape rate metrics.

J.2  Feature Detection Threshold Sensitivity

Feature detection thresholds determine the sensitivity of the system in identifying and memorizing
problematic regions.

Table 11: Performance change (%) relative to baseline for different feature detection thresholds.

Parameter variation 6., Ograd [
-50% A42% -127% -3.8%
-25% -1.7%  -58% -1.5%
Baseline 0.0% 0.0% 0.0%
+25% 23% -64% -2.1%
+50% -71.6% -153% -52%

The data indicates that the gradient detection threshold 6,44 has the largest impact on performance,
with +50% variations causing a 12.7-15.3% performance decrease. This is because gradient infor-
mation directly influences the choice of escape directions. In contrast, the state stagnation threshold
0yar and curvature threshold 6., have smaller impacts, indicating algorithm robustness to these
two parameters.

Notably, all parameters exhibit an inverted U-shaped sensitivity curve—too low thresholds lead to
overly sensitive detection (memorizing too many unimportant features), while too high thresholds
result in missing important features. Within the +25% variation range, performance decreases are
typically contained below 6%, demonstrating reasonable parameter tolerance for the algorithm.

J.3 Memory Feature Parameter Sensitivity

Memory feature parameters control how memory elements influence the value function landscape.

Results show that the influence radius multiplier x,. is the most sensitive parameter, especially when
set too small. Insufficient influence radii prevent memory features from effectively altering the value
function landscape across an adequate range, causing the system to still potentially fall into local
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Table 12: Performance change (%) relative to baseline for different memory feature parameters.

Parameter variation Influence radius «, Initial strength 7o Decay factor Secay

-50% -18.4% -71.3% -3.2%
-25% -8.7% -3.5% -1.4%
Baseline 0.0% 0.0% 0.0%
+25% -2.3% -2.8% -2.1%
+50% -9.1% -8.5% -5.7%

minima. In contrast, initial strength o and decay factor B4ecqy have more moderate impacts and
exhibit stability across a wide range of values.

Particularly noteworthy is that increasing the influence radius (+25%) actually slightly improved
performance, suggesting that the default setting may be too conservative in some environments. This
provides a potential tuning direction.

J.4 Adaptive Weight and Temperature Parameter Sensitivity

These two parameter groups control the balance between memory potential fields and base objectives,
as well as the exploration aspect of the sampling strategy. Table [I3|summarizes the sensitivity test
results.

Table 13: Performance change (%) relative to baseline for adaptive weight and temperature parame-
ters.

Parameter -50%  -25% Baseline +25%  +50%
Scaling parameter d -11.3%  -4.8% 0.0% 32%  -8.5%
Transition sharpness “42%  -1.7% 0.0% 24%  -6.1%
Base temperature \g -13.7%  -5.9% 0.0% -13% -16.4%

Enhancement coefficientny -9.8% -4.1% 0.0% +12% -4.7%

The base temperature Ao shows the highest sensitivity, which is expected as it directly controls the
exploration-exploitation trade-off. Too low temperature leads to premature convergence to suboptimal
solutions, while too high temperature results in excessive exploration and noisy control signals.

Interestingly, the enhancement coefficient 1) at +25% actually improved performance, suggesting that
increased exploration when facing memory features can be beneficial in complex environments. The
scaling parameter dg has moderate sensitivity, while the transition sharpness [ has relatively minor
impact.

J.5 Relationship Between Environment Complexity and Parameter Sensitivity

We further investigated how environmental complexity affects parameter sensitivity.

Table 14: Performance change (%) for 6,4 variations across different environments

Environment Ograd -25%  Ograqa +25%
Pendulum-v1 -1.3% -1.8%
BipedalWalker-v3 -2.7% -3.4%
HalfCheetah-v4 -4.2% -5.1%
Humanoid-v4 -5.8% -6.4%

Results indicate that parameter sensitivity increases with environment complexity. This is because
high-dimensional state spaces and complex dynamics make precise detection of topological features
more critical. Nevertheless, even in the most complex Humanoid-v4 environment, +25% parameter
variations only lead to approximately 6% performance degradation, attesting to the algorithm’s
robustness.
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J.6 Optimal Parameter Ranges and Practical Guidelines

Based on our sensitivity analysis, we recommend the following parameter ranges for environments of
varying complexity:

* Simple environments (e.g., Pendulum):
= Byqar € [0.008,0.015], Ogrqa € [0.004,0.007], Ocyry € [0.4,0.7]
- Ky € [1.8,2.5], Ao € [0.08,0.15], n € [1.5,2.5]

* Moderate environments (e.g., BipedalWalker):
= Oyar €[0.04,0.07], 84rqq € [0.008,0.015], Ocyry € [0.3,0.5]
- Ky € ]2.0,3.0], Ao € [0.1,0.2], n € [1.8,3.0]

* Complex environments (e.g., Humanoid):
= Oyar € [0.06,0.1], 8444 € [0.015,0.025], Oy € [0.6,1.0]
- Ky €2.5,3.5], Ag € [0.15,0.25], n € [2.5,4.0]

Overall, we found that MA-MPPI performs stably within +25% variation range of parameters,
demonstrating good robustness for practical applications. The most sensitive parameters are the
influence radius multiplier x,- and base temperature Ay, while the least sensitive are the decay factor
Bdecay and transition sharpness 3.

K Analysis of Generalization Limitations

While the Memory-Augmented Potential Field theory demonstrates excellent performance in non-
convex control problems, it exhibits certain limitations in feature generalization. Specifically, the
system shows limited ability to generalize when encountering topological features that are similar but
not identical to previously memorized features.

K.1 Current Generalization Limitations

In the current implementation, the memory module represents each topological feature (such as local
minima, low-gradient regions, etc.) as discrete points in state space with an influence radius defining
their range of effect. This representation works well when dealing with exact matches or highly
similar features but faces the following limitations:

1. Discreteness of feature representation: The current method uses a collection of dis-
crete points to represent memory features, lacking an abstract representation of structural
similarities between features.

2. Distance-based similarity metrics: The system primarily relies on Euclidean distance
to assess similarity between current states and memorized features, which may not be
sufficiently precise in high-dimensional state spaces.

3. Simplistic feature consolidation: Current feature merging rules are primarily based on
spatial proximity, failing to fully capture semantic or functional similarities between features.

These limitations become particularly evident when the controller encounters structurally similar
obstacles or control challenges in different regions of the state space. For example, in the UAV
obstacle avoidance task, the system might not immediately recognize that two U-shaped obstacles
with different orientations present similar navigation challenges, requiring similar escape strategies.

K.2 Potential Improvement Directions

To enhance the system’s generalization capabilities, we propose several potential improvement
directions:

1. Hierarchical feature representation: Introduce a hierarchical feature representation that ab-

stracts low-level specific features into higher-level patterns, enabling the system to recognize
structurally similar topological features.
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2. Manifold-based similarity metrics: Develop similarity metrics based on the local manifold
structure of the state space rather than relying solely on Euclidean distance. This could
involve techniques from topological data analysis or spectral methods.

3. Feature embedding learning: Represent features as vectors in a low-dimensional em-
bedding space, using supervised or self-supervised learning to ensure functionally similar
features are proximate in the embedding space.

4. Transfer learning mechanisms: Design explicit transfer learning mechanisms that allow
the system to adapt control strategies learned from one feature and apply them to similar
features.

Preliminary experiments suggest that even simple feature embedding and similarity learning can
improve generalization between similar features by 25-40%, particularly when task variations are
moderate. This indicates significant room for improvement in MA-MPPI’s generalization capabilities
through appropriate representation learning and knowledge transfer mechanisms.

K.3 Empirical Evidence

To quantify the current generalization limitations, we conducted an experiment where the controller
was trained on specific obstacle configurations and then tested on variations of these configurations.
Table [T5]summarizes the performance degradation as a function of feature variation.

Table 15: Performance degradation with feature variations

Feature type Performance relative to original feature (%)

20% variation 40% variation 60% variation 80% variation
Local minima location 92.7 75.3 58.4 42.1
Obstacle shape 87.5 68.2 51.7 384
Corridor width 94.1 79.6 62.8 453
Multi-feature scenarios 84.3 63.7 46.5 32.7

The results show that performance degrades significantly with increasing feature variation, particularly
in multi-feature scenarios where interactions between features create more complex topological
structures.

Initial experiments with a prototype embedding-based generalization mechanism show promising
results, with significant improvements in transfer performance between similar features. This suggests
that integrating modern representation learning techniques with the memory augmentation framework
could substantially address the current generalization limitations while maintaining theoretical
guarantees of the base approach.

Future work will focus on developing formal theoretical extensions to the Memory-Augmented
Potential Field theory that explicitly account for feature similarity and knowledge transfer, providing
similar convergence and optimality guarantees for generalized features as the current framework
provides for explicitly memorized features.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the paper’s main contributions:
(1) the Memory-Augmented Potential Field Theory framework that integrates historical
experience into stochastic optimal control, (2) theoretical analysis showing non-convex
escape properties and convergence guarantees, (3) implementation in a Memory-Augmented
MPPI controller, and (4) experimental validation in challenging non-convex environments.
These claims accurately reflect the content presented throughout the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 7 (Discussion and Limitations, lines 281-290) explicitly discusses
several limitations of the current approach, including restricted generalization between
similar features, lack of sophisticated memory management for extended operations, and
absence of multi-agent knowledge sharing. Appendix K provides a detailed analysis of the
generalization limitations, specifically.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical results in Section 3.3 (Theorems 3.1, 3.2, and 3.3) are presented
with clear assumptions and statements. Complete formal proofs for all theorems are provided
in Appendix C, with proof sketches in the main text providing intuition.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed experimental protocols in Sections 5.1 and 6.1,
with comprehensive implementation details in Appendices H and 1. These sections cover en-
vironment specifications, algorithm configurations, hyperparameter settings, and evaluation
metrics sufficient for reproducing the main results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper states in line 55 that "The code has been anonymized and is available
athttps://github. com/ContinuumCoder/MAPFT_MPPI. The experiments use standard
benchmark environments (OpenAl Gym and MuJoCo), and detailed implementation instruc-
tions are provided in Appendices E-I.

Guidelines:
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» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings are thoroughly documented in Sections 5.1, 6.1,
and Appendices H and I. These sections detail environment configurations, evaluation
protocols, hyperparameter settings (including how they were chosen), implementation
details, and baseline configurations. Section J provides additional sensitivity analysis for
key hyperparameters.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results in Tables 1-4 include standard deviations across
multiple runs. The paper explicitly states in line 185 that 30 independent runs with different
random seeds were conducted for statistical robustness. Section I.1 mentions that statistical
significance was assessed using paired t-tests with Bonferroni correction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section H.1.2 specifies the computational resources: "All experiments were
conducted on a computing cluster with Intel Core 19-12900K CPUs (3.20GHz) and NVIDIA
RTX 3070 GPUs." Section H.5 provides a detailed analysis of computational overhead and
execution times for different components of the algorithm.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves purely algorithmic and simulation-based experimentation
without human subjects, real-world deployment risks, or privacy concerns. The paper
includes a thorough discussion of broader impacts in Appendix A, addressing potential
benefits and harms in accordance with the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix A (lines 341-372) provides a comprehensive discussion of both
positive societal impacts (improved safety and reliability in critical applications, energy
efficiency, democratized access to advanced control) and negative impacts (workforce
transitions, dual-use concerns, overreliance, accountability challenges). The section also
suggests mitigation strategies.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper introduces a control algorithm and does not release high-risk models
or datasets that have potential for misuse. The work focuses on robotic control tasks in
simulation environments rather than generating content or processing sensitive data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the original sources for all environments and baseline
methods used in the experiments (OpenAl Gym, MuJoCo, and various control algorithms)
in the references section. These are standard benchmark environments in the research
community, used appropriately for academic research purposes.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new algorithm (MA-MPPI) which is thoroughly
documented in Sections 3 and 4, with implementation details in Appendices E-G. The code
repository mentioned in line 55 contains documentation for using the implementation.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
All experiments are conducted in simulation environments with algorithmic agents.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: The paper does not involve human subjects research, so IRB approval was not
required. All experiments were conducted in simulation environments.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research does not use Large Language Models as components in its
methodology. The Memory-Augmented MPPI approach relies on control theory, dynamics
models, and memory structures without incorporating LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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