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Abstract

We consider the problem of online multi-agent Nash social welfare (NSW) max-
imization. While previous works of Hossain et al. [2021], Jones et al. [2023]
study similar problems in stochastic multi-agent multi-armed bandits and show
that

√
T -regret is possible after T rounds, their fairness measure is the product of

all agents’ rewards, instead of their NSW (that is, their geometric mean). Given the
fundamental role of NSW in the fairness literature, it is more than natural to ask
whether no-regret fair learning with NSW as the objective is possible. In this work,
we provide a complete answer to this question in various settings. Specifically, in
stochastic N -agent K-armed bandits, we develop an algorithm with Õ(K

2
N T

N−1
N )

regret and prove that the dependence on T is tight, making it a sharp contrast to the√
T -regret bounds of Hossain et al. [2021], Jones et al. [2023]. We then consider a

more challenging version of the problem with adversarial rewards. Somewhat sur-
prisingly, despite NSW being a concave function, we prove that no algorithm can
achieve sublinear regret. To circumvent such negative results, we further consider a
setting with full-information feedback and design two algorithms with

√
T -regret:

the first one has no dependence on N at all and is applicable to not just NSW but a
broad class of welfare functions, while the second one has better dependence on K
and is preferable when N is small. Finally, we also show that logarithmic regret is
possible whenever there exists one agent who is indifferent about different arms.

1 Introduction

In this paper, we study online multi-agent Nash social welfare (NSW) maximization, which is a
generalization of the classic multi-armed bandit (MAB) problem [Thompson, 1933, Lai and Robbins,
1985]. Different from MAB, in which the learner makes her decisions sequentially in order to
maximize her own reward, in online multi-agent NSW maximization, the learner’s decision affects
multiple agents and the goal is to maximize the NSW over all the agents. Specifically, NSW is
defined as the geometric mean of the expected utilities over all agents [Moulin, 2004], which can be
viewed as a measure of fairness among the agents. This problem includes many important real-life
applications such as resource allocation [Jones et al., 2023], where the learner needs to guarantee fair
allocations among multiple agents. We refer the readers to [Hossain et al., 2021, Jones et al., 2023]
for more applications of NSW maximization.

Recent work by Hossain et al. [2021], Jones et al. [2023] studies a similar problem but with NSWprod
as the objective, a variant of NSW that is defined as the product of the utilities over agents instead of
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their geometric mean. While the optimal strategy is the same if the utility for each agent is stationary,
this is not the case with a non-stationary environment. Moreover, NSWprod is homogeneous of degree
N instead of degree 1, where N is the number of agents, meaning that NSWprod is more sensitive to
the scale of the utility. Specifically, if the utilities of each agent are scaled by 2, then NSW is scaled
by 2 as well, but NSWprod is scaled by 2N . Therefore, it is arguably more reasonable to consider
regret with respect to NSW, which has not been studied before (to our knowledge) and is the main
objective of our work.

From a technical perspective, however, due to the lack of Lipschitzness, NSW poses much more
challenges in regret minimization compared to NSWprod. For example, one cannot directly apply
the algorithm for Lipschitz bandits [Kleinberg et al., 2019] to our problem, while it is directly
applicable to NSWprod as mentioned in [Hossain et al., 2021, Jones et al., 2023]. Despite such
challenges, we manage to provide complete answers to this problem in various setting. Specifically,
our contributions are listed below (where T,N , and K denote the number of rounds, agents, and
arms/actions respectively):

• (Section 3) We first study the stochastic bandit setting, where the utility matrix at each round is i.i.d.
drawn from an unknown distribution, and the learner can only observe the utilities (for different
agents) of the action she picked. In this case, we develop an algorithm with Õ(K

2
N T

N−1
N ) regret.1

While our algorithm is also naturally based on the Upper Confidence Bound (UCB) algorithm as
in Hossain et al. [2021], Jones et al. [2023], we show that a novel analysis with Bernstein-type
confidence intervals is important for handling the lack of Lipschitzness of NSW. Moreover, we
prove a lower bound of order Ω̃( 1

N3 · K 1
N T

N−1
N ), showing that the dependence on T is tight.

This is in sharp contrast to the
√
T -regret bound of Hossain et al. [2021], Jones et al. [2023] and

demonstrates the difficulty of learning with NSW compared to NSWprod.

• (Section 4.1) We then consider a more challenging setting where the utility matrix at each round
can be adversarially chosen by the environment. Somewhat surprisingly, we show that no algorithm
can achieve sublinear regret in this case, despite NSW being concave and the vast literature on
bandit online maximization with concave utility functions (the subtlety lies in the slightly different
feedback model). In fact, the same impossibility result also holds for NSWprod as we show.

• (Section 4.2) To bypass such impossibility, we further consider this adversarial setting under richer
feedback, where the learner observes the full utility matrix after her decision (the so-called full-
information feedback). Contrary to the bandit feedback setting, learning is not only possible now
but can also be much faster despite having adversarial utilities. Specifically, we design two different
algorithms with

√
T -regret. The first algorithm is based on Follow-the-Regularized-Leader (FTRL)

with the log-barrier regularizer, which achieves O(
√
KT log T ) regret (Section 4.2.1). Notably,

this algorithm does not have any dependence on the number of agentsN and can also be generalized
to a broader class of social welfare functions. The second algorithm is based on FTRL with a
Tsallis entropy regularizer, which achieves Õ(K

1
2−

1
N

√
NT ) regret and is thus more favorable

when K is much larger than N (Section 4.2.2). Finally, we also show that improved logarithmic
regret is possible as long as at each round there exists at least one agent who is indifferent about
the learner’s choice of arm (Section 4.2.3).

1.1 Related Work

Hossain et al. [2021], Jones et al. [2023] are most related to our work. Hossain et al. [2021] is the first
to consider designing no-regret algorithms under NSWprod for the stochastic multi-agent multi-armed
bandit problem. Specifically, they propose two algorithms. The first one is based on ε-greedy and
achieves O(T

2
3 ) regret efficiently, and the second one is based on UCB and achieves Õ(

√
T ) regret

inefficiently. Jones et al. [2023] improves these results by providing a better UCB-based algorithm
that is efficient and achieves the same Õ(

√
T ) regret. To the best of our knowledge, there are no

previous results for regret minimization over NSW under this particular setup.

However, several other models of fairness have been introduced in (single-agent or multi-agent)
multi-armed bandits, some using NSW as well. These models differ in whether they aim to be
fair among different objectives, different arms, different agents, different rounds, or others. Most

1The notation Õ(·) and Ω̃(·) hide logarithmic dependence on K, N , and T .
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related to this paper is multi-objective bandits, in which the learner tries to increase different and
possibly competing objectives in a fair manner. For example, Drugan and Nowe [2013] introduces
the multi-objective stochastic bandit problem and offers a regret measure to explore Pareto Optimal
solutions, and Busa-Fekete et al. [2017] investigates the same setting using the Generalized Gini Index
in their regret measure to promote fairness over objectives. Their regret measure closely resembles the
one we use, except they apply some social welfare function (SWF) to the cumulative expected utility
of agents over all rounds as opposed to the expected utility of agents each round. On the other hand,
some other works study fairness among different rounds which incentivizes the learner to perform
well consistently over all rounds [Barman et al., 2023, Sawarni et al., 2024]. Besides, there are other
models that measure fairness in different ways, including how often each arm is pulled [Joseph et al.,
2016, Liu et al., 2017, Gillen et al., 2018, Chen et al., 2020] and how the regret is allocated across
different groups [Baek and Farias, 2021].

Kaneko and Nakamura [1979] axiomatically derives the NSW function. It is a fundamental and
widely-adopted fairness measure and is especially popular for the task of fairly allocating goods.
Caragiannis et al. [2019] justifies the fairness of NSW by showing that its maximum solution ensures
some desirable envy-free property. This result prompted the design of approximation algorithms for
the problem of allocating indivisible goods by maximizing NSW, which is known to be NP-hard even
for simple valuation functions [Barman et al., 2018, Cole and Gkatzelis, 2015, Garg et al., 2023, Li
and Vondrák, 2021].

There is a vast literature on the multi-armed bandit problem; see the book by Lattimore and Szepesvári
[2020] for extensive discussions. The standard algorithm for the stochastic setting is UCB [Lai and
Robbins, 1985, Auer et al., 2002a], while the standard algorithm for the adversarial setting is FTRL or
the closely related Online Mirror Descent (OMD) algorithm [Auer et al., 2002b, Audibert and Bubeck,
2010, Abernethy et al., 2015]. For FTRL/OMD, the log-barrier or Tsallis entropy regularizers have
been extensively studied in recent years due to some of their surprising properties (e.g., [Foster et al.,
2016, Wei and Luo, 2018, Zimmert and Seldin, 2019, Lee et al., 2020]). They are rarely used in the
full-information setting as far as we know, but our analysis reveals that they are useful even in such
settings, especially for dealing with the lack of Lipschitzness of NSW.

2 Preliminaries

General Notation. Throughout this paper, we denote the set {1, 2, . . . , n} by [n] for any positive
integer n. For a matrix M ∈ Rm×n, we denote the i-th row vector of M by Mi,: ∈ Rn, the j-th
column vector of M by M:,j ∈ Rm, and the (i, j)-th entry of M by Mi,j . We say M ⪰ 0 if M is a
positive semi-definite matrix. The (K − 1)-dimensional simplex is denoted as ∆K , and its clipped
version with a parameter δ > 0 is denoted as ∆K,δ = {p ∈ ∆K | pi ≥ δ, ∀i ∈ [K]}. We use 0 and 1
to denote the all-zero and all-one vector in an appropriate dimension. For two random variables X
and Y , we use X d

= Y to say X is equivalent to Y in distribution.

For a twice differentiable function f , we use ∇f(·) and ∇2f(·) to denote its gradient and Hessian.
For concave functions that are not differentiable, ∇f(·) denotes a super-gradient. Throughout the
paper, we study functions of the form f(u⊤p) for u ∈ [0, 1]m×n and p ∈ ∆m. In such cases, the
gradient, super-gradient, or hessian are all with respect to p unless denoted otherwise (for example,
we write ∇uf(u

⊤p), with an explicit subscript u, to denote the gradient with respect to u).

Social Welfare Functions A social welfare function (SWF) f : [0, 1]N → [0, 1] measures the
desirability of the agents’ expected utilities. Specifically, for two different vectors of expected utilities
µ, µ′ ∈ [0, 1]N , f(µ) > f(µ′) means that µ is a fairer alternative than µ′. In each setting we explore,
each action by the learner yields some expected utility for each of the N agents, and the learner’s
goal is maximize some SWF applied to these N expected utilities.

Nash Social Welfare (NSW) For the majority of this paper, we focus on a specific type of SWF,
namely the Nash Social Welfare (NSW) function [Nash, 1950, Kaneko and Nakamura, 1979].
Specifically, for µ ∈ [0, 1]N , NSW is defined as the geometric mean of the N coordinates:

NSW(µ) =
∏
n∈[N ]

µ1/N
n . (1)
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As mentioned, Hossain et al. [2021], Jones et al. [2023] considered a closely related variant that
is simply the product of the coordinates: NSWprod(µ) =

∏
n∈[N ] µn. It is clear that NSW has a

better scaling property since it is homogeneous: scaling each µn by a constant c also scales NSW(µ)
by c, but it scales NSWprod(µ) by cN . This makes NSWprod an unnatural learning objective, which
motivates us to use NSW as our choice of SWF. Learning with NSW, however, brings extra challenges
since it is not Lipschitz in the small-utility regime (while NSWprod is Lipschitz over the entire [0, 1]N ).
We shall see in subsequent sections how we address such challenges.

We remark that while our main focus is regret minimization with respect to NSW, some of our results
also apply to NSWprod or more general classes of SWFs (as will become clear later).

Problem Setup. The N -agent K-armed social welfare optimization problem we consider is defined
as follows (with N ≥ 2 and K ≥ 2 throughout). Ahead of time, with the knowledge of the learner’s
algorithm, the environment decides T utility matrices u1, . . . , uT ∈ [0, 1]K×N , where ut,i,n is the
utility of agent n if arm/action i is selected at round t. Then, the learner interacts with the environment
for T rounds: at each round t, the learner decides a distribution pt ∈ ∆K and then samples an action
it ∼ pt. In the full-information feedback setting, the learner observes the full utility matrix ut after
her decision, and in the bandit feedback setting, the learner only observes ut,it,n for each agent
n ∈ [N ], that is, the utilities of the selected action.

We consider two different types of environments, the stochastic one and the adversarial one, with a
slight difference in their regret definition. In the stochastic environment, there exists a mean utility
matrix u ∈ [0, 1]K×N such that at each round t, ut is an i.i.d. random variable with mean u. Fix an
SWF f . The social welfare of a strategy p ∈ ∆K is defined as f(u⊤p), which is with respect to the
agents’ expected utilities over the randomness of both the learner’s and the environment’s. The regret
is then defined as follows:

Regsto = T · max
p∈∆K

f(u⊤p)− E

[
T∑
t=1

f(u⊤pt)

]
, (2)

which is the difference between the total social welfare of the optimal strategy and that of the learner.
When f is chosen to be NSWprod, Eq. (2) reduces to the regret notion considered in Hossain et al.
[2021], Jones et al. [2023].

On the other hand, in the adversarial environment, we do not make any distributional assumption on
the utility matrices and allow them to be selected arbitrarily. The social welfare of a strategy p ∈ ∆K

for time t is defined as f(u⊤t p), and the overall regret of the learner is correspondingly defined as:

Regadv = max
p∈∆K

T∑
t=1

f(u⊤t p)− E

[
T∑
t=1

f(u⊤t pt)

]
. (3)

In both Eq. (2) and Eq. (3), the expectation is taken with respect to the randomness of the algorithm.

Social welfare of expected utilities versus expected social welfare of realized utilities. One
might wonder why we measure fairness using the social welfare of expected utilities (e.g., f(u⊤p)),
instead of the expected social welfare of realized utilities (e.g., Ei∼p[f(u⊤ei)]). This is because
the former is arguably more meaningful as a fairness measure. To see this, consider f = NSW or
f = NSWprod and a setting with 2 agents, 2 arms, and u being the identity matrix. Then, in terms of
f(u⊤p), the uniform distribution is the best policy (which makes sense from a fairness viewpoint),
while in terms of Ei∼p[f(u⊤ei)], all distributions achieve the same value of 0, implying that all
polices are as fair, which is clearly undesired.

Connection to Bandit Convex optimization. When taking f = NSW (our main focus) and
considering the bandit feedback setting, our problem is seemingly an instance of the heavily-studied
Bandit Convex optimization (BCO) problem, since −NSW is convex. However, there is a slight but
critical difference in the feedback model: a BCO algorithm would require observing f(u⊤t pt), or
equivalently u⊤t pt, at the end of each round t, while in our problem the learner only observes ut,it,:, a
much more realistic scenario. Even though they have the same expectation, due to the non-linearity of
NSW, this slight difference in the feedback turns out to cause a huge difference in terms of learning
— the minimax regret for BCO is known to be Θ(

√
T ), while in our problem (with bandit feedback),
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Algorithm 1 UCB for N -agent K-armed NSW maximization
Input: warm-up phase length N0 > 0.
Initialization: û1,i,n = 1 for all n ∈ [N ], i ∈ [K]. N1,i = 0 for all i ∈ [K].
for t = 1, 2, . . . , T do

if t ≤ KN0 then select it = ⌈ t
N0

⌉ ;
else calculate pt = argmaxp∈∆K

NSW(û⊤t p) and select it ∼ pt ;
Observe ut,it,n for all n ∈ [N ].
Update counters Nt+1,it = Nt,it + 1 and Nt+1,i = Nt,i for i ̸= it.
Update upper confidence utility matrix:

ût+1,i,n = ūt,i,n + 4

√
ūt,i,n log(NKT 2)

Nt+1,i
+

8 log(NKT 2)

Nt+1,i
, (4)

for all n ∈ [N ] and i ∈ [K] where ūt,i,n = 1
Nt+1,i

∑
τ≤t uτ,i,n1{iτ = i}.

end

as we will soon show, the regret is either Θ(T
N−1
N ) in the stochastic setting or even Ω(T ) in the

adversarial setting. Therefore, in a sense our problem is much more difficult than BCO. For more
details on BCO, we refer the reader to a recent survey by Lattimore [2024].

3 Stochastic Environments with Bandit Feedback

In this section, we consider regret minimization over f = NSW with bandit feedback in the stochastic
setting, where the utility matrix ut at each round t ∈ [T ] is i.i.d. drawn from a distribution with mean
u. Again, this is the same setup as Hossain et al. [2021], Jones et al. [2023] except that NSWprod is
replaced with NSW.

3.1 Upper Bound: a Refined Analysis of UCB with a Bernstein-Type Confidence Set

We start by describing our algorithm and its regret guarantee, followed by discussion on what the key
ideas are and how the algorithm/analysis is different from previous work. Specifically, our algorithm,
shown in Algorithm 1, is based on the classic UCB algorithm. It starts by picking each action for
N0 = Õ(1) rounds. After this warm-up phase, at each time t, the algorithm picks the optimal strategy
pt that maximizes the NSW with respect to some upper confidence utility matrix ût. After sampling
an action it ∼ pt, the algorithm observes the utility of each agent for action it and then updates the
upper confidence utility matrix ût+1 as the empirical average utility plus a certain Bernstein-type
confidence width (Eq. (4)).

The following theorem shows that Algorithm 1 guarantees Õ(K
2
N T

K−1
K ) expected regret (with f , in

the definition of Regsto, set to NSW; the same below unless stated otherwise). The full proof can be
found in Appendix A.

Theorem 3.1. With N0 = 1+18 logKT , Algorithm 1 guarantees E [Regsto] = Õ(K
2
N T

N−1
N +K).

Other than replacing NSWprod with NSW, our algorithm differs from that of Jones et al. [2023] in
the form of the confidence width, and the analysis sketch below explains why we need this change.
Specifically, for either f = NSWprod or f = NSW, standard analysis of UCB states that the regret is
bounded by

∑T
t=1

∣∣f(û⊤t pt)− f(u⊤pt)
∣∣. When f is NSWprod, a Lipschitz function, Hossain et al.

[2021, Lemma 3] shows∣∣NSWprod(û
⊤
t pt)− NSWprod(u

⊤pt)
∣∣ ≤ N∑

n=1

K∑
i=1

pt,i |ût,i,n − ui,n| , (5)

and the rest of the analysis follows by direct calculations. However, when f is NSW, a non-Lipschitz
function, we cannot expect something similar to Eq. (5) anymore. Indeed, direct calculation shows
that the Lipschitz constant of NSW(u⊤p) with respect to u:,n equals to Θ

(∑N
n=1 ⟨p, u:,n⟩

−N−1
N

)
,

which can be arbitrarily large when ⟨p, u:,n⟩ is close to 0 for some n ∈ [N ] and N ≥ 2.

5



To handle this issue, we require a more careful analysis. Specifically, using Freedman’s inequality,
we know that with a high probability,

ût,i,n ∈

[
ui,n, ui,n + 8

√
ui,n log(NKT 2)

Nt,i
+ Õ (1/Nt,i)

]
⊆
[
ui,n, 2ui,n + Õ (1/Nt,i)

]
. (6)

With the help of Eq. (6), we consider two different cases at each round t. The first case is that there
exists certain n ∈ [N ] such that ⟨pt, u:,n⟩ ≤ σ for some σ > 0 to be chosen later. In this case, we
use Eq. (6) to show

∣∣NSW(û⊤t pt)− NSW(u⊤pt)
∣∣ ≤ O

(
NSW(u⊤pt)

)
+ Õ

(( K∑
i=1

pt,i
Nt,i

) 1
N

)

≤ σ
1
N + Õ

(( K∑
i=1

pt,i
Nt,i

) 1
N

)
, (7)

where the first inequality uses Eq. (6) and the second inequality is because NSW(u⊤pt) ≤ ⟨pt, un⟩
1
N

for any n ∈ [N ]. For the second term in Eq. (7), a standard analysis shows that it is upper bounded
by Õ

(
K

1
N T

N−1
N

)
.

Now we consider the case where ⟨pt, u:,n⟩ ≥ σ for all n ∈ [N ]. In this case, via a decomposition
lemma (Lemma C.1), we show that∣∣NSW(û⊤t pt)− NSW(u⊤pt)

∣∣ ≤ N∑
n=1

[
⟨pt, ût,:,n⟩

1
N − ⟨pt, u:,n⟩

1
N

]
= O

(
N∑
n=1

⟨pt, ût,:,n − u:,n⟩

N ⟨pt, u:,n⟩
N−1
N

)
.

(8)

To bound Eq. (8), we use Eq. (6) again:

⟨pt, ût,:,n − u:,n⟩

⟨pt, u:,n⟩
N−1
N

≤ O

(
1

⟨pt, u:,n⟩
N−1
N − 1

2

K∑
i=1

√
pt,i
Nt,i

)
≤ O

(
σ

1
2−

N−1
N

K∑
i=1

√
pt,i
Nt,i

)
, (9)

where the last inequality is due to the condition ⟨pt, u:,n⟩ ≥ σ for all n ∈ [N ]. Finally, combining
Eq. (7), Eq. (8), Eq. (9), followed by direct calculations, we show that

E [Regsto] ≤
T∑
t=1

∣∣NSW(û⊤t pt)− NSW(u⊤pt)
∣∣ ≤ Õ

(
Tσ

1
N +K

1
N T

N−1
N + σ

1
2−

N−1
N K

√
T
)
.

Picking the optimal choice of σ finishes the proof.

We now highlight the importance of using a Bernstein-type confidence width in Eq. (4): if the standard
Hoeffding-type confidence width is used instead, then one can only obtain ût,i,n−ui,n ≤ O(

√
1

Nt,i
),

and consequently, Eq. (8) can only be bounded by O
(
σ−N−1

N

√
KT

)
after taking summation over

t ∈ [T ]. This eventually leads to a worse regret bound of Õ(K
1

2N T
2N−1
2N ).

3.2 Lower Bound

Next, we prove an Ω̃(T
N−1
N ) lower bound for this setting. This not only shows that the regret bound

we achieve via Algorithm 1 is tight in T , but also highlights the difference and difficulty of learning
with NSW compared to learning with NSWprod, since in the latter case, Θ(

√
T ) regret is minimax

optimal [Hossain et al., 2021, Jones et al., 2023].
Theorem 3.2. In the bandit feedback setting, for any algorithm, there exists a stochastic environment
in which the expected regret (with respect to NSW) of this algorithm is Ω

(
(logK)3

N3 ·K 1
N T

N−1
N

)
for

N ≥ logK and sufficiently large T .

We defer the full proof to Appendix A.2 and discuss the hard instance used in the proof below. First,
the mean utility vector u:,n for each agent n ≥ 2 is a constant vector 1. This makes the problem

6



equivalent to a one-agent problem, but with ⟨p, u:,1⟩1/N as the reward, instead of ⟨p, u:,1⟩ as in
standard stochastic K-armed bandits.

Then, for the first agent, different from the standard K-armed bandits, where the hardest instance is
to hide one arm with a slightly better expected reward of 1

2 +
√
K/T among other K − 1 arms with

expected reward of exactly 1
2 ,2 we hide one arm with expected reward K/T among other K − 1 arms

with exactly 0 reward (so overall the rewards are shifted towards 0 but with a smaller gap between
the best arm and the others). By standard information theory arguments, within T rounds the learner
cannot distinguish the best arm from the others. Therefore, the best strategy she can apply is to pick a
uniform distribution over actions, suffering Ω((1−K− 1

N ) · (K/T ) 1
N ) = Ω̃(K

1
N T− 1

N ) regret per
round and leading to Ω̃(K

1
N T

N−1
N ) regret overall.

4 Adversarial Environments

Now that we have a complete answer for the stochastic setting, we move on to consider the adversarial
case where each ut is chosen arbitrarily, a multi-agent generalization of the expert problem (full-
information feedback) [Freund and Schapire, 1997] and the adversarial multi-armed bandit problem
(bandit feedback) [Auer et al., 2002b]. There are no prior studies on this problem, be it with f = NSW
or f = NSWprod, as far as we know.

4.1 Impossibility Results with Bandit Feedback

We start by considering the bandit feedback setting. As mentioned in Section 2, even though NSW
is a concave function, our problem is not an instance of Bandit Convex Optimization, since we can
only observe ut,it,: instead of NSW(u⊤t pt) at the end of round t. Somewhat surprisingly, this slight
difference in the feedback in fact makes a sharp separation in learnability — while O(

√
T ) regret is

achievable in BCO, we prove that o(T ) regret is impossible in our problem.

Before showing the theorem and its proof, we first give high level ideas on the construction of the
hard environments. Specifically, we consider the environment with 2 agents, 2 arms, and binary utility
matrix ut ∈ {0, 1}2×2. Similar to the hard instance in the stochastic environment, we set ut,:,2 = 1,
reducing the problem to a single-agent one. For the first agent, we let ut,:,1 at each round t be i.i.d.
drawn from a stationary distribution over the 4 binary utility vectors {(0, 0), (0, 1), (1, 0), (1, 1)}.
Then, we construct two different distributions, E and E ′, over these 4 binary utility vectors satisfying
that: 1) the distribution of the learner’s observation is identical for E and E ′; 2) the optimal strategy
for E and E ′ are significantly different. The first property guarantees that no algorithm can distinguish
these two environments, while the second property ensures that there is no one single strategy that
can perform well in both environments. Formally, we prove the following theorem.

Theorem 4.1. In the bandit feedback setting, for any algorithm, there exists an adversarial environ-
ment such that E[Regadv] = Ω(T ) for f = NSW.

Proof. As sketched earlier, we consider two different environments with 2 agents, 2 arms, and
binary utility matrices ut ∈ {0, 1}2×2, t ∈ [T ]. In both environments, we have ut,:,2 = 1.
Next, we construct two different distributions from which ut,:,1 is potentially drawn from, E
and E ′, over {(0, 0), (0, 1), (1, 0), (1, 1)}. Specifically, E is characterized by (q00, q01, q10, q11) =
( 4
10 ,

2
10 ,

1
10 ,

3
10 ), where qxy is the probability of the vector (x, y) in E ; E ′ is characterized by

(q′00, q
′
01, q

′
10, q

′
11) = ( 3

10 ,
3
10 ,

2
10 ,

2
10 ), where q′xy is the probability of vector (x, y) in E ′. With

a slight abuse of notation, we write u ∼ E for a matrix u ∈ {0, 1}2×2 if u:,1 is drawn from E and
u:,2 = 1; the same for E ′.

We argue that the learner’s observations are equivalent in distribution in E and E ′, since the marginal
distributions of the utility of each action are the same. Specifically,

• When action 1 is chosen, the distributions of the learner’s observation in both E and E ′ are a
Bernoulli random variable with mean q10 + q11 = q′10 + q′11 = 4

10 ;

2One can show that Θ(
√
T ) regret is possible in this environment, thus not suitable for our purpose.
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• When action 2 is chosen, the distributions of the learner’s observation in both E and E ′ are a
Bernoulli random variable with mean q01 + q11 = q′01 + q′11 = 5

10 .

Direct calculation shows p⋆ = argmaxp∈∆K
Eu∼E

[
NSW(u⊤p)

]
=
(

q210
q201+q

2
10
,

q201
q201+q

2
10

)
=

(0.2, 0.8) and p′⋆ = argmaxp∈∆K
Eu∼E′

[
NSW(u⊤p)

]
=

(
q
′2
10

q
′2
10+q

′2
01

,
q
′2
01

q
′2
10+q

′2
01

)
= ( 4

13 ,
9
13 ), which

are constant apart from each other. Pick a threshold value θ = 33
130 ∈ (0.2, 4

13 ). Direct calculation
shows that for a strategy p with p1 ≥ θ, we have Eu∼E [NSW(u⊤p⋆) − NSW(u⊤p)] ≥ ∆ where
∆ = 1

500 ; similarly, for a strategy p with p1 < θ, we have Eu∼E′ [NSW(u⊤p⋆)− NSW(u⊤p)] ≥ ∆
as well. Now, given an algorithm, let αE be the probability that the number of rounds pt,1 ≥ θ is
larger than T

2 under environment E , and ᾱE′ be the probability of the complement of this event under
environment E ′. We have,

EE [Regadv] ≥ EE

[
T∑
t=1

NSW(u⊤t p⋆)−
T∑
t=1

NSW(u⊤t pt)

]
≥ αET∆

2
,

EE′ [Regadv] ≥ EE′

[
T∑
t=1

NSW(u⊤t p
′
⋆)−

T∑
t=1

NSW(u⊤t pt)

]
≥ ᾱE′T∆

2
.

Finally, since the feedback for the algorithm is the same in distribution in these two environments, we
know αE + ᾱE′ = 1, and thus

max{EE [Regadv],EE′ [Regadv]} ≥ EE [Regadv] + EE′ [Regadv]
2

≥ (αE + ᾱE′)T∆

4
= Ω(T ),

which finishes the proof.

In fact, by a similar but more involved construction (that actually requires using two agents in a
non-trivial way), the same impossibility result also holds for f = NSWprod; see Appendix B.1. We
remark that non-linearity of f in these results plays an important role in the hard instance construction,
since otherwise, the optimal strategy for E and E ′ will be the same as they both induce the same
marginal distributions.

4.2 Full-Information Feedback

To sidestep the impossibility result due to the bandit feedback, we shift our focus to the full-
information feedback model, where the learner observes the entirety of the utility matrix ut at the
end of round t. As mentioned, this corresponds to a multi-agent generalization of the well-known
expert problem [Freund and Schapire, 1997]. We propose several algorithms for this setting, showing
that the richer feedback not only makes learning possible but also leads to much lower regret.

4.2.1 FTRL with Log-Barrier Regularizer

When f is concave, our problem is in fact also an instance of the well-known Online Convex Opti-
mization (OCO) [Zinkevich, 2003]. However, standard OCO algorithms such as Online Gradient
Descent, an instance of the more general Follow-the-Regularized-Leader algorithm with a ℓ2 regular-
izer, require the utility function to also be Lipschitz and thus cannot be directly applied to learning
NSW. Nevertheless, we will show that using a different regularizer that induces more stability than
the ℓ2 regularizer can resolve this issue.

More specifically, the FTRL algorithm is shown in Algorithm 2, which predicts at time t the
distribution pt = argminp∈∆K

⟨p,−
∑t−1
s=1 ∇f(u⊤s ps)⟩+

1
ηψ(p) for some learning rate η and some

strongly convex regularizer ψ. Standard analysis shows that the regret of FTRL contains two
terms: the regularization penalty term that is of order 1/η and the stability term that is of order
η
∑
t ∥∇f(u⊤t pt)∥2∇−2ψ(pt)

where we use the notation ∥a∥M =
√
a⊤Ma. To deal with the lack the

Lipschitzness, that is, the potentially large ∇f(u⊤t pt), we need to find a regularizer ψ so that the
induced local norm ∥∇f(u⊤t pt)∥∇−2ψ(pt) is always reasonably small despite ∇f(u⊤t pt) being large
(in ℓ2 norm for example).
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Algorithm 2 FTRL for N -agent K-armed SWF maximization with full-info feedback
Inputs: a SWF f , a learning rate η > 0, and a strongly convex regularizer ψ : ∆K → R.
for t = 1, 2, . . . , T do

Play pt = argminp∈∆K
⟨p,−

∑t−1
s=1 ∇f(u⊤s ps)⟩+

1
ηψ(p).

Observe ut.
end

It turns out that the log-barrier regularizer, ψ(p) = −
∑K
i=1 log pi, ensures such a property. In fact, it

induces a small local norm not just for NSW, but also for a broad family of SWFs as long as they are
concave and Pareto optimal — an SWF f : [0, 1]N → [0, 1] is Pareto optimal if for two utility vectors
x and y such that xn ≥ yn for all i ∈ [N ], we have f(x) ≥ f(y). NSW is clearly in this family, and
there are many other standard fairness measures that fall into this class; see Appendix B.2.1. For any
SWF in this family, we prove the following regret bound, which remarkably has no dependence on
the number of agents N at all.

Theorem 4.2. For any f : [0, 1]N → [0, 1] that is concave and Pareto optimal, Algorithm 2

with the log-barrier regularizer ψ(p) = −
∑K
i=1 log pi and η =

√
K log T
T guarantees Regadv =

O(
√
KT log T ).

Proof Sketch. Using the concrete form of ψ, it is clear that the local norm ∥∇f(u⊤t pt)∥2∇−2ψ(pt)
sim-

plifies to
∑K
i=1 p

2
t,i[∇f(u⊤t pt)]2i ≤

〈
pt,∇f(u⊤t pt)

〉2
, where the inequality is due to [∇f(u⊤t pt)]i ≥

0 implied by Pareto optimality. Furthermore, by concavity, we have
〈
pt,∇f(u⊤t pt)

〉
≤ f(u⊤t pt)−

f(0) ≤ 1, and thus the local norm at most 1. The rest of the proof is by direct calculation.

4.2.2 FTRL with Tsallis Entropy Regularizer

In fact, when f = NSW, using the special structure of the welfare function, we find yet another
regularizer that ensures a small O(N) local norm, with the benefit of having smaller dependence on
K for the penalty term.

Theorem 4.3. For f = NSW, Algorithm 2 with the Tsallis entropy regularizer ψ(p) = 1−
∑K

i=1 p
β
i

1−β ,

β = 2
N , and the optimal choice of η guarantees Regadv = Õ(K

1
2−

1
N

√
NT ).

The proof is more involved and is deferred to Appendix B.2.3. While the regret in Theorem 4.3
suffers polynomial dependence on N , it has better dependence on K compared to Theorem 4.2, and
is thus more preferable when K is much larger than N .

4.2.3 Logarithmic Regret for a Special Case

Finally, we discuss a special case with f = NSW where logarithmic regret is possible. This is based
on a simple observation that when there is one agent who is indifferent about the learner’s choice
(that is, the agent’s utility is the same for all arms for this round), then −NSW is not only convex, but
also exp-concave, a stronger curvature property. Therefore, by applying known results, specifically
the EWOO algorithm [Hazan et al., 2007], we achieve the following result.

Theorem 4.4. Fix f = NSW. Suppose that for each time t, there is a set of agents At ⊆ [N ] such
that |At| ≥M and ut,:,n = ct,n1 with ct,n ≥ 0 for each agent n ∈ At. Then the EWOO algorithm
guarantees Regadv = O

(
N−M
M ·K log T

)
.

The proof, which verifies the exp-concavity of −NSW in this special case, can be found in Ap-
pendix B.2.4. We note that the reason that we apply EWOO instead of Online Newton Step, another
algorithm discussed in [Hazan et al., 2007] for exp-concave losses, is that the latter requires Lipschiz-
ness (which, again, is not satisfied by NSW).
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5 Conclusion

In this work, motivated by recent research on social welfare maximization for the problem of multi-
agent multi-armed bandits, we consider a variant with the arguably more natural version of Nash
social welfare as the objective function, and develop multiple algorithms and regret upper/lower
bounds in different settings (stochastic versus adversarial and full-information versus bandit feedback).
Our results show a sharp separation between our problem and previous settings, including the heavily
studied Bandit Convex Optimization problem.

There are many interesting future directions. First, in the stochastic bandit setting, we have only shown
the tight dependence on T , so what about K and N? Second, is there a more general strategy/analysis
that works for different social welfare functions (similar to our result in Theorem 4.2)? Taking one
step further, similar to the recent research on “omniprediction” [Gopalan et al., 2022], is there one
single algorithm that works for a class of social welfare functions simultaneously?
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A Omitted Details in Section 3

In this section, we provide the omitted proofs for the results in Section 3. In Appendix A.1, we
provide the proof for Theorem 3.1 and in Appendix A.2, we provide the proof for Theorem 3.2.

A.1 Proof of Theorem 3.1

To prove Theorem 3.1, we first consider the following two events.

Event 1. For all t ∈ {KN0 + 1, . . . , T} and i ∈ [K],

Nt,i ≥ N0 +
1

2

t∑
τ=KN0

pτ,i − 18 log(KT ),

where Nt,i’s and pt,i’s are defined in Algorithm 1.

Event 2. For all t ∈ {KN0 + 1, . . . , T}, i ∈ [K], and n ∈ [N ],

ui,n ≤ ût,i,n ≤ ui,n + 8

√
ui,n log(NKT 2)

Nt,i
+

15 log(NKT 2)

Nt,i
,

where Nt,i’s are defined in Algorithm 1.

As we prove in Lemma A.1 and Lemma A.2, Event 1 and Event 2 hold with probability at least 1− 1
T .

Now we prove Theorem 3.1. For convenience, we restate the theorem as follows.

Theorem 3.1. With N0 = 1+18 logKT , Algorithm 1 guarantees E [Regsto] = Õ(K
2
N T

N−1
N +K).

Proof. Let p⋆ = argmaxp∈∆K
NSW(u⊤p). According to a standard regret decomposition for

UCB-type algorithms, we know that Regsto can be upper bounded as follows:

E [Regsto]

= E

[
T∑
t=1

(
NSW(u⊤p⋆)− NSW(u⊤pt)

)]

= E

[
T∑
t=1

(
NSW(u⊤p⋆)− NSW(u⊤pt)

) ∣∣∣∣∣ Event 1 and Event 2 hold

]
+ 2

(according to Lemma A.1 and Lemma A.2)

≤ E

[
T∑

t=KN0+1

(
NSW(u⊤p⋆)− NSW(û⊤t p

⋆)
) ∣∣∣∣∣ Event 1 and Event 2 hold

]
+KN0 + 2

+ E

[
T∑

t=KN0+1

(
NSW(û⊤t p

⋆)− NSW(û⊤t pt)
) ∣∣∣∣∣ Event 1 and Event 2 hold

]

+ E

[
T∑

t=KN0+1

(
NSW(û⊤t pt)− NSW(u⊤pt)

) ∣∣∣∣∣ Event 1 and Event 2 hold

]

≤ E

[
T∑
t=1

(
NSW(û⊤t p

⋆)− NSW(û⊤t pt)
)]

+ E

[
T∑
t=1

(
NSW(û⊤t pt)− NSW(u⊤pt)

)]
+KN0 + 2

(based on Event 2)

≤ E

[
T∑

t=KN0+1

(
NSW(û⊤t pt)− NSW(u⊤pt)

) ∣∣∣∣∣ Event 1 and Event 2 hold

]
+KN0 + 2.

(based on the definition of pt)
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In the following, we bound the first term

E

[
T∑

t=KN0+1

(
NSW(û⊤t pt)− NSW(u⊤pt)

) ∣∣∣ Event 1 and Event 2 hold

]
.

As discussed in Section 3.1, we consider two cases. First, consider the set of rounds Tσ such that for
all t ∈ Tσ there exists at least one n ∈ [N ] such that ⟨pt, u:,n⟩ ≤ σ for some σ that we will specify
later. Denote such n to be nt (if there are multiple such n’s, we pick an arbitrary one). According to
Event 2, we know that for all i ∈ [K],

ui,nt ≤ ût,i,nt ≤ ui,nt + 8

√
ui,nt

log(NKT 2)

Nt,i
+

15 log(NKT 2)

Nt,i
≤ 2ui,nt +O

(
log(NKT 2)

Nt,i

)
,

where the last inequality is because of AM-GM inequality. Therefore, we know that

⟨pt, ût,:,nt
⟩ ≤ 2 ⟨pt, u:,nt

⟩+ Õ

 K∑
j=1

pt,j
Nt,j

 ≤ 2σ + Õ

 K∑
j=1

pt,j
Nt,j

 .

Now consider
∑
t∈Tσ

(
NSW(û⊤t pt)− NSW(u⊤pt)

)
. Direct calculation shows that∑

t∈Tσ

(
NSW(û⊤t pt)− NSW(u⊤pt)

)
≤
∑
t∈Tσ

NSW(û⊤t pt) (since NSW(u⊤pt) ≥ 0)

≤
∑
t∈Tσ

⟨pt, ût,:,nt
⟩

1
N

≤ 2|Tσ| · σ
1
N +

T∑
t=1

Õ


 K∑
j=1

pt,j
Nt,j

 1
N

 (since (a+ b)
1
N ≤ a

1
N + b

1
N )

≤ 2|Tσ| · σ
1
N + T

N−1
N Õ


 T∑
t=1

K∑
j=1

pt,j
Nt,j

 1
N

 (Hölder’s inequality)

≤ 2T · σ 1
N + Õ

(
K

1
N · T

N−1
N

)
. (using Lemma A.3)

Now consider the regret within t ∈ {NK0 + 1, . . . , T}\Tσ, in which we have ⟨pt, u:,n⟩ ≥ σ for all
n ∈ [N ]. In this case, we bound

∑
t/∈Tσ

(
NSW(û⊤t pt)− NSW(u⊤pt)

)
as follows:

∑
t/∈Tσ

(
NSW(û⊤t pt)− NSW(u⊤pt)

)
≤
∑
t/∈Tσ

∑
n∈[N ]

[
⟨pt, ût,:,n⟩

1
N − ⟨pt, u:,n⟩

1
N

]
(using Lemma C.1 and Event 2)

=
∑
t/∈Tσ

∑
n∈[N ]

⟨pt, ût,:,n − u:,n⟩∑N−1
k=0 ⟨pt, ût,:,n⟩

k
N ⟨pt, u:,n⟩

N−1−k
N

≤
∑
t/∈Tσ

∑
n∈[N ]

⟨pt, ût,:,n − u:,n⟩

N ⟨pt, u:,n⟩
N−1
N

(since ût,i,n ≥ ui,n for all i, t, n based on Event 2)

≤
∑
t/∈Tσ

∑
n∈[N ]

∑K
j=1 pt,j

(
8
√

un,j log(NKT 2)
Nt,j

+ 8 log(NKT 2)
Nt,j

)
N ⟨pt, u:,n⟩

N−1
N

(using Event 2)
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≤
∑
t/∈Tσ

∑
n∈[N ]

∑K
j=1 8

√
pt,j log(NKT 2)

Nt,j

N ⟨pt, u:,n⟩
N−1
N − 1

2

+

∑K
j=1

8pt,j log(NKT 2)
Nt,j

N ⟨pt, u:,n⟩
N−1
N


(since

√
⟨pt, u:,n⟩ ≥

√
pt,iui,n for all i ∈ [K])

≤ Õ

 1

Nσ
N−1
N − 1

2

∑
t∈T

∑
n∈[N ]

K∑
j=1

√
pt,j
Nt,j

+
1

Nσ
N−1
N

T∑
t=1

∑
n∈[N ]

K∑
j=1

pt,j
Nt,j


≤ Õ

(
σ

1
2−

N−1
N K

√
T +K · σ−N−1

N

)
,

where the last inequality is because Lemma A.3. Combining the regret for both parts, we know that

E[Regsto] ≤ Õ
(
K

1
N T

N−1
N + T · σ 1

N + σ
1
2−

N−1
N K

√
T +Kσ−N−1

N +K
)
.

Picking the optimal σ leads to the expected regret bounded by E[Regsto] ≤ Õ
(
K

2
N T

N−1
N +K

)
.

Lemma A.1. Event 1 happens with probability at least 1− 1
T .

Proof. According to Algorithm 1, we know that N(KN0+1),i = N0 for each i ∈ [K]. Consider the
case when t ≥ KN0+1. According to Freedman’s inequality (Lemma C.3), we have with probability
at least 1− δ, for a fixed t ≥ KN0 + 1,

t∑
τ=KN0+1

1{iτ = i} ≥
t∑

τ=KN0+1

pτ,i − 2

√√√√ t∑
τ=KN0

pτ,i log(1/δ)− log(1/δ)

≥ 1

2

t∑
τ=KN0+1

pτ,i − 9 log(1/δ).

Therefore, we know that with probability at least 1− δ, for a fixed t ≥ KN0 + 1,

Nt,i = N0 +

t∑
τ=KN0+1

1{iτ = i} ≥ N0 +
1

2

t∑
τ=KN0+1

pτ,i − 9 log(1/δ).

Picking δ = 1
KT 2 and taking a union bound over all i ∈ [K] and KN0 + 1 ≤ t ≤ T reach the

result.

Lemma A.2. Event 2 happens with probability at least 1− 1
T .

Proof. According to Freedman’s inequality Lemma C.3, applying a union bound over t ∈ [T ],
i ∈ [K], and n ∈ [N ], we know that with probability at least 1 − δ, for all t ∈ [T ], i ∈ [K], and
n ∈ [N ],

|ūt,i,n − ui,n| ≤ 2

√
ui,n log(NKT/δ)

Nt,i
+

log(NKT/δ)

Nt,i
. (10)

Solving the inequality with respect to ui,n, we know that

√
ui,n ≤

√
log(NKT/δ)

Nt,i
+

√
ūt,i,n +

2 log(NKT/δ)

Nt,i

≤

√
2ūt,i,n +

6 log(NKT/δ)

Nt,i
, (using AM-GM inequality)

ūt,i,n ≤

(
√
ui,n +

√
log(NKT/δ)

Nt,i

)2
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≤ 2ui,n +
2 log(NKT/δ)

Nt,i
. (using AM-GM inequality)

Using the above inequality and picking δ = 1
T , we can lower bound ût,i,n as follows:

ût,i,n = ūt,i,n + 4

√
ūt,i,n log(NKT 2)

Nt,i
+

8 log(NKT 2)

Nt,i

≥ ūt,i,n + 4

√
log(NKT 2)

Nt,i

(
ui,n
2

− 3 log(NKT 2)

Nt,i

)
+

8 log(NKT 2)

Nt,i

≥ ūt,i,n + 4

√
ui,n log(NKT 2)

2Nt,i
+

(8− 4
√
3) log(NKT 2)

Nt,i

(using
√
a− b ≥

√
a−

√
b for a, b ≥ 0)

≥ ūt,i,n + 2

√
ui,n log(NKT 2)

Nt,i
+

log(NKT 2)

Nt,i

≥ ui,n,

where the last inequality uses Eq. (10). To upper bound ût,i,n, we have

ût,i,n = ūt,i,n + 4

√
ūt,i,n log(NKT 2)

Nt,i
+

8 log(NKT 2)

Nt,i

≤ ui,n + 2

√
ui,n log(NKT 2)

Nt,i
+

log(NKT 2)

Nt,i
(using Eq. (10))

+ 4

√
log(NKT 2)

Nt,i

(
2ui,n +

2 log(NKT 2)

Nt,i

)
+

8 log(NKT 2)

Nt,i

≤ ui,n + 8

√
ui,n log(NKT 2)

Nt,i
+

15 log(NKT 2)

Nt,i
. (using AM-GM inequality)

Combining the lower and the upper bound finishes the proof.

Lemma A.3. Under Event 1, Algorithm 1 guarantees that
t∑

τ=KN0+1

pτ,i
Nτ,i

≤ O (log T ) ,

t∑
τ=KN0+1

√
pτ,i
Nτ,i

≤ O
(√

T log T
)
,

for all i ∈ [K] and KN0 + 1 ≤ t ≤ T .

Proof. Since Event 1 holds, we know that Nt,i ≥ 1
2

∑t
τ=KN0+1 pτ,i + 1 holds for all i ∈ [K] and

τ ≥ KN0 + 1 based on the choice of N0 = 18 logKT + 1. Therefore, we know that for each
t ≥ KN0 + 1,

t∑
τ=KN0+1

pτ,i
Nτ,i

≤
t∑

τ=KN0+1

2pτ,i∑τ
τ ′=KN0+1 pτ ′,i + 2

≤ 2

∫ ∑t
τ=KN0+1 pτ,i

0

1

x+ 2
dx ≤ 2 log(T + 2).

As for the term
∑t
τ=KN0+1

√
pτ,i
Nτ,i

, we have

t∑
τ=KN0+1

√
pτ,i
Nτ,i

≤

√√√√(t−KN0)

t∑
τ=KN0+1

pτ,i
Nτ,i

(Cauchy-Schwarz inequality)
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≤ O(
√
T log T ).

A.2 Omitted Details in Section 3.2

Theorem 3.2. In the bandit feedback setting, for any algorithm, there exists a stochastic environment
in which the expected regret (with respect to NSW) of this algorithm is Ω

(
(logK)3

N3 ·K 1
N T

N−1
N

)
for

N ≥ logK and sufficiently large T .

Proof. Consider the environment E that picks u uniformly from {u(1), . . . , u(K)}, where u(i):,1 =

ε · ei ∈ RK and u(i):,j = 1 for all j ∈ {2, 3, . . . , N}. Here, ε ∈ (0, 19 ] is some constant to be specified
later. Denote u(0) to be the environment where u:,n = 0 for all n ∈ [N ]. At each round t, ut,i,n is
an i.i.d. Bernoulli random variable with mean ui,n. For notational convenience, we use Ei[·] when
we take expectation over the environment u(i) for i ∈ {0} ∪ [K]. Let ni be the number of rounds
that action i is selected over the total horizon T for all i ∈ [K]. Therefore, the expected regret with
respect to environment E (a uniform distribution over u(i), i ∈ [K]) is lower bounded as follows:

EE [Reg] =
1

K

K∑
i=1

Ei

[
ε

1
N

T∑
t=1

(1− p
1
N
t,i)

]

≥ Tε
1
N − ε

1
N T

N−1
N

K

K∑
i=1

Ei

( T∑
t=1

pt,i

) 1
N

 (Hölder’s inequality)

≥ Tε
1
N − ε

1
N T

N−1
N

K

K∑
i=1

(
Ei

[
T∑
t=1

pt,i

]) 1
N

(Jensen’s inequality)

≥ Tε
1
N −K− 1

N ε
1
N T

N−1
N

(
K∑
i=1

Ei

[
T∑
t=1

pt,i

]) 1
N

, (11)

where the last inequality is again due to Hölder’s inequality. Let Ber(α) be the Bernoulli distribution
with mean α. Combining Exercise 14.4 of [Lattimore and Szepesvári, 2020], Pinsker’s inequality,
and Lemma 15.1 of [Lattimore and Szepesvári, 2020], we have

Ei

[
T∑
t=1

pt,i

]
= Ei [ni] ≤ E0 [ni] + T

√
1

2
E0[ni]KL(Ber(0)|Ber(ε))

≤ E0 [ni] + T

√
1

2
E0[ni] log

(
1 +

ε

1− ε

)
≤ E0 [ni] + T

√
E0[ni]

ε

2(1− ε)
(using log(1 + x) ≤ x)

≤ E0 [ni] +
3T

4

√
E0[ni]ε

= E0

[
T∑
t=1

pt,i

]
+

3T

4

√√√√E0

[
T∑
t=1

pt,i

]
ε. (12)

where the last inequality is because ε ≤ 1
9 .

Taking summation over all i ∈ [K], we obtain that

∑
i∈[K]

Ei

[
T∑
t=1

pt,i

]
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≤
∑
i∈[K]

E0

[
T∑
t=1

pt,i

]
+

3

4
T

K∑
i=1

√√√√E0

[
T∑
t=1

pt,i

]
ε

≤ T +
3T

4

√√√√KεE0

[
K∑
i=1

T∑
t=1

pt,i

]

= T +
3T

4

√
KTε (13)

where the second inequality is due to Cauchy-Schwarz inequality.

Applying Eq. (13) to Eq. (11), we obtain that
EE [Reg]

≥ Tε
1
N −K− 1

N ε
1
N T

N−1
N

(
T +

3T

4

√
KTε

) 1
N

≥
(
1−K− 1

N

)
Tε

1
N −K− 1

2N ε
3

2N T
2N+1
2N (using (a+ b)

1
N ≤ a

1
N + b

1
N )

≥ logK

2N
Tε

1
N −K− 1

2N ε
3

2N T
2N+1
2N ,

where the third inequality is according to Lemma C.2 with x = 1
N and α = 1

K , meaning that

N
(
1− 1

K

1
N

)
≥ logK

2 .

Picking ε = (logK)2N ·K
(4N)2NT

, we know that

K− 1
2N ε

3
2N T

2N+1
2N =

ε
1
N T logK

4N
= Ω

(
(logK)3

N3
·K 1

N T
N−1
N

)
,

Combining the above all together, we know that EE [Reg] ≥ Ω
(

(logK)3

N3 ·K 1
N T

N−1
N

)
. Therefore,

there exists one environment among u(i), i ∈ [K] such that Ei[Reg] ≥ Ω
(

(logK)3

N3 ·K 1
N T

N−1
N

)
,

which finishes the proof.

B Omitted Details in Section 4

B.1 Omitted Details in Section 4.1

In this section, we prove that that in the adversarial environment, it is also impossible to achieve
sublinear regret when f = NSWprod. The hard instance construction shares a similar spirit to the one
for f = NSW shown in Theorem 4.1.
Theorem B.1. In the bandit feedback setting, for any algorithm, there exists an adversarial environ-
ment such that E[Regadv] = Ω(T ) for f = NSWprod.

Proof. We consider the learning environment with two agents and two arms. The agents utilities are
binary, meaning that u ∈ {0, 1}2×2. We construct two distributions E and E ′ with support {0, 1}2×2.
To define environment E , we use qwxyz for any w, x, y, z ∈ {0, 1} to denote the probability that
u1,: = (w, x) and u2,: = (y, z) when u ∼ E . For simplicity of notation, the binary number wxyz
will be written in decimal form (i.e. q8 = Pru∼E [u1,: = (1, 0), u2,: = (0, 0)]). For environment E ,
we assign the probabilities

qi =
1

16
for i ∈ {0, . . . , 15} \ {0, 2, 4, 6} (q0, q2, q4, q6) =

(
1

8
, 0, 0,

1

8

)
Similarly, for environment E ′, we use q′wxyz for any w, x, z, y ∈ {0, 1} to denote the probability that
u′1,: = (w, x) and u′2,: = (y, z) when u′ ∼ E ′. Again, we will write the binary number wxyz in
decimal form for ease of notation. To environment E ′ we assign probabilities

q′i =
1

16
for i ∈ {0, . . . , 15} \ {1, 3, 5, 7} (q′1, q

′
3, q

′
5, q

′
7) =

(
0,

1

8
,
1

8
, 0

)
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Next, we argue that the learner’s observations are equivalent in distribution in E and E ′, since the
marginal distribution of every possible observation of each action is the same. Specifically,

• When action 1 is played, the learner’s observation u1,: in both E and E ′ are given by the following
marginal distribution.

– The probability of observation (0, 0) is q0 + q1 + q2 + q3 = q′0 + q′1 + q′2 + q′3 = 1
4

– The probability of observation (0, 1) is q4 + q5 + q6 + q7 = q′4 + q′5 + q′6 + q′7 = 1
4

– The probability of observation (1, 0) is q8 + q9 + q10 + q11 = q′8 + q′9 + q′10 + q′11 = 1
4

– The probability of observation (1, 1) is q12 + q13 + q14 + q15 = q′12 + q′13 + q′14 + q′15 = 1
4

• When action 2 is played, the learner’s observation u2,: in both E and E ′ are given by the following
marginal distribution.

– The probability of observation (0, 0) is q0 + q4 + q8 + q12 = q′0 + q′4 + q′8 + q′12 = 1
4

– The probability of observation (0, 1) is q1 + q5 + q9 + q13 = q′1 + q′5 + q′9 + q′13 = 1
4

– The probability of observation (1, 0) is q2 + q6 + q10 + q14 = q′2 + q′6 + q′10 + q′14 = 1
4

– The probability of observation (1, 1) is q3 + q7 + q11 + q15 = q′3 + q′7 + q′11 + q′15 = 1
4

Direct calculation shows that

Eu∼E
[
NSWprod(u

⊤p)
]

= (q5 − q6 − q9 + q10)p
2
1 + (q6 − q7 − 2q5 + q9 + q11 − q13 + q14)p1 + (q5 + q7 + q13 + q15)

= − 1

16
p21 +

1

16
p1 +

1

4
,

Eu∼E′
[
NSWprod(u

⊤p)
]

= (q′5 − q′6 − q′9 + q′10)p
2
1 + (q′6 − q′7 − 2q′5 + q′9 + q′11 − q′13 + q′14)p1 + (q′5 + q′7 + q′13 + q′15)

=
1

16
p21 −

1

16
p1 +

1

4
.

Therefore, we compute the learner’s best strategy for environments E and E ′ by direct calculation:

p⋆ = argmax
p∈∆2

Eu∼E
[
NSWprod(u

⊤p)
]
= argmax

p∈∆2

[
1

4
+

1

16
p1 −

1

16
p21

]
=

(
1

2
,
1

2

)
p′⋆ = argmax

p∈∆2

Eu∼E′
[
NSWprod(u

⊤p)
]
= argmax

p∈∆2

[
1

4
− 1

16
p1 +

1

16
p21

]
= {(0, 1), (1, 0)}

Next, consider a distribution p ∈ ∆2 such that p1 ∈
[
0, 14

]
∪
[
3
4 , 1
]
. For such p, direct calculation

shows that Eu∼E
[
NSWprod(u

⊤p⋆)− NSWprod(u
⊤p)
]
≥ ∆, where ∆ = 1

256 . On the other hand, for
a strategy p ∈ ∆2 with p1 ∈

(
1
4 ,

3
4

)
, we have Eu∼E′

[
NSWprod(u

⊤p′⋆)− NSWprod(u
⊤p)
]
> ∆ as

well. Given any algorithm, let αE be the probability that the number of rounds pt,1 ∈
[
0, 14

]
∪
[
3
4 , 1
]

is larger than T
2 under environment E . Let ᾱE′ be the probability of the complement of this event

under environment E ′. By definition

EE [Regadv] ≥ EE

[
T∑
t=1

NSWprod(u
⊤
t p⋆)−

T∑
t=1

NSWprod(u
⊤
t pt)

]
≥ αET∆

2

EE′ [Regadv] ≥ EE′

[
T∑
t=1

NSWprod(u
⊤
t p

′
⋆)−

T∑
t=1

NSWprod(u
⊤
t pt)

]
≥ ᾱE′T∆

2

Since the feedback for the algorithm is the same in distribution, we have αE + ᾱE′ = 1. Thus, we
have

max{EE [Regadv],EE′ [Regadv]} ≥ EE [Regadv] + EE′ [Regadv]
2

≥ (αE + ᾱE′)T∆

4
= Ω(T ).
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B.2 Omitted Details in Section 4.2

B.2.1 Concave and Pareto Optimal SWFs

Formally, for a function f : [0, 1]N 7→ [0, 1], concavity and Pareto Optimality are defined as:

• Concavity: f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for any α ∈ [0, 1] and x, y ∈ [0, 1]N .
• Pareto optimality: for any x, y ∈ [0, 1]N , xn ≥ yn for all n ∈ [N ] implies f(x) ≥ f(y).

Pareto optimality is a “fundamental property” in social choice theory because it ensures that a SWF
prefers alternatives that strictly more efficient: everyone is no worse off [Kaneko and Nakamura,
1979]. Concavity appears less in social choice literature. However, it promotes equity by modeling
diminishing levels of desirability with the increase of a single agent’s utility.

In the following, we provide examples of SWFs that satisfy concavity and Pareto optimality. Each of
the following SWFs are parameterized by fixed weights w ∈ ∆K .

• Utilitarian SWF: f(u) = ⟨w, u⟩;
• Generalized Gini Index (GGI): f(u) = minπ∈SN ⟨wπ, u⟩, where SN is the set of permutations

over N items and wπ is weights w permuted according to π ∈ SN ;
• Weighted NSW: f(u) =

∏
n∈N u

wn
n .

The last notable fact about the class of concave and Pareto Optimal SWFs is that it is closed under
convex combinations. Specifically, for two concave and Pareto Optimal functions f, g : [0, 1]N →
[0, 1], the function h(·) = λf(·) + (1 − λ)g(·) for any λ ∈ [0, 1] is concave and Pareto Optimal.
[Chen and Hooker, 2023] discusses how such convex combinations can be used to combine a SWF
prioritizing efficiency and another prioritizing equity to derive a different SWF that prioritizes a
balance between efficiency and equity.

B.2.2 Omitted Details in Section 4.2.1

In this section, we prove Theorem 4.2, which shows that O(
√
KT log T ) regret is achievable for all

concave and Pareto optimal SWFs.
Theorem 4.2. For any f : [0, 1]N → [0, 1] that is concave and Pareto optimal, Algorithm 2

with the log-barrier regularizer ψ(p) = −
∑K
i=1 log pi and η =

√
K log T
T guarantees Regadv =

O(
√
KT log T ).

Proof. Using the concavity of f , we can upper bound Regadv as follows:

Regadv = max
p∈∆K

T∑
t=1

f(u⊤t p)−
T∑
t=1

f(u⊤t pt)

≤ max
p∈∆

K, 1
KT

T∑
t=1

⟨−∇f(u⊤t pt), pt − p⟩︸ ︷︷ ︸
Term (1)

+ max
p∈∆K

T∑
t=1

f(u⊤t p)− max
p∈∆

K, 1
KT

T∑
t=1

f(u⊤t p)︸ ︷︷ ︸
Term (2)

,

where ∆K, 1
KT

= {p ∈ ∆K | pi ≥ 1
KT ,∀i ∈ [K]}.

To bound Term (1), according to a standard analysis of FTRL/OMD with log-barrier regularizer (e.g.
Lemma 12 of [Agarwal et al., 2017]), we know that:

Term (1) ≤ max
p∈∆

K, 1
KT

Dψ(p, p1)

η
+ η

T∑
t=1

K∑
i=1

p2t,i ·
[
∇f(u⊤t pt)

]2
i
, (14)

where Dψ(p, q) ≜ ψ(p)− ψ(q)− ⟨∇ψ(q), p− q⟩ is the Bregman divergence between p and q with
respect to ψ. To further bound the right-hand side, note that p1 = 1

K · 1. Direct calculation shows
that for any p ∈ ∆K, 1

KT
,

Dψ(p, p1) =

K∑
i=1

(
pi
p1,i

− 1− log

(
pi
p1,i

))
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=

K∑
i=1

log

(
1

Kpi

)
≤ K log

(
1

K · 1
KT

)
(since pi ≥ 1

KT for all i ∈ [K])

≤ K log T. (15)

Using the Pareto optimality property of f and the positivity of the utility matrix ut, we know that
[∇f(u⊤t p)]i ≥ 0, meaning that

∑K
i=1 p

2
t,i

[
∇f(u⊤t pt)

]2
i
≤
〈
pt,∇f(u⊤t pt)

〉2
.

Moreover, using the concavity property of f , we know that
〈
pt,∇f(u⊤t pt)

〉
≤ f(u⊤t pt)−f(u⊤t 0) =

f(u⊤t pt) ≤ 1. Combining the above two inequalities means that
T∑
t=1

K∑
i=1

p2t,i
[
∇f(u⊤t pt)

]2
i
≤ T. (16)

Combining Eq. (15) and Eq. (16), we can upper bound Term (1) as follows:

Term (1) ≤ K log T

η
+ ηT. (17)

Denote the optimal distribution p⋆ = argmaxp∈∆K

∑T
t=1 f(u

⊤
t p). Recall that p1 = 1

K · 1. Now we
upper bound Term (2) as follows:

Term (2) =

T∑
t=1

f(u⊤t p
⋆)− max

p∈∆
K, 1

KT

T∑
t=1

f(u⊤t p)

≤
T∑
t=1

f(u⊤t p
⋆)−

T∑
t=1

f

(
u⊤t

((
1− 1

T

)
p⋆ +

1

T
· p1
))

((1− 1
T )p

⋆ + 1
T p1 ∈ ∆K, 1

KT
)

≤
T∑
t=1

f(u⊤t p
⋆)−

T∑
t=1

[(
1− 1

T

)
· f(u⊤t p⋆) +

1

T
· f(u⊤t p1)

]
(Concavity)

≤ 1

T
·
T∑
t=1

f(u⊤t p
⋆) (since f(u⊤t p1) ≥ 0)

≤ 1. (18)

Combining Eq. (17) and Eq. (18), and choosing η =
√

K log T
T finishes the proof.

B.2.3 Omitted Details in Section 4.2.2

In this section, we present the omitted proof for Theorem 4.3, which shows a better dependency on
K compared with Theorem 4.2.

Theorem 4.3. For f = NSW, Algorithm 2 with the Tsallis entropy regularizer ψ(p) = 1−
∑K

i=1 p
β
i

1−β ,

β = 2
N , and the optimal choice of η guarantees Regadv = Õ(K

1
2−

1
N

√
NT ).

Proof. Consider the case when N ≥ 3. Direct calculation shows that[
∇f(u⊤p)

]
i
≤ 1

N

N∑
n=1

ui,n

⟨p, u:,n⟩1−
1
N

. (19)

Using the concavity of f and a standard analysis of FTRL with Tsallis entropy (e.g., [Luo, 2017,
Theorem 1]), we know that

Regadv =

T∑
t=1

(
f(u⊤t p

⋆)− f(u⊤t pt)
)
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≤ ⟨∇f(u⊤t pt), p⋆ − pt⟩ (concavity of f )

≤ K1−β − 1

η(1− β)
+
η

β

T∑
t=1

K∑
i=1

p2−βt,i

[
∇f(u⊤t pt)

]2
i

=
K1−β − 1

η(1− β)
+

η

N2β

T∑
t=1

K∑
i=1

 N∑
n=1

p
1− β

2
t,i ut,i,n

(
∑K
j=1 ut,j,n · pt,j)1−

1
N

2

(using Eq. (19))

≤ K1−β − 1

η(1− β)
+

η

Nβ

T∑
t=1

K∑
i=1

N∑
n=1

p2−βt,i u2t,i,n

(
∑K
j=1 ut,j,n · pt,j)2−

2
N

(Cauchy-Schwarz inequality)

≤ K1−β − 1

η(1− β)
+

η

Nβ

T∑
t=1

N∑
n=1

∑K
i=1 p

2−β
t,i u2t,i,n∑K

j=1 p
2− 2

N

t,j u
2− 2

N

t,j,n

(since (
∑
i xi)

α ≥
∑
i x

α
i for α ≥ 1)

≤ K1−β

η(1− β)
+

η

Nβ

T∑
t=1

N∑
n=1

∑K
i=1 p

2−β
t,i u

2− 2
N

t,i,n∑K
j=1 p

2− 2
N

t,j u
2− 2

N

t,j,n

. (since ut,i,n ∈ [0, 1])

Picking β = 2
N , the first term can be upper bounded by 3K1− 2

N

η and the second term can be upper
bounded by ηT

β = ηNT
2 . Further picking the optimal choice of η finishes the proof.

When N = 2 and β = 2
N = 1, the regularizer ψ(p) = 1−

∑K
i=1 p

β
i

1−β becomes the negative Shannon

entropy ψ(p) =
∑K
i=1 pi log pi. Using the concavity of f and following a standard analysis of FTRL

with Shannon entropy regularizer (e.g., [Hazan et al., 2016, Theorem 5.2]), we obtain that

Regadv =

T∑
t=1

(
f(u⊤t p

⋆)− ft(u
⊤
t pt)

)
≤

T∑
t=1

⟨∇f(u⊤t pt), p⋆ − pt⟩ (using the concavity of f )

≤ ψ(p⋆)− ψ(p1)

η
+ 2η

T∑
t=1

K∑
i=1

pt,i
[
∇f(u⊤t pt)

]2
i

(by [Hazan et al., 2016, Theorem 5.2])

=
logK

η
+ 2η

T∑
t=1

K∑
i=1

pt,i

(
ut,i,1

2
√
⟨pt, ut,:,1⟩

+
ut,i,2

2
√
⟨pt, ut,:,2⟩

)2

≤ logK

η
+ η

T∑
t=1

(∑K
i=1 pt,iu

2
t,i,1∑K

i=1 pt,iut,i,1
+

∑K
i=1 pt,iu

2
t,i,2∑K

i=1 pt,iut,i,2

)
(AM-GM inequality)

≤ logK

η
+ 2ηT. (since ut,i,n ∈ [0, 1] for all t, i, n)

Picking η =
√

logK
T shows that Regadv = O

(√
T logK

)
= Õ(

√
T ) for N = 2.

B.2.4 Omitted Details in Section 4.2.3

In this section, we show the proof for Theorem 4.4, which shows that logarithmic regret is achievable
when there is at least one agent who is indifferent about the learner’s choice.
Theorem 4.4. Fix f = NSW. Suppose that for each time t, there is a set of agents At ⊆ [N ] such
that |At| ≥M and ut,:,n = ct,n1 with ct,n ≥ 0 for each agent n ∈ At. Then the EWOO algorithm
guarantees Regadv = O

(
N−M
M ·K log T

)
.

Proof. To show that EWOO algorithm achieves logarithmic regret, we need to show that ft(p) ≜
−NSW(u⊤t p) is α-exp-concave for some α > 0 for all t ∈ [T ], meaning that

∇2ft(p)− α∇ft(p)∇ft(p)⊤ ⪰ 0.
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Let At ⊆ [N ] be the set of agents with ut,:,n = ct,n · 1 for all n ∈ A on round t ∈ [T ]. It is
guaranteed that |At| ≥M for all t ∈ [T ]. Denote Bt = [N ] \At. Direct calculation shows that

∇ft(p) =
Πm∈At

c
1
N
t,m

N

∑
n∈Bt

ft(p)

⟨p, ut,:,n⟩
ut,:,n,
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c
1
N
t,m
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∑
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2
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N2

(∑
i∈Bt

ut,:,n
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)⊤

−
ft(p)Πm∈At

c
1
N
t,m

N

∑
i∈Bt

ut,:,nu
⊤
t,:,n

⟨p, ut,:,n⟩2
.

For notational convenience, let λt = Πm∈At
c

1
N
t,m ≤ 1. Picking α = M

N−M , we know that

∇2ft(p)− α∇ft(p)∇ft(p)⊤
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⪰ 0, (Cauchy-Schwarz inequality)

where the first inequality is because λt ≤ 1 and ft(p) ≤ 0; the second inequality is because
ft(p) ≥ −1; the third inequality is because |Bt| ≤ 1

N−M . This shows that the ft(p) is M
(N−M) -exp-

concave. Therefore, according to Theorem 4.4 of [Hazan et al., 2016], we know that the EWOO
algorithm guarantees that

T∑
t=1

(ft(pt)− ft(p
⋆)) ≤

(
N −M

M

)
·K log T +

2(N −M)

M
.
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C Auxiliary Lemmas

In this section, we include several auxiliary lemmas that are useful in the analysis.
Lemma C.1. Let a1, . . . , an, b1, . . . bn ∈ [0, 1], where ai ≥ bi for all i ∈ [n]. Then,

∏n
i=1 ai −∏n

i=1 bi ≤
∑n
i=1(ai − bi).

Proof. Direct calculation shows that

n∏
i=1

ai −
n∏
i=1

bi =

n∑
j=1

 j∏
i=1

ai

n∏
i=j+1

bi −
j−1∏
i=1

ai

n∏
i=j

bi


=

n∑
j=1

(aj − bj)

j−1∏
i=1

ai

n∏
i=j+1

bi


≤

n∑
j=1

(aj − bj).

Lemma C.2. For all x ∈ (0, 1) and α ∈ (0, 1) satisfying 1 + x logα ≥ 0, we have 1−αx

x ≥ − logα
2 .

Proof. Let y = logα < 0. We know that

1− αx

x
≥ − logα

2

⇐⇒1− exy ≥ −xy
2

⇐⇒exy ≤ 1 +
xy

2
,

which is true since eu ≤ 1 + u
2 for all u ∈ [−1, 0] and xy = x logα ≥ −1.

Lemma C.3 (Theorem 1 in [Beygelzimer et al., 2011]). Let X1, . . . , XT ∈ [−B,B] for some B > 0

be a martingale difference sequence and with
∑T
t=1 Et[X2

t ] ≤ V for some fixed quantity V > 0. We
have for all δ ∈ (0, 1), with probability at least 1− δ,

T∑
t=1

Xt ≤ min
λ∈[0,1/B]

(
λV +

log(1/δ)

λ

)
≤ 2
√
V log(1/δ) +B log(1/δ).
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 3, Section 4, and the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics. The research con-
ducted in this paper conforms with it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is mostly theoretical, and we do not foresee any negative ethical or
societal outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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