
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PUM-NET: PLASTIC UNIFIED MEMORY NETWORK
WITH ASSOCIATIVE INTERACTION FOR LONG-
CONTEXT STATE SPACE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent Mamba-family State Space Models (SSMs) leverage linear recurrent dy-
namics to achieve efficiency in long-sequence modeling. However, their expo-
nential decay kernels inevitably cause rapid forgetting, making it difficult to recall
information once sequence lengths far exceed the training horizon. Inspired by ad-
vances in Transformer-based architectures such as Native Sparse Attention (NSA),
which employ internal chunk memory to alleviate long-term forgetting, we extend
Mamba with a chunk-wise internal long-term memory that improves the retrieval
of distant context. While this enhances in-context recall, a more fundamental chal-
lenge for long-context models is the ability to access and integrate vast external
world knowledge without compromising efficiency. Existing retrieval-augmented
generation (RAG) approaches attempt to address this by appending retrieved doc-
uments to queries, which substantially increases training cost and fails to fully
integrate internal and external memory representations. To overcome these lim-
itations, we propose the Plastic Unified Memory Network (PUM-Net), a unified
dual-memory architecture that, for the first time, enables joint pre-training over
both dynamic internal memory and static, pre-encoded external knowledge. This
plastic unification allows external memory to refine internal states during training,
enabling bidirectional interaction without inflating sequence length, thereby sup-
porting more effective long-context modeling and achieving substantial relative
improvements across challenging benchmarks.

1 INTRODUCTION

The ability to process and reason over long-context information is a critical frontier for modern
Large Language Models (LLMs). While Transformer-based architectures (Vaswani et al., 2017)
have demonstrated remarkable capabilities, their self-attention mechanism incurs a computational
and memory cost that scales quadratically with sequence length (Tay et al., 2022). This limita-
tion presents a significant barrier to modeling extensive documents, lengthy conversations, or entire
codebases. In response, a new class of architectures with near-linear complexity has emerged, most
notably State Space Models (SSMs) like the Mamba architecture (Gu & Dao, 2023), which have
become a promising alternative for efficient long-sequence modeling.

However, the efficiency of SSMs comes at a cost. Their core mechanism, which relies on an expo-
nential decay kernel to compress past information into a fixed-size state, inevitably leads to rapid
information forgetting and challenges in length extrapolation (Yen et al., 2024; Chen et al., 2024).
This makes it difficult for the model to accurately recall specific details from distant parts of a se-
quence, a phenomenon often termed the ”lost in the middle” problem (Liu et al., 2023a). To mitigate
this, one line of research has focused on enhancing the model’s internal memory. This approach is
inspired by advances in efficient Transformers that employ chunking or sparse attention mecha-
nisms to preserve long-term context, such as Longformer (Beltagy et al., 2020), BigBird (Zaheer
et al., 2020), and Native Sparse Attention (NSA) (Yuan et al., 2025). Following this direction, we
first extend Mamba with a chunk-wise internal memory, which substantially improves its ability to
retrieve information from within the input sequence.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While strengthening internal recall is a necessary step, a more fundamental challenge is integrating
vast external world knowledge without compromising efficiency. The conventional paradigm for this
is Retrieval-Augmented Generation (RAG) (Lewis et al., 2020), which appends retrieved documents
to the model’s input. Although effective, this method is computationally expensive, as it directly
inflates the sequence length (Li et al., 2025), and often results in a superficial concatenation rather
than a deep fusion of knowledge (Asai et al., 2024). Pioneering work has explored pre-training
models to learn to retrieve, such as REALM (Guu et al., 2020) and RETRO (Borgeaud et al., 2022),
but these still rely on processing raw text during training and inference. The challenge of integrating
pre-encoded external knowledge—such as knowledge graph embeddings or document vectors—
directly into a model’s core architecture during pre-training has remained largely unaddressed.

To address these limitations, we propose the Plastic Unified Memory Network (PUM-Net). We
argue that a truly effective long-context model must not only maintain a robust internal memory but
also seamlessly fuse it with a vast, static external knowledge base. PUM-Net is designed to achieve
this through a novel joint pre-training methodology. Our contributions are threefold:

1. For Internal Memory: We introduce a chunk-wise long-term memory mechanism for
Mamba-based SSMs. This architectural enhancement significantly mitigates the inherent
forgetting problem for information within the input context and improves in-sequence recall
over long distances.

2. For External Memory: We propose a novel pre-training methodology to deeply integrate
a static, pre-encoded external knowledge base into the model’s learning process. This is
the first demonstration of how SSMs can be trained to fuse external knowledge without the
costly concatenation of raw text.

3. A Unified Architecture and System: We combine these advancements in our Plastic Uni-
fied Memory Network (PUM-Net). We demonstrate that the resulting synergy from the
deep integration of both internal and external memory systems leads to substantial im-
provements on challenging long-context benchmarks.

2 RELATED WORK

2.1 LONG-CONTEXT MODELING IN STATE SPACE MODELS

State Space Models (SSMs), adapted from control theory, have recently become competitive ar-
chitectures for sequence modeling. The Structured State Space Sequence Model (S4) (Gu et al.,
2022) introduced a discrete-time representation enabling parallel convolutional training and recur-
rent inference. However, early SSMs were largely time-invariant, limiting their ability to capture
content-dependent dynamics.

Mamba (Gu & Dao, 2023) advanced this line by introducing input-dependent state transitions, al-
lowing selective remembering and forgetting, and achieving near-Transformer performance with
linear complexity. Nevertheless, their reliance on exponential decay kernels restricts retention of
very long dependencies, as shown in later analyses (Chen et al., 2024; Yen et al., 2024). Our work
addresses this by augmenting Mamba with explicit long-term memory to mitigate natural forgetting.

2.2 MEMORY MECHANISMS IN LANGUAGE MODELS

The Transformer (Vaswani et al., 2017) faces quadratic complexity, motivating efficient attention
variants. Longformer (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) approximate full
attention with sparse patterns. Transformer-XL (Dai et al., 2019) introduced recurrence to propagate
context beyond fixed windows. More recently, Native Sparse Attention (NSA) (Yuan et al., 2025)
proposed chunking and hierarchical mechanisms for structured memory. Inspired by these, our
internal memory design adapts block-based memory concepts from Transformers to the recurrent
dynamics of SSMs.

2.3 RETRIEVAL AND KNOWLEDGE INTEGRATION

Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) appends retrieved passages to prompts,
but this inflates sequence length (Li et al., 2025) and often yields shallow fusion of knowledge

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Asai et al., 2024). To improve integration, models like REALM (Guu et al., 2020) and RETRO
(Borgeaud et al., 2022) jointly pre-trained retrievers with LMs, though still operating on raw text
chunks. Other approaches (Liu et al., 2023b) explored injecting external knowledge but retained
text-based overhead.

A less explored direction is leveraging pre-encoded, static knowledge (e.g., embeddings) directly
during training. PUM-Net is the first to demonstrate this for SSMs, enabling deep fusion between
internal dynamic states and static external memory, avoiding the inefficiencies of text-based retrieval.

3 THE PUM-NET ARCHITECTURE

We propose the Plastic Unified Memory Network (PUM-Net), which addresses the limitations of
State Space Models (SSMs) in capturing long-range dependencies and grounding reasoning in ex-
ternal knowledge. PUM-Net augments a standard SSM with a dual-memory system: (i) a dynamic
internal memory that encodes input sequences as chunked representations, and (ii) a static external
memory of pre-encoded knowledge. A learned interaction module retrieves and fuses both memo-
ries to enrich the recurrent state. We next formalize the memory design, describe the fusion mech-
anism, and present the joint pre-training and inference strategy. For clarity and reproducibility,
a detailed guide to the mathematical notation used throughout this section, including indices for
batches, chunks, and time steps, is provided in Appendix A.

3.1 THE DUAL-MEMORY SYSTEM

The core of PUM-Net is its dual-memory system, which consists of a static external memory for
world knowledge and a dynamic internal memory for session-specific context. Both memories ad-
here to a unified key-value structure. Further details on the construction of the internal and external
memories, along with key hyperparameters such as the memory chunk size and the number of top-k
memories selected for fusion, are provided in Appendix B.

3.1.1 EXTERNAL MEMORY: STATIC KNOWLEDGE CORPUS

The external memory, Mext, is a static, pre-computed key-value store derived from a large corpus
Dext = {d1, . . . , dNext}.

Key-Value Generation. For each passage di, we generate a semantic key kext,i and a state value
sext,i. The key is produced by a frozen sentence embedding model, Ekey; in this paper, all-MiniLM-
L6-v21. . The state value is the final hidden state computed by a pre-trained Mamba-2.7B2 model
with fixed parameters θfrozen.

kext,i = Ekey(di) ∈ Rdkey , sext,i = fθfrozen(di) ∈ Rdstate . (1)

The resulting memory is a set of tuplesMext = {(kext,i, sext,i)}Next
i=1.

Indexing. The keys {kext,i} are organized via an Approximate Nearest Neighbor (ANN) index
Iext. We use an inverted file index (IVF) with K centroids {ck}Kk=1. Given a query q ∈ Rdkey ,
retrieval is restricted to a candidate set Kcand(q) comprising keys from nearby clusters. Top-N
retrieval is then:

ANN-Search(q, N) = arg
N
min

kext,i∈Kcand(q)

∥q− kext,i∥2. (2)

3.1.2 INTERNAL MEMORY: DYNAMIC CONTEXTUAL REPRESENTATION

The internal memory,Mint, is constructed on-the-fly for each input sequence U. Unlike the static
external memory, its keys are not indexed into a persistent structure to avoid prohibitive computa-
tional overhead during training.

1https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
2https://huggingface.co/fla-hub/mamba-2.7B-100B

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the proposed PUM-Net. (a) The overall workflow. (b) The block design.

Chunking and Key-Value Generation. The input U is partitioned into M chunks of length Lc,
{uj}Mj=1. For each chunk, a key-value pair is generated. The key kint,j ∈ Rdkey is computed using
the shared encoder Ekey. The state value sint,j ∈ Rdstate is the final hidden state computed by the
learnable PUM-Net backbone fθ:

sint,j = fθ(uj). (3)

Parallel Computation and Caching. To compute all state values efficiently for a training batch
of B sequences, the B×M chunks are processed in a single forward pass. Their token embeddings
form a tensor Ebatch ∈ R(B×M)×Lc×dmodel . The backbone fθ operates on this tensor to produce the
final states Xbatch ∈ R(B×M)×dstate , from which each individual state s

(b)
int,j is extracted. For each

sequence in the batch, the collection of key-value pairs is held in a temporary cache for the duration
of the forward pass:

M(b)
int = {(k(b)

int,j , s
(b)
int,j)}

M
j=1. (4)

Retrieval from this small, session-specific cache is performed via efficient brute-force similarity
search, as detailed in the following section.

Fig. 1 illustrates the proposed PUM-Net, where (a) shows the overall workflow and (b) details the
block design.

3.2 TRAINING PARADIGM: STAGED PARALLEL COMPUTATION

PUM-Net training is complicated by recurrent dependencies, where computations at step t rely on
retrievals conditioned on the same state. To address this and enable efficient accelerator utiliza-
tion, we introduce Staged Parallel Computation, which decomposes the forward pass into two
parallelizable stages, preserving end-to-end differentiability and gradient flow.

3.2.1 STAGE 1: PRELIMINARY STATE SCAN

First, a preliminary parallel scan is performed over the input embeddings E ∈ RB×L×dmodel to gen-
erate context-aware representations. The backbone SSM, parameterized by θ, computes:

Oprelim = fθ(E) ∈ RB×L×dmodel . (5)

Each vector o(b)
prelim,t in this tensor serves as a contextualized basis for memory querying.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.2 STAGE 2: PARALLEL RETRIEVAL AND ASSOCIATIVE INTERACTION

a) Parallel Query Generation. The preliminary states are projected into query vectors for both
memory systems via learnable affine transformations:

Qint = OprelimWq,int ∈ RB×L×dkey , Qext = OprelimWq,ext ∈ RB×L×dkey . (6)

b) Batched Dual-Memory Retrieval. At each time step t, we retrieve the top-k most relevant
states from both memories in parallel. For the static external memory, we query the pre-built ANN
index Iext to efficiently retrieve the top-k candidates for each query q

(b)
ext,t:

S(b)ext,t = {sext,i}i∈ANN-Search(q(b)
ext,t,k)

. (7)

For the dynamic internal memory, an exhaustive search is performed via a single, massively parallel
computation. The dot-product similarities between all query vectors and all internal memory keys
in the batch are computed at once using efficient matrix multiplication. From the resulting similarity
scores, we retrieve the top-k states for each time step:

S(b)int,t = {s
(b)
int,j}j∈Top-k-Indices(q(b)

int,t,{k
(b)

int,j′}
M
j′=1

)
. (8)

c) Bi-Directional Cross-Memory Interaction The Associative Interaction Module (AIM) pro-
cesses the retrieved states through a sequence of similarity-weighted aggregation, bi-directional
cross-attention refinement.

SIMILARITY-WEIGHTED AGGREGATION. The retrieved states from each memory, S(b)int,t and

S(b)ext,t, are aggregated into single context vectors using a standard attention mechanism. Attention
weights (α) are computed via scaled dot-product similarity between the query and the retrieved
keys. These weights are then used to produce a weighted sum of the retrieved states, yielding the
final context vectors m(b)

int,t and (analogously) m(b)
ext,t:

α
(b)
t,j = softmaxj

(
(q

(b)
int,t)

⊤k
(b)
int,j√

dkey

)
, m

(b)
int,t =

∑
j

α
(b)
t,j s

(b)
int,j . (9)

BI-DIRECTIONAL CROSS-ATTENTION REFINEMENT. To foster deep integration and mutual re-
finement, the aggregated context vectors interact through a bi-directional cross-attention mechanism.
First, external knowledge enriches the internal context representation:

Q1 = m
(b)
int,tWQ1

, K1,V1 = m
(b)
ext,tWK1

,m
(b)
ext,tWV1

, (10)

m′
int,t

(b) = LayerNorm(m
(b)
int,t + Attention(Q1,K1,V1)). (11)

Concurrently, the internal context grounds the external knowledge, producing a session-specific
external representation:

Q2 = m
(b)
ext,tWQ2

, K2,V2 = m
(b)
int,tWK2

,m
(b)
int,tWV2

, (12)

m′
ext,t

(b) = LayerNorm(m
(b)
ext,t + Attention(Q2,K2,V2)). (13)

This reciprocal process produces two mutually-informed representations, m′
int,t

(b) and m′
ext,t

(b),
which are then passed to the fusion stage.

d) Gated Fusion for Final Output Computation. The final model output is computed in a single
efficient step. The refined memory representations are first projected from the state space Rdstate to
the model’s output space Rdmodel . A sophisticated gating mechanism then adaptively integrates these
memory contributions into the preliminary outputs from Stage 1. For each timestep t and batch
element b:

o
(b)
int,t = m′

int,t
(b)Wm,int, o

(b)
ext,t = m′

ext,t
(b)Wm,ext, (14)

g
(b)
int,t = σ([o

(b)
prelim,t;o

(b)
int,t]Wg,int), g

(b)
ext,t = σ([o

(b)
prelim,t;o

(b)
ext,t]Wg,ext), (15)

o
(b)
final,t = o

(b)
prelim,t + g

(b)
int,t ⊙ o

(b)
int,t + g

(b)
ext,t ⊙ o

(b)
ext,t. (16)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, [·; ·] denotes concatenation, and all W matrices are learnable parameters. This formulation
bypasses a second SSM scan, directly yielding the final output tensor Ofinal ∈ RB×L×dmodel for
prediction.

3.2.3 TRAINING OBJECTIVE

The model is trained end-to-end using a standard autoregressive language modeling objective. The
final outputs Ofinal are projected to the vocabulary space via a linear layer, Wvocab, to produce logits
L ∈ RB×L×|V|. The training loss is the cross-entropy between the predicted logits and the ground-
truth target tokens:

L(θ) =
L∑

t=1

CrossEntropy(softmax(Lt), targett). (17)

The gradient is backpropagated through the entire staged computation graph to update all learnable
parameters θ.

3.2.4 INFERENCE PROCEDURE

Inference mirrors the training pipeline with two differences: (i) the static external memory Mext
and its ANN index Iext are already built offline and never reconstructed at test time; and (ii) after a
one-time forward scan over the input query sequence Uq to obtain Oprelim,1:|Uq| and the final recur-
rent state x|Uq|, answer tokens are generated autoregressively. At each decoding step, we reuse the
trained query generators (Wq,int, Wq,ext), dual-memory retrieval (internal via in-session brute-force
overMint(Uq); external via Iext), similarity-weighted aggregation, bi-directional cross-attention re-
finement (AIM), linear projections (Wm,∗), and gating (Wg,∗) to fuse memory signals into ofinal,t
for prediction, thereby incurring only a small, fixed per-token overhead without any additional SSM
scan. Due to space constraints, detailed pseudocode for our staged parallel training and autoregres-
sive inference procedures is provided in Appendix C.

4 EXPERIMENTS

We conduct a series of experiments to validate the effectiveness of the PUM-Net architecture. Our
evaluation is designed to answer two primary questions: (1) Does PUM-Net outperform standard
State Space Model (SSM) baselines in long-range modeling tasks? (2) What are the individual con-
tributions of its internal and external memory components? We address these questions through
comprehensive benchmarks evaluating perplexity, in-context recall, question answering, and com-
putational efficiency. A discussion on why our experiments do not include a direct comparison with
traditional Retrieval-Augmented Generation (RAG) methods is provided in Appendix H.

4.1 LONG-RANGE LANGUAGE MODELING

Setup. We first evaluate PUM-Net on the task of long-range language modeling, using three
widely recognized datasets: PG-19 (Rae et al., 2019), ProofPile (Azerbayev et al., 2023), and
CodeParrot (Thomas Wolf & Zebaze, 2023). All models are trained with a 4k token context and
evaluated for perplexity (PPL) on sequences up to 64k tokens to test extrapolation capabilities. Fur-
ther details on the data set split, each task’s external memory source, and training protocol are
provided in the Appendix D.

Results. Figure 2 shows that the standard Mamba-130M baseline’s performance degrades sharply
beyond its training length. In contrast, PUM-Net (w/o ex), which isolates our internal memory
mechanism, maintains significantly lower perplexity, demonstrating its effectiveness at mitigating
information decay. The full PUM-Net model achieves the best results across all contexts. The
benefit of its external memory is especially pronounced on CodeParrot, underscoring its value for
knowledge-intensive domains. As shown in the training loss curves (Figure 3), PUM-Net also ex-
hibits a more favorable optimization landscape, suggesting convergence to a better local minimum.

Table 1 benchmarks PUM-Net against vanilla Mamba and several Mamba variants augmented with
attention mechanisms like Sliding Window Attention (SWA) and Native Sparse Attention (NSA).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Perplexity at evaluation lengths up to 64k after fine-tuning on 4k. Baselines include Trans-
former and Mamba variants with SWA and NSA. Our method, PUM-Net, is shown in two forms:
(w/o ex) without external memory and (full) with external memory.

Dataset Length Transformerfull attn Mamba-130M Mamba w/ SWArope Mamba w/ NSA PUM-Net (w/o ex) PUM-Net (full)

PG-19

4k 16.40 16.69 16.45 16.38 16.12 15.96
8k 17.10 17.35 17.01 16.92 16.77 16.63
16k 520.0 17.79 17.55 17.43 16.98 16.86
32k 1800.0 26.54 25.82 25.60 22.32 22.23
64k 1.0× 105 4352.97 3890.24 3725.50 619.33 411.29

ProofPile

4k 4.40 4.52 4.38 4.31 4.01 3.53
8k 4.55 4.60 4.53 4.49 4.17 3.61
16k 150.0 5.37 5.21 5.14 4.84 4.40
32k 1200.0 28.02 27.10 26.83 27.54 26.50
64k 5.0× 104 76645.95 69220.00 67310.50 2425.50 1265.57

CodeParrot

4k 4.55 4.61 4.50 4.48 4.47 1.11
8k 5.20 5.34 5.22 5.19 5.17 3.18
16k 120.0 7.31 7.20 7.15 7.18 4.25
32k 1500.0 26.01 25.62 25.50 25.14 22.50
64k 1.0× 109 1.53× 1010 1.28× 1010 1.19× 1010 2.14× 109 6288

4k 8k 16k 32k 64k
Context Length

102

103

Pe
rp

le
xi

ty
 (l

og
 sc

al
e) 90.6%

PPL Comparison on PG-19
Mamba-130M
PUM-Net-130M (w/o ex)
PUM-Net-130M

4k 8k 16k 32k 64k
Context Length

101

102

103

104

105

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

 98.3%

PPL Comparison on ProofPile
Mamba-130M
PUM-Net-130M (w/o ex)
PUM-Net-130M

4k 8k 16k 32k 64k
Context Length

101

103

105

107

109

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

 100.0%

PPL Comparison on CodeParrot
Mamba-130M
PUM-Net-130M (w/o ex)
PUM-Net-130M

Figure 2: Perplexity (PPL) comparison on the PG-19, ProofPile, and CodeParrot test sets. All mod-
els are trained on a 4k context length and evaluated on lengths up to 64k. Lower PPL indicates
better performance. PUM-Net consistently outperforms the Mamba baseline, with the performance
gap widening dramatically at longer contexts. The addition of external memory provides a signifi-
cant further boost, especially on the knowledge-intensive CodeParrot dataset.

For fairness, all models are implemented based on a 130M parameter budget (see Appendix D.1 for
details). The results show that PUM-Net consistently outperforms all baselines. This strong perfor-
mance against the NSA-augmented model is particularly significant, as our architecture was inspired
by similar principles of efficient information routing. The full PUM-Net model achieves state-
of-the-art results, with its external memory showing a pronounced advantage on the knowledge-
intensive CodeParrot dataset.

4.2 PASSKEY RETRIEVAL: EVALUATING INTERNAL MEMORY

Setup. To specifically isolate the internal memory component, we use the passkey retrieval task,
a synthetic ”needle-in-a-haystack” benchmark that requires verbatim recall of information from a
long sequence. Since this task relies purely on in-context information, we evaluate PUM-Net (w/o
ex) against several Mamba-family baselines. Setup specifics are available in Appendix E.

Results. Figure 4 shows that while baseline models fail as context extends beyond their training
length, PUM-Net (w/o ex) maintains near-perfect retrieval accuracy up to 64k tokens. This re-
sult provides strong evidence that our dynamic internal memory acts as a reliable long-term buffer,
overcoming the typical forgetting problem of SSMs.

4.3 PERFORMANCE ON LONG-CONTEXT QUESTION ANSWERING

Setup. We evaluate PUM-Net on a suite of question-answering tasks from the LongBench bench-
mark (Bai et al., 2023). These tasks require models to find and reason over information in long
documents, testing the synergy between internal and external memory. We compare the full PUM-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Training loss curves for PG-19, ProofPile, and CodeParrot finetuning. Each column shows
the full training run and a zoomed-in view of the final training steps. PUM-Net exhibits lower
loss throughout training and demonstrates stronger late-stage advantages compared to both vanilla
Mamba and the variant equipped only with internal memory, indicating a superior convergence
point.

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

Mamba-130M Full FT
Retrieval Score = 71.4%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

DeciMamba-130M
Retrieval Score = 85.7%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

MambaExtend-130M
Retrieval Score = 91.4%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

PUM-Net (w/o ex) 130M
Retrieval Score = 94.3%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

Mamba-1.4B Full FT
Retrieval Score = 82.9%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

DeciMamba-1.4B
Retrieval Score = 74.3%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

MambaExtend-1.4B
Retrieval Score = 80.0%

1K 2K 4K 8K 16K 32K 64K
Context Length

0%

25%

50%

75%

100%

Pa
ss

ke
y

D
ep

th
 [%

]

PUM-Net (w/o ex) 1.4B
Retrieval Score = 85.7%

Failure (0)

Success (1)

R
etrieval O

utcom
e

Figure 4: Passkey retrieval performance comparison. Baseline models, fine-tuned on 4k context
length samples, show significant degradation on longer contexts. In contrast, our PUM-Net (w/o ex)
model demonstrates robust performance, maintaining high retrieval accuracy up to 64k tokens.

Net-2.8B against a fine-tuned Mamba-2.8B and our PUM-Net (w/o ex) ablation, measuring per-
formance with F1 score. Experiment details and external memory construction for this task are
available in the appendix F.

Results. The results in Table 2 demonstrate PUM-Net’s superior reasoning capabilities. On all
tasks, PUM-Net (w/o ex) outperforms the Mamba baseline, confirming the benefit of the improved
internal memory for downstream tasks. The full PUM-Net model consistently yields the best scores,
showing that the external memory provides a crucial advantage for synthesizing information to an-
swer complex questions.

4.4 TRAINING AND INFERENCE EFFICIENCY

Setup. Finally, we evaluate the computational efficiency of PUM-Net. We measure throughput
(forward/backward pass time) and peak memory usage against highly optimized Transformer base-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Results on LongBench QA tasks after finetuning. We compare Mamba-2.8b baseline,
PUM-Net without external memory, and PUM-Net with external memory. Adding external memory
provides consistent further improvements, highlighting its benefits for QA tasks. LB = LongBench
score, and ‘N/A’ means that the task does not exist in LongBench-E.

Type (Metric) Benchmark Avg Len Mamba-2.8b (finetuned) PUM-Net (w/o ex) PUM-Net (full)
0-4k 4-8k 8k+ LB 0-4k 4-8k 8k+ LB 0-4k 4-8k 8k+ LB

MultiDoc-QA (F1) 2wikimqa 4887 8.47 2.34 1.18 4.53 10.72 5.48 2.93 9.58 12.42 6.84 3.63 11.46
MultiDoc-QA (F1) Hotpotqa 9151 5.77 2.02 0.53 2.28 7.08 3.36 2.03 4.24 8.88 4.53 2.71 5.69
MultiDoc-QA (F1) Musique 11214 N/A N/A N/A 1.23 N/A N/A N/A 2.38 N/A N/A N/A 3.47
SingleDoc-QA (F1) NarrativeQA 18409 N/A N/A N/A 1.27 N/A N/A N/A 2.13 N/A N/A N/A 3.08
SingleDoc-QA (F1) Qasper 3619 7.52 5.17 2.14 6.09 9.14 8.29 2.73 9.28 11.18 10.07 3.63 11.84
SingleDoc-QA (F1) MultifieldQA 4559 19.28 6.73 2.93 12.46 24.12 12.28 4.64 18.87 27.76 14.47 6.24 21.73
Few-Shot (F1) TriviaQA 8209 11.46 6.38 4.52 5.83 14.23 10.07 7.17 10.36 16.87 12.82 9.58 13.69

lines: Native Sparse Attention (NSA) (Yuan et al., 2025) and Flash-Attention (Dao et al., 2022).
The benchmark setup is detailed in Appendix G.

16K 32K 64K
0

50

100

150

200

250

300

350

Ti
m

e
(m

s)

×2.3
×3.9

×3.9×14.1

×15.2

×26.5

Forward Pass Performance

16K 32K 64K
0

200

400

600

800

Ti
m

e
(m

s)

×2.6
×2.5

×4.1

×9.5

×6.6

×12.5

Backward Pass Performance

16K 32K 64K
0

2

4

6

8

M
em

or
y

Fo
ot

pr
in

t
(R

el
at

iv
e

to
 p

ur
e

M
am

ba
-1

30
M

)

×1.1

×1.7

×2.2

×1.3

×2.5

×5.2

Comparison of Memory Footprint
PUM-Net NSA Flash-Attn

Figure 5: Efficiency comparison of PUM-Net against Native Sparse Attention (NSA) and Flash-
Attention. Subplots show (from left to right): forward pass time, backward pass time, and peak
memory footprint relative to a pure Mamba model. PUM-Net demonstrates superior efficiency
across all metrics, with its advantages becoming more pronounced as sequence length increases.

Results. Figure 5 shows that PUM-Net is substantially more efficient than attention-based base-
lines. Its throughput is significantly higher, achieving a 3.9x speedup over NSA and a 26.5x
speedup over Flash-Attention in the forward pass at 64k context length. Moreover, its memory
footprint is markedly lower and scales more favorably. This efficiency is due to our architecture’s
avoidance of quadratic-cost operations, confirming that PUM-Net achieves state-of-the-art perfor-
mance without sacrificing computational feasibility.

5 CONCLUSION

We presented the Plastic Unified Memory Network (PUM-Net), a new architecture that augments
State Space Models with a unified dual-memory system, combining a dynamic chunk-wise inter-
nal memory for long-range sequence retention with a static external memory for world knowledge,
trained efficiently via a staged parallel computation scheme. Empirical results on long-context lan-
guage modeling benchmarks demonstrate that PUM-Net substantially improves extrapolation, al-
leviates in-sequence forgetting, and delivers significant gains on knowledge-intensive tasks while
maintaining superior computational efficiency compared to attention-based alternatives. Despite
these advances, limitations remain, including the reliance on a fixed external memory, performance
degradation at extreme sequence lengths, and an evaluation primarily on text. Future work will
therefore focus on developing adaptive external memory, scaling PUM-Net to even longer contexts,
and extending the architecture to multi-modal reasoning. We believe this unified memory perspec-
tive provides a promising foundation for building the next generation of efficient and knowledge-
grounded long-context models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

The research presented in this paper focuses on a frontier LLM model architecture, PUM-Net, and
primarily utilizes established, publicly available datasets for training and evaluation. We acknowl-
edge that, like all large language models, architectures like ours could potentially be used to generate
harmful, biased, or factually incorrect content, as their behavior is a reflection of the data they are
trained on. A specific consideration for our dual-memory approach is the content of the exter-
nal knowledge base; the quality and neutrality of this external memory can directly influence the
model’s outputs. Our work is intended for research purposes to advance the understanding of ef-
ficient long-context models, and we encourage the community to pursue responsible development
and deployment of such technologies.

7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. The source code for the PUM-
Net architecture, along with the configurations for all experiments, will be made publicly available
on GitHub upon publication. We plan to release our finetuned model checkpoints on the Hugging
Face Hub. All experiments were conducted on publicly available benchmarks (PG-19, ProofPile,
CodeParrot, LongBench). The specific data processing, sampling strategies, model implementation
details, and key hyperparameters for all experiments are described in detail in the appendix of this
paper. Our experiments were conducted using NVIDIA H100 GPUs.

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. 2024.

Zhangir Azerbayev, Edward Ayers, and Bartosz Piotrowski. Proofpile: A pre-training dataset of
mathematical texts. 2023.

Seyedarmin Azizi, Souvik Kundu, Mohammad Erfan Sadeghi, and Massoud Pedram. Mambaex-
tend: A training-free approach to improve long context extension of mamba. In The Thirteenth
International Conference on Learning Representations, 2025.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Assaf Ben-Kish, Itamar Zimerman, Shady Abu-Hussein, Nadav Cohen, Amir Globerson, Lior Wolf,
and Raja Giryes. Decimamba: Exploring the length extrapolation potential of mamba. arXiv
preprint arXiv:2406.14528, 2024.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George HM van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Yingfa Chen, Xinrong Zhang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Stuffed
mamba: Oversized states lead to the inability to forget. arXiv preprint arXiv:2410.07145, 2024.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th annual meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Paul Ginsparg. arxiv.org e-print archive. arXiv, 2001. URL https://arxiv.org.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. In International conference on machine learning, pp.
3929–3938. PMLR, 2020.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems,
volume 33, pp. 9459–9474, 2020.

Xinze Li, Yushi Bai, Bowen Jin, Fengbin Zhu, Liangming Pan, and Yixin Cao. Long context vs.
rag: Strategies for processing long documents in llms. In Proceedings of the 48th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 4110–4113,
2025.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023a.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. ACM
Computing Surveys (CSUR), 55(6):1–28, 2022.

Leandro von Werra Li Jia Thomas Wolf, Loubna Ben Allal and Armel Zebaze. A dataset
of python files from github, 2023. URL https://github.com/huggingface/blog/
blob/main/codeparrot.md.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Wikimedia Foundation. Wikipedia. https://www.wikipedia.org/, 2012.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thor-
oughly. arXiv preprint arXiv:2410.02694, 2024.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. In Advances in Neural Information Processing Systems, volume 33, pp.
17283–17297, 2020.

11

https://arxiv.org
https://github.com/huggingface/blog/blob/main/codeparrot.md.
https://github.com/huggingface/blog/blob/main/codeparrot.md.
https://www.wikipedia.org/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A NOTATIONAL GUIDE

We summarize the key mathematical notation used in Section 3 for clarity and ease of reference.

L,U Denotes the total sequence length (L) and a long input sequence U = (u1, . . . , uL).

Superscript (b) Refers to the b-th sequence within a batch (e.g., U(b)).

Lc, j Denotes the fixed length of a chunk (Lc) and the index j of a chunk within the sequence.

Subscript t Refers to a specific time step or token index, where 1 ≤ t ≤ L.

q,k, s, . . . Bold lowercase letters represent vectors (e.g., a query vector).

W,O,Q, . . . Bold uppercase letters represent matrices or tensors (e.g., a weight matrix).

B MEMORY CONSTRUCTION DIAGRAM

The construction process for the static external memory and the dynamic internal memory, as de-
tailed in the main text, is visually illustrated in Figure 6. For all experiments involving PUM-Net
presented in this paper, we use a consistent set of hyperparameters for the dual-memory system.
Specifically, for both the internal and external memories, the input is processed using a chunk size
of 64 tokens, and the retrieval mechanism selects the top-k most relevant chunks, where k = 8.

Figure 6: Overview of the construction process for the static external memory (right) and the dy-
namic internal memory (left). Both processes generate unified key-value pairs but utilize different
data sources (an external corpus vs. the input sequence) and are performed at different stages (offline
vs. dynamically).

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Staged Parallel Training for PUM-Net

Require: Batch embeddings E∈RB×L×dmodel ; internal chunk keys/values {M(b)
int }Bb=1 withM(b)

int =

{(k(b)
int,j , s

(b)
int,j)}Mj=1; external memoryMext = {(kext,i, sext,i)}Next

i=1 and ANN index Iext; K,N ;
parameters θ, Wq,∗, Wm,∗, Wg,∗, Wvocab.

Ensure: Loss L(θ).
1: Stage 1: Preliminary scan Oprelim ← fθ(E) ∈ RB×L×dmodel .
2: Stage 2a: Parallel query generation Qint←OprelimWq,int, Qext←OprelimWq,ext.
3: for all b∈{1, . . . , B} and t∈{1, . . . , L} in parallel do
4: Stage 2b: Retrieval
5: Internal: S(b)int,t←{s

(b)
int,j} j∈Top-K-Indices(Q(b)

int,t,{k
(b)

int,j′}
M
j′=1

)
.

6: External: S(b)ext,t←{sext,i} i∈ANN-Search(Q(b)
ext,t,N ; Iext)

.
7: Stage 2c: Similarity-weighted aggregation
8: α

(b)
t,j←softmaxj

(
(q

(b)
int,t)

⊤k
(b)
int,j/

√
dkey
)
, m

(b)
int,t←

∑
j α

(b)
t,j s

(b)
int,j .

9: (Analogously obtain m
(b)
ext,t.)

10: Stage 2d: Bi-directional cross-attention refinement (AIM)
11: Q1←m

(b)
int,tWQ1

, K1,V1←m
(b)
ext,tWK1

, m
(b)
ext,tWV1

.

12: m′
int,t

(b)←LayerNorm
(
m

(b)
int,t + Attention(Q1,K1,V1)

)
.

13: Q2←m
(b)
ext,tWQ2

, K2,V2←m
(b)
int,tWK2

, m
(b)
int,tWV2

.

14: m′
ext,t

(b)←LayerNorm
(
m

(b)
ext,t + Attention(Q2,K2,V2)

)
.

15: Stage 3: Projection and gated fusion
16: o

(b)
int,t←m′

int,t
(b)Wm,int, o

(b)
ext,t←m′

ext,t
(b)Wm,ext.

17: g
(b)
int,t←σ([o

(b)
prelim,t;o

(b)
int,t]Wg,int), g

(b)
ext,t←σ([o

(b)
prelim,t;o

(b)
ext,t]Wg,ext).

18: o
(b)
final,t←o

(b)
prelim,t + g

(b)
int,t ⊙ o

(b)
int,t + g

(b)
ext,t ⊙ o

(b)
ext,t.

19: end for
20: Prediction & loss Lt←ofinal,tWvocab, L(θ)←

∑L
t=1 CrossEntropy(softmax(Lt), targett).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PSEUDOCODE FOR PUM-NET TRAINING AND INFERENCE

Algorithm 2 Inference for PUM-Net
Require: Query sequence Uq; pre-built Mext, Iext; top-K, top-N ; trained θ, Wq,∗, Wm,∗, Wg,∗,

Wvocab.
Ensure: Generated answer tokens y1:T .

1: Phase A: One-time context preparation (no generation)
2: BuildMint(Uq) = {(kint,j , sint,j)}Mj=1 as in training (chunking Uq , shared Ekey, backbone fθ).
3: Run a single forward scan over Uq to obtain Oprelim,1:|Uq| and final state x|Uq|.
4: Initialize x0←x|Uq|, y0=<ANS-START>, u1←Embed(y0).
5: Phase B: Autoregressive answer generation
6: for t = 1 to T do
7: Preliminary output: oprelim,t← fθ(xt−1, ut).
8: Dual-query generation (frozen): qint,t←oprelim,tWq,int, qext,t←oprelim,tWq,ext.
9: Memory retrieval: Sint,t ← {sint,j} j∈Top-K-Indices(qint,t,{kint,j′}M

j′=1
), Sext,t ←

{sext,i} i∈ANN-Search(qext,t,N ; Iext).
10: Similarity-weighted aggregation: αt,j ← softmaxj

(
q⊤int,tkint,j/

√
dkey
)
, mint,t ←∑

j αt,jsint,j ; obtain mext,t analogously.
11: Bi-directional cross-memory refinement (AIM): m′

int,t,m
′
ext,t via the two cross-attention

updates and LayerNorm.
12: Projection and gated fusion: oint,t ← m′

int,tWm,int, oext,t ← m′
ext,tWm,ext; gint,t ←

σ([oprelim,t; oint,t]Wg,int), gext,t← σ([oprelim,t; oext,t]Wg,ext); ofinal,t← oprelim,t + gint,t ⊙ oint,t +
gext,t ⊙ oext,t.

13: Predict & recurrent update: Lt←ofinal,tWvocab; yt←Decode(Lt); ut+1←Embed(yt);
update SSM state to xt using (xt−1, ut).

14: (Optional) Online consolidation: periodically buffer recent decoder states intoMint.
15: end for

D LANGUAGE MODELING EXPERIMENTAL DETAILS

Dataset Details We use the following datasets and splits for our finetuning experiments:

• PG-19 (Rae et al., 2019): We use the official, standard splits for this dataset. The models
are finetuned on the official training set and evaluated on the validation and test sets.

• ProofPile (Azerbayev et al., 2023): As the full dataset is very large, we created smaller,
representative splits for finetuning. We randomly selected 10,000 samples from the official
training set to create our finetuning set. For validation and testing, we randomly sampled
1,000 samples from the official validation set and 1,000 samples from the official test set,
respectively.

• CodeParrot (Thomas Wolf & Zebaze, 2023): The official CodeParrot dataset does not
provide predefined training, validation, or test splits. To create a consistent benchmark, we
randomly sampled 100,000 samples for our finetuning training set, 1,000 samples for our
validation set, and 2,000 samples for our test set.

Training Setup We finetune each model on a total of 100M tokens. We use a constant learning
rate of 1e-4, a global batch size of 128 (using batch accumulation), and the AdamW optimizer with
a weight decay of 0.1 and gradient clipping of 1.0. During training, we sample a single window with
a context length of 4k tokens from each example. During evaluation, for each example, we evaluate
10 windows with a maximal constant stride. We measure perplexity on only the last 100 tokens in
each window to specifically test the model’s extrapolation abilities.

External Knowledge Base For PG-19, we constructed the external memory from an English
Wikipedia snapshot (Wikimedia Foundation, 2012), which provides background knowledge about
historical events, literary works, and cultural references beyond the book corpus. For ProofPile,
we assembled an auxiliary mathematical reference corpus consisting of arXiv mathematics papers

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(Ginsparg, 2001) and Wikipedia mathematics pages (Wikimedia Foundation, 2012), enabling access
to formal definitions, theorems, and proofs not explicitly contained in the training set. For Code-
Parrot, we extracted Python-specific files from The Stack dataset (Kocetkov et al., 2022), thereby
incorporating a large-scale source of open-source Python code to provide knowledge of libraries and
idiomatic coding patterns beyond the CodeParrot training data.

D.1 IMPLEMENTATION DETAILS FOR COMPARATIVE MODELS

To ensure a fair and direct comparison for the perplexity benchmarks in Table 1, we standardized
the experimental setup for all model variants.

• Parameter Count: All models, including the Transformerfull attn baseline, were configured
to have approximately 130 million parameters.

• Mamba Variant Construction: The attention-augmented Mamba models and our PUM-
Net were constructed upon the same Mamba-130M backbone. To create each variant, we
randomly selected 20 of the original Mamba blocks and replaced them with the correspond-
ing new architectural block. For example:

– To build the Mamba w/ SWA model, 20 Mamba blocks were substituted with 20
Sliding Window Attention (SWA) blocks.

– To build the Mamba w/ NSA model, 20 Mamba blocks were substituted with 20
Native Sparse Attention (NSA) blocks.

– To build our PUM-Net models, 20 Mamba blocks were substituted with 20 of our
proposed PUM-Net blocks.

This block-replacement strategy, while representing a substantial architectural modifica-
tion, is designed to fairly compare the efficacy of different block types (SWA, NSA, PUM-
Net) within the same 130M-parameter framework, ensuring that the primary variable under
investigation is the block architecture itself.

E PASSKEY RETRIEVAL EXPERIMENTAL DETAILS

Task Setup To specifically isolate and evaluate the model’s long-context recall capabilities, we
use the passkey retrieval task, a synthetic ”needle-in-a-haystack” benchmark. Our setup follows the
methodology described in Ben-Kish et al. (2024). The task requires the model to retrieve a 5-digit
code embedded at a random sequence depth within a long document. The distractor text for these
documents is sourced from samples in the WikiText dataset (Merity et al., 2016). Since the answer
is always present in the input, success on this task depends solely on the model’s ability to access
and recall information from its context, not on external knowledge. Given that this task exclusively
tests in-sequence recall, we use our PUM-Net (w/o ex) variant for a direct comparison against
a suite of strong baseline models. These baselines include the original Mamba (Gu & Dao, 2023), as
well as its variants DeciMamba (Ben-Kish et al., 2024) and MambaExtend (Azizi et al., 2025). We
evaluate all models at two different scales: 130M and 1.4B parameters. To establish a strong baseline
for comparison, all models were fine-tuned for one epoch on a dataset with a 4k context length. All
other experimental parameters are consistent with the Training Setup detailed in Appendix D.

Evaluation Protocol The evaluation is conducted across a wide range of sequence lengths and
passkey depths to thoroughly probe the models’ performance. We test context lengths of 1K, 2K,
4K, 8K, 16K, 32K, and 64K tokens. For each context length, the passkey is hidden at relative depths
of 0%, 25%, 50%, 75%, and 100% of the sequence.

A retrieval is considered successful if the model generates the passkey verbatim. We compute the
overall retrieval score for each model by assigning a score of 1 for each correct retrieval and 0 for
each incorrect one, and then averaging across all tested depths and context lengths. The score is
presented as a percentage using the formula:

Retrieval Score (%) =
Total correct retrievals

Total (correct + incorrect) retrievals
× 100

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F LONGBENCH QA EXPERIMENTAL DETAILS

Benchmark and Finetuning The LongBench benchmark (Bai et al., 2023) contains a diverse
suite of tasks designed to evaluate long-context understanding. Our experiments focus on the
question-answering categories listed in Table 2. All models originate from the same instruction-
tuned checkpoint, xiuyul/mamba-2.8b-zephyr. The Mamba-2.8B baseline is a direct fine-
tuning of this base model. Our PUM-Net (w/o ex) and full PUM-Net variants were created by
modifying this Mamba-2.8B architecture, replacing each of its original Mamba blocks with our pro-
posed PUM-Net blocks. Subsequently, all three models (the baseline Mamba, and the two PUM-Net
variants) were individually fine-tuned on the official training set for each respective LongBench task,
using a fixed context length of 4k tokens. All other experimental parameters are consistent with the
Training Setup detailed in Appendix D.

External Memory Construction To provide the model with highly relevant external knowledge
for each reasoning task, we constructed a targeted corpus for the external memory. Specifically,
for each question within the LongBench QA tasks, we used the question as a search query against
an index of the English Wikipedia. We then took the top-1 most relevant Wikipedia page from the
search results. The full text content of this page was then encoded and stored, serving as the ded-
icated external knowledge source for the PUM-Net (full) model when answering that specific
question.

Evaluation Metrics and Results Interpretation Performance reported in Table 2 is measured
using the F1 score, following the official LongBench protocol. To ensure clarity, we detail the
metrics as follows:

• The columns ‘0-4k‘, ‘4-8k‘, and ‘8k+‘ report the macro-averaged F1 score for all test
samples that fall within those respective context length groups. This provides a granular
view of performance as context grows.

• The ‘LB‘ column represents the official overall score for each task, serving as the primary
benchmark metric.

• A value of ‘N/A‘ is used for tasks (e.g., Musique) where the official benchmark does not
provide a breakdown of scores by context length, although an overall ‘LB‘ score is still
computed.

While these results are based on a single training run for each model, the performance gains from
PUM-Net are not isolated to a single task or context length. The improvements are observed consis-
tently and substantially across a diverse suite of QA tasks (Single-Doc, Multi-Doc, and Few-Shot).
This consistency, combined with the large margins of improvement in many cases, provides strong
evidence for the robustness and effectiveness of our proposed architecture.

G EFFICIENCY BENCHMARK DETAILS

Benchmark Setup To provide a fair and direct comparison of computational costs, the efficiency
benchmarks shown in Figure 5 were conducted on a single, representative block of each architecture.
We compare our PUM-Net block against a Native Sparse Attention (NSA) block (Yuan et al.,
2025) and a Flash-Attention block (Dao et al., 2022). To ensure a fair comparison of architectural
overhead, all benchmarked blocks were configured to a 130M parameter scale. All experiments
were conducted on a single NVIDIA H100 GPU, measuring wall-clock time for forward/backward
passes and peak allocated memory.

Rationale for Baseline Selection Our choice of baselines was motivated by key conceptual sim-
ilarities to our approach, allowing for a meaningful comparison of efficiency for long-context mod-
eling:

• Native Sparse Attention (NSA): The core idea in our internal memory mecha-
nism—partitioning the sequence into chunks to process local information—was inspired

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

by the block-wise sparse patterns utilized in NSA. Therefore, comparing against it is cru-
cial to show the efficiency gains of our SSM-based approach over a sparse-attention-based
one.

• Flash-Attention: While it implements a mathematically equivalent dense attention, Flash-
Attention’s groundbreaking memory optimization is achieved by processing the computa-
tion in a block-wise or ”tiled” fashion. We include it as a baseline as it represents the de
facto standard for highly optimized Transformer implementations.

Analysis of PUM-Net’s Efficiency Advantage PUM-Net’s superior efficiency, especially at
longer sequence lengths, stems from two core design principles of its dual-memory system:

1. Linear Time Complexity: The fundamental architecture of our PUM-Net block is derived
from the Mamba model, which has linear time complexity (O(L)) with respect to sequence
length L. This inherent efficiency means that its processing time and memory usage do not
grow quadratically as sequence length increases, unlike attention-based mechanisms. This
explains why the inference and training times scale far more favorably for PUM-Net.

2. Zero-Overhead External Memory During Training: Our external memory system is
explicitly designed to avoid introducing computational overhead during the training loop.
The knowledge base is pre-computed offline into a static set of encoded key-value pairs
and indexed using a highly efficient Approximate Nearest Neighbor (ANN) library for fast
lookups. Crucially, the retrieval process does not involve fetching raw text and prepending
it to the input sequence—a common practice in retrieval-augmented models that would
significantly slow down training. Instead, our retrieval mechanism is optimized directly
into the model’s parameters, allowing it to leverage external knowledge with no substantial
additional time cost per training step.

H ON THE CHALLENGES OF COMPARING WITH RAG METHODS FOR
LONG-CONTEXT INPUTS

We considered including a direct comparison to traditional Retrieval-Augmented Generation (RAG)
methods, as PUM-Net’s use of an external memory shares a conceptual goal with retrieval augmen-
tation. However, we concluded that a direct comparison is not straightforward due to a fundamental
mismatch in the problem formulation, particularly concerning the handling of long-context inputs,
which is the primary focus of our work.

The Challenge of Dense Retrieval with Long Queries. Standard RAG pipelines are designed
for short, focused queries. They typically employ a dense retriever (e.g., a BERT-based bi-encoder)
to map a query to a vector and retrieve text chunks with high semantic similarity. This is effective
for short queries that produce a distinct semantic representation, leading to clearly distinguishable
similarity scores. However, this paradigm breaks down for a very long query (e.g., 64k tokens). The
semantic representation of such a long query becomes diffuse and less focused. When compared
against a relevant document in a corpus, a long query will often exhibit high semantic overlap with
nearly all chunks from that document. This results in undifferentiated, high similarity scores across
many chunks, causing a loss of the retriever’s discriminative power and making it difficult, if not
impossible, to select a small, targeted set of ”top-k” relevant passages.

The Prohibitive Cost of a Chunk-and-Retrieve Strategy. An alternative strategy would be to
partition the long query itself and perform retrieval for each query chunk. However, this approach is
computationally prohibitive and counter-productive. For instance, dividing a 64k-token query into
64-token chunks would result in 1024 individual queries. If we retrieve just one top-1 64-token text
snippet for each of these query chunks, we would accumulate an additional 64k tokens of retrieved
text. Concatenating this to the original input would create a 128k-token sequence for the model
to process. This approach not only doubles the sequence length—exacerbating the very problem
long-context models aim to solve—but also makes the training and inference costs untenable.

Incompatibility with Pre-training Methods like REALM. This fundamental limitation also ap-
plies to pioneering methods that integrate retrieval into the training loop, such as REALM (Guu et al.,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2020). While REALM effectively demonstrates how retrieved knowledge can be used to jointly op-
timize a model’s parameters, its mechanism still relies on concatenating retrieved documents to the
original input for the forward and backward passes. This concatenation-based augmentation, while
powerful for short inputs, is fundamentally challenging to scale to the very long sequence lengths
explored in our work and would not be computationally feasible.

Conclusion. In summary, due to these inherent challenges in applying existing RAG paradigms
to long-sequence inputs, we determined that a direct experimental comparison would not be mean-
ingful or fair. PUM-Net is designed to address a different challenge: efficiently augmenting an
already long, contiguous context with pre-encoded external knowledge, rather than augmenting a
short query with retrieved text. Therefore, we focused our comparisons on other state-of-the-art
long-context architectures.

18

	Introduction
	Related Work
	Long-Context Modeling in State Space Models
	Memory Mechanisms in Language Models
	Retrieval and Knowledge Integration

	The PUM-Net Architecture
	The Dual-Memory System
	External Memory: Static Knowledge Corpus
	Internal Memory: Dynamic Contextual Representation

	Training Paradigm: Staged Parallel Computation
	Stage 1: Preliminary State Scan
	Stage 2: Parallel Retrieval and Associative Interaction
	Training Objective
	Inference Procedure

	Experiments
	Long-Range Language Modeling
	Passkey Retrieval: Evaluating Internal Memory
	Performance on Long-Context Question Answering
	Training and Inference Efficiency

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Notational Guide
	Memory Construction Diagram
	Pseudocode for PUM-Net Training and Inference
	Language Modeling Experimental Details
	Implementation Details for Comparative Models

	Passkey Retrieval Experimental Details
	LongBench QA Experimental Details
	Efficiency Benchmark Details
	On the Challenges of Comparing with RAG Methods for Long-Context Inputs

