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ABSTRACT

Learning multi-scale representations is central to semantic segmentation. We vi-
sualize the effective receptive field (ERF) of canonical multi-scale representations
and point out two risks in learning them: scale inadequacy and field inactivation.
To address these issues, a novel multi-scale learner, varying window attention
(VWA), is presented. VWA leverages the local window attention (LWA) and dis-
entangles LWA into the query window and context window, allowing the scale
of context to vary for the query to learn representations at specific scales. How-
ever, varying the context to large-scale windows (enlarging ratio R) can signifi-
cantly increase the memory footprint and computation cost (R2 times larger than
LWA). We propose a simple but professional re-scaling strategy to zero the ex-
tra induced cost without compromising any performance. In consequence, VWA
shows great superiority to previous multi-scale learners. Furthermore, building
upon VWA and employing various MLPs, we introduce a multi-scale decoder
(MSD), VWFormer, to improve learning multi-scale representations in semantic
segmentation. VWFormer achieves efficiency competitive with the most compute-
friendly MSDs, like FPN and MLP decoder, but performs much better than any
MSDs. For instance, at little extra overhead, ∼ 10G FLOPs, VWFormer improves
Mask2Former by 1.0% − 1.3% mIoU. Using only half of the computation, VW-
Former outperforms the popular UperNet by 1.0%− 2.1% mIoU.

1 INTRODUCTION

In semantic segmentation, there are two typical paradigms for learning multi-scale representa-
tions. The first involves applying filters with receptive-field-variable kernels, classic techniques
like atrous convolution (Chen et al., 2018) or adaptive pooling (Zhao et al., 2017). By adjusting
hyper-parameters, such as dilation rates and pooling output sizes, the network can vary the receptive
field to learn representations at multiple scales.

The second leverages hierarchical backbones He et al. (2016); Liu et al. (2021; 2022) to learn multi-
scale representations. Typical hierarchical backbones are usually divided into four different levels,
each learning representations on feature maps with different sizes. For semantic segmentation, the
multi-scale decoder (MSD) (Xiao et al., 2018; Kirillov et al., 2019; Xie et al., 2021) fuses feature
maps from every level (i.e. scale) and output an aggregation of multi-scale features.

Essentially, the second is analogous to the first in that it can also be understood from the perspective
of varying receptive fields of filters. It is a common belief that deeper networks have larger receptive
fields (Szegedy et al., 2016; Ding et al., 2022). Therefore, when MSDs work for semantic seg-
mentation, they actually fuse representations learned by filters with multiple receptive fields, which
denotes different stages of hierarchical backbones.

To delve into the receptive field of these approaches, we visualize their effective receptive fields
(ERF) (Luo et al., 2016), as shown in Fig. 1a-e. For the first paradigm, advanced methods like ASPP
(applying atrous convolution) Chen et al. (2018) and PSP Zhao et al. (2017) (applying adaptive pool-
ing) are selected. For the second paradigm, ERF visualization is performed on multi-level feature
maps of ResNet (He et al., 2016), Swin Transformer Liu et al. (2021), and SegFormer (MiT) Xie
et al. (2021), all of which are successful hierarchical backbones on semantic segmentation.
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(b) PSP: output size from left to right (1, 2, 3, 6)(a) ASPP: atrous rates from left to right (1, 24, 48, 72)

(d) Swin Transformer: stage1, stage2, stage3, stage4(c) ResNet: stage1, stage2, stage3, stage4

(e) SegFormer: stage1, stage2, stage3, stage4 (f) Our proposed VWA: residual path, R=2, R=4, R=8
Figure 1: ERF visualization of multi-scale representations learned by (a) ASPP, (b) PSP, (c) ResNet,
(d) Swin Transformer, (e) SegFormer, and (f) Our proposed varying window attention. ERF maps
are visualized across 100 images of ADE20K validation set. See Appendix A for more analysis.

Based on the visual results, we conduct a qualitative analysis of the scale, shape, and quantity of
ERFs of these typical methods (please refer to Appendix A for detailed analysis). As analyzed,
learning multi-scale representations faces two issues. On one hand, there is a risk of scale inade-
quacy, such as missing global information (Swin Transformer, ResNet, ASPP), missing local infor-
mation (PSP), or having only local and global information while missing other scales (SegFormer).
On the other hand, there are inactivated areas within the receptive field range, as observed in ASPP,
Swin Transformer, and the low-level layers of SegFormer. We refer to this as field inactivation.

To address these issues, we explore a new way to learn multi-scale representations. The focus of
our research is on answering whether the local window attention (LWA) mechanism can be extended
to function as a relational filter whose receptive field is variable to meet the scale specification
for learning multi-scale representations in semantic segmentation while preserving the efficiency
advantages of LWA. Our resulting approach is varying window attention (VWA), which learns
multi-scale representations with no room for scale inadequacy and field inactivation (See Fig. 1f).

Specifically, VWA disentangles LWA into the query window and context window. The query re-
mains positioned on the local window, while the context is enlarged to cover more surrounding
areas, thereby varying the receptive field of the query. Since this enlargement results in a substan-
tial overhead impairing the high efficiency of LWA (R2 times than LWA), we will analyze how the
extra cost arises and particularly devise pre-scaling principle, densely overlapping patch embedding
(DOPE), and copy-shift padding mode (CSP) to eliminate it without compromising performance.

More prominently, tailored to semantic segmentation, we propose a multi-scale decoder (MSD),
VWFormer, which takes VWA as its core and incorporates MLPs with diverse functionalities in-
cluding multi-layer aggregation and low-level enhancement. To prove the superiority of VWFormer,
we evaluate it on various high-performance segmentation backbones such as ResNet, Swin Trans-
former, SegFormer, and compare it with SOTA MSDs like FPN (Lin et al., 2017), UperNet (Xiao
et al., 2018), MLP-decoder (Xie et al., 2021), and deformable-attention FPN (Zhu et al., 2020) on
datasets including ADE20K (Zhou et al., 2017), Cityscapes (Cordts et al., 2016), and COCOStuff-
110k (Caesar et al., 2018). Experiments show that replacing these previous MSDs with VWFormer
consistently leads to performance and efficiency gains. The highest improvements can reach an in-
crease of 2.4% mIoU and a FLOPs reduction of 48%, which are credited to VWA rectifying multi-
scale representations of multi-level feature maps. Besides, we substitute VWA in VWFormer with
ASPP and PSP for comparison to aforesaid filters with variable receptive fields. Results demon-
strate that with the same backbone, VWA outperforms ASPP and PSP by 1.2% and 2.2% mIoU,
respectively, and consumes less computational budget, approximately 140G and 53G FLOPs less.

In summary, this work has a three-fold contribution:

— We make full use of the ERF technique to visualize the scale of representations learned by exist-
ing multi-scale learning paradigms, including receptive-field-variable kernels and different levels of
hierarchical backbones, revealing the issues of scale inadequacy and field inactivation.
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— We propose VWA, a relational representation learner, allowing for varying context window sizes
toward multiple receptive fields like variable kernels. It is as efficient as LWA due to our pre-scaling
principle along with DOPE. We also propose a CSP padding mode specifically for perfecting VWA.

— A novel MSD, VWFormer, designed for semantic segmentation, is presented as the product of
VWA. VWFormer shows its effectiveness in improving multi-scale representations of hierarchical
backbones, by surpassing existing MSDs in both performance and efficiency on classic datasets.

2 RELATED WORKS

2.1 MULTI-SCALE LEARNER

The multi-scale learner is referred to as the paradigm utilizing receptive-field-variable filters to learn
multi-scale representations. Sec. 1 has introduced ASPP and PSP. There are also more multi-scale
learners proposed previously for semantic segmentation. These works can be categorized into three
groups. The first involves using atrous convs, e.g. ASPP, and improving its feature fusion way and
efficiency of atrous convolution (Yang et al., 2018; Chen et al., 2018). The second involves extending
adaptive pooling, incorporating PSP into other types of representation learners (He et al., 2019a) (He
et al., 2019b). However, there are issues of scale inadequacy and field inactivation associated with
these methods’ core mechanisms, i.e. atrous convs and adaptive pooling, as analyzed in Sec. 1.

The third uses a similar idea to ours, computing the attention matrices between the query and con-
texts with different scales, to learn multi-scale representations in a relational way for semantic seg-
mentation or even image recognition. In the case of Yuan et al. (2018) and Yu et al. (2021), their core
mechanisms are almost identical. As for Zhu et al. (2019), Yang et al. (2021), and Ren et al. (2022),
the differences among the three are also trivial. We briefly introduce Yuan et al. (2018) and Zhu
et al. (2019), visualizing their ERFs and analyzing their issues (See Fig. 7 and Appendix B for more
information). In a word, all of the existing multi-scale learners in a relational way (also known as
multi-scale attention) do not address the issues we find, i.e. scale inadequacy and field inactivation.

2.2 MULTI-SCALE DECODER

The multi-scale decoder (MSD) fuses multi-scale representations (multi-level feature maps) learned
by hierarchical backbones. One of the most representative MSDs is the Feature Pyramid Network
(FPN) (Lin et al., 2017), originally designed for object detection. It has also been applied to image
segmentation by using its lowest-level output, even in SOTA semantic segmentation methods such
as MaskFormer (Cheng et al., 2021). Lin et al. (2017) has also given rise to methods like (Kirillov
et al., 2019) and (Huang et al., 2021). In Mask2Former (Cheng et al., 2022), FPN is combined with
deformable attention Zhu et al. (2020) to allow relational interaction between different level feature
maps, achieving higher results. Apart from FPN and its derivatives, other widely used methods
include the UperNet (Xiao et al., 2018) and the lightweight MLP-decoder proposed by SegFormer.

In summary, all of these methods focus on how to fuse multi-scale representations from hierarchical
backbones or enable them to interact with each other. However, our analysis points out that there are
scale inadequacy and field inactivation issues with referring to multi-level feature maps of hierarchi-
cal backbones as multi-scale representations. VWFormer further learns multi-scale representations
with distinct scale variations and regular ERFs, surpassing existing MSDs in terms of performance
while consuming the same computational budget as lightweight ones like FPN and MLP-decoder.

3 VARING WINDOW ATTENTION

3.1 PRELIMINARY: LOCAL WINDOW ATTENTION

Local window attention (LWA) is an efficient variant of Multi-Head Self-Attention (MHSA), as
shown in Fig. 2a. Assuming the input is a 2D feature map denoted as x2d ∈ RC×H×W , the first
step is reshaping it to local windows, which can be formulated by:

x̂2d = Unfold (kernel = P , stride = P) (x2d) , (1)
where Unfold() is a Pytorch (Paszke et al., 2019) function (See Pytorch official website for more
information). Then the MHSA operates only within the local window instead of the whole feature.
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To show the efficiency of local window attention, we list its computation cost to compare with that
of MHSA on the global feature (Global Attention):

Ω (GA) = 4(HW )C 2 + 2(HW )
2
C , Ω (LWA) = 4(HW )C 2 + 2(HW )P2C . (2)

Note that the first term is on linear mappings, i.e., query, key, value, and out, and the second term
is on the attention computation, i.e., calculation of attention matrices and the weighted-summation
of value. In the high-dimensional feature space, P 2 is smaller than C and much smaller than HW .
Therefore, the cost of attention computation in LWA is much smaller than the cost of linear mappings
which is much smaller than the cost of attention computation in GA.

Besides, the memory footprints of GA and LWA are listed below, showing the hardware-friendliness
of LWA. The intermediate outputs of the attention mechanism involve query, key, value, and out, all
of which are outputs of linear mappings, and attention matrices output from attention computation.

Mem. (GA) ∝ (HW )C + (HW )
2
, Mem. (LWA) ∝ (HW )C + (HW )P2. (3)

Obviously, the consequence of the computational comparison remains valid. In GA the second term
is much larger than the first, but in LWA the second term is smaller than the first.

3.2 VARYING THE CONTEXT WINDOW

In LWA, x̂2d output by Eq. 1 will attend to itself. In VWA, the query is still x̂2d, but for the context,
by denoting it as c2d, the generation can be formulated as:

c2d = Unfold (kernel = RP , stride = P ,padding = zero) (x2d) , (4)

From the view of window sliding, the query generation is a P × P window with a stride of P × P
sliding on x2d, and the context generation is a larger RP ×RP window with still a stride of P ×P
sliding on x2d. R is the varying ratio, a constant value in one VWA. As shown in Fig. 2, when R is
1, VWA becomes LWA, and the query and context are entangled together in the local window. But
when R > 1, with the enlargement of context, the query can see wider than the field of the local
window. Thus, VWA is a variant of LWA and LWA is a special case of VWA, where R = 1 in VWA.

From the illustration of Fig. 2b, the computation cost of VWA can be computed by:

Ω (VWA) = 2
(
R2 + 1

)
(HW )C 2 + 2(HW )(RP)

2
C . (5)

Subtracting Eq. 5 from Eq. 2, we can quantify the extra computation cost caused by enlarging the
context patch:

Ω (EX.) = 2
(
R2 − 1

)
(HW )C 2 + 2

(
R2 − 1

)
(HW )P2C . (6)

For the memory footprint of VWA, it can be computed by:

Mem. (VWA) ∝
(
R2

)
(HW )C + (HW )(RP)

2
. (7)

Subtracting Eq. 7 from Eq. 3, the extra memory footprint is clear:

Mem. (EX.) ∝
(
R2 − 1

)
(HW )C +

(
R2 − 1

)
(HW )P2. (8)

Clearly, the larger the window, the more challenging the problem becomes. First, the efficiency
advantage of attention computation (the second term) in LWA does not hold. Second, linear map-
pings, the first term, yield much more computation budget, which is more challenging because to our
knowledge existing works on making attention mechanisms efficient rarely take effort to reduce both
the computation cost and memory footprint of linear mappings and their mapping outputs. Next, we
will introduce how to address the dilemma caused by varying the context window.

3.3 ELIMINATING EXTRA COSTS

With the analysis of Eq. 6 and Eq. 8, the most straightforward way to eliminate the extra cost and
memory footprint is re-scaling the large context ∈ RC×R×P×R×P back to the same size as that of
the local query ∈ RC×P×P , which means R is set to 1 and thereby both of Eq. 6 and Eq. 8 is 0.

Above all, it is necessary to clarify the difference between using this idea to deal with the extra
computation cost and the extra memory footprint. As shown in Fig. 2b, the intermediate produced
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Figure 2: (a) illustrates that in LWA, Q, K, and V are all transformed from the local window. (b)
illustrates a naive implementation of VWA. Q is transformed from the local window. K and V are
re-scaled from the varing window. PE is short for Patch Embedding. R (of RP) denotes the size ratio
of the context window to the local window (query). (c) illustrates the professional implementation
of VWA. DOPE is short for densely-overlapping Patch Embedding.

by varying (enlarging) the window, which is the output of Eq. 4, already takes the memory that is
R2(HW )C. Therefore, re-scaling the large context after generating it does not work, the right step
should be re-scaling the feature x2d before running Eq. 4. We name this pre-scaling principle.

Solving the problem is begun by the pre-scaling principle. A new feature scaling paradigm, densely
overlapping patch embedding (DOPE), is proposed. This method is different from patch embedding
(PE) widely applied in ViT and HVT as it does not change the spatial dimension but only changes
the dimensionality. Specifically, for x2d, originally, after applying Eq. 4, the output’s shape is:

H/P ×W/P ×RP ×RP × C. (9)

which means memory footprint of R2HWC. Instead, DOPE first reduces the dimensionality of x2d

from C to C/R2, and then applies Eq. 4, resulting in the context with a shape of:

H/P ×W/P ×RP ×RP × C/R2. (10)

which means memory footprint of HWC, the same as that of x2d, eliminating the extra memory.

Since PE is often implemented using conv layers, how DOPE re-scales features is expressed as:

DOPE = Conv2d(in = C , out = C/R2, kernel = R, stride = 1). (11)

So, the term ”densely overlapping” of DOPE is used to describe the densely arranged pattern of
convolutional kernels, especially when R is large, to filter every position. The computation cost
introduced by DOPE can be computed by:

Ω (DOPE) = R×R× C × C/R2 ×HW = HWC2. (12)

This is equivalent to the computation source required for one linear mapping.

However, the context window ∈ RRP×RP×C/R2

cannot be attended to by the query window ∈
RP×P×C . We choose PE to downsample the context and increase its dimensionality to a new
context window ∈ RP×P×C . The PE function can be formulated as:

PE = Conv2d(in = C/R2, out = C , kernel = R, stride = R). (13)

The computation cost for one context window applying PE is:

Ω (PE for one context) = R×R× C/R2 × C ×RP/R×RP/R = P 2C. (14)

For all context windows from DOPE, with a total of H/P ×W/P , the computation cost becomes:

Ω (PE) = H/P ×W/P × Ω (PE for one context) = HWC. (15)

This is still the same as linear mapping.

After applying the re-scaling strategy described, as shown in Fig. 2c, it is clear that the memory
footprint of VWA is the same as Eq. 3, not affected by the context window enlargement. The
attention computation cost is also the same as LWA (Eq. 2). For DOPE, VWA uses it once, thus
adding one linear mapping computation to Eq. 2. For PE, VWA uses it twice, generating key and
value from the DOPE’s output, replacing the key and value mapping. So the computation cost of
VWA merely increases 25% (one linear mapping, HWC) than that of LWA, which becomes:

Ω (VWA) = (4 + 1)(HW )C 2 + 2(HW )P2C . (16)

5



Under review as a conference paper at ICLR 2024

copy&shiftattn. map

attn. map bottom pad.

top pad.

left pad

right pad

attn. map

attn. mapcopy&shift

copy&
shift

copy&
shift

(a) attention collapse (b) our proposed padding mode (c)  CSP shifts windows towards features 

Figure 3: (a) illustrates the zero-padding mode caused attention collapse when the context window is
very large and the context window surrounds the local window near the corner or edge. (b) illustrates
the proposed copy-shift padding (CSP) mode. The color change indicates where the padding pixels
are from. (c) CSP is equivalent to moving the context windows towards the feature, ensuring that
every pixel the query attends to has a different valid non-zero value. Best viewed in color.

3.4 ATTENTION COLLAPSE AND COPY-SHIFT PADDING

The padding mode in Eq. 4 is zero padding. However, visualizing attention maps of VWA, we find
that the attention weights of the context window at the corner and edge tend to have the same value,
which makes attention collapse. The reason is too many same zeros lead to the smoothing of the
probability distribution during Softmax activation. As shown in Fig. 3, to address this problem, we
propose copy-shift padding (CSP), which is equivalent to making the coverage of the large window
move towards the feature. Specifically, for the left and right edges, x2d after CSP is:

x2d = Concat(d = 4)(x2d[..., (R+ 1)P/2 : RP ],x2d,x2d[...,−RP : −(R+ 1)P/2]). (17)
where Concat() is a function concatenating a tuple of features along the dimension d. Based on x2d

obtained by Eq. 17, CSP padding the top and bottom sides can be formulated by:
x2d = Concat(d = 3)(x2d[..., (R+ 1)P/2 : RP, :],x2d,x2d[...,−RP : −(R+ 1)P/2, :]). (18)
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Figure 4: VWFormer contains multi-layer aggregation, learning multi-scale representations, and
low-level enhancement. Like other MSDs, VWFormer takes multi-level feature maps as inputs.

4 VWFORMER

Multi-Layer Aggregation As illustrated in Fig. 4, VWFormer first concatenates feature maps
from the last three stages instead of all four levels for efficiency, by upsampling the last two (F16

and F32) both to the same size as the 2nd-stage one (F8), and then transform the concatenation with
one linear layer (MLP0) to reduce the channel number, with F as the outcome.

Multi-Scale Representations To learn multi-scale representations, three VWA mechanisms with
varying ratios R = 2, 4, 8 are paralleled to act on the multi-layer aggregation’s output F . The local
window size P of every VWA is set to H

8 ×
W
8 , subject to the spatial size of F . Additionally, the short

path, exactly a linear mapping layer, consummates the very local scale. The MLPs of VWFormer
consist of two layers. The first layer (MLP1) is a linear reduction of multi-scale representations.

Low-Level Enhancement The second layer (MLP2) of MLPs empowers the output (F1) of the
first layer with low-level enhancement (LLE). LLE first uses a linear layer (MLPlow) with small
output channel numbers 48 to reduce the lowest-level (F4) dimensionality. Then F1 is upsampled
to the same size as MLPlow’s output (Flow) and fused with it through MLP2, outputting F2.
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Table 1: Comparison of SegFormer (MiT-MLP) with VW-SegFormer (MiT-VW.).
ADE20K Cityscapes COCO

MSD backbone params(M) ↓ FLOPs(G) ↓ mem.(G)↓ mIoU(/MS)↑ mIoU(/MS)↑ mIoU↑

MLP

MiT-B0 3.8 8.4 5.5 37.4 / 38.0 76.2 / 78.1 35.6
MiT-B1 13.7 15.9 5.8 42.2 / 43.1 78.5 / 80.0 40.2
MiT-B2 27.5 62.4 16.4 46.5 / 47.5 81.0 / 82.2 44.6
MiT-B3 47.3 79.0 16.9 49.4 / 50.0 81.7 / 83.3 45.5
MiT-B4 64.1 95.7 17.3 50.3 / 51.1 81.9 / 83.4 46.5
MiT-B5 84.7 183.3 17.8 51.0 / 51.8 82.3 / 83.5 46.7

VW.

MiT-B0 3.7 5.1 3.4 38.9 / 39.6 77.2 / 78.7 36.2
MiT-B1 13.5 10.8 4.0 43.2 / 44.0 79.0 / 80.4 41.5
MiT-B2 27.4 38.5 11.5 48.1 / 49.2 81.7 / 82.7 45.2
MiT-B3 47.3 44.0 12.0 50.3 / 50.9 82.4 / 83.6 46.8
MiT-B4 64.0 55.2 12.8 50.8 / 51.6 82.7 / 84.0 47.6
MiT-B5 84.6 103.8 13.3 52.0 / 52.7 82.8 / 84.3 48.0

Table 2: Comparison of UperNet with VWFormer. Swin Transformer serves as the backbone.
ADE20K Cityscapes

MSD backbone params(M) ↓ FLOPs(G) ↓ mem.(G)↓ mIoU(/MS)↑ mIoU(/MS)↑

UperNet

Swin-T 60.0 236.1 12.1 44.4 / 45.8 80.1 / 80.9
Swin-S 81.3 259.3 13.1 47.7 / 49.2 81.2 / 81.6
Swin-B 121.4 299.8 15.2 50.8 / 52.4 81.9 / 82.5
Swin-L 234.0 410.8 17.9 52.3 / 54.1 82.9 / 83.7

VW.

Swin-T 36.1 44.3 10.9 45.5 / 46.9 80.8 / 81.4
Swin-S 57.4 67.5 11.8 48.7 / 50.4 81.6 / 82.4
Swin-B 96.0 107.5 13.1 52.3 / 53.6 82.4 / 83.1
Swin-L 205.3 217.5 14.8 54.7 / 55.4 83.6 / 84.4

5 EXPERIMENTS

5.1 DATASET AND IMPLEMENTATION

Experiments are conducted on three public datasets including Cityscapes, ADE20K, and
COCOStuff-164K (See D.2 for more information). The experiment protocols are the same as the
compared method’s official repository. For ablation studies, we choose the Swin-Base backbone as
the testbed and use the same protocols as Swin-UperNet (See D.3 for more information).

5.2 MAIN RESULTS

5.2.1 COMPARISON WITH SEGFORMER (MLP-DECODER)

SegFormer uses MixFormer (MiT) as the backbone and designs a lightweight MLP-decoder as MSD
to decode multi-scale representations of MixFormer. To demonstrate the effectiveness of VWFormer
in improving multi-scale representations by VWA, we replace the MLP-decoder in SegFormer with
VWFormer. Table 1 shows the number of parameters, FLOPs, memory footprints, and mIoU. Across
all variants of backbone MiT (B0→B5), VWFormer trumps MLP-decoder on every metric.

5.2.2 COMPARISON WITH UPERNET

In recent research, UperNet is often used as MSD to evaluate the proposed Vision Transformer
in semantic segmentation. Before multi-scale fusion, UperNet learns multi-scale representations
by utilizing PSPNet (with scale inadequacy issue) merely on the highest-level feature maps. In
contrast, VWFormer can rectify ERFs of every fused multi-level feature map in advance. Table 2
shows VWFormer consistently uses much fewer budgets to achieve higher performance.

5.2.3 COMPARISON WITH MASKFORMER AND MASK2FORMER

MaskFormer and Mask2Former introduce the mask classification mechanism for image segmen-
tation but also rely on MSDs. MaskFormer uses the simple and lightweight FPN as MSD,
while Mask2Former empowers multi-level feature maps with feature interaction by integrating
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Table 3: Comparison of VWFormer with FPN and Deformable-Attn FPN. MaskFormer and
Mask2Former serve as testbeds (mask classification heads).

head MSD backbone params(M) ↓ FLOPs(G) ↓ mem.(G)↓ mIoU(/MS)↑

MaskFormer

FPN

Swin-T 41.8 57.3 2.8 46.7 / 48.8
Swin-S 63.1 81.1 3.5 49.4 / 51.0
Swin-B 102 198.3 6.6 52.7 / 53.9
Swin-L 212 378 10.4 54.1 / 55.6

VW.

Swin-T 43.2 55.8 3.8 47.8 / 49.0
Swin-S 64.5 80.3 4.4 50.5 / 52.7
Swin-B 101.4 198 7.2 53.8 / 54.6
Swin-L 211.5 377 10.8 55.3 / 56.5

Mask2Former

FPN

Swin-T 47.0 74.0 2.3 47.7 / 49.6

(Deform-Attn)

Swin-S 69.0 98.0 3.0 51.3 / 52.4
Swin-B 107.0 223.0 6.0 53.9 / 55.1
Swin-L 215.0 402.7 9.3 56.1 / 57.3

VW.

Swin-T 48.0 60.7 2.2 48.3 / 50.5
Swin-S 69.8 85.4 2.8 51.4 / 53.0
Swin-B 108.0 205.5 5.8 54.4 / 55.9
Swin-L 217.0 385.2 9.1 56.5 / 57.8

VW.

Swin-T 54.2 85.3 4.4 48.7 / 50.9

(Deform-Attn)

Swin-S 75.5 109.1 5.1 51.7 / 53.6
Swin-B 114.0 242.4 8.1 54.8 / 56.2
Swin-L 223.0 422.0 11.3 56.8 / 58.3

Deformable Attention (Zhu et al., 2020) into FPN (DAF). Table 3 demonstrates that VWFormer
is as efficient as FPN and achieves mIoU gains from 0.8% to 1.7%. The results also show the
combo of VWFormer and Deformable Attention improves DAF by 1.0%-1.3%. This demonstrates
the feature interaction can still boost the performance of VWFormer, highlighting its generability.

Table 4: Performance of different Scale combinations. Conducted on ADE20K. The numbers of
”scale group” are varying ratios. (2, 4, 8) is the default setting.

backbone Swin-B
scale group (2, 4, 8) (2, 4) (2, 8) (4, 8) (1, 2, 4, 8) (1, 4, 8)

mIoU(/MS)↑ 52.3 / 53.6 51.7 / 52.9 51.7 / 53.0 51.8 / 53.0 52.1 / 53.5 51.9 / 53.1

Table 5: Performance of different ways to re-scale the context window. Conducted on ADE20K.
backbone pre. or post. rescaling method params.↓ FLOPs(G) ↓ mem.(G)↓ mIoU(/MS)↑

Swin-B

pre-scaling DOPE → PE 96.0 107.5 13.1 52.3 / 53.6
post-scaling PE 117.9 217.4 14.4 52.3 / 53.7
post-scaling Avg. Pooling 95.2 106.2 14.4 51.7 / 52.8
no rescaling – 95.4 288.9 16.3 52.4 / 53.4

5.3 ABLATION STUDIES

5.3.1 SCALE CONTRIBUTION

Table 4 shows the performance drops a lot if removing any-scale VWA of VWFormer. These results
indicate every scale is crucial, also suggesting that scale inadequacy is fatal to multi-scale learning.
Also, we add a VWA branch with R = 1 context windows which is exactly LWA, and then substitute
R = 2 VWA with it. The results show LWA is unnecessary in VWFormer because the short path
(1× 1 convolution) in VWFormer can provide a very local receptive field, as visualized in Fig. 1f.

5.3.2 PRE-SCALING VS. POST-SCALING

Table 5 compares: applying VWA without rescaling, with a naive rescaling as depicted in Fig. 2b,
and our proposed professional strategy. LWA originally consumes unaffordable FLOPs and memory
footprints. Applying the naive scaling strategy saves some FLOPs and memory footprints, but intro-
duces positional embedding (PE) leading to an increase in the number of parameters. Our proposed
strategy not only eliminates the computation and memory introduced by varying the context window
but also only adds a small number of parameters. It does not sacrifice performance for efficiency.
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Table 6: Left: Performance of zero padding mode and our proposed CSP. Right: Performance of
different output channel number settings of LLE module in VWFormer.

backbone Swin-B
padding zero CSP

mIoU(/MS) 51.6 / 52.6 52.3 / 53.6

backbone Swin-B
#channel 0 32 48 64

mIoU(/MS) 51.7 52.2 / 53.4 52.3 / 53.6 52.0

5.3.3 ZERO PADDING VS. VW PADDING

The left table of Table 6 shows using zero padding to obtain the context window results in a 1.0%
lower mIoU than applying CSP to obtain the context window. Such a performance loss is even more
serious than removing one scale of VWA, which demonstrates the harm of attention collapse and the
necessity of our proposed CSP in applying the varying window scheme.

5.3.4 CHANNEL NUMBER OF LOW-LEVEL ENHANCEMENT

The channel number of LLE should be small because it is performed on the lowest-level feature map
on which the operation can easily introduce the most computation costs. The right table of Table 6
analyzes the channel setting of LLE. From Fig. 1, it can be seen that the lowest-level feature map is
of unique receptivity, very local or global, adding new scales to VWFormer’s multi-scale learning.

Image Seg. result VW. result

GT Seg. EFR VW. EFR

Image Seg. result VW. result

GT Seg. EFR VW. EFR GT Seg. EFR VW. EFR

Image Seg. result VW. result

(a) (b) (c)

Figure 5: Visualization of inference results and EFRs of SegFormer and VWFormer. The red dot is
the query location. The red box exhibits our method’s receptive superiority. Zoom in to see details.

6 SPECIFIC EFR VISUALIZATION

The EFR visualization of Fig. 1 is averaged on many ADE20k val images. To further substanti-
ate the proposed issue, Fig. 5 analyzes the specific ADE20K val image with EFRs of segformer
and VWFormer contrastively. This new visualization can help to understand the receptive issue of
SegFormer and show the strengths of VWFormer’s multi-scale learning.

Fig. 5a showcases a waterfall along with rocks. Our VWFormer’s result labels most of the rocks,
but SegFormer’s result struggles to distinguish between “rock” and “ mountain”. From their ERFs,
it can be contrastively revealed that VWFormer helps the query to understand the complex scene,
even delineating the waterfall and rocks, more distinctly than SegFormer within the whole image.

Fig. 5b showcases a meeting room with a table surrounded by swivel chairs. Our VWFormer’s
result labels all of the swivel chairs, but SegFormer’s result mistakes two swivel chairs as general
chairs. From their ERFs, it can be contrastively revealed when VWFormer infers the location, it
incorporates the context of swivel chairs, within the Red box on the opposite side of the table. But
SegFormer neglects to learn about that contextual information due to its scale issues.

Fig. 5c showcases a white tall building. Our VWFormer’s result labels it correctly, but SegFormer’s
result mistakes part of the building as the class “house”. From their ERFs, it can be contrastively re-
vealed that VWFormer has a clearer receptivity than SegFormer within the Red box which indicates
this object is a church-style building.

7 INTRODUCTION TO APPENDIX

We sincerely recommend readers to see Appendix, including a detailed analysis for Fig. 1, EFRs of
multi-scale attention, and extra substantial experimental results showing VWFormer’s superioity.
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(b) PSP: output size from left to right (1, 2, 3, 6)(a) ASPP: atrous rates from left to right (1, 24, 48, 72)

(d) Swin Transformer: stage1, stage2, stage3, stage4(c) ResNet: stage1, stage2, stage3, stage4

(e) SegFormer: stage1, stage2, stage3, stage4 (f) Our proposed VWA: residual path, R=2, R=4, R=8

Figure 6: ERF visualization of multi-scale representations learned by (a) ASPP, (b) PSP, (c) ResNet,
(d) Swin Transformer, (e) SegFormer, and (f) Our proposed varying window attention. ERF maps
are visualized across 100 images of ADE20K validation set. This figure is exactly Fig. 1.

A QUALITATIVE ANALYSIS OF TYPICAL METHODS’ ERFS

Below is a detailed analysis of the issues with methods visualized in Fig. 1. For good readability,
Fig. 1 is copied and pasted here as Fig. 6

ASPP employs atrous convs with a set of reasonable fixed atrous rates to learn representations at
multi scales. However, as shown in Fig. 6a, the largest receptive field does not capture the desired
scale of representations. This is because the parameter settings are manual and do not adapt to the
image size. The lack of adaptability becomes more severe when training and testing samples have
different sizes, a common occurrence with applying strategies like test-time augmentation (TTA).
Furthermore, when the receptive field is large, contributions from the atrous parts are zero, leading
to inactivated subareas within larger receptive fields.

PSP applies pooling filters with different scales by adjusting the hyper-parameter, output size of
adaptive pooling, to learn multi-scale representations. However, as shown in Fig. 6b, the receptive
field sizes are exactly the same for output sizes 1 and 2 and for output sizes 3 and 6. This is because
the super small output needs to be interpolated to the original feature size. In this process, if a
position does not require interpolation to obtain its value, its receptive field remains unchanged.
However, if interpolation is needed, the receptive field can be influenced by other positions.

ResNet stages’ receptive field sizes change from small to large as the network deepens. This is
because the stacking of multiple 3x3 convolutions can simulate larger convolutional kernels. How-
ever, as shown in Fig. 6c, compared to ASPP and PSP, the largest receptive field of the four scales
in ResNet only covers half of the original image and does not capture a global representation be-
cause the 3x3 conv is of too much locality. Additionally, it is challenging to distinguish between the
receptive field sizes of the third and fourth stages.

Swin Transformer’s basic layers consist of local window attention mechanisms and shift-window
attention mechanisms. The feature maps in its four stages exhibit an increase in receptive field
size from small to large. Swin Transformer also faces challenges in learning global representations
effectively. Moreover, due to the shift operation of the local window, its receptive field shape is
irregular as shown in Fig. 6d, leading to inactivated subareas within the receptive field range.

SegFormer’s basic layers are sophisticated, incorporating local window attention, global pooling
attention, and 3x3 convolutions. It is hence difficult to imagine the receptive field shape and size
for its four-level feature maps. Fig. 6e indicates that SegFormer learns global representations in the
low-level layers (i.e., the first and second levels) but still suffers from inactivated subareas within the
receptive field range. In the higher layers (i.e., the third and fourth levels), they learn more localized
representations but their field ranges are very similar. Therefore SegFormer also meets the scale
inadequacy because it can only learn global and local representations.
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(a) ISANet (b) ANN

Figure 7: (a) contains ERF maps of two-scale (local and global) representations learnt by ISANet.
(b) is the ERF map of global representation learnt by ANN

B ERFS OF EXISTING MULTI-SCALE ATTENTION (RELATIONAL
MULTI-SCALE LEARNER)

Fig. 7a shows two-scales of ERFs of ISANet (Yuan et al., 2018), merely learning local and global
representations while ignoring other scales. So the issue of scale inadequacy for ISANet is very
clear. The local representation is learned using the local window attention mechanism, while the
global representation is obtained by interlacing pixels from all windows to create new windows that
contain pixels from each original local window. Then, the window attention mechanism is applied
to the new window. The ERF of the global hierarchy shows that the global receptive field is not
continuous due to interlacing, suggesting that ISANet also meets field inactivation.

ANN Zhu et al. (2019) uses adaptive pooling to capture multi-scale features, in a PSP-like fashion.
Then they are together attended to by the original feature which serves as the query. The scale of the
receptive field is singly global because every context filtered by adaptive pooling is derived from the
whole feature map. So the issue of scale inadequacy is also very clear for ANN. Fig. 7b shows the
activation does not spread the global range uniformly and the bottom area is insufficiently activated.
Therefore, both scale inadequacy and field inactivation are issues of ANN and its relevant methods.

The bottom three rows of Table 7 indeed compare ours to ISANet and ANN. VWFormer outperforms
both of them by large margins consistently across different backbones and benchmarks.

Table 7: Comparison of VWFormer with other receptive-field-variable multi-scale learners. Red,
Green, Blue highlight the top-3 results of one metric.

ADE20K Cityscapes
ResNet101 ResNet50 ResNet101 ResNet50 ResNet101

Method Params(M)↓ FLOPs(G)↓ mIoU(/MS)↑ mIoU(/MS)↑ mIoU(/MS)↑ mIoU(/MS)↑
PSPNet 68.0 254.9 41.1 / 42.0 43.6 / 44.4 77.9 / 79.2 79.0 / 80.0
DeepLabV3 87.1 346.1 42.4 / 43.3 44.0 / 45.2 79.3 / 80.7 79.7 / 80.8
DeepLabV3+ 62.6 252.8 42.7 / 43.7 44.6 / 46.0 79.9 / 81.0 81.0 / 82.2
APCNet 75.4 282.0 42.2 / 43.3 45.5 / 46.7 78.8 / 80.0 79.7 / 80.6
DMNet 72.2 273.4 42.5 / 43.6 45.3 / 46.1 79.2 / 80.2 79.6 / 80.7
DenseASPP 96.8 461.2 42.4 / 43.5 43.8 / 44.9 79.6 / 80.4 80.3 / 81.0
ANN 65.2 262.6 41.0 / 42.3 43.0 / 44.2 78.9 / 80.6 78.8 / 80.4
ISANet 53.7 227.9 41.1 / 42.4 42.6 / 43.1 79.3 / 80.5 80.6 / 81.6
VWFormer 50.4 203.2 43.5 / 44.4 45.9 / 47.0 80.3 / 81.2 81.5 / 82.7

C MORE EXPERIMENTAL ANALYSES

C.1 COMPARISON OF VWFORMER WITH MULTI-SCALE LEARNERS

To verify the superiority of VWFormer over representative multi-scale learners for semantic segmen-
tation, Table 7 compares VWFormer with PSPNet Zhao et al. (2017), DeepLabV3 Chen et al. (2017),
DeepLabV3+ Chen et al. (2018), DenseASPP Yang et al. (2018), APCNet He et al. (2019b), DM-
Net He et al. (2019a), ANN Zhu et al. (2019), and ISANet Yuan et al. (2018). For fairness, we em-
ploy the same backbones for all the methods, including ResNet50 and ResNet101 He et al. (2016).
All methods are trained for 80000 iterations, and evaluated on Cityscapes as well as ADE20K. The
input size is 768/769× 768/769 for Cityscapes, and 512× 512 for ADE20K.

From Table 7, we can find that VWFormer brings the best results to both ResNet50 and ResNet101
on both datasets. Specifically, on Cityscapes, VWFormer achieves 81.2% mIoU with ResNet50,
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and 82.7% mIoU with ResNet101, which are the best results among all methods. DeepLabV3+
achieves the closest performance to ours but has more computation costs and parameters by 49.6G
and 12.2M, respectively. On ADE20K, VWFormer outperforms other methods by large margins
consistently. APCNet performs most closely to ours, but VWFormer uses the least FLOPs and
parameters. In short word, VWFormer is more powerful than any other multi-scale learners.

Table 8: Comparison of VWA with atrous conv, depthwise-separable atrous conv, and adaptive
pooling. Swin Transformer and ResNet serve as backbones

multi-scale ADE20K Cityscapes
backbone learner params(M) ↓ FLOPs(G) ↓ mem.(G)↓ mIoU(/MS)↑ mIoU(/MS)↑

Swin-B

adaptive pooling 103.0 146.2 12.9 50.5 / 51.4 80.6 / 81.2
atrous conv 108.0 165.5 13.0 51.6 / 52.4 81.3 / 81.8

sep. atrous conv 100.8 139.8 13.0 51.3 / 52.2 80.8 / 81.5
VWA 96.0 107.5 13.1 52.3 / 53.6 82.4 / 83.1

ResNet-101

adaptive pooling 68.1 256.4 18.9 44.4 / 45.4 79.8 / 81.0
atrous conv 87.2 347.6 19.1 45.0 / 46.7 80.2 / 81.2

sep. atrous conv 62.7 255.1 18.9 45.5 / 46.4 81.0 / 82.0
VWA 50.4 203.2 19.0 46.3 / 47.5 81.4 / 82.8

C.2 VWA VS. ATROUS CONV VS. ADAPTIVE POOLING

Table 8 compares the performance and efficiency of VWA with two classic multi-scale learners an-
alyzed earlier: atrous convolution (ASPP) and adaptive pooling (PSP), both of which are receptive-
field-variable kernels. We use Swin-Base as the backbone and adopt the structure of VWFormer as
the Multi-Scale Decoder (MSD). But VWA which plays the role of learning multi-scale representa-
tions is replaced with ASPP and PSP to show the superiority of VWA as a multi-scale learner.

Like Swin, ResNet’s multi-level feature maps are also subject to the problem of scale inadequacy
when considered as multi-scale representations. Table 8 further reports the performance and effi-
ciency comparisons of multi-scale learners in improving multi-scale representations of ResNet101.

It is worth noting that the result of UperNet with Swin-B in Table 2 can be compared with the 1st-
group results in Table 8. From this, we can conclude that using ASPP or PSP to improve multi-scale
representations of hierarchical backbones does not lead to clear performance improvements. This
empirically confirms the issues aforementioned regarding their effectiveness as multi-scale learners.

Table 9: Left: VWFormer paired with HRViT for comparison with original HRViT. Center: Com-
parison of VWFormer with SegViT-V2. Right: VWFormer paired with Adapter for comparison
with original Adapter (paired with UperNet). Evaluated on ADE20K with multi-scale inference.

mIoU HRViT-b1 b2 b3
MLP 45.6 48.8 50.2
VW. 46.9 50.4 51.6

mIoU BEiT-V2-L
SegViT-V2 58.2

VW. 59.0

mIoU Ada.-B Ada.-L
Uper. 52.5 54.4
VW. 54.1 55.8

C.3 VWFORMER WITH SOTA METHODS

Table 9 analyzes our method briefly with state-of-the-art semantic segmentation methods created
on other tracks. Left of Table 9 shows the comparison with HRViT Gu et al. (2022), which is a
hierarchical Vision Transformer (HVT) with complex multi-scale learning. It was paired originally
with MLP-decoder from SegFormer as MSD. Moreover, MLP-decoder is replaced with our VW-
Former. The performance gains are considerable, supporting VWFormer’s capability of improving
multi-scale representations.

Center compares VWFormer with SegViT-V2 Zhang et al. (2023). SegViT-V2 is a decoder specif-
ically for ViT (or categorized as plain Vision Transformer). Here VWFormer cooperates with plain
Vision Transformer at the first time. The improvement shows that VWFormer is not only effective
in HVT but also powerful in plain backbone architecture.

Right shows the comparison with ViT-Adapter Chen et al. (2022), which is a pre-training technique
for improving ViT on dense prediction tasks. Like many works on Vision Transformer employing
UperNet as MSD for semantic segmentation, ViT-Adapter was also originally paired with UperNet.
Moreover, UperNet is replaced with VWFormer, achieving considerable performance gains.
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Table 10: Top: Frames/Sec. (FPS) comparison of VWFormer with SegFormer. Bottom Left: FPS
of VWFormer with UperNet. Bottom Right: FPS comparison of VWFormer with MaskFormer.
Evaluated on 512× 512 for MiT and Swin-(Ti and S). Evaluated on 640× 640 for Swin-(B and L)

FPS MiT-B0 MiT-B1 MiT-B2 MiT-B3 MiT-B4 MiT-B5
SegFormer 50.5 46.2 30.9 22.1 15.5 11.9
VWFormer 53.4 49.8 35.3 26.8 19.2 14.0

FPS Swin-Ti S B L
Uper. 18.5 15.2 8.7 6.2
VW. 24.4 22.0 15.9 8.8

FPS Swin-Ti S B L
Mask.-FPN 22.1 19.6 12.6 7.9
Mask.-VW 23.1 20.7 12.9 7.9

C.4 EXAMINING INFERENCE TIME

Table 10 shows supplementary results of inference time for Table 1, Table 2, and Table 3. From Top
of Table 10, VWFormer’s inference time is faster than SegFormer. From Bottom Left, VWFormer’s
inference time is much faster than UperNet. From Bottom Right, VWFormer’s inference time is
slightly faster than FPN. Additionally, by comparing the results in the last row of Bottom Left and
the first row of Bottom Right, it can be observed that VWFormer is faster than MaskFormer.

Table 11: Top: Nine classes performance comparison of SegFormer and VWFormer on Cityscapes.
Bottom: Ten classes performance comparison of SegFormer and VWFormer on Cityscapes.

IoU road sidewalk building wall fence pole light sign vegetation
Seg. 98.5 87.3 93.7 68.6 65.7 69.5 75.6 81.8 93.2
VW. 98.5 87.6 94.0 68.4 68.7 73.0 77.3 84.5 93.5

IoU terrain sky person rider car truck bus train motorbike bicycle
Seg. 66.2 95.7 85.3 69.6 95.6 85.7 91.7 84.7 73.8 80.7
VW. 66.3 95.4 86.8 71.2 96.2 77.4 93.1 84.6 75.2 82.2

C.5 BREAKDOWN OF PERFORMANCE GAINS

Table 11 shows a breakdown of performance gains within Cityscapes which has 19-class segments.
The upper results are obtained by MiT-B5 paired with SegFormer head (mIoU 82.26%) and the
lower results are obtained by MiT-B5 paired with our VWFormer (mIoU 82.87%).

The bold number is the class that the counterpart performs better than ours. Except for the ”truck”
class where SegFormer outperforms ours largely, which seems like a biased result, on the ’wall’,
’sky’, and ’train’ SegFormer only slightly outperforms ours (by avg. 0.2%). And on the other 15
classes, Ours shows consistent superiority to SegFormer (by avg. 1.4%).

D SOME DETAILS

D.1 DETAILS OF VWFORMER CAPACITY SETTING

Sec. 4 and Fig. 4 indicate the flow of channel numbers is 512(output of multi-layer
aggregation)→ 2048(concatenation of learnt multi-scale representations)→ 512(output of multi-
scale aggregation)→ 512 + 48 = 560(concatenation of LLE)→ 256(final output of VWFormer).

For some lightweight backbones, such channel settings incur too much computational burden.
We further introduce an efficient setting for VWFormer to cooperate with lightweight backbones
such as SegFormer-B0 and SegFormer-B1. The new flow of channels is 64(output of multi-layer
aggregation)→ 256(concatenation of learned multi-scale representations)→ 64(output of multi-
scale aggregation)→ 64 + 32 = 96(concatenation of LLE)→ 64(final output of VWFormer)

D.2 DETAILS OF DATASET

Cityscapes is an urban scene parsing dataset that contains 5, 000 fine-annotated images captured
from 50 cities with 19 semantic classes. There are 2, 975 images divided into a training set, 500
images divided into a validation set, and 1, 525 images divided into a testing set.
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ADE20K is one of the most challenging datasets in semantic segmentation. It consists of a training
set of 20, 210 images with 150 categories, a testing set of 3, 352 images, and a validation set of
2, 000 images.

COCOStuff-164K is also a very challenging benchmark that consists of 164k images with 172 se-
mantic classes. The training set contains 118k images, the test-dev dataset contains 20K images and
the validation set contains 5k images.

D.3 DETAILS OF IMPLEMENTATION

Experiments comparing with SegFormer and Swin-UperNet in Sec. 5 are implemented based on the
MMSegmentation codebase. In addition, ablation studies are done with MMSegmentation. Exper-
iments comparing with MaskFormer and Mask2Former are implemented based on the Detectron2
codebase. The computing server on which all experiments are run has 16 Tesla V100 GPU cards.
For other methods’ results, we report the number shown in their papers.

For the evaluation of mIoU, FLOPs, and Parameters, the two codebases MMSegmentation and De-
tectron2 use the same algorithm to obtain the numbers of these metrics. However, for memory
footprint, these two codebases use different methods to count it. As a result, note that the memory
reported in Table 3 is not comparable to the memory of any other table, because all other table’s
results are based on MMSegmentation, but only Table 3 is based on Detectron2.

E QUALITATIVE RESULTS

As shown in Fig. 8 and Fig. 9, we present more qualitative results on ADE20K of SegFormer and
VWFormer with MiT-B5 as the backbone. The yellow dotted box focuses on the apparent visu-
alization difference between them and the Ground Truth (GT). Compared to SegFormer’s results,
VWFormer improves the inner consistency of objects. Taking the bedroom (the first row shown
in Fig 8 as an example, part of the shelf that is near the bed is misidentified as the shelf by Seg-
Former, and the boundary between the bed and shelf is extremely unclear. In contrast, VWFormer
segments the two objects very finely, which provides a coherent boundary. Moreover, we observe
that with VWFormer similar objects are hardly confused. For example, in the living room shown in
the last row of Fig. 9, SegFormer mistakes the sofa for an armchair. And in the first row of Fig. 9,
SegFormer mistakes the blind for windowpanes. However, VWFormer accurately distinguishes be-
tween the sofa and the armchair, as well as between the blinds and the windowpanes.

F CONCLUSION

This paper analyzes learning multi-scale representations by examining the scale of receptive fields.
It utilizes the ERF technique for visualization and conducts a qualitative analysis of EFRs for var-
ious multi-scale representations that are effective in semantic segmentation. The study reveals the
widespread presence of scale inadequacy and field inadequacy as shortcomings.

To address these issues, the paper introduces VWA as a receptive-field-variable multi-scale learner
capable of avoiding these two problems. Specifically, VWFormer is proposed as the practical out-
come of VWA. In comparison to other multi-scale decoders, VWFormer improves the original multi-
scale representations of the backbone network. VWFormer also exhibits channel scalability, making
it adaptable to lightweight backbones.

The experimental section primarily compares VWFormer to other advanced multi-scale decoders
(MSD), demonstrating its dual superiority in both performance and efficiency for semantic seg-
mentation. Furthermore, the experiments systematically compare VWA to classical receptive-field-
variable multi-scale learners, showing that VWA outperforms its counterparts consistently. Overall,
results and analyses are rigorously conducted, affirming that VWFormer stands out as the premier
MSD, while VWA is the top-performing multi-scale learner. This work aspires to drive progress in
multi-scale learning for semantic segmentation tasks across various domains.
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Image GTVWFormerSegFormer

Figure 8: Qualitative results of ADE20K validation set. MiT-B5 serves as the backbone
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Lawin-B5 GT

Image GTVWFormerSegFormer

Figure 9: Qualitative results of ADE20K validation set. MiT-B5 serves as the backbone.
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