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Abstract

We introduce a novel algorithm for estimating
Cumulative Distribution Function (CDF) values
under Local Differential Privacy (LDP) by ex-
ploiting an unexpected connection between LDP
and the current status problem, a classical survival
data problem in statistics. This connection leads
to the development of tools for constrained iso-
tonic estimation based on binary queries. Through
mathematical proofs and extensive numerical test-
ing, we demonstrate that our method achieves
uniform and L2 error bounds when estimating
the entire CDF curve. By employing increasingly
dense grids, the error bound can be improved, ex-
hibiting an asymptotic normal distribution of the
proposed estimator. Theoretically, we show that
the error bound smoothly changes as the number
of grids increases relative to the sample size n.
Computationally, we demonstrate that our con-
strained isotonic estimator can be efficiently com-
puted deterministically, eliminating the need for
hyperparameters or random optimization.

1. Introduction
The last few years have seen unprecedented advancements in
data science, transforming how we interact with technology
and data. While this proliferation of advanced data-driven
technologies has significantly altered the landscape of infor-
mation processing and analysis, the ability to exploit seem-
ingly harmless data has been increasingly demonstrated.
Studies on mobile device sensor data, for instance, have
revealed that driving patterns and locations can be identified
(Hua et al., 2016), and spoken words can be reconstructed
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from accelerometer data (Zhang et al., 2015; Anand et al.,
2019). Alarmingly, even a user’s internet activity can be
inferred from a wireless charger (Liu et al., 2022).

These developments, while technologically impressive,
bring forth privacy concerns that extend beyond conven-
tional threats such as data breaches or hacker attacks. The
vulnerability of individual data, far from being inconse-
quential, has become increasingly apparent. One significant
source of privacy risk originates from the legitimate uses
of published data, models, and their outputs. Incidents
like the Netflix challenge and the AOL search log database
(Narayanan & Shmatikov, 2006; 2008; Barbaro & T. Zeller,
2006), where users were re-identified from anonymized
datasets, exemplify this type of threat. Additionally, recent
findings reveal that engineered prompts can specifically ex-
tract training data from large language models (Nasr et al.,
2023), introducing a novel aspect to these privacy concerns.

Concurrently, the more direct threat posed by malpractices
of data curators remains a pressing issue. A notable instance
of this occurred in March 2023, when an error in ChatGPT
inadvertently allowed users to view other users’ personal
information, leading to a temporary service halt. Another
significant breach at a healthcare provider in Washington
DC compromised sensitive data of federal legislators, un-
derscoring the long-standing data security challenges in the
US healthcare industry (Lee, 2022). These incidents under-
score the continuous challenges faced by data curators, as
discussed in (Ayyagari, 2012; Quach et al., 2022).

The pressing need to shield users from emerging privacy
threats has catalyzed the development of privacy-preserving
statistical techniques. Differential Privacy (Dwork et al.,
2006), a prominent approach in this domain, is renowned for
providing robust privacy safeguards against the first type of
threat, enabling meaningful data analysis while maintaining
user privacy. However, it falls short in scenarios where the
data curator is compromised. In contrast, Local Differential
Privacy (Duchi et al., 2013) addresses this very concern.
By elevating privacy standards, LDP operates under the
assumption that users cannot trust the curator, thus offering
a more stringent level of privacy protection.

These frameworks, LDP and DP, have reshaped the land-
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scape of statistics and machine learning. They pose a chal-
lenge to the development of new estimations and inferences
that adhere to these heightened privacy standards. While
some basic problems can be effectively addressed using
generic mechanisms like the Laplace mechanism, particu-
larly in scenarios with trusted curators, more complex issues
require intricate solutions. For example, the problem of sam-
ple quantile estimation under DP was initially tackled in
(Smith, 2011), subsequently extended to multiple quantile
estimation in (Gillenwater et al., 2021), and to regression in
(Chen & Chua, 2023). However, the LDP setting, where cu-
rators are not trusted, presents greater challenges. It wasn’t
until 2022 that an optimal algorithm for mean estimation
under LDP was proposed (Asi et al., 2022). For quantile
estimation in this setting, while (Duchi et al., 2013) initially
suggested a median estimation algorithm, a more versatile
approach applicable to all quantiles, along with a method
for calculating confidence intervals using self-normalization
techniques, was later introduced in (Liu et al., 2023).

This paper aims to extend these efforts in the LDP context,
moving from single quantile estimation to multiple and
potentially all quantiles. Such advancements are poised
to eventually lead to a comprehensive estimation of the
CDF, marking a significant stride in privacy-preserving data
analysis.

1.1. Related work

Estimation of CDF is a fundamental task in statistical anal-
ysis. The most commonly used approach is based on the
empirical cumulative distribution function (ECDF) of ob-
served dataset and one builds the corresponding asymptotic
properties via emprical process theory in different model
setting, for example, see (Komlós et al., 1975; Lahiri et al.,
1999; Dehling & Philipp, 2002; Shorack & Wellner, 2009).
To overcome the discontinuity of ECDF, another method uti-
lizes kerner regression, see (Liu & Yang, 2008), or other non-
parametrc smoothing technique, see (Xue & Wang, 2010).

Under the context of DP, the problem is more complicated.
There have been several attempts to address these issues,
which can be traced back to the development of the Fre-
quency Oracle (FO) (Erlingsson et al., 2014; Bassily &
Smith, 2015; Acharya et al., 2019). These mechanisms
were primarily designed for discrete domains. By applying
discretization to continuous domains, these methods can be
used for estimating continuous distributions, but at the cost
of losing some information about the continuous structure.
Later, Li et al. (Li et al., 2020) improved the FO algorithm
by computing an MLE using the Expectation-Maximization
algorithm through a square wave mechanism. However,
such approach still relies on discretization (bucketing), and
the quality of the output is highly sensitive to the stopping
criteria hyperparameter. The finite number of bucketing

not only prevents the estimator from being asymptotically
consistent but also introduces additional challenges due to
the extra parameter.

1.2. Outline

We begin by presenting a brief review of the relevant defini-
tions and background related to CDF estimation and LDP
followed by our data collection procedure, which employs
a series of random-response randomizers to transform sen-
sitive individual information into a private view of binary
variables. We highlight that this data collection process
results in a private view that resembles the structure of
the current status problem, a well-studied issue in survival
analysis. Subsequently, we construct an estimator based
on the private view obtained in the previous step. Interest-
ingly, the LDP treatment and statistical analysis technique
can be disentangled by considering an alternative view of
the collected data, where the randomized response can be
treated as a truthful response originating from an alterna-
tive variable. We then refine the naive MLE method by
imposing monotonic and bound constraints on the estimator
and demonstrate that such an estimator can be computed
in a fast, deterministic, and hyperparameter-free manner.
Following this, we investigate the asymptotic properties of
the proposed estimator, providing a comprehensive analysis
of its performance under various conditions. Under differ-
ent sampling strategies, introduced below, we first establish
L2 and uniform consistency up to order Op(n

−1/3) and
Op(n

−1/3 log n) respectively. Then, we derive the point-
wise weak convergence results of the proposed estimator. In
addition, the theoretical justifications show that the conver-
gence rate varies continuously between these two samplings
from Op(n

−1/3) to Op(n
−1/2). Especially, for the estima-

tion on finite grids, we obtain the asymptotic normality for
whole design points with a diagonal asymptotic covariance
matrix, which can be applied for constructing confidence
intervals and hypothesis testing. Lastly, we demonstrate the
effectiveness of our proposed protocol through numerical
experiments, showcasing its practical utility and accuracy
in CDF estimation under the LDP framework.

1.3. Notations

In this paper, we employ the following notations. 1{·} is
the indicator function and [a] denotes the largest integer
that does not exceed a. Op (or Op) denotes a sequence
of random variables of a certain order in probability. For
instance, Op(n

−1/2) means a smaller order than n−1/2. For
sequences an and bn, denote an ≍ bn if there exist positive
constants c and C such that cbn ≤ an ≤ Cbn. The symbol
d−→ means weak convergence or converge in distribution.
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2. Preliminaries
2.1. Central Differential Privacy

The foundational concept of Central Differential Privacy
(CDP) is based on the observation that the overall pool of
knowledge remains predominantly unchanged when a single
user’s data is excluded from the dataset. This exclusion of
an individual’s data guarantees that their personal privacy is
no longer compromised by the dataset. A key characteristic
of CDP is that the distribution of outputs should be similar
when comparing two datasets that differ only by the data
of one individual. Different interpretations of ’similarity’
between distributions give rise to various forms of Differen-
tial Privacy. To maintain the focus of our paper and avoid
ambiguity in defining distribution similarity, we adopt the
most widely recognized standard of pure DP, defined as
follows:

Definition 2.1. (Dwork et al., 2006) A randomized algo-
rithm A, taking a dataset consisting of individuals as its in-
put, is (ϵ, δ)-differentially private if, for any pair of datasets
S and S′ that differ in the record of a single individual and
any event E, satisfies the below condition:

P[A(S) ∈ E] ≤ eϵP [A (S′) ∈ E] + δ.

When δ = 0, A is called ϵ-differentially private (ϵ-DP).

CDP focuses on constraining the output distribution rather
than the credibility of the entities running them. The cura-
tor’s role in simplifying algorithm design often results in
a minimal loss of accuracy due to privacy protection, as
described by Cai et al. (2021) (Cai et al., 2021).

2.2. Local Differential Privacy

LDP is conceptualized from a more cautious standpoint. In
the LDP framework, there is no reliance on a trustworthy
curator. Instead, the curator’s role is limited to coordinating
interactions among users, each possessing their own private
information Xi. During each interaction round, the curator
selects a user and assigns them a randomizer, Rt, which
adheres to the definition below:

Definition 2.2. (Joseph et al., 2019) An (ϵ, δ)-randomizer
R : X → Y is an (ϵ, δ)-differentially private function
taking a single data point as input.

Participants then verify whether the given (ϵ, δ) parameters
align with the experimental setup. If they meet the criteria,
each user then applies the randomizer to their private data
and shares the outcome with the curator. The degree of
interaction in this process can range from fully adaptive (the
least stringent level) to sequential (or one-shot) interaction,
and finally, to non-interactive (the most stringent). In our
research, we adhere to the strictest model of non-adaptivity,

prohibiting adaptiveness and requiring the determination of
all user-randomizer pairings prior to any data collection. For
an in-depth discussion on adaptivity, readers are directed to
Definitions 2.3 and 2.6 in Cheu et al. (2019) (Cheu et al.,
2019). Contrasting with the CDP framework, where the
curator deliberately adds noise to the output to fulfill the DP
condition, in the LDP setting, the curator’s objective is to
construct estimations based on the data that has undergone
randomization by the users.

2.3. The current status problem

Current status data emerges in studies where the primary
measurement is the occurrence time of a specific event, but
observations are confined to indicators that reveal if the
event has transpired at the time of data collection. This type
of data is particularly relevant in survival analysis, such as
in research investigating the survival of patients with cancer
during an observation period, which is highly related to
isotonic regression (see (Durot & Lopuhaä, 2018)). In these
cases, researchers may passively acquire the patient’s status
through hospital visits (alive) or loss of contact (presumably
dead). However, the exact time of death is unobtainable,
especially if it lies in the future. Refer to (Jewell & van der
Laan, 1995; Rossini & Tsiatis, 1996; Aarts et al., 2000;
Wang et al., 2008; Sal y Rosas & Hughes, 2011) for more
information about the research of this type.

3. Methodology
3.1. Problem formulation

Let X = {X1, . . . , Xn} be independently and identically
distributed random variables defined on [0, 1] representing
the private information of each user. The goal is to estimate
the underlying CDF of Xi (F ) with inquiries to each user
while conforming to the ϵ-LDP condition.

3.2. The LDP data collection

In contrast to the CDP setting, where user data is openly
gathered for analysis, the development of an LDP protocol
commences with the data collection process. This is due
to the ϵ-LDP constraint, which presents a significant chal-
lenge for estimation problems. Initially, without the DP
constraint, the CDF can be intuitively approximated by the
ECDF, yielding a convergence rate of Op(n

−1/2). Never-
theless, in the LDP context, each data point’s contribution
is considerably restricted.

To illustrate this point, consider the canonical Laplace mech-
anism, which serves as the standard DP mechanism for
bounded continuous variables. The noise variance (2.0)
needed to achieve LDP with ϵ = 1 is eight times larger than
the highest possible variance (0.25) of the [0, 1] bounded
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variable. In addition, reconstructing the original distribu-
tion from the Laplace noise perturbed data will lead to a
notoriously hard deconvolution problem (Fan, 1991) with
terrible sample efficiency (Fan, 1992). This stringent condi-
tion compels us to constrain the inquiries directed toward
end users, thereby reducing the scale of DP noise. To this
end, we generate Ti from another distribution G and collect
binary responses from users of the question below:

Compare Ti and your private number Xn:
is Ti greater than or equal to Xn?

If the users are asked to answer this question truthfully,
they still faces a serious privacy concern. However, we can
ask the user to perturb the answer locally, leading to the
following randomizer:

Definition 3.1. Random response randomizer:

Ei(Xi) =

{
1Xi≤Ti , w.p. r,
Bernoulli(0.5) w.p. 1-r.

(1)

As a special case of randomized response, Ei is a (ϵ, 0) ran-
domizer for ϵ = log((1 + r)/(1− r)) (Dwork et al., 2014).
For certain values of r, the mechanism can be executed
physically using a coin or dice. It is worth noting that in
the definition provided, the value of Ti is generated by the
curator and distributed to users. This is due to concerns that
end-users may lack the knowledge or equipment to accu-
rately produce the necessary randomness. However, if the
entire process is automated on digital devices, the gener-
ation of Ti can be shifted to the user side. This approach
reduces communication costs and offers additional privacy
advantages since the data point be no longer trace by the
assigned Ti. For the remainder of this paper, we will repre-
sent the privacy budget using r = tanh(ϵ/2), as it affords
a more intuitive interpretation and a simpler form in our
results (refer to Table 2 for a conversion table).

Following the definitions above, the curator can collect a
private data view of X namely {(∆1, T1), . . . , (∆i, Ti)},
where ∆i = Ei(Xi). By the post-processing property, any
function of the private view or even the view itself can be
safely released without violation of the ϵ-LDP condition.

Compared to the current status problem, where control over
Ti is limited, the Ti employed in our LDP mechanism can be
fully tailored. Initially, by either sending i.i.d. Ti to users or
requesting users to generate T independently, it is clear that
Ti is independent of all Xi and all other Tj for j ̸= i. This
scenario is atypical in medical studies concerning current
status. In practice, patients’ visits often correlate with their
own status and even the status of others (for instance, the
weather may affect hospital visits, leading to correlated
Ti. In another example, when observing patients’ lifespans,

since future deaths cannot be observed, the censoring is
related to the current time and patients’ birth data).

The ability to freely design G provides a significant advan-
tage. Firstly, the independence between Ti and Xi simplifies
the analysis of estimation. The known G also eliminates the
need for estimation and the potential errors that may arise
from it. However, the most crucial aspect we can design
is the control of G to generate better estimations in areas
of interest. Intuitively, the estimation of F will be more
accurate when G samples more. Here, we introduce two
types of sampling methods:

Density-based sampling: In this type of sampling, we let G
correspond to a density g that is uniformly bounded away
from 0, ensuring that every open set within the domain
can be sampled with a non-zero probability. This approach
provides a more comprehensive representation of the un-
derlying distribution. The simplest G in this form is the
CDF of the uniform distribution, given by G(x) = x. Such
a choice will lead to uniform sampling. Other reasonable
choices include weighted sampling, where G is selected to
be denser in regions of particular interest, or if we possess
prior knowledge about F , we can choose G ≈ F to achieve
improved estimation outcomes.

Preselected sampling: In this sampling method, we let G be
a discrete distribution on the interval [0, 1]. This means we
pre-select a subset of values {x1, . . . , xκ} ⊂ [0, 1] and de-
fine G(x) =

∑κ
i=1 pi1x>xi

. Preselected sampling focuses
the estimation on the chosen nodes, making it particularly
useful when there are specific, exact x values of interest. For
instance, when estimating income distribution, we might be
especially interested in the proportion of people below the
poverty line or above a certain income threshold. Alterna-
tively, we might be interested in an evenly distributed grid
of Xi to provide a plausible plot of the CDF curve.

3.2.1. ADDITIONAL PRIVACY GUARANTEE FROM
SHUFFLING

The shuffle model (Balle et al., 2019) is distinguished by a
shuffling step that follows the LDP perturbation applied by
each user, after which the datapoints can’t be traced back to
specific users, resulting in a significant privacy amplification
effect (Cheu et al., 2019). According to theorem 2 and
corollary 2 (Chen et al., 2024), a shuffled ϵ-LDP process
can be approximated as 2eϵ/2√

n−1
-GDP and (λ, 2eϵλ

n−1 )-RDP, for
any λ ≥ 2.

The results from the shuffling model offer a central privacy
assessment ( 2eϵ/2√

n−1
-GDP and (λ, 2eϵλ

n−1 )-RDP) for our estima-
tors under two scenarios. The first involves a straightforward
application of the shuffle model, assuming the existence of
a trustworthy shuffler to eliminate order information from
the private data. The second scenario is more subtle; we
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will later see that the estimator and its algorithmic imple-
mentation are order-invariant. If the algorithm is executed
faithfully and the private data remains secure, the distribu-
tion of the output will resemble that of private data processed
through a shuffler. Consequently, it will exhibit the same
CDP property as in the previous case.

3.3. The constrained isotonic estimator

The protocol in the last chapter provided an LDP view of
the data. In this chapter, we construct an estimator from the
LDP private view. Define:

X⋆
i =

{
Xi, w.p. r,
Bernoulli(0.5) w.p. 1-r.

(2)

The CDF of X⋆
i can be derived from F as below:

F ⋆(x) =

(
rF (x) +

1− r

2

)
10<x<1 + 1x=1. (3)

The introduction of the notations F ⋆ and X⋆ brings to light
a pivotal observation that paves the way to the solution. We
define ∆⋆

i = 1X⋆
i ≤Ti

. Notice that:

P(∆⋆
i = 1|Xi, Ti) = P(∆i = 1|Xi, Ti).

Consequently, rather than interpreting the observed ∆i as
a noise-afflicted response of the indicator function 1Xi≤Ti ,
it is feasible to regard ∆i as accurate responses of 1X⋆

i ≤Ti
,

derived from an alternative variable, X⋆
i . This method sig-

nificantly reduces the conflict between local differential
privacy treatments and statistical analysis techniques. As
a result, the challenge shifts from estimating highly noisy
observations to accurately estimating responses from a dif-
ferent distribution. With the help of the notations of F ⋆, the
log-likelihood can be expressed as

L(F,∆, T ) : =
n∑

i=1

∆⋆
i logF

⋆(Ti)

+ (1−∆⋆
i ) log(1− F ⋆(Ti))

=

n∑
i=1

∆i log

(
rF (Ti) +

1− r

2

)
+ (1−∆i) log

(
1 + r

2
− rF (Ti)

)
. (4)

It may seem appealing to determine F ⋆ and F through the
naive maximization of the log-likelihood function. Nonethe-
less, several issues arise from this approach. For instance,
the maximizing function F ⋆ may not necessarily represent
a CDF as there is no assurance that the estimation will
exhibit monotonic behavior. Additionally, the error associ-
ated with F ⋆ is likely to be significantly high around the
values of 0 and 1 due to the lack of relevant samples. To

address this issue, we define D as the function family of all
non-decreasing functions mapping from [0, 1] to [0, 1], and
propose our constrained isotonic estimator as follows:

F̂ ∈ argmax
F̂∈D

L(F,∆, T ).

We remark that the F̂ satisfying the definition is not unique.
The right-hand side represents an equivalence class, wherein
two distribution functions are considered equivalent if and
only if they agree on all Ti. Consequently, the maximiza-
tion process can be performed solely on the nodes Ti. The
remaining part of the function can be arbitrarily monoton-
ically interpolated. For instance, the function values can
be determined by the nearest Ti to the left or right, or they
can be linearly interpolated. Regardless of the interpolation
technique, the properties presented in the following chapter
remain applicable. In the numerical experiments, the func-
tion values are filled using the nearest Ti to the left, resulting
in a left-continuous staircase function to avoid unfair ad-
vantages. It’s also worth noting that F̂ is an order-invariant
M-estimator, enabling the Central DP accounting discussed
in Section 3.2.1.

3.4. Algorithm

The disentanglement between the LDP treatment and the
data analysis allows our to make use of the nonparamet-
ric likelihood estimation algorithm in the survival anal-
ysis (Huang & Wellner, 1997) with minor tweaking. A
detailed description of the full algorithm is presented in
Algorithm 1. The initial four steps adhere to the standard
procedure of isotonic regression as delineated by Runlong
(Tang et al., 2012a). In the intermediate stage, the esti-
mation F̂ ⋆(x) optimizes the log-likelihood function, disre-
garding the constraint that F̂ (x) ∈ [0, 1] (or equivalently
F̂ ⋆(x) ∈ [(1 − r)/2, (1 + r)/2]). Notably, although the
range constraint is not taken into account during the evalua-
tion of F̂ ⋆(x), it is effectively satisfied in step 6 through a
clipping procedure. This process not only ensures compli-
ance with the range constraint but also maintains optimality
under this constraint (refer to Appendix 6 for a detailed
proof). The Greatest Convex Minorant can be determinis-
tically computed, eliminating the requirement for iterative
optimization, as demonstrated by Robertson et al. (Robert-
son, 1988) and referenced in (Klaus & Strimmer., 2015).
This results in an overall deterministic algorithm free of
hyperparameters for the analysis. In addition, the Algorithm
1 demonstrates excellent performance. For n ≤ 107, it
took less than 1s to execute on a single core of an AMD
Threadripper PRO 3995WX CPU. For comprehensive de-
tails regarding computation times, refer to Table 7.
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Algorithm 1 Constrained isotonic estimation
1: Compute the function H1(x) = 1

n

∑n
i=1 1{Ti≤x},

H2(x) =
1
n

∑n
i=1 ∆i1{Ti≤x}.

2: Plot M = (H1(x), H2(x)), for x ∈ [0, 1].
3: Compute Greatest Convex Minorant of M as Z.
4: Compute F̂ ⋆ (x) = left-derivative of Z at H1(x) for

x ∈ [0, 1].
5: Invert the linear relationship by F̃ =

r−1
(
F̂ ⋆(x)− 1−r

2

)
.

6: Give F̂ (x) = 0
∨
(1
∧
F̃ (x)).

4. Asymtotic properties
In the following section, we will explore the mathematical
underpinnings of the data processing algorithm proposed
in the previous section. To facilitate our analysis, we will
start by introducing consistency results under density-based
sampling:

Theorem 4.1. Consistency under density-based sampling:

(i) L2 consistency: If there exists g(x) > 0 that are the
corresponding density function of G(x), one has that∥∥∥F̂ − F

∥∥∥
2
= Op(r

−1n−1/3),

where ∥h∥22 =
∫ 1

0
h2(x)dx.

(ii) Uniform consistency: With further assumptions that
there exists f(x) > 0 that are the corresponding density
function of F (x), one has that

sup
x∈[0,1]

∣∣∣F̂ (x)− F (x)
∣∣∣ = Op(r

−1n−1/3 log n).

From Theorem 4.1, one finds that L2 consistency requires
the existence of the density function of G(x) only, and the
convergence rate will be slightly faster than uniform consis-
tency. The asymptotic results are influenced by the truthful
response rate r, where a smaller r necessitates a larger
sample size to achieve the same level of finite sample perfor-
mance as r−1 acts as a multiplicative factor in the L2 and
L∞ norms of the error. In the context of differential privacy,
this factor r−1 can alternatively be expressed as coth(ϵ/2)
or (1 + eϵ)/(1− eϵ). Next, we will discuss the point-wise
asymptotic distribution of the proposed estimator.

Theorem 4.2. Under the assumption in Theorem 4.1, for
any x0 ∈ (0, 1), one obtains that

(r2g(x0)n)
1/3(F̂ (x0)− F (x0)){

4
(
rF (x0) +

1−r
2

) (
1+r
2 − rF (x0)

)
f(x0)

}1/3
⇒ Z := argmax

t∈R

{
W (t)− t2

}
,

where W (t) is standard two-sided Brownian motion, and Z
is referred as Chernoff distribution.

The proposed CDF estimator exhibits significantly different
asymptotic behaviour compared to non-DP cases. While
the convergence rate of ECDF is up to order Op(n

−1/2),
the convergence rate of the proposed estimator is much
slower. Furthermore, we note that the sequence of stochastic
processes {n1/3(F̂ (x) − F (x)), x ∈ [0, 1]} is not tight in
D[0, 1] leading to a problematic topological structure caused
by infinite dimensionality (see (Huang & Wellner, 1997)).
Such underlying difficulty limits us to point-wise asymptotic
distribution, as opposed to the weak convergence results of
F̂ and related goodness-of-fit statistics, such as KS statistics.
However, in most practical scenarios, we are interested in
estimating pre-design points on the CDF rather than the
entire curve, due to computational accuracy constraints.

To achieve this, we assume that the observation times Ti are
i.i.d. random variables sampled from a discrete probability
measure Gn supported on [0, 1]. We denote the support of
Gn by {xi,n}κn

i=1, where the ith grid point is given by xi,n =
in−γ , i = 1, . . . κn = [nγ ], and γ ∈ (0, 1]. We view the dis-
tribution Gn as a discretization of an absolutely continuous
distribution G′, with Gn {xi,n} = G′ (xi,n)−G′ (xi−1,n)
for i = 2, 3, . . . , κn − 1, Gn {x1,n} = G′ (x1,n), and
Gn {xκn,n} = 1 − G′ (xκn−1,n), which will allow us to
unify the theoretical framework of density-based sampling
and preselected sampling mentioned above while obtaining
the relationship between their convergence rates. Our focus
is on estimating F at a grid point. To this end, we choose a
grid point with respect to a fixed time x0 ∈ (0, 1) that does
not depend on n and can be viewed as an anchor point. We
define xl as the largest grid point less than or equal to x0,
and xr as the first grid point to the right of xl.

Theorem 4.3. Consistency and asymptotic distribution un-
der preselected sampling:

Under the assumptions in Theorem 4.1, and f(x) ∈ C[0, 1],
for any x0 ∈ (0, 1), if γ ∈ (0, 1/3), as n → ∞, one has
that

n1/2−γ/2
(
F̂ (xl)− F (xl), F̂ (xr)− F (xr)

)
⇒

√(
rF (x0) +

1−r
2

) (
1+r
2 − rF (x0)

)
r2g′(x0)

N (0, I2) ,

where g′(x0) is the density of G′ on x0.

Specially, if κn = κ < ∞, then for increasing sequence
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{xj}κj=1, on has that

√
n
(
F̂ (xj)− F (xj)

)κ
j=1

⇒

N

0,diag

{(
rF (xl) +

1−r
2

) (
1+r
2 − rF (xl)

)
r2(G′(xj)−G′(xj−1))

}κ

j=1

 .

(5)

It is noteworthy that the asymptotic results in Theorem 4.3
get rid of all nuisance parameters and can be evaluated di-
rectly. Theorem 4.3 establishes the connection between
density-based sampling and preselected sampling. The con-
vergence rate of the estimator F̂ (x) is determined by the
density of grids (relative to sample size n), and the first
statement in the theorem describes how the convergence rate
varies continuously from Op(n

−1/3) to Op(n
−1/2) when

γ varies from 1/3 to 0. When γ ≥ 1/3, the convergence
rate is still no slower than Op(n

−1/3), but the asymptotic
distribution will be more complex, which is neither nor-
mal distribution in Theorem 4.3 or Chernoff distribution
defined in Theorem 4.2. The second statement mainly fo-
cuses on estimating F (x) on finite grids. The convergence
rate approaches the order of Op(n

−1/2), as same as the con-
vergence rate of ECDF in non-DP cases, and the asymptotic
normality holds for the whole sequence {xj}κj=1. In the
finite grids case, the observation grids are not necessarily
uniform like infinite ones, which will be more fixable in
practice. Also, the number of grids will not be increasing as
the sample size in many scenarios, which will fall into the
discussion of the second assertion. The covariance matrix
in (5) is a diagonal matrix, which implies that the estima-
tors {F̂ (xj)}κj=1 are asymptotically independent. This may
seem counter-intuitive, but (Groeneboom, 1984) studied
the local dependence structure of this type of process in a
closely related problem, and one can construct i.i.d. random
variables with the distribution of the estimators {F̂ (xj)}κj=1

(see the Appendix), which simplifies the results. Therefore,
we can conduct statistical inference on {F (xj)}κj=1 based
on (5), such as constructing confidence intervals and hypoth-
esis testing for F (x) on the grids {xj}κj=1.

5. Experiments
In this chapter, we assess the performance of our pro-
posed algorithms by employing various probability distri-
butions. The datasets are derived from four distinct cases:
Uniform distribution U(0, 1), Truncated normal distribu-
tion Nc(0, 1, µ, σ

2), and Continuous Bernoulli distribution
CB(λ).

For the Truncated normal distribution, the parameters are
set as µ = 1/2 and σ2 = 1/4. This results in a distribution
equivalent to Y/2 + 1/2, conditioned on the absolute value
of Y being less than 1, where Y follows a standard normal

distribution. In the case of the Continuous Bernoulli distri-
bution, the parameter λ is selected to be 1/4, which yields a
non-symmetric density function. The density functions for
the specified distributions are illustrated in Figure 2.

We consider the truthful response rate r = 0.25, 0.5, 0.9,
which means the privacy budget is ϵ = log(1 + 2r/(1− r))
corresponding to 0.51, 1.09, 2.94 respectively. These values
indicate varying levels of privacy protection, ranging from
strong to moderate. For comparison, Apple’s implementa-
tion of differential privacy employs privacy budgets of 8
for QuickType and auto-play intent, 4 for emoji usage and
crash reports in Safari, and 2 for highly sensitive health data
(Apple, 2020; Tang et al., 2017).

The sample size ranges n spans from 103 to 107, with a
total of 10, 000 replications (and reported means). To elimi-
nate any correlation between experiments, the results from
different sample sizes are independently conducted from
scratch. Before delving into a more detailed presentation
of the results, we first showcase a plot of our proposed
estimator for the uniform distribution under density-based
sampling. As depicted in Figure 3, our estimator, repre-
sented by the staircase functions, converges to the true CDF
as n increases, resulting in diminishing absolute errors in
the form of spikes.

5.1. Density based sampling performance

Next, we discuss the performance of our proposed estimator
under density-based sampling. As for the sampling density,
we consider two types of G. The first type is G(x) = x,
which corresponds to uniform sampling. This is the pre-
ferred choice in situations where we do not have explicit
preferences or knowledge about the distribution and do-
main. The second type of G is chosen as G = F . Although
it is unlikely to occur in real practice, this represents the
best possible case when we already have some prior knowl-
edge about the distribution (as an extreme case of G ≈ F ).
Results under the second type of G are marked with an addi-
tional ∗ and is given in the appendix. The improvement over
uniform sampling is marginal. The table below presents
the empirical results for both uniform consistency (repre-
sented by the maximum absolute error) and L2 consistency
(represented by the L2 error) of the estimator.

As observed in the table, both the maximum absolute error
and the L2 error decrease as n increases and the privacy
budget increase (larger r) as expected. The results for sec-
ond type of G show a slight advantage over the first one, but
the difference is negligible. This observation suggests that
a uniform sample would be sufficient, and while sampling
closer to the true distribution can be helpful, the improve-
ment is only marginal. Therefore, we recommend using
uniform sampling with the density-based approach, as it
avoids the issues associated with acquiring prior knowledge.

7



Tuning-free Estimation and Inference of Cumulative Distribution Function under Local Differential Privacy

Table 1. Empirical results of uniform consistency (L2 consistency)
of the proposed estimator under uniform sampling.

n r U(0, 1) Nc(0, 1, µ, σ
2) CB(λ)

103
0.25 0.262(0.118) 0.289(0.116) 0.270(0.120)
0.5 0.183(0.076) 0.199(0.074) 0.185(0.075)
0.9 0.127(0.050) 0.137(0.047) 0.129(0.049)

104
0.25 0.143(0.057) 0.156(0.057) 0.147(0.057)
0.5 0.096(0.036) 0.104(0.035) 0.100(0.036)
0.9 0.065(0.023) 0.073(0.022) 0.067(0.022)

105
0.25 0.074(0.027) 0.081(0.027) 0.077(0.027)
0.5 0.048(0.017) 0.054(0.017) 0.050(0.017)
0.9 0.033(0.011) 0.037(0.010) 0.034(0.010)

106
0.25 0.038(0.013) 0.041(0.013) 0.039(0.013)
0.5 0.024(0.008) 0.027(0.008) 0.025(0.008)
0.9 0.016(0.005) 0.019(0.005) 0.017(0.005)

107
0.25 0.019(0.006) 0.021(0.006) 0.020(0.006)
0.5 0.012(0.004) 0.013(0.004) 0.013(0.004)
0.9 0.008(0.002) 0.009(0.002) 0.008(0.002)

We remark that the maximum errors for the type 2 groups
are nearly identical for larger samples; this is because the
effects of f and g cancel each other out in Theorem 4.2.
To verify our claimed convergence rate we give a graphical
illustration comparison between results from different sam-
ple sizes and the convergence rate and we showcase a term
what we call standardized maximum absolute error (SMAE),
which is defined as MAE multiplied by rn1/3/ log n. Under
Theorem 4.1, the SMAE should remain bounded as n → ∞
and varying r. We show this in the plot of standardized
and unstandardized maximum absolute error (Figure 4 in
Appendix). The three bundles in the curve of SMAE rep-
resenting the results from the same F tend to be similar
(not r), suggesting that the effect of privacy budget r is also
properly modelled the standardization factor rn1/3/ log n.
This supports our claim in Theorem 4.1.

5.2. Preselected sampling performance

Theorem 4.3 predicts a multivariate asymptotically normal
distribution for the residual. To condense the results into
interpretable numerical outcomes, we define the following
standardized weighted L2 error WMSE(F̂ ) :

√
n

κ∑
j=1

r2 (G′(xj)−G′(xj−1))
(
F̂ (xj)− F (xj)

)2
(rF (xl) + (1− r)/2) ((1 + r)/2− rF (xl))

,

(6)
which takes the sum of each square error divided by their
corresponding predicted variance. According to theorem
4.3, the WMSE(F̂ ) asymptotically follows a χ2 distribu-
tion with a degree of freedom κ. We proceed to compare the
empirical WMSE(F̂ ) with the theoretical χ2(κ) distribu-
tion from two perspectives. First, we examine the relative χ2

error (RCE), which we define as WMSE(F̂ )/κ. An RCE
value greater than 1 indicates that the actual weighted error

is larger than expected, and vice versa. Second, we consider
the coverage rate, defined as P(WMSE(F̂ ) < χ2

0.95,κ). If
the distribution of the residuals aligns with expectations, the
coverage rate should converge to 0.95. In the following, we
present a plot illustrating the relative χ2 error and coverage
rate for the uniform distribution and sampling when κ = 10:

Figure 1. Left: The plot of relative χ2 error compared to the true
value Right: the plot of coverage rate

The results for large samples (n ≥ 105) align with our claim
in Theorem 4.3. Further, the small sample performance is
actually better than our prediction. Consequently, our error
bound proves to be numerically valid in this experiment, and
for large samples, our asymptotic distribution permits statis-
tical inference. For larger values of κ, the error bounds and
asymptotic distribution remain valid, but a greater number
of samples will be required to converge to the asymptotic
results. We provide the RCE and coverage rates in tables
located in the appendix.
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6. Conclusions and future works
In this paper, we developed a data collection procedure
and estimator for CDF estimation under the LDP frame-
work, analyzed its asymptotic properties, and demonstrated
its practical utility and accuracy through numerical exper-
iments. Our work provides a comprehensive approach to
CDF estimation while preserving privacy, offering valuable
insights and applications for the field of privacy-preserving
data analysis. Despite the contributions, there remain sev-
eral intriguing unanswered questions, which pave the way
for future research. Firstly, since the proposed estimator F̂
is non-differentiable, obtaining the density estimator directly
becomes a challenge. Additionally, extending the estimation
of the multivariate CDF to multivariate data poses further
difficulties. Lastly, exploring the generation of bootstrap
samples based on the proposed estimator for conducting fur-
ther inference is an intriguing direction worth investigating.
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Škoric, B. Estimating numerical distributions under local
differential privacy. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, pp. 621–635, 2020.

Liu, J., Zou, X., Zhao, L., Tao, Y., Hu, S., Han, J., and Ren,
K. Privacy leakage in wireless charging. IEEE Transac-
tions on Dependable and Secure Computing, 2022.

Liu, R. and Yang, L. Kernel estimation of multivariate cu-
mulative distribution function. Journal of Nonparametric
Statistics, 20(8):661–677, 2008.

Liu, Y., Hu, Q., Ding, L., and Kong, L. Online local dif-
ferential private quantile inference via self-normalization.
In International Conference on Machine Learning, pp.
21698–21714. PMLR, 2023.

Narayanan, A. and Shmatikov, V. How to break anonymity
of the Netflix prize dataset. arXiv preprint cs/0610105,
2006.

Narayanan, A. and Shmatikov, V. Robust de-anonymization
of large sparse datasets. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pp. 111–125. IEEE, 2008.

Nasr, M., Carlini, N., Hayase, J., Jagielski, M., Cooper,
A. F., Ippolito, D., Choquette-Choo, C. A., Wallace, E.,
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Appendix
Figures and tables

Figure 2. Left: Plot of CDF of the distributions, Right: Plot of PDF of the distributions

Figure 3. Left: The plot of the estimation and true value Right: The plot of absolute error
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Figure 4. Plot of the maximum absolute error: standardized (left) and unstandardized(right)

Table 2. Conversion table between r and ϵ
r ϵ r ϵ
0 0 0.5 1.10

0.05 0.10 0.55 1.24
0.1 0.20 0.6 1.39

0.15 0.30 0.65 1.55
0.2 0.40 0.7 1.73

0.25 0.51 0.75 1.95
0.3 0.62 0.8 2.20

0.35 0.73 0.85 2.51
0.4 0.85 0.9 2.94

0.45 0.97 0.95 3.66

Table 3. Empirical results of uniform consistency (L2 consistency) of the proposed estimator under G = F .
n r U(0, 1) Nc(0, 1, µ, σ

2) CB(λ)

103
0.25 0.262(0.118) 0.261(0.111) 0.265(0.116)
0.5 0.183(0.076) 0.182(0.073) 0.183(0.076)
0.9 0.127(0.050) 0.126(0.045) 0.127(0.049)

104
0.25 0.143(0.057) 0.142(0.055) 0.143(0.057)
0.5 0.096(0.036) 0.096(0.035) 0.096(0.036)
0.9 0.065(0.023) 0.065(0.021) 0.065(0.023)

105
0.25 0.074(0.027) 0.074(0.026) 0.074(0.027)
0.5 0.048(0.017) 0.049(0.017) 0.049(0.017)
0.9 0.033(0.011) 0.033(0.010) 0.033(0.010)

106
0.25 0.038(0.013) 0.038(0.013) 0.038(0.013)
0.5 0.024(0.008) 0.024(0.008) 0.024(0.008)
0.9 0.016(0.005) 0.016(0.005) 0.016(0.005)

107
0.25 0.019(0.006) 0.019(0.006) 0.019(0.006)
0.5 0.012(0.004) 0.012(0.004) 0.012(0.004)
0.9 0.008(0.002) 0.008(0.002) 0.008(0.002)
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Table 4. Empirical coverage rate(RCE) of the proposed estimator with G is uniform distribution when κ = 10.
n r U(0, 1) Nc(0, 1, µ, σ

2) CB(λ)

103
0.25 1.000(0.365) 1.000(0.355) 1.000(0.360)
0.5 0.999(0.598) 0.999(0.578) 0.999(0.586)
0.9 0.986(0.859) 0.985(0.865) 0.988(0.839)

104
0.25 0.995(0.757) 0.997(0.718) 0.996(0.731)
0.5 0.964(0.974) 0.974(0.916) 0.973(0.941)
0.9 0.948(0.996) 0.949(0.998) 0.949(0.999)

105
0.25 0.950(1.004) 0.959(0.968) 0.955(0.988)
0.5 0.951(1.002) 0.950(0.991) 0.946(1.003)
0.9 0.952(1.001) 0.951(0.992) 0.947(1.010)

106
0.25 0.947(1.005) 0.949(0.999) 0.948(1.005)
0.5 0.951(1.005) 0.948(1.005) 0.951(1.000)
0.9 0.954(0.995) 0.949(1.005) 0.953(1.005)

107
0.25 0.950(1.003) 0.956(1.001) 0.951(1.009)
0.5 0.953(0.996) 0.950(1.000) 0.952(1.002)
0.9 0.947(1.002) 0.948(1.004) 0.949(1.002)

Table 5. Empirical coverage rate(RCE) of the proposed estimator with G is uniform distribution when κ = 20.
n r U(0, 1) Nc(0, 1, µ, σ

2) CB(λ)

103
0.25 1.000(0.184) 1.000(0.182) 1.000(0.183)
0.5 1.000(0.314) 1.000(0.311) 1.000(0.313)
0.9 1.000(0.522) 1.000(0.525) 1.000(0.510)

104
0.25 1.000(0.420) 1.000(0.403) 1.000(0.411)
0.5 1.000(0.662) 1.000(0.631) 1.000(0.644)
0.9 0.987(0.896) 0.984(0.900) 0.986(0.891)

105
0.25 0.996(0.814) 0.997(0.764) 0.996(0.792)
0.5 0.963(0.985) 0.976(0.933) 0.966(0.975)
0.9 0.949(0.997) 0.953(0.997) 0.952(0.996)

106
0.25 0.950(1.000) 0.962(0.974) 0.949(0.998)
0.5 0.947(1.002) 0.951(1.005) 0.953(0.998)
0.9 0.951(1.000) 0.949(1.002) 0.949(0.995)

107
0.25 0.949(0.997) 0.950(1.002) 0.951(1.000)
0.5 0.950(1.003) 0.948(1.001) 0.950(1.000)
0.9 0.947(1.004) 0.952(0.999) 0.954(0.996)
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Table 6. Empirical coverage rate(RCE) of the proposed estimator with G is uniform distribution when κ = 30.
n r U(0, 1) Nc(0, 1, µ, σ

2) CB(λ)

103
0.25 1.000(0.124) 1.000(0.122) 1.000(0.123)
0.5 1.000(0.213) 1.000(0.210) 1.000(0.210)
0.9 1.000(0.361) 1.000(0.359) 1.000(0.356)

104
0.25 1.000(0.284) 1.000(0.274) 1.000(0.278)
0.5 1.000(0.461) 1.000(0.447) 1.000(0.454)
0.9 1.000(0.713) 0.999(0.713) 1.000(0.695)

105
0.25 1.000(0.601) 1.000(0.571) 1.000(0.587)
0.5 0.994(0.866) 0.997(0.808) 0.996(0.836)
0.9 0.956(0.995) 0.963(0.980) 0.958(0.987)

106
0.25 0.971(0.968) 0.986(0.894) 0.978(0.938)
0.5 0.950(1.003) 0.956(0.985) 0.952(0.997)
0.9 0.953(0.996) 0.950(1.002) 0.950(0.999)

107
0.25 0.949(1.001) 0.952(0.996) 0.948(1.001)
0.5 0.955(0.996) 0.953(0.998) 0.950(0.997)
0.9 0.953(0.999) 0.953(0.999) 0.948(1.005)
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Table 7. Computation times and standard derivation under different sample sizes
n 103 104 105 106 107 108

average time (ms) 0.081 0.345 4.011 42.28 527.5 5894
standard derivation 0.001 0.005 0.021 0.171 1.5899 40.12

Proof of Theorem 4.1

For the L2 consistency, applying the Lemma 4.1 in (Huang & Wellner, 1995), one derives that∫ 1

0

(
√
F̂ ⋆(x)−

√
F (x))2dG(x) = Op(n

−2/3).

By the assumption of G, one has that ∫ 1

0

(
√
F̂ ⋆(x)−

√
F (x))2dx = Op(n

−2/3).

Note that ∫ 1

0

(F̂ ⋆(x)− F (x))2dx =

∫ 1

0

(
√

F̂ ⋆(x)−
√
F (x))2(

√
F̂ ⋆(x) +

√
F (x))2dx

< 4

∫ 1

0

(
√

F̂ ⋆(x)−
√
F (x))2dx = Op(n

−2/3).

By the linear transformation between (F̂ (x), F (x)) and (F̂ ⋆(x), F ⋆(x)), the frist assertion of Theorem 4.2 holds

For the uniform consistency, we divided it into three parts, i.e.,

sup
x∈[0,1]

∣∣∣F̂ (x)− F (x)
∣∣∣ ≤ sup

x∈[0,2n−1/3 logn]

∣∣∣F̂ (x)− F (x)
∣∣∣

+ sup
x∈[2n−1/3 logn,1−2n−1/3 logn]

∣∣∣F̂ (x)− F (x)
∣∣∣+ sup

x∈[1−2n−1/3 logn,1]

∣∣∣F̂ (x)− F
∣∣∣ .

For any x ∈ [2n−1/3 log n, 1 − 2n−1/3 log n], we first consider the estimator F̂ ∗(x) ∈ [(1− r)/2, (1 + r)/2]. Since the
CDF F ⋆(x) has a strictly positive density on [x−n−1/3 log n, x+n−1/3 log n], one obtains that, for some positive constants
c1, c2,

P
(∣∣∣F̂ ⋆(x)− F ⋆(x)

∣∣∣ ≥ n−1/3 log n
)
≤ c1 exp{−c2(log n)

2}

based on the Lemma 5.9 in (Groeneboom & Wellner, 1992). If there exists a sub-interval I ⊂ [2n−1/3 log n, 1 −
2n−1/3 log n] such that F̂ ∗(x) /∈ [(1− r)/2, (1 + r)/2], the refinement of F̂ (x) does not lead to a worse convergence rate
obviously. Hence, for any r ∈ (0, 1]

P
(∣∣∣F̂ (x)− F (x)

∣∣∣ ≥ r−1n−1/3 log n
)
≤ c1 exp{−c2(log n)

2}

Now, for xi = in−1/3 log n, i = 2, . . . , [n1/3 log n]− 1, one has that

P
(∣∣∣F̂ (xi)− F (xi)

∣∣∣ ≥ r−1n−1/3 log n
)
≤ c1 exp{−c2(log n)

2},

and

P
(

max
2≤i≤[n1/3 logn]−1

∣∣∣F̂ (xi)− F (xi)
∣∣∣ ≥ r−1n−1/3 log n

)
≤ c1 exp{−c2(log n)

2/2}.
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Due to the monotonic incrementality of F̂ (x) and F (x), one obtains that

P

(
sup

x∈[2n−1/3 logn,1−2n−1/3 logn]

∣∣∣F̂ (x)− F (x)
∣∣∣ ≥ r−1n−1/3 log n

)
≤ c1 exp{−c2(log n)

2/2}.

For x ∈ [0, 2n−1/3 log n], for the same arguments, one has that

sup
x∈[0,2n−1/3 logn]

∣∣∣F̂ (x)− F (x)
∣∣∣ ≤ ∣∣∣F̂ (2n−1/3 log n)− F (0)

∣∣∣
≤
∣∣∣F̂ (2n−1/3 log n)− F (2n−1/3 log n)

∣∣∣+ ∣∣∣F (2n−1/3 log n)− F (0)
∣∣∣ = Op(r

−1n−1/3 log n),

for the reason that F (x) has a strictly positive density on [0, 1]. The left part holds for the same derivation, and the proof is
complete.

Proof of Theorem 4.2

Under the assumption of Theorem 4.1, for any x0 ∈ [0, 1], such that 0 < F (x0), G(x0) < 1, the CDF F ⋆(x) has positive
density f⋆(x0). Then, following Theorem 5.1 in (Groeneboom & Wellner, 1992), one obtains that{

g(x0)n

4F ⋆(x0) (1− F ⋆(x)) f⋆(x0)

}1/3

(F̂ ⋆(x0)− F ⋆(x0)) ⇒ Z := argmax
t∈R

{
W (t)− t2

}
.

Therefore, by the linear transformation between (F̂ (x), F (x)) and (F̂ ⋆(x), F ⋆(x)), the assertion of Theorem 4.2 holds and
the proof is complete.

Proof of Theorem 4.3

The first assertion will be confirmed by the careful check of the proof Theorem 3.1 in (Tang et al., 2012b), and F ⋆(x0)
has positive density on (x0, x0 + n−γ), which satisfies the assumptions of Theorem 3.1 in (Tang et al., 2012b). Then, one
obtains

n1/2−γ/2
(
F̂ ⋆(xl)− F ⋆(xl), F̂

⋆(xr)− F ⋆(xr)
)
⇒

√
F ⋆(x0) (1− F ⋆(x0))

g(x0)
N (0, I2) .

Therefore, by the linear transformation between (F̂ (x), F (x)) and (F̂ ⋆(x), F ⋆(x)), the first assertion of Theorem holds.

If κn = κ < ∞, let Zl =
∑n

i=1 ∆
⋆
i 1Ti=tl , Nl =

∑n
i=1 and Z̄l = Zl/Nl, l = 1, . . . , κ. Following proposition 3.4 in (Tang

et al., 2012b), one has that, as n → ∞,

P
(
Z̄1 ≤ · · · ≤ Z̄κ

)
= 1. (7)

Given {Nl}Kl=1, for each i draw an i.i.d. sample {Ylj}Nl

j=1 from Bernoulli (1, F ⋆(tl)). Denote Ȳl = N−1
l

∑Nl

j=1 Ylj ,
for each l. The second model is as follows. Suppose {tl}κi=1 , {X⋆

i }
n
i=1 and {Nl}κi=1 are defined as before. Let

{Y ′
li : 1 ≤ l ≤ κ, 1 ≤ i ≤ n} be a family of mutually independent random variables, distributed independently of the

variables in the previous sentence, such that for each i, Y ′
ij follows Bernoulli (1, F ⋆(tl)) for 1 ≤ j ≤ n. Denote

Ȳ ′
l = N−1

l

∑n
j=1 Y

′
lj

{
X⋆

j = tl
}

for each l. Following Lemma 1.2 in (Tang et al., 2012c), one has that

(
{Nl} ,

{
Z̄l

}) d
=
(
{Nl} ,

{
Ȳl

}) d
=
(
{Nl} ,

{
Ȳ ′
l

})
.

Hence, combined with (7), we only need to prove the asymptotic properties of
(
{Nl} ,

{
Ȳ ′
l

})
. Then, by a triangular array

version of the multivariate central limit theorem, it is sufficient to check the Lindeberg condition, and following the argument
about Proof of Proposition S.1 in (Tang et al., 2012c), we will obtain the second assearations, after the linear transformation
between (F̂ (x), F (x)) and (F̂ ⋆(x), F ⋆(x)).
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Proof of the Algorithm 1

Firstly, F̃ is the unconstrained maximizer of the log-likelihood function. If F̃ (x) ∈ [0, 1], then F̂ = F̃ is trivially the
constrained maximizer, as it is the unconstrained maximizer that also satisfies the range constraint. If not, define x− as
inf x : F̃ (x) > 0 and x+ as supx : F̃ (x) < 1. Then x− > 0 or x+ < 1.

Suppose there is another function, F̂2, such that L(F̂2,∆, T ) > L(F̂ ,∆, T ) and F̂2(x) ∈ [0, 1]. We then define a new
function F̂3(x) as:

F̂3(x) = (1x<x− + 1x≥x+)F̃ (x) + 1x−≤x<x+ F̂2(x).

For simplicity, denote

L(F,∆, T, i) := ∆i log

(
rF (Ti) +

1− r

2

)
+ (1−∆i) log

(
1 + r

2
− rF (Ti)

)
.0

Now we compare L(F̂3,∆, T ) and L(F̃ ,∆, T ):

L(F̂3,∆, T )− L(F̃ ,∆, T ) =

n∑
i=1

[
L(F̂3,∆, T, i)− L(F̃ ,∆, T, i)

]
=

n∑
i=1

1x−≤Ti<x+

[
L(F̂3,∆, T, i)− L(F̃ ,∆, T, i)

]
=

n∑
i=1

1x−≤Ti<x+

[
L(F̂2,∆, T, i)− L(F̂ ,∆, T, i)

]
≥ L(F̂2,∆, T )− L(F̂ ,∆, T )

> 0,

This implies that F̂3 has a higher log-likelihood than F̃ , contradicting the assumption that F̃ is the unconstrained maximizer.
Therefore, the original claim holds.
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