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Abstract001

In the era of evaluating large language models002
(LLMs), data contamination has become an in-003
creasingly prominent concern. To address this004
risk, LLM benchmarking has evolved from a005
static to a dynamic paradigm. In this work, we006
conduct an in-depth analysis of existing static007
and dynamic benchmarks for evaluating LLMs.008
We first examine methods that enhance static009
benchmarks and identify their inherent limita-010
tions. We then highlight a critical gap—the lack011
of standardized criteria for evaluating dynamic012
benchmarks. Based on this observation, we013
propose a series of optimal design principles014
for dynamic benchmarking and analyze the lim-015
itations of existing dynamic benchmarks. This016
survey provides a concise yet comprehensive017
overview of recent advancements in data con-018
tamination research, offering valuable insights019
and a clear guide for future research efforts.020
We maintain a GitHub repository to continu-021
ously collect both static and dynamic bench-022
marking methods for LLMs. The repository023
can be found at this link1.024

1 Introduction025

The field of natural language processing (NLP)026

has advanced rapidly in recent years, fueled by027

breakthroughs in Large Language Models (LLMs)028

such as GPT-4, Claude3, and DeepSeek (Achiam029

et al., 2023; Liu et al., 2024; Wan et al., 2023).030

Trained on vast amounts of Internet-sourced data,031

these models have demonstrated remarkable capa-032

bilities across various applications, including code033

generation, text summarization, and mathematical034

reasoning (Codeforces, 2025; Hu et al., 2024).035

To develop and enhance LLMs, beyond advance-036

ments in model architectures and training algo-037

rithms, a crucial area of research focuses on ef-038

fectively evaluating their intelligence. Tradition-039

ally, LLM evaluation has relied on static bench-040

marking, which involves using carefully curated041
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Figure 1: The progress of benchmarking LLM

human-crafted datasets and assessing model per- 042

formance with appropriate metrics (Wang, 2018; 043

Achiam et al., 2023; Gunasekar et al., 2023). 044

However, because these static benchmarks are 045

released on the Internet for transparent evaluation, 046

and LLMs gather as much data as possible from 047

the Internet for training, potential data contamina- 048

tion is unavoidable (Magar and Schwartz, 2022; 049

Deng et al., 2024c; Li et al., 2024d; Sainz et al., 050

2024; Balloccu et al., 2024a). Data contamina- 051

tion occurs when benchmark data is inadvertently 052

included in the training phase of language mod- 053

els, leading to inflated and misleading performance 054

assessments. Although this issue has long been 055

recognized—rooted in the fundamental machine 056

learning principle of separating training and test 057

sets—it has become more critical with the rise of 058

LLMs, which often scrape vast amounts of pub- 059

licly available Internet data (Achiam et al., 2023), 060

increasing the risk of contamination. 061

To mitigate the risk of data contamination in 062

LLM benchmarking, researchers have proposed 063

several enhancements to static evaluation meth- 064

ods, including data encryption (Jacovi et al., 2023) 065

and post-hoc contamination detection (Shi et al., 066

2024). However, due to the inherent limitations of 067

static approaches—such as unverifiable data expo- 068

sure—these enhancements have seen limited adop- 069

tion. As a result, researchers have shifted toward 070

1

https://github.com/anonymousGithub2022/Static-to-Dynamic-LLMEval


new dynamic benchmarking paradigms, as illus-071

trated in Fig. 1. Dynamic methods aim to reduce072

contamination risk either by continuously updating073

benchmark datasets based on LLM training times-074

tamps (White et al., 2024; Jain et al., 2024), or by075

regenerating test data to reconstruct and replace076

original benchmarks (Chen et al., 2024; Zhou et al.,077

2025; Mirzadeh et al., 2025).078

Although many dynamic benchmarking methods079

have been proposed to promote fair and transparent080

evaluation of LLMs, most existing work primarily081

highlights the advantages of these dynamic bench-082

marks (White et al., 2024). However, the question083

remains: What are the potential trade-offs of us-084

ing dynamic benchmarks to evaluate LLMs? The085

limitations of dynamic benchmarking—such as the086

computational overhead of continuous updates, and087

the need for reliable timestamp metadata—are not088

yet fully explored.089

Moreover, existing surveys on LLM data con-090

tamination have mainly focused on post-hoc detec-091

tion techniques (Deng et al., 2024b; Ravaut et al.,092

2024; Xu et al., 2024a; Dong et al., 2024; Balloccu093

et al., 2024b), offering little attention to the emerg-094

ing landscape of dynamic benchmarking strategies.095

Considering the growing importance and adoption096

of dynamic benchmarking methods, it is essential097

to assess their effectiveness and limitations. Unfor-098

tunately, our empirical survey of existing dynamic099

benchmarking approaches reveals that their evalu-100

ations are highly fragmented. To date, there is no101

systematic work that defines clear evaluation crite-102

ria for dynamic benchmarks themselves. Moreover,103

existing reviews often overlook a detailed compar-104

ison of the strengths and weaknesses of different105

dynamic methods, leaving a gap in understanding106

their practical trade-offs and applicability.107

To bridge this gap, we first conduct a system-108

atic survey of benchmarking methods for LLMs109

designed to mitigate the risk of data contamina-110

tion, covering both static and dynamic benchmarks.111

We summarize state-of-the-art methods and pro-112

vide an in-depth discussion of their strengths and113

limitations. Furthermore, we are the first to sum-114

marize and abstract a set of criteria for evaluating115

dynamic benchmarks. Our study reveals that exist-116

ing dynamic benchmarks do not fully satisfy these117

proposed criteria, implying the imperfection of cur-118

rent design. We hope that our criteria will provide119

valuable insights for the future design and standard-120

ization of dynamic benchmarking methods.121

The paper is organized as shown in Fig. 2. We122

first review the background on data contamination 123

(§2), then survey static benchmarks and their im- 124

provements (§3). Next, we introduce key principles 125

and existing approaches for dynamic benchmark- 126

ing (§4). Finally, we discuss open challenges and 127

future directions (§5). 128

2 Background 129

2.1 Data Contamination 130

Data contamination arises when LLM training data 131

Dtrain improperly overlaps with evaluation data 132

Dtest, undermining performance validity. We re- 133

view existing work and formalize the definition. 134

Exact contamination occurs when there is any 135

exact duplicate in the benchmark dataset 136

∃ d s.t. d ∈ Dtrain and d ∈ Dtest 137

In other word, there exist a data point d that both 138

in Dtrain and Dtest. Common cases include verba- 139

tim test examples appearing in training corpora, 140

code snippets from benchmark implementations, or 141

documentation leaks. 142

Syntactic contamination occurs when a test data 143

point could be found in the training dataset after a 144

syntactic transformation, such that 145

∃ d s.t. Fsyntactic(d) ∈ Dtrain and d ∈ Dtest 146

where Fsyntactic denotes syntactic transformations 147

like punctuation normalization, whitespace modifi- 148

cation, synonym substitution, morphological vari- 149

ations, or syntactic paraphrasing while preserving 150

lexical meaning. 151

Examples of each contamination We provide 152

contamination examples in Table 1. Syntactic con- 153

tamination occurs when test data is rephrased from 154

training data using a prefix. Whether this consti- 155

tutes true contamination is debated, as it’s difficult 156

to separate memorization from reasoning. In this 157

work, we treat such transformations as contamina- 158

tion, since some NLP tasks rely heavily on syntax. 159

Significance of Contamination Data contami- 160

nation poses a serious threat to the integrity of 161

LLM benchmarking, particularly as models grow in 162

scale and are trained on vast, publicly available cor- 163

pora. Without proper safeguards, evaluations may 164

inadvertently test models on data they have seen 165

during training, leading to inflated performance 166

metrics and misleading claims about generaliza- 167

tion and robustness. Recent studies underscore 168

this concern: Schaeffer (2023) demonstrate that 169
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LLM Benchmarking

Background

Data Contamination

Exact Contamination
Syntactic Contamination
Examples of Each Contamination
Significance of Contamination

Contamination from LLM Training
LLM Benchmarking

Static 
Benchmarking

Problem Formulation

Static Benchmarking 
Application

Math GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AIME 
2024 (of America, 2024) and CNMO 2024 (Society, 2024).

Knowledge

NaturalQuestions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 
2017), CMMLU (Li et al., 2023a), MMLU (Hendrycks et al., 2020), 
BBH (Suzgun et al., 2022), AGI Eval (Zhong et al., 2023), MMLU-
Redux (Gema et al.,2024) and MMLU-Pro (Wang et al., 2024b), 
ControlBench (Darioush et al., 2024), FRAMES (Krishna et al., 2024), 
and GPQA Diamond (Rein et al., 2023), AlpacaEval (Li et al., 2023c), 
ArenaHard (Li et al., 2024a).

Coding
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), SWE-Bench 
(Jimenez et al., 2024; Yang et al., 2025), Codeforces (Code-forces, 2025), 
Aider (Aider, 2025).

Instruction Following IFEval (Zhou et al., 2023), InfoBench (Qin et al., 2024), 
C-Eval (Huang et al., 2024).

Reasoning

PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag 
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), 
ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al., 
2018), CommonsenseQA (Talmor et al., 2018), C-SimpleQA 
(He et al., 2024).

Safety RealToxicityPrompts (Gehman et al., 2020), ToxiGen 
(Hartvigsen et al., 2022). 

Language
GLUE (Wang, 2018), SuperGLUE (Wang
et al., 2019), CLUE (Xu et al., 2020), Typo-fixing (Suzgun et 
al., 2022).

Reading 
Comprehension

SQuAD (Rajpurkar et al., 2018), QuAC (Choi et al., 2018), 
BoolQ (Clark et al., 2019).

Methods for Mitigation

Canary String BIG-Bench(Jacovi et al., 2023).

Encryption Jacovi et al. (2023), Yang et al. (2023), 
TRUCE (Chandran et al., 2024) .

Label Protection GLUE (Wang, 2018), SuperGLUE (Wang et al., 2019), 
HumanEval (Chen et al., 2021).

Post-hoc Detection

Direct overlap detection(Touvron et al., 2023), Radford et al., 
2019; Brown et al., 2020; Chowdhery et al., 2023, Riddell et 
al., 2024; Lee et al., 2023; Gunasekar et al., 2023, Li et al., 
2024d; Xu et al., 2024), memorization through masked inputs 
(Ranaldi et al., 2024; Chang et al., 2023), partial completions 
(Anil et al., 2023; Golchin and Surdeanu, 2024), preference for 
original over paraphrased test cases (Duarte et al., 2024; 
Golchin and Surdeanu, 2023; Zong et al., 2024).

Dynamic 
Benchmarking

Problem Formulation

Evaluation Criteria

Correctness
Scalability
Collision
Stable of Complexity
Diversity
Interpretability

Existing Work

Temporal Cutoff
LiveBench (White et al., 2024), AntiLeak-Bench (Wu et al., 
2024), AcademicEval (Zhang et al., 2024a), Live- CodeBench 
(Jain et al., 2024), LiveAoPSBench (Mahdavi et al., 2025), 
Forecastbench (Karger et al., 2024).

Rule-Based 

Template-Based
GSM-Symbolic (Mirzadeh et al., 2025), 
Mathador-LM(Kurtic et al., 2024), Mathador 
games(Puma et al., 2023), MMLU-CF (Zhao 
et al., 2024).

Table-Based S3Eval (Lei et al., 2024).

Graph-Based DyVal (Zhu et al., 2024a), NPHardEval (Fan 
et al., 2024).

LLM-Based 

Benchmark 
Rewriting

Auto-Dataset (Ying et al., 2024), StructEval 
(Cao et al., 2024), ITD (Zhu et al., 2024c), 
VarBench (Qian et al., 2024).

Interactive 
Evaluation

LLM examiner (Li et al., 2023b), LM-as-an-
Interviewer (Kim et al., 2024), TreeEval (Li 
et al., 2024b), KIEval (Yu et al., 2024). 

Multi-Agent 
Evaluation

Self-Evolving (Wang et al., 2024a), 
BENCHAGENTS (Butt et al., 2024). 

Hybrid LatestEval (Li et al., 2023d), DARG (Zhang et al., 2024b), C2LEVA 
(Li et al., 2024c).

Figure 2: Taxonomy of research on benchmarking LLMs

Contamination Type Training Data Testing Data
Exact Contamination Write a Python function to check

if a number is prime.
Write a Python function to check if a number is prime.

Syntactic Contamination Write a Python function to check
if a number is prime.

You are a helpful code assistant for Python. Write a
Python function to check if a number is prime.

Table 1: Examples of Data Contamination in LLMs

3



pretraining on test data can significantly distort170

evaluation outcomes; Balloccu et al. (2024b) re-171

veal how easily data contamination and evaluation172

malpractices can occur in closed-source LLMs; Xu173

et al. (2024b) propose methods to quantify such174

contamination; and Deng et al. (2024a) provide a175

comprehensive survey of existing risks and mitiga-176

tion strategies. The issue gained public attention177

when Meta’s LLaMA 4 faced allegations of us-178

ing a non-public version fine-tuned for benchmark179

gains (Babic, 2025), raising concerns about evalu-180

ation transparency—despite Meta’s denial of test181

set exposure. Such cases underscore the need for182

contamination-aware benchmarking to accurately183

assess LLM performance on truly unseen data. We184

also present a proof-of-concept evaluation in §A to185

highlight the impact of data contamination.186

2.2 Contamination Source187

Data contamination can occur during the pre-188

training, post-training, or fine-tuning phases of189

LLM development. Unlike traditional models190

with clear separations between training and eval-191

uation data, LLMs are pre-trained on massive, di-192

verse datasets—often scraped from the web (e.g.,193

FineWeb (Penedo et al., 2024))—which increases194

the risk of evaluation data overlap. In the post-195

training phase, models are further fine-tuned on196

large human-annotated (Mukherjee et al., 2023;197

Kim et al., 2023) or synthetic datasets (Ding et al.,198

2023; Teknium, 2023; Wang et al., 2023) that may199

resemble evaluation tasks, further compounding200

contamination risks. Although retrieval-based de-201

tection methods (Team et al., 2024; Achiam et al.,202

2023) exist, the sheer scale and complexity of train-203

ing corpora make it difficult to entirely exclude204

evaluation data. Additionally, many LLMs keep205

their training data proprietary (Dubey et al., 2024;206

Yang et al., 2024), complicating the accurate as-207

sessment of their true performance and highlight-208

ing the need for fair and reliable benchmarks. This209

opacity further exacerbates data contamination, as210

it impedes the community’s ability to verify and211

mitigate potential overlaps between training and212

evaluation data.213

2.3 LLM Benchmarking214

As LLMs evolve into general-purpose task solvers,215

it is crucial to develop benchmarks that provide a216

holistic view of their performance. To this end, sig-217

nificant human effort has been dedicated to build-218

ing comprehensive benchmarks that assess vari-219

ous aspects of model performance. For example, 220

instruction-following tasks evaluate a model’s abil- 221

ity to interpret and execute commands (Zhou et al., 222

2023; Qin et al., 2024; Huang et al., 2024), while 223

coding tasks assess its capability to generate and 224

understand programming code (Chen et al., 2021; 225

Austin et al., 2021; Jimenez et al., 2024; Code- 226

forces, 2025; Aider, 2025). Despite their useful- 227

ness, static benchmarks face challenges as LLMs 228

evolve rapidly and continue training on all avail- 229

able data (Villalobos et al., 2022). Over time, un- 230

changing benchmarks may become too easy for 231

stronger LLMs or introduce data contamination 232

issues. Recognizing this critical problem, contami- 233

nation detectors have been developed to quantify 234

contamination risks, and dynamic benchmarks have 235

been proposed to mitigate these issues. 236

3 Static Benchmarking 237

3.1 Problem Formulation 238

A static benchmark is given by D = (X ,Y,S(.)), 239

where D represents the seed dataset, consisting 240

of input prompts X , expected outputs Y , and a 241

scoring function S(·) that evaluates the quality of 242

an LLM’s outputs by comparing them against Y . 243

3.2 Static Benchmark Application 244

Math Math benchmarks evaluate a model’s abil- 245

ity to solve multi-step math problems. Datasets 246

such as GSM8K (Cobbe et al., 2021) and 247

MATH (Hendrycks et al., 2021) require models 248

to work through complex problems. Recent chal- 249

lenges like AIME 2024 (of America, 2024) and 250

CNMO 2024 (Society, 2024) further test a model’s 251

capacity to tackle diverse and intricate math tasks. 252

Coding Coding benchmarks measure a model’s 253

ability to generate and debug code. Hu- 254

manEval (Chen et al., 2021) and MBPP (Austin 255

et al., 2021) test code synthesis and debugging, 256

whereas SWE-Bench (Jimenez et al., 2024; Yang 257

et al., 2025) addresses more advanced challenges. 258

Competitive platforms like Codeforces (Code- 259

forces, 2025) and datasets such as Aider (Aider, 260

2025) further probe dynamic problem solving. 261

Instruction Following Instruction benchmarks 262

evaluate a model’s ability to comprehend and exe- 263

cute detailed directives. Datasets like IFEval (Zhou 264

et al., 2023) and InfoBench (Qin et al., 2024) sim- 265

ulate real-world scenarios requiring clear, step-by- 266

step guidance, with C-Eval (Huang et al., 2024) 267
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focusing on Chinese instructions.268

Other Applications We provide a detailed intro-269

duction to other applications in Appendix B, along270

with a further analysis on enhancing static bench-271

marks in Appendix C.272

4 Dynamic Benchmarking273

4.1 Problem Formulation274

A dynamic benchmark is defined as Bdynamic =275

(D, T (·)), D = (X ,Y,S(·)) where D represents276

the static benchmark dataset. The transforma-277

tion function T (·) modifies the data set during the278

benchmarking to avoid possible data contamina-279

tion. The dynamic dataset for the evaluation of an280

LLM can then be expressed as Dt = Tt(D), ∀t ∈281

{1, . . . , N} where Dt represents the evaluation282

data set at the timestamp t, and N is the total times-283

tamp number, which could be finite or infinite. If284

the seed dataset D is empty, the dynamic bench-285

marking dataset will be created from scratch.286

4.2 Criteria Summarization and Abstraction287

While many dynamic benchmarking methods have288

been proposed to evaluate LLMs, the criteria for289

evaluating these benchmarks themselves remain290

non-standardized. To address this gap, we ana-291

lyze existing evaluation practices and abstract them292

into a unified framework. We review over 50 dy-293

namic benchmarking papers, focusing specifically294

on how they evaluate their own benchmarks. Al-295

though many of these works include some form296

of self-evaluation, the approaches are often incon-297

sistent, incomplete, or lack depth. For example,298

DyVal2 evaluates benchmark complexity and cor-299

rectness, but does not address the interpretability300

of the benchmark construction process.301

To systematize this landscape, we identify a uni-302

fied set of evaluation criteria and present them in303

Table 2. We then assess whether each dynamic304

benchmark fully supports, partially supports, or305

does not support each criterion. For instance, in the306

case of correctness: benchmarks with built-in guar-307

antees—such as those using temporal cutoffs or308

rule-based generation—are marked as "supported".309

Benchmarks generated using LLMs are marked as310

"partially supported" if they include validation (e.g.,311

human or automated checks); otherwise, they are312

labeled "not supported." More guidance for classify313

each dynamic benchmarks could be found in §D.314

4.3 Summarized Evaluation Criteria 315

4.3.1 Correctness 316

The first criterion for evaluating the quality of dy-
namic benchmarking is Correctness. If the cor-
rectness of the generated dataset cannot be guaran-
teed, the benchmark may provide a false sense of
reliability when applied to benchmarking LLMs,
leading to misleading evaluations. We quantify the
correctness of dynamic benchmarks as:

Correctness = EN
i=1S

(Yi,G(Xi)
)

where Xi and Yi represent the input and output of 317

the ith transformation, respectively. The function 318

G(·) is an oracle that returns the ground truth of 319

its input, ensuring an objective reference for cor- 320

rectness evaluation. For example, the function G(·) 321

could be a domain-specific annotator. This equa- 322

tion can be interpreted as the expected alignment 323

between the outputs of the transformed data set and 324

their corresponding ground truth values, measured 325

using the scoring function S(·). A higher correct- 326

ness score indicates that the dynamic benchmark 327

maintains correctness to the ground truth. 328

4.3.2 Scalability 329

The next evaluation criterion is scalability, which
measures the ability of dynamic benchmark-
ing methods to generate large-scale benchmark
datasets. A smaller dataset can introduce more
statistical errors during the benchmarking process.
Therefore, an optimal dynamic benchmark should
generate a larger dataset while minimizing associ-
ated costs. The scalability of a dynamic benchmark
is quantified as:

Scalability = EN
i=1

[
∥Ti(D)∥

∥D∥ × Cost(Ti)

]
This represents the expectation over the entire trans- 330

formation space, where ∥Ti(D)∥ is the size of the 331

transformed dataset, and ∥D∥ is the size of the 332

original dataset. The function Cost(·) measures 333

the cost associated with the transformation process, 334

which could include monetary cost, time spent, or 335

manual effort according to the detailed scenarios. 336

This equation could be interpreted as the proportion 337

of data that can be generated per unit cost. 338

4.3.3 Collision 339

One of the main motivations for dynamic bench- 340

marking is to address the challenge of balancing 341

transparent benchmarking with the risk of data con- 342

tamination. Since the benchmarking algorithm is 343
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Dynamic Mechnisms Bechmark Name
Evaluation Creteria

Correctness Scalability Collision Stable of Complexity Diversity Interpretability

Temporal Cutoff

LiveBench (White et al., 2024)  G# G# # #  
AcademicEval (Zhang et al., 2024a)  G# G# # #  
LiveCodeBench (Jain et al., 2024)  G# G# # #  
LiveAoPSBench (Mahdavi et al., 2025)  G# G# # #  
AntiLeak-Bench (Wu et al., 2024)   G#  #  

Rule-Based

S3Eval (Lei et al., 2024)   G#  G#  
DyVal (Zhu et al., 2024a)     G#  
MMLU-CF (Zhao et al., 2024)  G# #  G# G#
NPHardEval (Fan et al., 2024)     G#  
GSM-Symbolic (Mirzadeh et al., 2025)  # G#  G#  
PPM (Chen et al., 2024)    G# G#  
GSM-Infinite (Zhou et al., 2025)     G#  

LLM-Based

Auto-Dataset (Ying et al., 2024) G#  G#   #
LLM-as-an-Interviewer (Kim et al., 2024) G#  G# G#  #
TreeEval (Li et al., 2024b) G#  G# G# G# #
BeyondStatic (Li et al., 2023b) G#  G# #  #
StructEval (Cao et al., 2024) G#     #
Dynabench (Kiela et al., 2021) G# G# G# G#  #
Self-Evolving (Wang et al., 2024a) G#  G#   #

Hybrid
DARG (Zhang et al., 2024b) G#  G#   G#
LatestEval (Li et al., 2023d)  G# G# # #  
C2LEVA (Li et al., 2024c) G#  G# G#  G#

Table 2: Existing dynamic benchmarks and their quality on our summarized criteria.  represents support, G#
represents partial support, and # represents no support

publicly available, an important concern arises: If344

these benchmarks are used to train LLM, can they345

still reliably reflect the true capabilities of LLMs?346

To evaluate the robustness of a dynamic benchmark347

against this challenge, we introduce the concept348

of collision in dynamic benchmarking. Collision349

refers to the extent to which different transforma-350

tions of the benchmark dataset produce overlapping351

data, potentially limiting the benchmark’s ability to352

generate novel and diverse test cases. To quantify353

this, we propose the following metrics:354

Collision Rate = EN
i,j=1, i ̸=j

[
∥Di ∩ Dj∥

∥D∥

]
Repeat = EN

i=1

[
k | k = min

{
k⋃

j=1

Dj ⊇ Di

}]355

Collision Rate measures the percentage of overlap356

between two independently transformed versions357

of the benchmark dataset, indicating how much po-358

tential contamination among two trials. Repeat359

Trials quantifies the expected number of transfor-360

mation trials required to fully regenerate an exist-361

ing transformed dataset Ti(D), providing insight362

into the benchmark’s ability to produce novel varia-363

tions. These metrics help assess whether a dynamic364

benchmark remains effective in evaluating LLM ca-365

pabilities, even when exposed to potential training366

data contamination.367

4.3.4 Stable of Complexity368

Dynamic benchmarks must also account for com-369

plexity to help users determine whether a perfor-370

mance drop in an LLM on the transformed dataset371

is due to potential data contamination or an in- 372

crease in task complexity. If a dynamic transforma- 373

tion increases the complexity of the seed dataset, 374

a performance drop is expected, even without data 375

contamination. However, accurately measuring the 376

complexity of a benchmark dataset remains a chal- 377

lenging task. Existing work has proposed various 378

complexity metrics, but these are often domain- 379

specific and do not generalize well across differ- 380

ent applications. For example, DyVal (Zhu et al., 381

2024a) proposes applying graph complexity to eval- 382

uate the complexity of reasoning problems. For- 383

mally, given a complexity measurement function 384

Ψ(·), the stability can be formulated as: 385

Stability = Var(Ψ(Di)) 386

This equation can be interpreted as the variance 387

in complexity across different trials, where high 388

variance indicates that the dynamic benchmarking 389

method is not stable. 390

4.3.5 Diversity 391

The diversity metric can be categorized into two 392

components: external diversity and internal di- 393

versity: External diversity measures the varia- 394

tion between the transformed dataset and the seed 395

dataset. Internal diversity quantifies the differences 396

between two transformation trials. 397

External Diversity = EN
i=1Θ(Di,D)

Internal Diversity = EN
i,j=1,i ̸=jΘ(Di,Dj)

398

where Θ(·) is a function that measures the diversity 399

between two datasets. For example, it could be 400
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the N-gram metrics or the reference based metrics,401

such as BLEU scores.402

4.3.6 Interpretability403

Dynamic benchmarking generates large volumes404

of transformed data, making manual verification405

costly and challenging. To ensure correctness, the406

transformation process must be interpretable. Inter-407

pretable transformations reduce the need for exten-408

sive manual validation, lowering costs. Rule-based409

or manually crafted transformations are inherently410

interpretable, while LLM-assisted transformations411

depend on the model’s transparency and traceabil-412

ity. In such cases, additional mechanisms like ex-413

plainability tools, or human-in-the-loop validation414

may be needed to ensure reliability and correctness.415

4.4 Existing Work416

Table 4 summarizes recent dynamic benchmarks.417

Dynamic benchmarks can be categorized into418

four types: temporal cutoff, rule-based generation,419

LLM-based generation, and hybrid approaches.420

4.4.1 Temporal Cutoff421

Since LLMs typically have a knowledge cutoff date,422

using data collected after this cutoff to construct423

dataset can help evaluate the model while mitigat-424

ing data contamination. This approach has been425

widely adopted to construct reliable benchmarks426

that prevent contamination. LiveBench (White427

et al., 2024) collects questions based on the lat-428

est information source, e.g., math competitions429

from the past 12 months, with new questions430

added and updated every few months. AntiLeak-431

Bench (Wu et al., 2024) generates queries about432

newly emerged knowledge that was unknown be-433

fore the model’s knowledge cutoff date to elim-434

inate potential data contamination. AcademicE-435

val (Zhang et al., 2024a) designs academic writing436

tasks on latest arXiv papers. LiveCodeBench (Jain437

et al., 2024) continuously collects new human-438

written coding problems from online coding com-439

petition platforms like LeetCode. LiveAoPS-440

Bench (Mahdavi et al., 2025) collects live math441

problems from the Art of Problem Solving forum.442

Forecastbench (Karger et al., 2024) updates new443

forecasting questions on a daily basis from differ-444

ent data sources, e.g., prediction markets.445

Limitations The collection process typically re-446

quires significant human effort (White et al., 2024;447

Jain et al., 2024), and continuous updates demand448

ongoing human involvement. Despite the popu- 449

larity of temporal cutoffs, using recent informa- 450

tion from competitions to evaluate LLMs can still 451

lead to data contamination, as these problems are 452

likely to be reused in future competitions (Wu et al., 453

2024). Verification is often overlooked in these live 454

benchmarks (White et al., 2024). 455

4.4.2 Rule-Based Generation 456

This method synthesizes new test cases based on 457

predefined rules, featuring an extremely low colli- 458

sion probability (Zhu et al., 2024a). 459

Template-Based GSM-Symbolic (Mirzadeh 460

et al., 2025) creates dynamic math benchmarks by 461

using query templates with placeholder variables, 462

which are randomly filled to generate diverse prob- 463

lem instances. Mathador-LM(Kurtic et al., 2024) 464

generates evaluation queries by adhering to the 465

rules of Mathador games(Puma et al., 2023) and 466

varying input numbers. MMLU-CF (Zhao et al., 467

2024) follows the template of multiple-choice 468

questions and generates novel samples by shuffling 469

answer choices and randomly replacing incorrect 470

options with "None of the other choices." 471

Table-Based S3Eval (Lei et al., 2024) evaluates 472

the reasoning ability of LLMs by assessing their 473

accuracy in executing random SQL queries on ran- 474

domly generated SQL tables. 475

Graph-Based In this category, LLMs are evalu- 476

ated with randomly generated graphs. For instance, 477

DyVal (Zhu et al., 2024a) assesses the reasoning 478

capabilities of LLMs using randomly generated di- 479

rected acyclic graphs (DAGs). The framework first 480

constructs DAGs with varying numbers of nodes 481

and edges to control task difficulty. These DAGs 482

are then transformed into natural language descrip- 483

tions through rule-based conversion. Finally, the 484

LLM is evaluated by querying it for the value of 485

the root node. Similarly, NPHardEval (Fan et al., 486

2024) evaluates the reasoning ability of LLMs on 487

well-known P and NP problems, such as the Trav- 488

eling Salesman Problem (TSP). Random graphs of 489

varying sizes are synthesized as inputs for TSP to 490

assess the LLM’s performance. Xie et al. (2024) au- 491

tomatically constructs Knights and Knaves puzzles 492

with random reasoning graph. 493

Limitations The pre-defined rules may limit sam- 494

ple diversity, and publicly available rule-generated 495

data may increase the risk of in-distribution con- 496

tamination during training (Tu et al., 2024). 497
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4.4.3 LLM-Based Generation498

Benchmark Rewriting In this category, LLMs499

are employed to rewrite samples from existing500

static benchmarks, which may be contaminated.501

Auto-Dataset (Ying et al., 2024) prompts LLMs502

to generate two types of new samples: one that503

retains the stylistics and essential knowledge of the504

original, and another that presents related questions505

at different cognitive levels (Bloom et al., 1956).506

StructEval (Cao et al., 2024) expands on examined507

concepts from the original benchmark by using508

LLMs and knowledge graphs to develop a series of509

extended questions. ITD (Zhu et al., 2024c) utilizes510

a contamination detector (Shi et al., 2024) to iden-511

tify contaminated samples in static benchmarks512

and then prompts an LLM to rewrite them while513

preserving their difficulty levels. VarBench (Qian514

et al., 2024) prompts LLMs to generate new ones.515

Interactive Evaluation In this category, inspired516

by the human interview process, LLMs are evalu-517

ated through multi-round interactions with an LLM518

(Li et al., 2023b). LLM-as-an-Interviewer (Kim519

et al., 2024) employs an interviewer LLM that520

first paraphrases queries from existing static bench-521

marks and then conducts a multi-turn evaluation522

by posing follow-up questions or providing feed-523

back on the examined LLM’s responses. TreeE-524

val (Li et al., 2024b) begins by generating an initial525

question on a given topic using an LLM. Based526

on the previous topic and the examined LLM’s re-527

sponse, it then generates follow-up subtopics and528

corresponding questions to further assess the model.529

KIEval (Yu et al., 2024) generates follow-up ques-530

tions based on the evaluated model’s response to531

an initial question from a static benchmark.532

Multi-Agent Evaluation Inspired by the re-533

cent success of multi-agents systems (Guo et al.,534

2024), multi-agent collaborations are used to con-535

struct dynamic benchmarks. Benchmark Self-536

Evolving (Wang et al., 2024a) employs a multi-537

agent framework to dynamically extend existing538

static benchmarks, showcasing the potential of539

agent-based methods. Given a task description,540

BENCHAGENTS (Butt et al., 2024) leverages a541

multi-agent framework for automated benchmark542

creation. It splits the process into planning, gener-543

ation, verification, and evaluation—each handled544

by a specialized LLM agent. This coordinated ap-545

proach, with human-in-the-loop feedback, yields546

scalable, diverse, and high-quality benchmarks.547

Limitations The quality of LLM-generated sam- 548

ples is often uncertain. For instance, human anno- 549

tation in LatestEval (Li et al., 2023d) reveals that 550

10% of samples lack faithfulness or answerability. 551

In interactive settings, reliability further depends 552

on the interviewer LLM. 553

4.4.4 Hybrid Generation 554

LatestEval (Li et al., 2023d) combines temporal 555

cutoff and LLM-based generation to automatically 556

generate reading comprehension datasets using 557

LLMs on real-time content from sources such as 558

BBC. DARG (Zhang et al., 2024b) integrates LLM- 559

based and graph-based generation. It first extracts 560

reasoning graphs from existing benchmarks and 561

then perturbs them into new samples using prede- 562

fined rules. C2LEVA (Li et al., 2024c) incorporates 563

all three contamination-free construction methods 564

to build a contamination-free bilingual evaluation. 565

5 Discussions 566

Current Challenges. Benchmarking LLMs is es- 567

sential for evaluating model performance, but tra- 568

ditional static benchmarks risk data contamination. 569

Dynamic benchmarks address this by updating or 570

regenerating test data, aiming to maintain integrity. 571

However, current dynamic methods often lack stan- 572

dardized evaluation criteria, suffer from limited 573

scalability, and offer little interpretability. Many 574

also fail to systematically assess trade-offs like 575

computational overhead and robustness. 576

Future Directions. Future work should estab- 577

lish standardized evaluation frameworks with cri- 578

teria such as correctness, diversity, and scalability. 579

Contamination-resilient benchmarks—using tem- 580

poral filtering, synthetic data, or rule-based gener- 581

ation—can further improve reliability. Dynamic 582

benchmarks should also support continual updates, 583

cross-model applicability, and human-in-the-loop 584

validation. Public update logs and improved inter- 585

pretability will enhance transparency and trust in 586

LLM evaluation. 587

6 Conclusion 588

This survey reviews the literature on data contami- 589

nation in LLM benchmarking, analyzing both static 590

and dynamic approaches. We find that static meth- 591

ods, though consistent, become more vulnerable 592

to contamination as training datasets grow. While 593

dynamic approaches show promise, they face chal- 594

lenges in reliability and reproducibility. Future 595

research should focus on standardized dynamic 596

evaluation, and practical mitigation tools. 597
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Limitations598

While this survey provides a comprehensive599

overview of static and dynamic benchmarking600

methods for LLMs, there are several limitations to601

consider. First, due to the rapidly evolving nature of602

LLM development and benchmarking techniques,603

some recent methods or tools may not have been604

fully covered. As benchmarking practices are still605

emerging, the methods discussed may not yet ac-606

count for all potential challenges or innovations in607

the field. Additionally, our proposed criteria for dy-608

namic benchmarking are a first step and may need609

further refinement and validation in real-world ap-610

plications. Lastly, this survey focuses primarily on611

high-level concepts and may not delve into all the612

fine-grained technical details of specific methods,613

which may limit its applicability to practitioners614

seeking in-depth implementation guidelines.615

Ethical Considerations616

Our work is rooted in the goal of enhancing the617

transparency and fairness of LLM evaluations,618

which can help mitigate the risks of bias and con-619

tamination in AI systems. However, ethical con-620

cerns arise when considering the use of both static621

and dynamic benchmarks. Static benchmarks, if622

not carefully constructed, can inadvertently perpet-623

uate biases, especially if they rely on outdated or bi-624

ased data sources. Dynamic benchmarks, while of-625

fering a more adaptive approach, raise privacy and626

security concerns regarding the continual collection627

and updating of data. Moreover, transparency and628

the potential for misuse of benchmarking results,629

such as artificially inflating model performance or630

selecting biased evaluation criteria, must be care-631

fully managed. It is essential that benchmarking632

frameworks are designed with fairness, account-633

ability, and privacy in mind, ensuring they do not634

inadvertently harm or disadvantage certain user635

groups or research domains. Lastly, we encourage636

further exploration of ethical guidelines surround-637

ing data usage, model transparency, and the broader638

societal impact of AI benchmarks.639
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A Significance of Data Contamination1307

To demonstrate the effectiveness of dynamic1308

benchmarks, we conduct a study using Hu-1309

manEval and DyCodeEval (Chen et al., 2025) on1310

three LLMs: Llama-3.2-1B, Llama-3.2-3B, and1311

DeepSeek-Coder-1.3B. For each model, we sim-1312

ulate data contamination by intentionally leaking1313

a portion of the benchmark dataset during fine-1314

tuning.1315

For HumanEval: We directly include part of the1316

benchmark dataset in fine-tuning. ForDyCodeEval:1317

We run the benchmark twice on each seed dataset1318

to generate two versions—one for training and one1319

for evaluation. We experiment with contamination1320

levels of 0%, 25%, 50%, 75%, and 100%, produc-1321

ing four distinct contaminated models.1322

The results show that for overfitted models, as1323

the contamination level increases from 25% to1324

100%, accuracy on HumanEval also increases. This1325

highlights the limitation of static benchmarks in1326

detecting overfitting. However, on the dynamic Dy-1327

CodeEval, even when a model is overfitted on one1328

version, it maintains stable accuracy scores across1329

different versions. This demonstrates the advan-1330

tage of dynamic benchmarks in evaluating models1331

under data contamination.1332

B Benchmark Applications1333

Knowledge Knowledge benchmarks evalu-1334

ate LLM internal knowledge. NaturalQues-1335

tions (Kwiatkowski et al., 2019) and Trivi-1336

aQA (Joshi et al., 2017) focus on retrieving1337

real-world information, while multi-domain tasks1338

are covered by MMLU (Hendrycks et al., 2020),1339

BBH (Suzgun et al., 2022), and AGI Eval (Zhong1340

et al., 2023). Recent extensions like MMLU-1341

Redux (Gema et al., 2024) and MMLU-Pro (Wang1342

et al., 2024b) refine these assessments further.1343

Additionally, ControlBench (Darioush et al., 2024),1344

FRAMES (Krishna et al., 2024), and GPQA1345

Diamond (Rein et al., 2023) target technical1346

and long-context challenges, with open-domain1347

evaluations provided by AlpacaEval (Li et al.,1348

2023c) and ArenaHard (Li et al., 2024a).1349

Reasoning Understanding and applying every-1350

day knowledge is a key aspect of language compre-1351

hension. Benchmarks such as PIQA (Bisk et al.,1352

2020), SIQA (Sap et al., 2019), HellaSwag (Zellers1353

et al., 2019), and WinoGrande (Sakaguchi et al.,1354

2021) are designed to assess a model’s intuitive1355

reasoning skills from multiple perspectives. In ad- 1356

dition, academic challenge sets like ARC (Clark 1357

et al., 2018), OpenBookQA (Mihaylov et al., 2018), 1358

and CommonsenseQA (Talmor et al., 2018) push 1359

models further by requiring the integration of back- 1360

ground knowledge with logical reasoning to arrive 1361

at plausible answers. C-SimpleQA (He et al., 2024) 1362

evaluates the factuality ability of language models 1363

to answer short questions in Chinese. 1364

Safety Safety benchmarks are essential for evalu- 1365

ating the robustness of LLM’s ability to generate 1366

non-toxic and ethically aligned content. Datasets 1367

such as RealToxicityPrompts (Gehman et al., 2020) 1368

and ToxiGen (Hartvigsen et al., 2022) assess re- 1369

silience against producing harmful outputs. 1370

Language Language benchmarks assess 1371

the LLMs’ proficiency in specific languages. 1372

GLUE (Wang, 2018) and SuperGLUE (Wang 1373

et al., 2019) cover tasks from sentiment analysis to 1374

language inference, while CLUE (Xu et al., 2020) 1375

targets Chinese language. Typo-fixing (Suzgun 1376

et al., 2022) is also widely used. 1377

Reading Comprehension Reading comprehen- 1378

sion tasks test a model’s ability to extract and 1379

infer information from text. Benchmarks like 1380

SQuAD (Rajpurkar et al., 2018), QuAC (Choi et al., 1381

2018), and BoolQ (Clark et al., 2019) challenge 1382

models to understand passages and draw logical 1383

conclusions. 1384

C Static Benchmark Enhancements 1385

Because LLMs often train on publicly available 1386

data, static benchmarks risk being inadvertently in- 1387

cluded, leading to contamination. To mitigate this, 1388

several methods have been proposed to enhance 1389

static benchmarking. 1390

C.0.1 Canary String 1391

Canary strings are deliberately crafted, unique to- 1392

kens embedded within a dataset to serve as markers 1393

for data contamination. When a model’s output 1394

unexpectedly includes these tokens, it strongly in- 1395

dicates that the model has memorized portions of 1396

its training data rather than learning to generalize. 1397

For instance, the BIG-Bench dataset incorporates 1398

these strings so that model developers can identify 1399

and filter out such instances (Jacovi et al., 2023). 1400

Limitations The effectiveness of canary strings 1401

depends on model trainers being aware of and re- 1402

sponsive to these markers. If a developer aims 1403
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Leakage
HumanEval DyCodeEval

Llama-3.2-1B Llama-3.2-3B DeepSeek-Coder-1.3b Llama-3.2-1B Llama-3.2-3B DeepSeek-Coder-1.3b

0% 0.19 0.28 0.41 0.14 0.25 0.41
25% 0.29 0.32 0.47 0.08 0.18 0.13
50% 0.48 0.57 0.5 0.08 0.19 0.16
75% 0.68 0.71 0.59 0.07 0.21 0.14
100% 0.82 0.87 0.62 0.11 0.18 0.07

Table 3: A proof of concept experiment

Task Type Benchmark

Math
Static GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), AIME 2024 (of America,

2024), CNMO 2024) (Society, 2024)
Dynamic LiveBench (White et al., 2024), UGMathBench (Xu et al., 2025), Mathador-LM (Kurtic

et al., 2024)

Language
Static GLUE (Wang, 2018), SuperGLUE (Wang et al., 2019), CLUE (Xu et al., 2020)
Dynamic LiveBench (White et al., 2024), C2LEVA (Li et al., 2024c), ITD (Zhu et al., 2024c)

Coding
Static HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), SWE-Bench (Jimenez et al.,

2024; Yang et al., 2025), Codeforces (Codeforces, 2025), Aider (Aider, 2025)
Dynamic LiveBench (White et al., 2024), LiveCodeBench (Jain et al., 2024), ComplexCodeEval (Feng

et al., 2024)

Reasoning
Static PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019), Wino-

Grande (Sakaguchi et al., 2021), ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al.,
2018), CommonsenseQA (Talmor et al., 2018), C-SimpleQA (He et al., 2024)

Dynamic LiveBench (White et al., 2024), DyVal (Zhu et al., 2024a), C2LEVA (Li et al., 2024c),
NPHardEval (Fan et al., 2024), S3Eval (Lei et al., 2024), DARG (Zhang et al., 2024b)

Knowledge
Static NaturalQuestions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), CMMLU (Li

et al., 2023a), MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), AGI Eval (Zhong
et al., 2023), MMLU-Redux (Gema et al., 2024), MMLU-Pro (Wang et al., 2024b), Con-
trolBench (Darioush et al., 2024), FRAMES (Krishna et al., 2024), GPQA Diamond (Rein
et al., 2023), AlpacaEval (Li et al., 2023c), ArenaHard (Li et al., 2024a)

Dynamic C2LEVA (Li et al., 2024c), ITD (Zhu et al., 2024c), Auto-Dataset (Ying et al., 2024),
DyVal2 (Zhu et al., 2024b), SciEval (Sun et al., 2024)

Safety
Static RealToxicityPrompts (Gehman et al., 2020), ToxiGen (Hartvigsen et al., 2022)
Dynamic C2LEVA (Li et al., 2024c), FactBench (Bayat et al., 2024)

Instruction
Static IFEval (Zhou et al., 2023), InfoBench (Qin et al., 2024), C-Eval (Huang et al., 2024)
Dynamic LiveBench (White et al., 2024)

Comprehension
Static SQuAD (Rajpurkar et al., 2018), QuAC (Choi et al., 2018), BoolQ (Clark et al., 2019)
Dynamic LatestEval (Li et al., 2023d), Antileak-bench (Wu et al., 2024)

Table 4: Summary of benchmarking applications.

to leak benchmarking data to boost scores, this1404

method will not work.1405

C.0.2 Encryption1406

Encryption methods secure evaluation data by mak-1407

ing it inaccessible to unauthorized parties, prevent-1408

ing its accidental inclusion in training sets. Jacovi1409

et al. (2023) propose encrypting test data with a1410

public key and a “No Derivatives” license to block1411

automated crawling and reuse. Yang et al. (2023)1412

show that even advanced decontamination methods1413

can be defeated by minor text variations, empha-1414

sizing the need for robust encryption. Similarly,1415

TRUCE (Chandran et al., 2024) leverages confiden-1416

tial computing and secure multi-party computation 1417

to enable private benchmarking, ensuring that test 1418

data and model parameters remain confidential. 1419

Limitation While these methods effectively pro- 1420

tect against data leakage, they depend on strong key 1421

management, they introduce extra computational 1422

overheads. These methods are vulnerable if encryp- 1423

tion is compromised or private key is exposed. 1424

C.0.3 Label Protection 1425

Label protection involves keeping the true answers 1426

of a test set hidden from public access so that only 1427

an authorized evaluator can use them during model 1428

assessment. This approach is common in bench- 1429
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marks such as GLUE (Wang, 2018), SuperGLUE1430

(Wang et al., 2019), and OpenAI’s HumanEval1431

(Chen et al., 2021), etc., where the test labels are1432

withheld to prevent models from learning or mem-1433

orizing them during training. The key advantage1434

of this method is its ability to maintain evaluation1435

integrity by preventing model exposure to answers,1436

thereby mitigating data contamination risks.1437

Limitations Label protection limits transparency1438

and independent verification, and it forces re-1439

searchers to rely on centralized evaluation systems1440

for performance metrics, which can impede de-1441

tailed error analysis and reproducibility.1442

C.0.4 Post-hoc Detection1443

Post-hoc detection mitigates data contamination1444

by identifying overlaps between Dtrain and Dtest.1445

This is typically done through n-gram matching at1446

various levels, such as tokens (Touvron et al., 2023)1447

or words (Radford et al., 2019; Brown et al., 2020;1448

Chowdhery et al., 2023). However, exact matching1449

often leads to false negatives, prompting the use1450

of more robust techniques like embedding-based1451

similarity (Riddell et al., 2024; Lee et al., 2023;1452

Gunasekar et al., 2023) and improved mapping1453

metrics (Li et al., 2024d; Xu et al., 2024b).1454

Beyond direct overlap detection, post-hoc meth-1455

ods also analyze model behavior under different1456

conditions, such as memorization through masked1457

inputs (Ranaldi et al., 2024; Chang et al., 2023),1458

partial completions (Anil et al., 2023; Golchin and1459

Surdeanu, 2024), or preference for original over1460

paraphrased test cases (Duarte et al., 2024; Golchin1461

and Surdeanu, 2023; Zong et al., 2024). For in-1462

stance, Dekoninck et al. (2024) propose CONSTAT,1463

which detects contamination by comparing model1464

performance across benchmarks.1465

Limitations Post-hot detection methods face sev-1466

eral limitations. Full access to the training dataset is1467

often restricted due to legal and privacy constraints,1468

making overlap detection challenging. Addition-1469

ally, assumptions about model behavior, such as1470

higher memorization or lower perplexity for con-1471

taminated instances, may not hold across different1472

models and tasks.1473

D Dynamic Benchmark Property1474

Labeling Guidance1475

We label each dynamic benchmark as "supported,"1476

"partially supported," or "not supported" for each1477

criterion based on the following guidelines:1478

Correctness:. Benchmarks with built-in guaran- 1479

tees (e.g., via temporal cutoffs or rule-based gen- 1480

eration) are marked "supported." LLM-generated 1481

benchmarks are "partially supported" if validated 1482

(e.g., by humans or automation), and "not sup- 1483

ported" otherwise. 1484

Scalability:. Fully automated benchmarks are 1485

"supported." Those combining automation with hu- 1486

man effort are "partially supported," while purely 1487

manual ones are "not supported." 1488

Collision:. If a benchmark provides theoretical 1489

guarantees or formally analyzes collision rates, it 1490

is "supported." Empirical analysis without guaran- 1491

tees is "partial support," and absence of discussion 1492

results in "not supported." 1493

Complexity Stability:. Benchmarks that define 1494

and control complexity are "supported." Those that 1495

define but do not control it receive "partial support." 1496

Lack of discussion results in "not supported." 1497

Diversity:. Benchmarks that define and enforce 1498

diversity are "supported." Those that define but do 1499

not control it are "partially supported," and bench- 1500

marks that omit it are "not supported." 1501

Interpretability:. Rule-based or human-designed 1502

benchmarks are "supported." Those combining 1503

rules with LLMs receive "partial support." Bench- 1504

marks relying entirely on LLMs without inter- 1505

pretability are "not supported." 1506
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