
Agentic-R1: Distilled Dual-Strategy Reasoning

Anonymous ACL submission

Abstract001

Current long chain-of-thought (long-CoT) mod-002
els excel at mathematical reasoning but rely on003
slow and error-prone natural language traces.004
Tool-augmented agents address arithmetic via005
code execution, but often falter on complex006
logical tasks. We introduce a fine-tuning frame-007
work, DualDistill, that distills complementary008
reasoning strategies from multiple teachers into009
a unified student model. Using this approach,010
we train Agentic-R1, which dynamically se-011
lects the optimal strategy for each query, invok-012
ing tools for arithmetic and algorithmic prob-013
lems and using text-based reasoning for ab-014
stract ones. Our method improves accuracy on015
computation-intensive tasks and reduces infer-016
ence latency on standard benchmarks, demon-017
strating the promise of multi-strategy distilla-018
tion for robust and efficient reasoning.019

1 Introduction020

A recently proposed reasoning paradigm for lan-021

guage models, long chain-of-thought (long-CoT)022

reasoning, has achieved state-of-the-art perfor-023

mance on challenging tasks such as mathemati-024

cal problem solving (Guo et al., 2025; Jaech et al.,025

2024). By allocating a large inference budget, these026

models generate reasoning trajectories with itera-027

tive self-verification and refinement. Despite this028

progress, open-source long-CoT models remain029

limited: their reasoning traces rely solely on natural030

language, which is both computationally expensive031

and error-prone without explicit verification.032

In contrast, tool-aided reasoning provides greater033

efficiency and reliability, particularly for large-034

scale numerical computations and tasks that require035

rigorous verification (Gao et al., 2023). Advanced036

agent frameworks, such as OpenHands (Wang037

et al., 2024), place language models in a multi-038

turn environment with a code interpreter and other039

tools. The resulting agentic trajectories are effec-040

tive for tool-intensive tasks but often fall short on041

Teacher 1:
Expert in Tool Use

Teacher 2:
Good at Reasoning

Agentic Trajectory Reasoning Trajectory

<think>
… (text reasoning) …
</think>
answer: xxx

<code> … </code>
<executor>
output: …
</executor>

agentic trajectory reasoning trajectory

reasoning trajectory agentic trajectory

Distill Student Model
Good at both tool use and reasoning

Sampling

… …

Composition

Figure 1: Overview of DualDistill. We distill knowl-
edge from two complementary teacher models. Trajec-
tories from both teachers are sampled and composed
based on correctness, enabling the student model to
learn when and how to elect the most appropriate one
for each problem.

abstract or conceptually complex reasoning prob- 042

lems (Duan et al., 2024). 043

To leverage the strengths of both reasoning and 044

tool-based strategies, we introduce DualDistill, a 045

novel distillation framework (Fig. 1) that combines 046

trajectories from two complementary teachers: one 047

reasoning-oriented, the other tool-augmented, in 048

a unified student. The resulting model, Agentic- 049

R1, learns to mix both strategies and dynamically 050

selects the most appropriate one for each problem, 051

executing code for arithmetic and algorithmic tasks 052

and reasoning in natural language for abstract ones. 053

Our contributions are as follows. 054

• DualDistill, a distillation method that en- 055

ables a language model to learn from multiple 056

teacher models with complementary capabili- 057

ties via trajectory composition. 058

1

• Agentic-R1, a distilled model that achieves059

strong performance in mathematical tasks re-060

quiring both tool use and reasoning, while061

maintaining competitive accuracy on tasks062

best handled by a single strategy.063

2 Related Work064

While prior efforts have integrated external tools065

into language models (Gao et al., 2023; Schick066

et al., 2023; Nakano et al., 2022), they are often067

specialized to either non-math domains or are con-068

fined to shorter reasoning chains. Concurrently,069

the paradigm of long chain-of-thought (long-CoT)070

reasoning or inference-time compute has demon-071

strated significant improvements (Guo et al., 2025;072

OpenAI et al., 2024). However, these approaches073

can be difficult to control and may suffer from074

‘overthinking’, particularly when applied to tool-075

use scenarios (Cuadron et al., 2025). Some recent076

works have combined tool use with long reason-077

ing (Feng et al., 2025; Song et al., 2025), but these078

are often applied to different domains or rely on re-079

inforcement learning, which can be less stable than080

our proposed distillation method. To the best of081

our knowledge, DualDistill is the first framework082

to employ distillation with trajectory composition083

from two heterogeneous teacher models, one spe-084

cializing in agentic tool-use and the other in pure085

textual reasoning, creating a unified student model086

capable of adaptively leveraging both strategies.087

See Appendix B for a more detailed discussion.088

3 Method089

As illustrated in Fig. 1, DualDistill uses trajectory090

composition to distill the knowledge of the comple-091

mentary teachers to the student model.092

3.1 Trajectory Composition093

Let D = {(xi, ai)} be a training set where xi de-094

notes the i-th problem and ai is its ground-truth095

solution, and let πA and πR be two distinct teacher096

policies, where the former is for the agentic teacher097

and the latter is for a reasoning teacher. For098

each training instance (x, a), we randomly select099

the initial teacher by sampling a binary indicator100

z ∼ Bernoulli(0.5) and then produce solutions y1101

and y2 as follows:102

y1 ∼ zπA(· | x) + (1− z)πR(· | x),103

y2 ∼ (1− z)πA(· | x, y1) + zπR(· | x, y1).104

That is, after one teacher generates the initial solu- 105

tion y1, the other teacher subsequently generates 106

the second solution y2, conditioned on both the 107

original problem x and the preceding solution y1. 108

We evaluate the correctness of each solution us- 109

ing a rule-based grader, assigning binary correct- 110

ness scores s1, s2 ∈ {0, 1} to y1 and y2, respec- 111

tively. The distilled training trajectories are then 112

composed based on these correctness scores. 113

• s1 = 0, s2 = 1: The first teacher produces 114

an incorrect solution, and the second teacher 115

successfully corrects it. The composed trajec- 116

tory is structured as y1 ⊕ t−+ ⊕ y2. (Here ⊕ 117

donates concatenation and t−+ is a transition 118

segment, described later). 119

• s1 = 1, s2 = 1: Both teachers provide correct 120

solutions. We create a trajectory y1⊕t++⊕y2 121

to reflect complementary correct strategies. 122

• s1 = 1, s2 = 0: Only the initial teacher pro- 123

vides a correct solution. In this scenario, the 124

composed trajectory includes only y1. 125

• s1 = 0, s2 = 0: Both teachers do not solve 126

the problem correctly. In this case, we just 127

discard the problem without composing any 128

trajectory. 129

The transition segments t−+ and t++ are pre- 130

defined sentences indicating strategy shifts (e.g., 131

"Wait, using text reasoning is too tedious, let us 132

try code reasoning."). More examples and detailed 133

descriptions can be found in Appendix A.4.1. 134

3.2 Training Instance Selection 135

We curate a training set with the instances for which 136

one strategy has a clear advantage over the other 137

in performance. Using an existing data set such as 138

GSM8K (Cobbe et al., 2021) would be insufficient 139

in this sense as most of the problems are relatively 140

simple and can be solved by either strategy with- 141

out a significant performance difference. Instead, 142

we construct two contrasting subsets of math prob- 143

lems: one can benefit more from tool-assisted rea- 144

soning, while the other can benefit more from pure 145

text-based reasoning. After composition, we apply 146

additional filtering to balance the training dataset, 147

resulting in 2.6k distilled trajectories. Detailed 148

statistics can be found in Appendix A.3.2. Further 149

filtering details are provided in the Appendix A.3.1. 150

2

3.3 Teacher and Student Models151

As the teacher of agentic reasoning, we utilize152

OpenHands (Wang et al., 2024), a tool-assisted153

agent built upon Claude-3.5-Sonnet (Anthropic,154

2024) to employ human-designed problem-solving155

pipelines. As the teacher for text-based reasoning,156

we adopt Deepseek-R1. The details can be found157

in Appendix A.4.2.158

As for the student model, we adopt Deepseek-159

R1-Distill-7b, which has been fine-tuned on pure160

text-based reasoning trajectories and has also been161

exposed to code-related data during pre-training.162

We deliberately choose a model already familiar163

with both modalities to minimize the amount of164

training data required for the strategic composition.165

We want to examine whether it can effectively learn166

multiple problem-solving strategies.167

4 Experiments168

4.1 Benchmarks169

We evaluate our method on several benchmarks170

that test different aspects of mathematical reason-171

ing, including tasks where tool-aided calculation is172

hypothesized to provide a significant advantage.173

DeepMath-Large. DeepMath (He et al., 2025)174

is a comprehensive dataset of mathematical and175

STEM problems compiled from various bench-176

marks. To evaluate the effectiveness of our method177

on numerically intensive tasks, we curate a subset178

of 87 problems where the answers are large integers179

(absolute value greater than 105). These problems180

are excluded from our fine-tuning data, though they181

may appear in pretraining corpora. We refer to182

this evaluation set as DeepMath-Large, with the183

assumption that code-aided computation is more184

effective in solving such problems.185

Combinatorics300. This benchmark consists of186

300 combinatorics problems aggregated from di-187

verse math test sets. Each problem yields an answer188

larger than 104, reflecting the factorial growth in189

combinatorial counts. We hypothesize that tool-190

aided reasoning is important for handling the enu-191

meration and sampling required in such tasks.192

Standard Mathematical Benchmarks. To as-193

sess the generalizability of our approach, we further194

evaluate on widely-used mathematical reasoning195

tasks, including MATH500 (Lightman et al., 2023),196

AMC (AI-MO, 2024), and AIME (2025 Parts I and197

II) (AIME, 2025).198

4.2 Baselines 199

We compare against the following strong baselines: 200

• DeepSeek-R1-Distill. A distilled version 201

of DeepSeek-R1 fine-tuned on long chain- 202

of-thought trajectories, representing a strong 203

baseline for pure language-based reasoning. 204

• Qwen-2.5-Instruct (w./w.o. tools) (Yang 205

et al., 2024). A general-purpose short-CoT 206

model with optional tool-use capabilities. The 207

tool-augmented variant serves as a competi- 208

tive baseline for tool-aided strategies. 209

The training configuration details are provided in 210

Appendix A.2. 211

4.3 Evaluation Metrics 212

To evaluate both reasoning quality and compu- 213

tational efficiency, we adopt the Accuracy at 214

Budget metric. Given the model output O = 215

(O0, O1, . . . , OL) and a reference answer A. We 216

define accuracy under the budget b as: 217

Acc(b) = G
(
O0···min(b,L), A

)
, 218

where G is a binary grader that checks whether 219

the output matches the ground truth. We report 220

results under three budgets: Small (S, 2048), which 221

reflects the typical context limit of short-CoT mod- 222

els; Medium (M, 4096), a moderate budget for long- 223

CoT reasoning; and Large (L, 32768), which ap- 224

proximates an unbounded budget and allows the 225

model to reason adequately. Inference details can 226

be found in Appendix A.6. 227

4.4 Results 228

As shown in Table 1, our student model, Agentic- 229

R1, demonstrates substantial performance im- 230

provements on DeepMath-Large and Combina- 231

torics300, two challenging datasets that bene- 232

fit from both agentic and reasoning strategies. 233

Specifically, our model outperforms two similarly 234

sized models, each specializing exclusively in tool- 235

assisted (Qwen2.5-7b-Instruct) or pure reasoning 236

(Deepseek-R1-distill-7b) strategies. Agentic-R1 sur- 237

passes tool-based models by intelligently adopting 238

reasoning strategies when appropriate, while main- 239

taining greater efficiency compared to pure reason- 240

ing models on standard mathematical tasks. How- 241

ever, we note a slight performance decrease in rela- 242

tively simpler benchmarks (MATH500) compared 243

to the pure text-reasoning model, and a detailed 244

discussion is provided in the limitations section. 245

3

Budget DeepMath-L Combinatorics300 MATH500 AIME AMC avg.

Qwen2.5-7b (w.o. tool)
S
M
L

17.2
17.2
17.5

21.5
21.8
21.8

75.1
75.1
75.2

8.0
8.0
8.0

42.7
42.9
42.9

32.9
33.0
33.1

Qwen2.5-7b (w. tool)
S
M
L

34.5
34.7
34.5

28.7
28.9
28.9

68.3
68.4
68.4

15.3
14.7
14.7

51.6
50.8
50.8

39.7
39.5
39.5

DeepSeek-R1-Distill-7b
S
M
L

20.5
34.7
56.3

26.5
34.5
44.7

75.9
82.8
88.8

9.3
23.3
40.7

44.1
61.2
84.8

35.3
47.3
63.1

Agentic-R1-7b (ours)
S
M
L

30.8
37.5
61.8

31.5
37.1
50.9

75.9
80.2
82.5

17.3
29.3
40.7

51.1
66.7
82.2

41.3
50.2
63.6

Table 1: Main Results. We evaluate performance on five benchmarks under three budgets: S (2048), M (4096), and
L (32768). The results are averaged over 5 random seeds with T = 0.6. Agentic-R1 demonstrates significant gains
on DeepMath-Large and Combinatorics300, where both complex reasoning and tool use are crucial. It also exhibits
efficiency on competitive math tasks, outperforming baselines under smaller budgets (S and M), while maintaining
comparable performance under the large-budget setting (L).

Qualitative Examples. We provide illustrative246

trajectories demonstrating Agentic-R1’s adaptive247

strategy-switching capability: (1) initially using the248

tool-assisted strategy and then switching to textual249

reasoning to correct an incorrect initial solution250

(Fig. 6); and (2) starting with textual reasoning251

and then switching to the tool-assisted strategy to252

bypass tedious manual calculations (Fig. 7).253

Agentic-R1 Knows When to Use Tools. An in-254

triguing observation is that Agentic-R1 learns when255

to appropriately invoke code tools purely through256

supervised fine-tuning. For instance, the dataset257

Combinatorics300 contains problems involving258

large numerical computations, making tools par-259

ticularly beneficial. Consequently, Agentic-R1 ac-260

tivates at least one code execution tool in 79.2%261

of Combinatorics300 problems, whereas the usage262

of the tool drops to only 52.0% in the relatively263

simpler AMC dataset.264

Agentic-R1 Learns from Imperfect Teach-265

ers. Although OpenHands, based on Claude-266

3.5-Sonnet, is not a strong standalone reasoning267

agent and sometimes performs worse than the stu-268

dent’s initial model (R1-Distill), the student model269

still effectively acquires valuable agentic strategies270

through distillation. For example, the agentic strat-271

egy teacher achieves only 48.4% accuracy on Com-272

binatorics300, yet after training, the student’s per-273

formance improves significantly from 44.7% to274

50.9%, surpassing the teacher. This shows that275

demonstrations from an imperfect agentic teacher276

can still yield meaningful gains in the student.277

4.5 Ablation Study 278

Dataset DeepMath-Large AIME AMC

w/o. composition 40.0% 34.0% 50.8%
w. composition 61.8% 40.7% 82.2%

Table 2: Trajectory Composition. We compare per-
formance between composition and non-composition in
the large budget setting; composition is always better.

Trajectory Composition. To verify the effective- 279

ness of our data composition strategy, we compare 280

it with a training strategy that does not use compo- 281

sition, meaning that each student trajectory is either 282

fully generated by the agentic teacher or fully gener- 283

ated by the reasoning teacher. As shown in Table 2, 284

our composition strategy consistently surpasses its 285

non-composition counterpart. 286

5 Conclusion 287

We propose DualDistill, an efficient distillation 288

framework based on data composition, allowing a 289

student model to learn from multiple teacher mod- 290

els specialized in different domains of problem 291

solving. Using the appropriate strategy for each 292

problem, our trained model, Agentic-R1, achieves 293

superior performance in benchmarks that require 294

both reasoning and tool-assisted capabilities. This 295

approach demonstrates the potential for unifying 296

diverse problem-solving strategies within a single 297

model, opening new directions for building versa- 298

tile and adaptive language agents. 299

4

Limitations300

While our approach demonstrates strong overall301

performance, several limitations remain that sug-302

gest avenues for future work. First, we observe303

a slight performance decrease in relatively sim-304

ple reasoning tasks such as MATH500 and AMC,305

compared to the baseline of pure text reasoning306

baseline (Deepseek-r1-distill). We hypothesize two307

main reasons. These tasks are well-suited for pure308

text-based reasoning, with the baseline achieving309

over 84% accuracy. In such cases, tool-aided rea-310

soning offers limited additional benefit. For ex-311

ample, when using tool assistance, Qwen-2.5-7b-312

Instruct achieves only around 68.4% accuracy on313

MATH500—a performance drop compared to the314

tool-free baseline, indicating that code execution315

may be less useful for relatively simple problems.316

(2) Our current training scheme relies solely on317

strategy distillation. Combining preference-based318

learning methods, such as expert iteration (Polu319

et al., 2022) or DPO (Rafailov et al., 2023) after-320

wards, may help the student model better select the321

appropriate reasoning strategy.322

Second, our training dataset contains approxi-323

mately 2.6k trajectories. While this appears suf-324

ficient to teach a model that has been pre-trained325

on both text reasoning and code generation (e.g.,326

Deepseek-R1-Distill-7b) to choose between strate-327

gies, it is likely insufficient for training a model to328

learn a new reasoning strategy from scratch. For329

example, Deepseek-R1-Distill was fine-tuned on330

over 800k distilled examples to acquire long CoT331

reasoning capabilities. Expanding the dataset and332

covering a wider range of strategies will be an im-333

portant direction for future research.334

References335

Pranjal Aggarwal and Sean Welleck. 2025. L1:336
Controlling how long a reasoning model thinks337
with reinforcement learning. arXiv preprint338
arXiv:2503.04697.339

AI-MO. 2024. AIMO Validation AMC. Dataset,340
Apache-2.0 licence. Accessed 2025-05-17.341

AIME. 2025. American invitational mathemat-342
ics examination (aime). https://www.maa.org/343
math-competitions/aime. Organized by Mathe-344
matical Association of America (MAA).345

Anthropic. 2024. Claude 3.5 sonnet model card adden-346
dum. Technical report, Anthropic. Accessed 16 May347
2025.348

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 349
William W. Cohen. 2023. Program of thoughts 350
prompting: Disentangling computation from rea- 351
soning for numerical reasoning tasks. Preprint, 352
arXiv:2211.12588. 353

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 354
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 355
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 356
Nakano, and 1 others. 2021. Training verifiers 357
to solve math word problems. arXiv preprint 358
arXiv:2110.14168. 359

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao 360
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu, 361
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, 362
Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana 363
Klimovic, Graham Neubig, and Joseph E. Gonzalez. 364
2025. The danger of overthinking: Examining the 365
reasoning-action dilemma in agentic tasks. Preprint, 366
arXiv:2502.08235. 367

Jinhao Duan, Renming Zhang, James Diffenderfer, 368
Bhavya Kailkhura, Lichao Sun, Elias Stengel-Eskin, 369
Mohit Bansal, Tianlong Chen, and Kaidi Xu. 2024. 370
Gtbench: Uncovering the strategic reasoning limita- 371
tions of llms via game-theoretic evaluations. arXiv 372
preprint arXiv:2402.12348. 373

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, 374
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin 375
Chi, and Wanjun Zhong. 2025. Retool: Reinforce- 376
ment learning for strategic tool use in llms. Preprint, 377
arXiv:2504.11536. 378

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 379
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 380
ham Neubig. 2023. Pal: Program-aided language 381
models. In International Conference on Machine 382
Learning, pages 10764–10799. PMLR. 383

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 384
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 385
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 386
Deepseek-r1: Incentivizing reasoning capability in 387
llms via reinforcement learning. arXiv preprint 388
arXiv:2501.12948. 389

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu 390
Chen, Yue Wang, Linfeng Song, Dian Yu, Zhen- 391
wen Liang, Wenxuan Wang, and 1 others. 2025. 392
Deepmath-103k: A large-scale, challenging, decon- 393
taminated, and verifiable mathematical dataset for ad- 394
vancing reasoning. arXiv preprint arXiv:2504.11456. 395

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 396
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, 397
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 398
2023. Distilling step-by-step! outperforming larger 399
language models with less training data and smaller 400
model sizes. Preprint, arXiv:2305.02301. 401

HuggingFace. 2025. Math-verify: A robust mathemati- 402
cal expression evaluation system. 403

5

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://www.maa.org/math-competitions/aime
https://www.maa.org/math-competitions/aime
https://www.maa.org/math-competitions/aime
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2502.08235
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2305.02301
https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify
https://github.com/huggingface/Math-Verify

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-404
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,405
Aleksander Madry, Alex Beutel, Alex Carney, and 1406
others. 2024. Openai o1 system card. arXiv preprint407
arXiv:2412.16720.408

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,409
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei410
Han. 2025. Search-r1: Training llms to reason and411
leverage search engines with reinforcement learning.412
Preprint, arXiv:2503.09516.413

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying414
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.415
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-416
cient memory management for large language model417
serving with pagedattention. In Proceedings of the418
ACM SIGOPS 29th Symposium on Operating Systems419
Principles.420

Xiang Li, Shizhu He, Jiayu Wu, Zhao Yang, Yao Xu,421
Yang jun Jun, Haifeng Liu, Kang Liu, and Jun Zhao.422
2024. MoDE-CoTD: Chain-of-thought distillation423
for complex reasoning tasks with mixture of decou-424
pled LoRA-experts. In Proceedings of the 2024 Joint425
International Conference on Computational Linguis-426
tics, Language Resources and Evaluation (LREC-427
COLING 2024), pages 11475–11485, Torino, Italia.428
ELRA and ICCL.429

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-430
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,431
John Schulman, Ilya Sutskever, and Karl Cobbe.432
2023. Let’s verify step by step. In The Twelfth Inter-433
national Conference on Learning Representations.434

Ilya Loshchilov and Frank Hutter. 2017. Decou-435
pled weight decay regularization. arXiv preprint436
arXiv:1711.05101.437

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-438
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke439
Zettlemoyer, Percy Liang, Emmanuel Candès, and440
Tatsunori Hashimoto. 2025. s1: Simple test-time441
scaling. Preprint, arXiv:2501.19393.442

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,443
Long Ouyang, Christina Kim, Christopher Hesse,444
Shantanu Jain, Vineet Kosaraju, William Saunders,445
Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen446
Krueger, Kevin Button, Matthew Knight, Benjamin447
Chess, and John Schulman. 2022. Webgpt: Browser-448
assisted question-answering with human feedback.449
Preprint, arXiv:2112.09332.450

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,451
Adam Richardson, Ahmed El-Kishky, Aiden Low,452
Alec Helyar, Aleksander Madry, Alex Beutel, Alex453
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard454
Passos, Alexander Neitz, Alexander Prokofiev,455
Alexander Wei, Allison Tam, and 244 others. 2024.456
Openai o1 system card. Preprint, arXiv:2412.16720.457

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-458
tas Baksys, Igor Babuschkin, and Ilya Sutskever.459
2022. Formal mathematics statement curriculum460
learning. arXiv preprint arXiv:2202.01344.461

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 462
pher D Manning, Stefano Ermon, and Chelsea Finn. 463
2023. Direct preference optimization: Your lan- 464
guage model is secretly a reward model. Advances in 465
Neural Information Processing Systems, 36:53728– 466
53741. 467

Victor Sanh, Lysandre Debut, Julien Chaumond, and 468
Thomas Wolf. 2019. Distilbert, a distilled version 469
of bert: smaller, faster, cheaper and lighter. arXiv 470
preprint arXiv:1910.01108. 471

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 472
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola 473
Cancedda, and Thomas Scialom. 2023. Toolformer: 474
Language models can teach themselves to use tools. 475
Preprint, arXiv:2302.04761. 476

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, 477
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji- 478
Rong Wen. 2025. R1-searcher: Incentivizing the 479
search capability in llms via reinforcement learning. 480
Preprint, arXiv:2503.05592. 481

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi- 482
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, 483
Bowen Li, Jaskirat Singh, and 1 others. 2024. Open- 484
hands: An open platform for ai software developers 485
as generalist agents. In The Thirteenth International 486
Conference on Learning Representations. 487

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, 488
and Yiming Yang. 2025. Inference scaling laws: An 489
empirical analysis of compute-optimal inference for 490
problem-solving with language models. Preprint, 491
arXiv:2408.00724. 492

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 493
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 494
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2. 495
5 technical report. arXiv preprint arXiv:2412.15115. 496

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 497
Shafran, Karthik Narasimhan, and Yuan Cao. 2023. 498
React: Synergizing reasoning and acting in language 499
models. Preprint, arXiv:2210.03629. 500

A Appendix 501

A.1 Code and Dataset 502

Our training data and code are available in the Sup- 503

plementary Material. 504

A.2 Training Configuration 505

Loss Masking. To prevent the student model 506

from learning incorrect patterns from unsuccess- 507

ful attempts, we exclude specific segments of tra- 508

jectories from the loss calculation. Specifically, 509

trajectory segments occurring before a transition 510

from incorrect to correct reasoning (i.e., t−+) are 511

omitted. Additionally, any code blocks resulting in 512

execution errors are also excluded from influencing 513

the loss computation. 514

6

https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2503.09516
https://aclanthology.org/2024.lrec-main.1003/
https://aclanthology.org/2024.lrec-main.1003/
https://aclanthology.org/2024.lrec-main.1003/
https://aclanthology.org/2024.lrec-main.1003/
https://aclanthology.org/2024.lrec-main.1003/
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

Inference Prompt

System: A conversation between User and Assistant. The user asks a question, and the Assistant solves it.
The assistant first thinks about the reasoning process in the mind and then provides the user with the answer.
The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer> answer here </answer>.
The final answer should be enclosed within boxed tags, i.e., answer here .
Meanwhile, you can use Python code to help you reasoning. The code should be enclosed within <code> </code> tags.
For example, <code> code here </code>.
A executor will run the code and provide feedback immediately after the code. The executor feedback should be
enclosed within <executor> </executor> tags.
You can use the executor feedback to improve your reasoning.

Figure 2: Inference Prompt. The system prompt used to guide the model during inference. Instructions highlighted
in brown indicate guidance specific to tool usage.

Hyperparameters. For training the student515

model Agentic-R1, we use 4 × A6000 GPUs over516

a total of 12.7 hours. The model is trained for 4517

epochs using the AdamW optimizer (Loshchilov518

and Hutter, 2017) with a learning rate of 1× 10−5.519

We set the maximum context length to 16,384 to-520

kens and discard any training examples that exceed521

this limit.522

A.3 Dataset Details523

A.3.1 Problem Filtering Heuristics524

To curate a training dataset that can guide a student525

model in learning when to apply agentic versus526

pure text-based reasoning, we construct two subsets527

of mathematical problems.528

Agentic-Favored Subset. We identify problems529

where tool use is highly beneficial using two heuris-530

tics:531

• Numerical Scale: Problems whose final inte-532

ger answers exceed an absolute value of 1, 000533

often require non-trivial arithmetic operations534

or algorithms that are more suitable for tool-535

assisted computation.536

• Difficulty Under Constraints: We use a base-537

line text reasoning-only model, Deepseek-r1-538

Distill-7b, with a limited context length (4096539

tokens). Problems unsolvable under these con-540

straints are deemed more difficult and suitable541

for agentic strategies.542

Pure Reasoning-Favored Subset. To balance543

the dataset, we include problems in which agent ex-544

ecution is error-prone. These are selected by identi-545

fying the cases where the tool-assisted method fails546

and produces incorrect output.547

We apply this selection process to DeepMath-548

103K (He et al., 2025) and balance the two subsets549

to ensure that the model sees roughly equal repre-550

sentation from both strategies during training.551

A.3.2 Dataset Scale 552

type s1, s2 = 1, 1 s1, s2 = 1, 0 s1, s2 = 0, 1

number 685 600 1393

Table 3: Dataset Scale. We report the number of train-
ing examples in each correctness category.

After running the two teachers on the filtered 553

subset and compositing the trajectories, the final 554

distilled dataset contains 2, 678 examples. The de- 555

tailed number for each correctness category is listed 556

in Tab. 3. 557

A.3.3 License 558

Our training dataset is constructed based on exist- 559

ing datasets, language models, and software. The 560

following lists the relevant resources and their cor- 561

responding licenses: 562

• Openhands: An open-source agent framework 563

under the MIT License; 564

• Deepseek-R1: An open-source language 565

model under the MIT License; 566

• Claude-3-5-Sonnet: A commercial language 567

model under a proprietary license; accessible 568

via the Anthropic API and supported cloud 569

platforms; 570

• MATH500: An open-source math dataset un- 571

der the MIT License; 572

• DeepMath: An open-source math dataset un- 573

der the MIT License. 574

All third-party resources were used in accordance 575

with their licenses and intended use, as publicly 576

specified. Our own model and dataset will be re- 577

leased under the MIT License. 578

7

A.4 Composition Trajectory579

A.4.1 Transition Segment580

When the teacher changes, a hand-designed transi-581

tion segment is added to signify and point out the582

meaning of the transition. There are three typical583

transition segments t, which are shown in Table 4.584

Meaning Content

tool (×) → text (✓) Wait, the code is not
correct, let’s try text
reasoning.

text (×) → tool (✓) Wait, use text reasoning is
too tedious, let’s try code
reasoning.

A (✓) → B (✓) Wait, we can also use
{B}-reasoning as an
alternative way to verify
the solution.

Table 4: Transition Segment. The transition segments
are used to connect trajectories from different teachers.
‘Tool’ and ‘text’ in the table represent agentic and pure
text reasoning strategies, respectively. ✓ and × mean
whether the trajectory is correct or not.

585

A.4.2 Trajectory Composition586

Implementation587

To transform multiturn agentic trajectories from588

OpenHands logs into a suitable training for-589

mat, we extract content from log fields la-590

beled ‘thought’, ‘code’, and ‘final thought’591

along with their associated executor feedback if592

any. Each extracted segment is then enclosed593

within distinct resource tags—<think></think>,594

<code></code>, <answer></answer> or <ex-595

ecutor></executor>—and concatenated sequen-596

tially. For reasoning trajectories from Deepseek-597

R1, we specifically apply the <answer></answer>598

tag to segments that lie outside the long-chain-599

of-thought reasoning portion (i.e., beyond the600

<think></think> segment).601

We aim for the student model to inherently se-602

lect the most efficient strategy, and we adopt the603

average number of inference tokens consumed for604

the efficiency measure. Thus, we enforce a token605

budget on the first teacher’s inference: if y1 does606

not complete within a randomly determined infer-607

ence budget L0 (sampled between 3072 and +∞),608

the inference is stopped and labeled unsuccessful.609

Conversely, we do not impose any token budget610

constraint on y2.611

During preliminary experiments, we observed 612

substantial differences in the distributional char- 613

acteristics between OpenHands trajectories (πA) 614

and Deepseek-r1 trajectories (πR). To avoid per- 615

formance degradation of y2 due to potential con- 616

tamination from combined inputs, we assume con- 617

ditional independence and explicitly define the 618

teacher model inference policy as π(· | x, y1) = 619

π(· | x). 620

A.5 Qualitative Example 621

We observed that Agentic-R1 shows several 622

promising behaviors: (1) The model initially adopts 623

tool-aided reasoning, but results in wrong results 624

after several attempts, and then the model automat- 625

ically switches to text reasoning and finally derives 626

the correct answer (Fig. 6); (2) The model initially 627

tries to apply text reasoning for a combinatorial 628

problem, and then change to tool-aided reasoning 629

to reduce computational complexity (Fig. 7). 630

A.6 Inference Details 631

For all evaluation experiments, we use the VLLM 632

framework (Kwon et al., 2023) to enable fast infer- 633

ence via prefix caching, which significantly accel- 634

erates multiturn tool calling. In the tool-augmented 635

setting, the language model is allowed to invoke a 636

Python executor up to 10 times per problem, with 637

each execution capped at 3 seconds. During in- 638

ference, whenever the model outputs the special 639

token </code>, the generation process is temporar- 640

ily paused, the preceding code block is executed, 641

and the resulting feedback is appended to the on- 642

going generation enclosed with <executor> </ex- 643

ecutor> before resuming inference. Although tool 644

execution introduces up to 30 seconds of additional 645

runtime per query, this cost is relatively small com- 646

pared to the time-intensive pure text reasoning pro- 647

cess, which can take several minutes to reach a con- 648

clusion using Deepseek-r1-Distill-7b on 2×A6000 649

GPUs. Additionally, the prompt template is listed 650

in Fig 2. 651

For evaluation, we adopt Math-Verify (Hugging- 652

Face, 2025) to judge the correctness of models’ 653

outputs. 654

A.7 Full Results 655

We report the performance trend of different mod- 656

els tested in various budgets. Please refer to Fig. 4 657

for individual benchmarks and Fig. 3 for the aver- 658

age. 659

8

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Budget

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
Ac

cu
ra

cy

0.352

0.473

0.630

0.329 0.330 0.331

0.397 0.395 0.395
0.413

0.502

0.636
Average Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)

Figure 3: Average accuracy across benchmarks under
various budgets.

B Related Work660

Tool-Augmented Reasoning. Integrating exter-661

nal tools into language model chain-of-thoughts662

has substantially improved accuracy on numerical663

and factual tasks. Early program-aided methods664

such as PaL (Gao et al., 2023) and PoT (Chen665

et al., 2023) demonstrated significant gains by666

converting reasoning steps into executable pro-667

grams, delegating precise computations to code668

interpreters. Other lines of work, including We-669

bGPT (Nakano et al., 2022) and ReAct (Yao et al.,670

2023), introduced agent-like reasoning frameworks671

that interleave tool invocation (e.g., web searches672

or API calls) within multi-step reasoning. Tool-673

former (Schick et al., 2023) further generalized674

this approach by training language models to self-675

supervise API calls across various tasks such as676

arithmetic, translation, and retrieval. However, un-677

like DualDistill, these methods typically rely on678

short chain-of-thoughts primarily using prompting679

or heuristic-based tool invocation, lacking mech-680

anisms for automatically balancing pure long rea-681

soning against tool use based on task complexity.682

Long Chain-of-Thought Reasoning. Recent ap-683

proaches have highlighted significant performance684

improvements by scaling inference-time chain-of-685

thought length. OpenAI’s O1 (OpenAI et al., 2024)686

and DeepSeek-R1 (Guo et al., 2025) used outcome-687

driven reinforcement learning to generate exten-688

sive reasoning trajectories, substantially outper-689

forming shorter-CoT baselines on complex math690

and reasoning benchmarks. Similarly, S1 (Muen-691

nighoff et al., 2025) and L1 (Aggarwal and Welleck,692

2025) demonstrated scaling curves showcasing a693

log-linear relationship between performance and694

inference compute. Empirical evidence supports695

that increased inference compute can often yield696

more cost-effective gains than increased model size697

alone (Wu et al., 2025). Nonetheless, long-CoT698

models frequently encounter overthinking i.e, gen- 699

erating overly long reasoning that leads to redun- 700

dant or incorrect outcomes, especially in tool use 701

scenarios, in a phenomenon known as reasoning- 702

action dilemma (Cuadron et al., 2025). Our work 703

addresses these issues by teaching a student model 704

when to switch between internal reasoning and tool- 705

based execution adaptively. 706

Reasoning Models with Tool-Calling. Recently, 707

some works have explored the idea of combin- 708

ing long-form reasoning with explicit tool invo- 709

cation. R1-Searcher (Song et al., 2025) and Search- 710

R1 (Jin et al., 2025) introduced reinforcement- 711

learning-based retrieval policies within reasoning 712

loops, achieving substantial performance improve- 713

ments on open-domain question answering tasks. 714

However, unlike these methods, DualDistill is 715

specifically tailored for math tasks. Similarly, Re- 716

Tool (Feng et al., 2025) trained a reasoning model 717

with tool-calling for math tasks. However, unlike 718

these approaches that rely on expensive and unsta- 719

ble reinforcement learning techniques, DualDistill 720

is a simple distillation approach, leading to a more 721

data efficient and practical training setup. 722

Distillation in Large Language Models. Knowl- 723

edge distillation is widely used to transfer capabili- 724

ties from larger models to smaller, more efficient 725

ones (Sanh et al., 2019; Hsieh et al., 2023). Re- 726

cent extensions include multi-teacher distillation 727

frameworks, which aggregate knowledge from mul- 728

tiple similar-structured teachers (Li et al., 2024). 729

Nevertheless, existing distillation works typically 730

assume homogeneous teacher models or single- 731

modal reasoning paradigms. In contrast, our pro- 732

posed DualDistill explicitly utilizes heterogeneous 733

teacher models—one specialized in agentic tool- 734

use and another in pure textual reasoning—and 735

proposes an innovative way to compose trajecto- 736

ries that guide the student to effectively learn and 737

combine from both of the two strategies. 738

C Use of AI Assistants 739

For this project, we use AI assistants for paper edit- 740

ing (e.g., grammar, spelling, word choice) and to 741

assist with the running of experiments (e.g., script- 742

ing, automation support). 743

D Potential Risks 744

Our work focuses on a model distillation frame- 745

work for mathematical reasoning tasks, using syn- 746

9

thetic and publicly available data. It does not747

involve deployment or the use of personal data.748

Therefore, we do not identify significant risks re-749

lated to safety, privacy, fairness, or security within750

the current scope.751

One potential data-related risk arises from the752

distillation of the teacher models. Although our753

training data is public, trajectory distillation may754

produce misleading or hallucinatory content. Such755

distilled data may require filtering if applied to756

sensitive domains in future work.757

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Budget

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

0.205

0.347

0.563

0.172 0.172 0.175

0.345 0.347 0.345
0.308

0.375

0.618
DeepMath-Large Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)

(a) Results on DeepMath-Large.

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Budget

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
cu

ra
cy

0.265

0.345

0.445

0.215 0.218 0.218

0.287 0.289 0.289
0.315

0.371

0.509
Combinatorics300 Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)

(b) Results on Combinatorics300.

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Budget

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

0.759

0.828

0.888

0.751 0.751 0.752

0.683 0.684 0.684

0.759

0.802
0.825

MATH500 Accuracy (5 seeds)
DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)

(c) Results on MATH500.

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Budget

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

0.093

0.233

0.407

0.080 0.080 0.080

0.153 0.147 0.147
0.173

0.293

0.407
AIME2025 Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)

(d) Results on AIME.

1448 2048 2896 4096 5792 8192 11585 16384 23170 32768
Budget

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

0.441

0.612

0.848

0.427 0.429 0.429

0.516 0.508 0.5080.511

0.667

0.822
AMC Accuracy (5 seeds)

DeepSeek-R1-Distill-Qwen-7B
Qwen2.5-7B-Instruct (w.o. tool)
Qwen2.5-7B-Instruct (w. tool)
Agentic-R1-7B (Ours)

(e) Results on AMC.

Figure 4: Performance trend of different tested models
under various budgets on the five benchmarks.

10

Agentic Trajectory Example

User: For real numbers x and y, define ∇(x, y) = x− 1

y
. Evaluate ∇(2,∇(2,∇(2, . . .∇(2,∇(2, 2)) . . .)))︸ ︷︷ ︸

2016∇s

=
m

n

for relatively prime positive integers m and n, and compute 100m+ n.

Model:
<think>
Let me help solve this step by step.
1) Let’s understand what we’re calculating:
* We have a function ∇(x, y) = x− 1

y

* We’re nesting this function 2016 times
* Each time, the first argument is 2
* The innermost y starts with 2
2) Let’s try to see if there’s a pattern by calculating the first few terms: Let’s write a Python program to help us:
</think>
<code>

def nabla(x, y):
return x - 1/y

Let 's calculate first several terms
result = 2 # Starting value
for i in range (10): # First 10 iterations

result = nabla(2, result)
print(f\"After {i+1} iterations: {result }\")

</code>
<executor>

After 1 iterations: 1.5
... (omitted) ...
After 10 iterations: 1.0909090909090908

</executor>
<think>
Looking at the pattern, it seems the values are converging. Let’s try to understand what’s happening:
1) Let’s call the sequence an where a1 = 2 and an+1 = ∇(2, an)
2) For any term after the first: an+1 = 2− 1

an

3) If this sequence converges to some value L, then: L = 2− 1
L

4) This gives us: L2 = 2L− 1, L2 − 2L+ 1 = 0, (L− 1)2 = 0, L = 1
5) Let’s verify this is indeed what we get after 2016 iterations:
</think>
<code>

result = 2 # Starting value
for i in range (2016):

result = nabla(2, result)
print(f\"After 2016 iterations: {result }\")
Let 's convert to fraction
from fractions import Fraction
final = Fraction(result).limit_denominator ()
print(f\"\
As a fraction: {final }\")
Calculate 100m + n
m = final.numerator
n = final.denominator
print(f\"\
100m + n = {100*m + n}\")

</code>
<executor>

After 2016 iterations: 1.0004957858205237
As a fraction: 2018/2017
100m + n = 203817

</executor>
<think>
After 2016 iterations, we get 2018

2017
, and 100m+ n = 203817. Let’s verify these numbers are correct:

1) 2018 and 2017 are indeed relatively prime (2017 is prime)
2) The value is very close to but slightly larger than 1, which matches our convergence analysis
3) For 100m+ n: 100(2018) + 2017 = 203817

Therefore, 203817
</think>
<answer> 203817 </answer>

Figure 5: An example agentic trajectory derived from Openhands.

11

Agentic-R1 Behavior I

User: Evaluate the limit:

lim
n→∞

n

√
n(4n) + (4n)n

[(
2 +

1

n2

)18

−
(
4 +

4

n2

)9
]

Model:
<think>
Let me break this down and solve it step by step.
... (Omitted) ...
Let me write some code to help verify these observations.
</think>
<code>

import numpy as np
def first_expr(n):

return (n**(4*n) + (4*n)**n)**(1/n)
def second_expr(n):

return (2 + 1/n**2) **18 - (4 + 4/n**2) **9
Let 's test for large n
n = 1000
print(f"First expression for n={n}: {first_expr(n)}")
print(f"Second expression for n={n}: {second_expr(n)}")

</code>
<executor>

OverflowError: int too large to convert to float

</executor>
<think>
Let me modify the code to use logarithms to better understand the growth:
</think>
<code>

... (Omitted) ...
print(f"Log of first expression grows like {log_first_expr (1000) /1000}")
print(f"Log of second expression grows like {log_second_expr (1000) }")

</code>
<executor>

Log of first expression grows like 10.907755278982137
Log of second expression grows like 0.0

</executor>
<think>
Let me analyze this:
... (Omitted) ...
Let me verify this with very large n:
</think>
<code>

n = 10**10
first = (n**(4*n) + (4*n)**n)**(1/n)
second = (2 + 1/n**2) **18 - (4 + 4/n**2) **9
print(f"First expression = {first }") # This will show as inf , but we know it grows like n^4
print(f"Second expression = {second }") # Should approach 0

</code>
<executor>

Error: Code execution timed out.

</executor>
<think>
... (Omitted) ...
Wait, the code is not correct, let’s try text reasoning.
Okay, so I need to evaluate this limit:
... (Omitted) ...
However, 2^16 is 65536, and 65536 * 9 is indeed 589,824. So, perhaps the answer is 589,824.
</think>
<answer> 589, 824 </answer>

Figure 6: Example Behavior I of Agentic-R1. The model initially attempts to solve the problem using the tool to
compute a limit expression, but fails after several attempts. Notably, it then transitions to a pure text-based reasoning
strategy and successfully arrives at the correct solution.

12

Agentic-R1 Behavior II

User: Determine the number of tuples (k1, k2, . . . , k26) such that each ki is either 0, 1, or 3, and the sum k1 + k2 +
. . .+ k26 = 15.
Model:
<think>
Okay, so I need to figure out how many 26-tuples there are where each element is either 0, 1, or 3, and the total sum is
15.
... (Omitted) ...
Let me compute each term step by step.
First, y=0:
x=15, y=0. Then the number of tuples is C(26,15)*C(11,0). C(26,15) is the same as C(26,11) because C(n,k) = C(n,
n-k). So C(26,11). C(11,0) is 1. So total is C(26,11).
Similarly, y=1:
x=12, y=1. Number of tuples is C(26,12)*C(14,1). C(26,12) is the same as C(26,14). C(14,1) is 14. So total is
14*C(26,14).
Wait, use text reasoning is too tedious, let’s try code reasoning.
</think>
<think>
Let me think about this problem systematically.
Let’s break this down:
1) We need to find the number of 26-tuples where each element is 0, 1, or 3
2) The sum of all elements must be 15
3) This is a constrained counting problem that can be solved using dynamic programming
4) Let’s use Python to implement a solution
5) We’ll need to:

- Create a 2D DP table where dp[i][j] represents the number of ways to make sum j using first i numbers
- For each position i, we can use 0, 1, or 3
- We’ll build this up from 0 to 26 numbers
- The final answer will be in dp[26][15]

</think>
<code>

def count_tuples ():
dp[i][j] represents number of ways to make sum j using first i numbers
dp = [[0] * 16 for _ in range (27)] # 27 numbers (0-26) and sums 0-15
Base case: 0 numbers can only make sum 0
dp [0][0] = 1
for i in range(1, 27):

for j in range (16):
if j >= 0: dp[i][j] += dp[i-1][j] # Try adding 0
if j >= 1: dp[i][j] += dp[i-1][j-1] # Try adding 1
if j >= 3: dp[i][j] += dp[i-1][j-3] # Try adding 3

return dp [26][15]
result = count_tuples ()
print(f"The number of valid 26-tuples is: {result }")

</code>
<executor>

The number of valid 26-tuples is: 853423740

</executor>
<think>
Let me verify this result with another approach to make sure it’s correct:
</think>
<code>

... (Omitted) ...
verified_result = verify_result ()
print(f"Verified result: {verified_result }")

</code>
<executor>

Verified result: 853423740

</executor>
<think>
I have verified the result using two different approaches and both give the same answer.
</think>
<answer> 853, 423, 740 </answer>

Figure 7: Example Behavior II of Agentic-R1. The model first attempts to solve the combinatorial problem via
text-based reasoning, but switches to tool-assisted reasoning due to computational complexity. It then implements a
dynamic programming algorithm to solve the problem efficiently and verify the result.

13

	Introduction
	Related Work
	Method
	Trajectory Composition
	Training Instance Selection
	Teacher and Student Models

	Experiments
	Benchmarks
	Baselines
	Evaluation Metrics
	Results
	Ablation Study

	Conclusion
	Appendix
	Code and Dataset
	Training Configuration
	Dataset Details
	Problem Filtering Heuristics
	Dataset Scale
	License

	Composition Trajectory
	Transition Segment
	Trajectory Composition Implementation

	Qualitative Example
	Inference Details
	Full Results

	Related Work
	Use of AI Assistants
	Potential Risks

