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Abstract

This study introduces the Semantic Tex-001
tual Similarity Pseudo-Label Semi-Supervised002
Clustering (STSPL-SSC) framework. The003
STSPL-SSC framework is designed to tackle004
the prevalent issue of scarce labeled data005
by combining a Semantic Textual Similarity006
Pseudo-Label Generation process with a Ro-007
bust Contrastive Learning module. The pro-008
cess begins with employing k-means clustering009
on embeddings for initial pseudo-Label alloca-010
tion. Then we use a Semantic Text Similarity-011
enhanced module to supervise the secondary012
clustering of pseudo-labels using labeled data013
to better align with the real clustering centers.014
Subsequently, an Adaptive Optimal Transport015
(AOT) approach fine-tunes the pseudo-labels.016
Finally, a Robust Contrastive Learning module017
is employed to foster the learning of classifi-018
cation and instance-level distinctions, aiding019
clusters to better separate. Experiments con-020
ducted on multiple real-world datasets demon-021
strate that with just one label per class, cluster-022
ing performance can be significantly improved,023
outperforming state-of-the-art models with an024
increase of 1-6% in both accuracy and normal-025
ized mutual information, approaching the re-026
sults of fully-labeled classification.027

1 Introduction028

With Large Language Models (LLM) and Pre-029

trained Language Models (PLM) advancing rapidly,030

downstream tasks are increasing, demanding larger031

datasets, especially in early-stage businesses or spe-032

cialized domains. These settings often lack labeled033

data, hindering traditional algorithms. Obtaining034

task-specific labels is time-consuming and costly,035

leading researchers to explore unsupervised text036

clustering. However, such methods require prior037

knowledge of clustering categories and suffer from038

uncontrollable clustering centers. Semi-supervised039

learning under small samples offers a promising040

solution.041

Few-Shot Learning (FSL) (Wang et al., 2020) 042

efficiently categorizes data into meaningful cat- 043

egories with minimal labeled examples. Unlike 044

traditional learning methods that rely on large vol- 045

umes of labeled data to train models. This is par- 046

ticularly valuable in scenarios where labeled data 047

is scarce or costly to obtain, but unlabeled data is 048

abundant. 049

Pseudo-labeling generates artificial labels for un- 050

labeled data, aiding training in few-shot learning 051

scenarios (Cascante-Bonilla et al., 2021). This ap- 052

proach leverages the model’s own predictions to 053

assign labels to unlabeled instances, effectively us- 054

ing the model’s current understanding to augment 055

its training data. In few-shot learning, where la- 056

beled examples are minimal, pseudo-label can sig- 057

nificantly enhance the learning process by provid- 058

ing a larger, albeit synthetically labeled, dataset. 059

This method allows for iterative refinement of the 060

model’s performance, as the pseudo-label data 061

helps bridge the gap between the scarcity of la- 062

beled examples and the abundance of unlabeled 063

data. It is particularly valuable in few-shot learning 064

as it circumvents the limitation of having only a 065

few labeled examples, enabling models to learn 066

more complex patterns and improve generalization 067

capabilities. 068

In this study, we introduce the Semantic text 069

similarity-enhanced Pseudo-Label Enhanced Clus- 070

tering (STSPL-SSC) framework, a novel semi- 071

supervised learning approach aimed at overcoming 072

the limitations posed by scarce labeled data across 073

various domains. Unlike traditional methods, 074

STSPL-SSC integrates Semantic text similarity- 075

enhanced Pseudo-Label Generation with Robust 076

Contrastive Learning to refine the clustering pro- 077

cess effectively. The framework begins by apply- 078

ing k-means clustering on embeddings to generate 079

initial pseudo-labels for each data point. A subse- 080

quent refinement process, guided by the Semantic 081

text similarity between authentically labeled and 082
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pseudo-label data, improves the pseudo-labels’ ac-083

curacy. This is achieved by employing secondary084

clustering that not only enhances the clustering085

effectiveness but also adjusts the pseudo-label to086

align more closely with the actual clustering centers087

through Adaptive Optimal Transport (AOT).This088

is achieved through secondary clustering, which089

not only improves clustering effectiveness but also090

adjusts the pseudo-label to align more closely with091

the actual clustering centers using Adaptive Opti-092

mal Transport (AOT). Additionally, STSPL-SSC093

incorporates a Robust Contrastive Learning mod-094

ule that generates augmentation pairs, facilitating095

the learning of both categorical and instance-level096

distinctions. This innovative method significantly097

bolsters the framework’s robustness against im-098

balanced and noisy datasets, ensuring more reli-099

able clustering outcomes. Through extensive ex-100

periments conducted on eight short text clustering101

datasets, STSPL-SSC demonstrates superior per-102

formance, highlighting its effectiveness in semi-103

supervised learning for short text clustering.104

2 Related work105

2.1 Semi-Supervised Few-Shot106

In the the few-shot scenario, semi-supervised learn-107

ing is a good solution. Recent research efforts108

have explored the application of semi-supervised109

learning to address the few-shot problem: (Hadifar110

et al., 2019) leveraged an effective Self-Training111

(ST) method within the realm of semi-supervised112

learning. Similarly, (Xu et al., 2023) employed113

LLMs to synthesize data and utilized Self-Training114

to learn features from the synthesized data. They115

utilized assignments from a clustering algorithm as116

supervision to update the weights of the encoder117

network.118

In our research, we opted for real data to en-119

sure minimal errors stemming from external factors.120

Following the paradigm of Self-Training, we opti-121

mize the overall training process using Semantic122

text similarity.123

2.2 Pseudo-Label124

Pseudo-label generates predicted labels for unla-125

beled data, enhancing learning performance with126

limited annotated data. However, the accuracy of127

pseudo-labels directly impacts the model’s gener-128

alization ability, as inaccurate pseudo-labels may129

lead to performance degradation.130

There are several common practices: one method131

(Wang et al., 2021; Tsai et al., 2022) is based on 132

a self-training strategy, where the basic model is 133

first trained on labeled data and then the model 134

is retrained on unlabeled data and labeled with 135

high-confidence pseudo-labels. Another approach 136

(Sohn et al., 2020) combines the idea of coherence 137

learning, which employs unlabeled data to enhance 138

model robustness under data perturbation. Building 139

on these approaches (Yang et al., 2023)develops 140

previous pseudo-labeling research using prototype 141

learning, which enhances text representations by 142

clustering them using prototypes for low-density 143

separation, and mitigating unbalanced class bias 144

through prototype-guided pseudo-labeling. 145

In our study, we utilize semantic similarity en- 146

hancement and Adaptive Optimal Transport (AOT) 147

to optimize the generation of pseudo-labels, ensur- 148

ing that the obtained pseudo-labels closely resem- 149

ble the labeled data. 150

2.3 Baseline Articles 151

Our methodology references and improves upon 152

the methods in these two articles. (Zhang et al., 153

2021) proposed the Supporting Clustering with 154

Contrastive Learning (SCCL) framework, which 155

improves clustering effectiveness by combining 156

self-supervised instance contrastive learning and 157

unsupervised clustering loss. The SCCL model 158

employs pre-trained Sentence Transformer as an 159

encoder and optimizes clustering loss and con- 160

trastive loss through end-to-end training. (Zheng 161

et al., 2023) introduced Robust Short Text Cluster- 162

ing (RSTC), which addresses data imbalance and 163

noise issues by introducing Self-Adaptive Optimal 164

Transport (SAOT) and contrastive learning. Our 165

methodology builds upon and enhances the tech- 166

niques introduced in these two papers. By lever- 167

aging semantic similarity enhancement between 168

labeled data and pseudo-labels, we obtain more in- 169

formative features, thereby improving the effective- 170

ness of subsequent AOT and contrastive learning. 171

Experimental results also validate the feasibility of 172

our approach. 173

3 Method 174

3.1 Semantic Textual Similarity Pseudo-Label 175

Semi-Supervised Clustering (STSPL-SSC) 176

The STSPL-SSC framework introduces an innova- 177

tive approach to address the challenge of limited 178

labeled datasets in various domains, a common 179

obstacle in semi-supervised learning requiring ex- 180
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Figure 1: Overall architecture of STSPL-SSC

tensive expert tuning (Ren et al., 2018). This frame-181

work combines Semantic text similarity enhanced182

Pseudo-Label Generation with Robust Contrastive183

Learning, as illustrated in Figure 1. Initially, it184

employs k-means (MacQueen et al., 1967) clus-185

tering on embeddings to assign each data point a186

pseudo-label P. This is followed by a refinement187

step where secondary clustering enhances cluster-188

ing effectiveness, guided by the Semantic text sim-189

ilarity between authentically labeled data Ld, and190

pseudo-label P. This yields improved pseudo-labels191

S, while tracking the variances between P and S. To192

enhance further clustering accuracy, Adaptive Op-193

timal Transport (AOT) is utilized to adjust pseudo-194

labels Q, closer to the true clustering centers of Ld.195

Finally, the framework introduces a Robust Con-196

trastive Learning module. This module generates197

augmentation pairs for each data point, creating198

augmented batches that facilitate the contrastive199

learning of categorical and instance-level distinc-200

tions. This method improves robustness against201

imbalanced and noisy data, leading to more stable202

clustering results.203

3.2 Semantic Textual Similarity Pseudo-Label204

(STSPL)205

The Semantic text similarity-enhanced Pseudo-206

Label Generation module, a cornerstone of the207

STSPL-SSC framework, aims to address the limi-208

tations observed in deep joint clustering methods209

such as those proposed by (Xie et al., 2016; Had-210

ifar et al., 2019; Zhang et al., 2021; Zheng et al.,211

2023). Despite their popularity, these methods face212

challenges primarily due to the lack of supervi-213

sory information, which hampers the learning of 214

discriminative representations, and their suscepti- 215

bility to degenerate solutions, especially in severely 216

imbalanced datasets (Hu et al., 2021; Yang et al., 217

2017; Ji et al., 2019). 218

Our module incorporates labeled data Ld dur- 219

ing the generation of pseudo-labels P, mirroring a 220

semi-supervised process but eliminating the need 221

for continuous expert optimization of labels. By 222

utilizing Ld as a supervisory signal, we compute 223

the cosine similarity between the embeddings of 224

Ld and the pseudo-label S to gauge their Semantic 225

text similarity. This similarity assessment helps 226

identify the deviation of clustering centers from 227

Ld, thereby enhancing pseudo-label generation and 228

the adaptive optimal transport (AOT) process. 229

This module unfolds in three primary steps as 230

depicted in Figure 1: Step 1 involves clustering as- 231

signment where initial pseudo-labels are assigned. 232

In Step 2, a semi-supervised Semantic text simi- 233

larity enhancement process leverages the labeled 234

data Ld to refine the pseudo-label S, enhancing 235

their accuracy and relevance. Finally, Step 3 ap- 236

plies AOT to adjust the clustering centers closer 237

to Ld, further refining the pseudo-labels. This ap- 238

proach addresses the challenges of label scarcity 239

and clustering center deviation. 240

3.2.1 Clustering assignment 241

The objective of the clustering assignment is to cat- 242

egorize samples with a null label through an initial 243

unsupervised clustering, aiming to derive predic- 244

tive values for the original texts. To accomplish 245

this, we employ the BGE-M3 model (Xiao et al., 246
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2023) as the encoding network Φ, which is pivotal247

due to the crucial role of Semantic text similarity248

enhancement. The effectiveness of utilizing an ad-249

vanced pre-trained model for word embeddings is250

confirmed by our experiments. We innovatively251

combine semantic similarity into the optimization252

and clustering of pseudo-labels to obtain better clus-253

tering results.254

The encoding process can be formalized as255

E = Φ(X) ∈ RN×D1 , where X denotes the origi-256

nal text, E the encoded representation, N the batch257

size, and D1 the dimensionality of the representa-258

tion.259

Subsequently, a fully connected layer, serving260

as the clustering network Gp, is utilized to predict261

the clustering assignment probabilities: Gp(E) =262

P ∈ RN×C , where C represents the number of263

categories. It is essential to highlight that within264

this module, both the encoding network Φ and the265

clustering network Gp are kept constant.266

3.2.2 Semi-supervised Semantic text similarity267

enhancement268

The aim of semi-supervised Semantic text simi-269

larity enhancement is to enhance the clustering270

assignment outcomes from Step 1. By discerning271

the extent of deviation from the labeled data, this272

process attempts to draw cluster centers nearer to273

the labeled data, hence mitigating the challenges274

posed by unknown category distributions. Secur-275

ing more reliable pseudo-labels is a significant con-276

cern in such scenarios. Common semi-supervised277

methods combine supervised learning with unsu-278

pervised learning in deep neural networks (Rasmus279

et al., 2015), or use self-training (ST) (Artetxe et al.,280

2018; Cai and Lapata, 2019; Gera et al., 2022) ap-281

proaches typically focus on using student-teacher282

models to assign pseudo-labels to the unlabelled283

data, thereby improving accuracy. we compute the284

cosine similarity between the embeddings of Ld285

and the pseudo-label P to gauge their Semantic text286

similarityto get the new pseudo-label S.287

The reason for choosing semantic text similarity288

lies in its similarity to clustering principles, involv-289

ing computation of vector differences. It is capa-290

ble of deeply exploring the distances between the291

pseudo-labels P assigned post-clustering and each292

labeled data Ld. P will undergo cosine similarity293

calculation with each Ld to obtain the most similar294

one, recording the new label as the pseudo-label S.295

The formula is expressed as follows:296

S = argmaxP

(
P · Ld

∥P∥2||Ld||2

)
(1) 297

3.2.3 Adaptive Optimal Transport (AOT) 298

Method 299

We refer to the AOT method as outlined in RSTC. 300

The Adaptive Optimal Transport (AOT) method is 301

designed to optimize pseudo-label generation by 302

solving a discrete optimal transport (OT) problem. 303

This process involves several key components and 304

parameters as described below. The AOT optimiza- 305

tion problem is formulated as: 306

min
π,b

⟨π,M⟩+ ϵ1H(π) + ϵ2(Ψ(b))T 1 (2) 307

subject to the constraints π1 = a, πT 1 = b, π ≥ 0, 308

and bT 1 = 1, where the objective function aims 309

to minimize the transportation cost between the 310

probability mass of samples and classes, adjusted 311

by entropy regularization and a penalty function 312

related to class distribution. 313

After obtaining π, pseudo-labels can be gener- 314

ated via an argmax operation as follows: 315

Qij =

1, if j = argmax
j′

πij′ ,

0, otherwise.
(3) 316

This operation ensures that each sample is as- 317

signed to the class with the highest probability, 318

resulting in a one-hot encoded pseudo-label matrix 319

Q. 320

Hyperparameters Description: 321

• ϵ1 and ϵ2 are balance hyper-parameters that 322

regulate the impact of entropy regularization 323

and the penalty function, respectively, allow- 324

ing for a flexible adjustment to accommodate 325

various data characteristics. 326

• Ψ(b) = − log b − log(1 − b) is the penalty 327

function that addresses the distribution of 328

classes by penalizing extreme values of b, 329

thereby encouraging a more uniform distri- 330

bution of class assignments and preventing 331

clustering degeneracy. 332

• H(π) = ⟨π, log π − 1⟩ represents the en- 333

tropy regularization term, which smoothens 334

the transport plan by discouraging overly 335

sparse solutions, thus facilitating a more ro- 336

bust pseudo-label generation process. 337
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• a = 1
N 1 signifies the uniform distribution338

of samples, ensuring that each sample con-339

tributes equally to the transport process.340

• b indicates the initially unknown class distri-341

bution.342

3.3 Robust Contrastive Learning module343

In the Robust Contrastive Learning module, we344

employ instance augmentation techniques to ex-345

pand the set of examples and introduce noise to346

the model, thereby improving its robustness. This347

is inspired by a body of research that underscores348

the utility of text augmentation in enhancing model349

resilience across various settings, as discussed by350

(Wenzel et al., 2022). Further inspiration comes351

from (Chen et al., 2020; Zhang et al., 2021; Dong352

et al., 2022), and the RSTC framework (Zheng353

et al., 2023), which suggests that post-pseudo-label354

clustering can exploit instance-level contrastive355

learning with augmented positive and negative sam-356

ples to facilitate cluster consolidation and separa-357

tion.358

For implementation, contextual augmenters359

(Kobayashi, 2018; Ma, 2019) generate two aug-360

mented versions of the original text, termed X(1)361

and X(2). Considering the entire framework uti-362

lizes BGE-M3 for embedding analysis, the same363

method for generating word embeddings is adopted364

here. This yields augmented representations E(1)365

and E(2), denoted as E(1) ∈ RN×D1 , E(2) ∈366

RN×D1 , where N is the batch size and D1 is367

the dimensionality of the embeddings. These368

are followed by k-means clustering to obtain pre-369

dicted values P (1) and P (2), expressed as P (1) ∈370

RN×C , P (2) ∈ RN×C , where C is the number371

of clusters. A fully connected layer, serving as372

the projection network Gz , maps these represen-373

tations to a new space, facilitating the application374

of instance-level contrastive loss. The projected375

representations Z(1) and Z(2) are thus Z(1) ∈376

RN×D2 , Z(2) ∈ RN×D2 , with D2 representing the377

dimensionality of the new space.378

In category-level contrastive learning, we aim379

for the consistency of cluster predictions between380

augmentations deemed as positive pairs. Two aug-381

mentations from the same original text are treated382

as a positive pair, with a contrastive task defined on383

these pairs. The pseudo-label Q serve as the target384

for the augmented texts, with the Ld acting as the385

ultimate target. The discrepancy between Q and386

Ld, represented as α, is calculated as: 387

α =
Q− S

N
(4) 388

This discrepancy α plays a positive role in the 389

computation of the category-level contrastive loss, 390

which is defined subsequently. 391

LC = α× 1

N

(
∥Q− logP (1)∥+ ∥Q− logP (2)∥

)
(5) 392

Instance-level contrastive learning seeks to en- 393

hance the consistency between the projection rep- 394

resentations of positive augmentation pairs while 395

maximizing the distance between those of negative 396

pairs. For a batch of 2N augmented texts, their 397

projection representations are Z = [Z(1), Z(2)]T . 398

In this batch, for any positive pair (two augmented 399

texts derived from the same original text), the re- 400

maining 2(N − 1) augmented texts are treated as 401

negative samples. The loss function for a positive 402

pair (i, j), where i and j come from the same orig- 403

inal text and the rest are considered negatives, is 404

defined as: 405

ℓ(i, j) = − log
exp(sim(Zi, Zj)/τ)∑2N

k=1 1{k ̸=i} exp(sim(Zi, Zk)/τ)
(6) 406

Within this framework, sim(Zi, Zj) denotes the 407

cosine similarity computed between Zi and Zj , and 408

τ is the temperature parameter. The instance-level 409

contrastive loss calculates the loss for all positive 410

pairs within a batch, including both (i, j) and (j, i): 411

LI =
1

2N

N∑
i=1

(ℓ(i, 2i) + ℓ(2i, i)) (7) 412

By integrating pseudo-supervised category-level 413

contrastive learning with instance-level contrastive 414

learning, we are able to derive robust representa- 415

tions that can accurately distinguish between dif- 416

ferent clusters. 417

3.4 Overall Framework 418

The total loss function of the STSPL-SSC model 419

is formulated through a combination of pseudo- 420

supervised class-level contrastive loss and instance- 421

level contrastive loss. Specifically, the overall loss 422

expression of STSPL-SSC is given by: 423

LTotal = LC + λI · LI , (8) 424

where λI represents a hyperparameter that balances 425

the two types of losses. Adopting this strategy 426
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enhances the STSPL-SSC model’s ability to han-427

dle dataset imbalances and boosts its robustness428

against data noise. The model consists of two mu-429

tually reinforcing modules that form a closed loop,430

facilitating optimization towards labeled data. As it-431

erations progress, representation learning becomes432

more robust, and clustering predictions become433

more accurate, thanks to the more reliable pseudo-434

labels obtained during the iterative process.435

The specific operational procedure is as follows:436

Initially, we use the k-means clustering algorithm437

to initialize the embedding, obtaining P , which are438

then compared with the labeled data Ld to enhance439

Semantic text similarity, generating pseudo-labels440

Q. Under the guidance of these pseudo-labels, the441

model is trained in batches to learn robust repre-442

sentations. Throughout the training process, we443

dynamically update the Q values using the logarith-444

mic distribution method proposed by (YM. et al.,445

2020). Finally, by examining the column indices446

corresponding to the maximum values in each row447

of the P matrix, we obtain the clustering assign-448

ments. Training is terminated when the changes449

in clustering assignments between two consecutive450

updates of P are less than a predefined threshold451

δ, or when the maximum number of iterations is452

reached. The threshold δ represents the baseline453

rate of change for the pseudo-labels Q; if this base-454

line is reached, the optimization improvement is455

minimal. If the maximum number of iterations456

is reached without achieving the threshold δ, it457

indicates that the model may be overfitting, with458

cluster centers unable to approach the labeled data459

Ld. Thus, the Adaptive Optimal Transport (AOT)460

continuously alters the pseudo-labels Q, indicating461

that no amount of training will result in optimiza-462

tion. This design allows the STSPL-SSC model to463

self-improve during iterations, optimizing represen-464

tation and clustering prediction accuracy, thereby465

achieving higher data processing effectiveness and466

robustness.467

4 Experiments468

In this section, we conduct experiments on real-469

world datasets to emulate the environment encoun-470

tered in actual work settings. Through these exper-471

iments, significant improvements were observed472

across all datasets, with accuracy (ACC) enhance-473

ment rates between 1-7% and Normalized Mu-474

tual Information (NMI) enhancement rates also be-475

tween 1-8%, compared to state-of-the-art short text476

clustering methods. This illustrates that under the 477

same word embedding model, our Semantic text 478

similarity-enhanced pseudo-label generation mod- 479

ule can successfully augment performance, and we 480

have experimentally determined ideal hyperparam- 481

eters. 482

4.1 Datasets 483

Detailed experiments were performed on eight 484

real-world datasets: AgNews, StackOverflow, 485

Biomedical, SearchSnippets, GoogleNews-TS, 486

GoogleNews-T, GoogleNews-S, and Tweet. 487

Among these, AgNews, StackOverflow, and 488

Biomedical are balanced datasets; SearchSnippets 489

is a mildly imbalanced dataset, while GoogleNews, 490

GoogleNews-T, GoogleNews-S, and Tweet are 491

severely imbalanced datasets. Following (Zhang 492

et al., 2021), raw data was used as input to 493

demonstrate our training process’s robustness to 494

noise, ensuring a fair comparison. Additional 495

details about the datasets are provided in Appendix 496

A.1. 497

4.2 Experimental Setup 498

Our model was implemented with PyTorch 2.0 499

(Paszke et al., 2019) and trained using the Adam 500

optimizer (Kingma and Ba, 2017). We experimen- 501

tally selected labeled data number, λI , ϵ1, ϵ2. More 502

details can be found in Appendix A.2. Following 503

prior works (Xu et al., 2017; Hadifar et al., 2019; 504

Rakib et al., 2020; Zhang et al., 2021; Zheng et al., 505

2023), since our method primarily addresses the 506

scarcity of real data, the number of clusters was set 507

to the actual number of categories, and Accuracy 508

(ACC) and Normalized Mutual Information (NMI) 509

were adopted as evaluation metrics. The precise 510

definitions of these metrics are delineated in Ap- 511

pendix A.3. All experiments were replicated five 512

times, with the average results being reported. 513

4.3 Baselines 514

We compare our proposed method with the follow- 515

ing short text clustering techniques. Bag of Words 516

(BOW) (Scott and Matwin, 1998) and TF-IDF 517

(Salton and McGill, 1983) respectively apply k- 518

means to TF-IDF and BOW representations. STC2- 519

LPI (Xu et al., 2017) initially trains word embed- 520

dings on domain-specific corpora using word2vec, 521

then employs a convolutional neural network to 522

capture text representations, with k-means applied 523

for clustering. Self-Train (Hadifar et al., 2019) fol- 524

lows (Xie et al., 2016) in using an autoencoder for 525
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representation learning, fine-tuning the encoding526

network with the same clustering objective. Differ-527

ently, it utilizes word embeddings provided by (Xu528

et al., 2017) and SIF (Arora et al., 2019) to enhance529

pretrained word embeddings, and final clustering530

assignments are obtained through k-means. SCCL531

(Zhang et al., 2021) surpasses these methods by532

leveraging SBERT (Reimers and Gurevych, 2019)533

as its backbone and introducing instance-level con-534

trastive learning to support clustering. Addition-535

ally, SCCL employs the clustering objective pro-536

posed by (Xie et al., 2016) for deep joint clustering,537

obtaining final clustering assignments through k-538

means. RSTC (Zheng et al., 2023) builds on SCCL,539

incorporating a pseudo-label generation module540

that utilizes SAOT for solution, combined with541

SCCL’s contrastive learning module to improve542

robustness against noise.543

4.4 Clustering Performance544

The comparative results across eight datasets are545

shown in Table 1. From the analysis, we iden-546

tify several key findings: Traditional text repre-547

sentations (BOW and TF-IDF) are ineffective due548

to data sparsity. Deep learning methods (STC2-549

LPI and Self-Train) surpass traditional techniques,550

demonstrating that pretrained word embeddings551

and deep neural networks mitigate sparsity issues.552

SCCL achieves improved outcomes by incorpo-553

rating instance-level contrastive learning for noise554

mitigation but is susceptible to degenerate solu-555

tions and the suboptimal application of k-means.556

RSTC, employing SBERT for word embeddings,557

outperforms prior methods, yet the clustering cen-558

ters derived from k-means do not necessarily re-559

flect labeled data, requiring iterative refinement,560

especially for dispersed datasets. STSPL-SSC sur-561

passes all baselines, evidencing the effectiveness562

of enhancing Semantic text similarity with labeled563

data for better clustering performance.564

(a) lbacc (b) lbnmi

Figure 3: Impact of labeled data number on the model

4.5 In-depth analysis 565

4.5.1 Ablation Study 566

To explore the effects of Semantic text similarity 567

and different word embeddings on STSPL-SSC’s 568

performance, we compared STSPL-SSC against 569

variants including STSPL-SSC-SS and STSPL- 570

SSC-B. STSPL-SSC-SS utilizes SBERT for word 571

embedding generation, keeping the Semantic text 572

similarity-enhanced pseudo-label generation and 573

Robust Contrastive Learning modules intact. Con- 574

versely, STSPL-SSC-B, employing BGE-M3 for 575

word embeddings, excludes the Semantic text simi- 576

larity enhancement, losing the guidance of labeled 577

data Ld in the pseudo-label Q and loss, maintain- 578

ing the Robust Contrastive Learning module. It 579

can be observed that both semantic similarity en- 580

hancement and the replacement of pre-trained word 581

embedding models have played a significant role. 582

The semantic similarity enhancement module has 583

a notable effect on severely imbalanced models. 584

The reason is that with an increase in the number 585

of dataset categories, semantic similarity enhance- 586

ment can prevent clustering degradation, thereby 587

improving clustering performance. 588

4.5.2 Visualization 589

To further demonstrate the effectiveness of the 590

key Semantic text similarity-enhanced module, 591

we employed t-SNE (van der Maaten and Hin- 592

ton, 2008) for visualizing the representations de- 593

rived from RSTC, STSPL-SSC-SS, STSPL-SSC- 594

B, and STSPL-SSC. The visualization results on 595

the SearchSnippets dataset are depicted in Figures 596

2(a)-(d). It is evident that: STSPL-SSC achieves 597

the most optimal text representations, characterized 598

by smaller intra-cluster distances and larger inter- 599

cluster distances, with only a minimal number of 600

points misclassified. The underlying reasons for 601

these observations are consistent with the findings 602

analyzed in the ablation study. 603

4.5.3 Effect of hyper-parameter 604

We investigate the impact of hyperparameters on 605

model performance, including the number of la- 606

beled data, ϵ1, ϵ2, and λI . Given that the core com- 607

ponent is the Semantic Text Similarity-enhanced 608

module, we primarily discuss the influence of the 609

number of labeled data; details on the remaining 610

hyperparameters can be found in Appendix A.4. In 611

datasets where the number of labeled data is suffi- 612

cient, we experiment with varying the number of 613

labeled data to {1, 2, 5, 10}, observing negligible 614
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AgNews SearchSnippets Stackoverflow Biomedical

Method ACC NMI ACC NMI ACC NMI ACC NMI

BOW 28.71 4.07 23.67 9.00 17.92 13.21 14.18 8.51
TF-IDF 34.39 12.19 30.85 18.67 58.52 59.02 29.13 25.12
STC2-LPI - - 76.98 62.56 51.14 49.10 43.37 38.02
Self-Train - - 72.69 56.74 59.38 52.81 40.06 34.46
SCCL 83.10 61.96 79.90 63.78 70.83 69.21 42.49 39.16
RSTC 85.98 64.32 79.75 69.48 81.97 73.75 43.85 37.99

STSPL-SSC-SS 85.75 63.53 79.75 68.68 83.73 74.25 46.11 38.92
STSPL-SSC-B 89.84 71.39 80.25 64.19 86.53 82.29 47.35 42.28
STSPL-SSC 89.92 71.66 81.04 65.46 86.74 82.54 47.43 42.49

Improvement(↑) 3.94 7.34 1.29 -4.02 4.77 8.79 3.58 4.50
Method GoogleNews-TS GoogleNews-T GoogleNews-S Tweet

ACC NMI ACC NMI ACC NMI ACC NMI

BOW 58.79 82.59 48.05 72.38 52.68 76.11 50.25 72.00
TF-IDF 69.00 87.78 58.36 79.14 62.30 83.00 54.34 78.47
SCCL 82.51 93.01 69.01 85.10 73.44 87.98 73.10 86.66
RSTC 79.93 92.60 75.50 88.39 76.01 88.27 74.92 85.62

STSPL-SSC-SS 83.67 93.07 74.94 87.85 78.74 89.39 75.68 85.41
STSPL-SSC-B 85.15 94.36 78.59 90.77 82.09 91.54 70.58 82.02
STSPL-SSC 84.41 94.32 81.01 91.11 82.30 91.18 79.59 88.02

Improvement(↑) 1.90 1.31 5.51 2.72 6.29 2.91 4.67 1.36

Table 1: Performance comparison across different datasets and methods

(a) RSTC (b) STSPL-SS (c) STSPL-SSC-B (d) STSPL-SSC

Figure 2: t-SNE visualization of the representations on SearchSnippets, each color indicates a ground truth category.

impact on balanced datasets with fewer categories,615

such as AG News and Stack Overflow. However, in616

the case of SearchSnippets, an increase in labeled617

data paradoxically led to a decrease in performance,618

potentially due to the emergence of uncertainty619

in cluster centroids as the number of labeled data620

grows, resulting in a deterioration of performance.621

Based on our experiments, we ultimately opt for622

number of labeled data = 1.623

5 Conclusion624

This paper presents a robust semi-supervised short625

text clustering model that includes a Semantic text626

similarity-enhanced Pseudo Label Generation mod-627

ule and a Robust Contrastive Learning module. Uti-628

lizing a semi-supervised approach for generating629

pseudo labels with labeled data for supervision, our630

innovation significantly enhances clustering per-631

formance by employing few-shot learning to bol-632

ster Semantic text similarity, achieving near fully- 633

supervised clustering effectiveness with just one 634

correct label. This greatly increases the usability of 635

unlabeled data for meaningful clustering, reducing 636

costs and providing potential solutions for the lack 637

of training data in downstream tasks of LLM and 638

PLM transfer. Our method demonstrates state-of- 639

the-art performance across eight datasets. 640

6 Limitations 641

While the model requires only a minimal number of 642

samples, it still necessitates determining the num- 643

ber of sample categories. Performance degradation 644

can occur when categories have inherently minimal 645

differences, making it challenging for contrastive 646

learning to facilitate cluster separation, potentially 647

leading to data points clustering at the inter-cluster 648

boundaries. Future efforts will focus on overcom- 649

ing issues of excessive similarity to enhance cluster 650
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separation.651
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A Experiments867

A.1 Datasets868

We conduct extensive experiments on eight popu-869

larly used real-world datasets to assess the effec-870

tiveness and generality of our approach. The details871

of each dataset are as follows:872

• AgNews (Rakib et al., 2020): A subset of873

AG’s news corpus collected by Zhang et al.874

(2015), consisting of 8,000 news titles across875

four topic categories.876

• StackOverflow (Xu et al., 2017): Comprises877

20,000 question titles with 20 different tags,878

randomly selected from the challenge data879

published on Kaggle.com.880

• Biomedical (Xu et al., 2017): Consists of881

20,000 paper titles from 20 different topics,882

selected from the challenge data published on883

BioASQ’s official website.884

• SearchSnippets (Phan et al., 2008): Contains885

12,340 snippets from eight different classes,886

selected from the results of web search trans-887

actions.888

• GoogleNews (Yin and Wang, 2016): The889

titles and snippets of 11,109 news arti-890

cles about 152 events, divided into three891

datasets: the full dataset is GoogleNewsTS,892

while GoogleNews-T only contains titles and893

GoogleNews-S only includes snippets.894

• Tweet (Yin and Wang, 2016): Consists of895

2,472 tweets related to 89 queries, with the896

original data from the 2011 and 2012 mi-897

croblog track at the Text Retrieval Confer-898

ence.899

A.2 Experiment Settings900

In our experiments, we chose the bge-base-en-v1.5901

model(Xiao et al., 2023) from the Sentence Trans-902

former(Reimers and Gurevych, 2019) library for903

text encoding, with the maximum input length set904

to 32. The learning rate was set to 5 × 10−6 for905

optimizing the encoding network, and 5×10−4 for906

optimizing the projection network and clustering907

network. The dimensions of the text representa-908

tions and projection representations were set to909

D1 = 768 and D2 = 128, respectively. The batch910

size was set to N = 200. The temperature parame-911

ter was set to τ = 1, and the threshold δ was set to912

Table 2: The statistics of the datasets. C means the num-
ber of classes, N means the dataset size, A is the average
number of words per instance and L/S is the ratio of the
size of the largest cluster to that of the smallest cluster

Dataset C N A L/S

AgNews 4 8,000 23 1
StackOverflow 20 20,000 8 1
Biomedical 20 20,000 13 1
SearchSnippets 8 12,340 18 7
GoogleNews-TS 152 11,109 28 143
GoogleNews-T 152 11,108 6 143
GoogleNews-S 152 11,108 22 143
Tweet 89 2,472 9 249

0.01. For BOW and TF-IDF representations, we im- 913

plemented the code using scikit-learn (Pedregosa 914

et al., 2011). For all other baselines, including 915

SCCL (under MIT-0 license) and RSTC, we used 916

the code released by their respective authors. 917

A.3 Evaluation Metrics 918

We employ two prevalent metrics for evaluating 919

text clustering outcomes: accuracy (ACC) and nor- 920

malized mutual information (NMI), as adopted by 921

prior research (Xu et al., 2017; Hadifar et al., 2019; 922

Zhang et al., 2021; Zheng et al., 2023). 923

ACC is given by: 924

ACC =

∑N
i=1 1{yi = map(ŷi)}

N
, (9) 925

where yi and ŷi denote the ground truth and the 926

predicted label for the text xi, respectively. 927

NMI is given by: 928

NMI(Y, Ŷ ) =
I(Y ; Ŷ )√
H(Y )H(Ŷ )

, (10) 929

where Y and Ŷ represent the vectors of ground 930

truth and predicted labels, I denotes the mutual 931

information, and H denotes the entropy. 932
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(a) ϵ1 ACC (b) ϵ2 ACC

(c) λI ACC (d) λI NMI

Figure 4: Impact of hyperparameters on the model

A.4 Hyperparametric effect933

We investigate the impact of hyperparameters on934

model performance, including ϵ1, ϵ2, and λI . We935

begin by examining the effects of ϵ1 and ϵ2, vary-936

ing them within the sets {0.05, 0.1, 0.2, 0.5} and937

{0, 0.001, 0.01, 0.1, 1}, respectively. The results938

are reported in Figures 4(a) and 4(b). Figure 4(a)939

illustrates that the accuracy is insensitive to ϵ1. Fig-940

ure 4(b) highlights the importance of choosing ap-941

propriate hyperparameters for datasets with differ-942

ent levels of imbalance, especially for the severely943

imbalanced GoogleNews-T dataset. Empirically,944

we select ϵ1 = 0.1 and ϵ2 = 0.1 for balanced945

datasets, ϵ2 = 0.01 for mildly imbalanced datasets,946

and ϵ2 = 0.001 for severely imbalanced datasets.947

Subsequently, we explore the influence of λI by948

varying it within the set {0, 1, 5, 10, 20, 50, 100}.949

The results on three datasets are shown in Figure950

4(c) and 4(d). It is observed that performance im-951

proves with an increase in λI , then remains rel-952

atively stable after λI reaches 1, and finally de-953

creases when λI becomes too large. We conclude954

that when λI is too small, it fails to fully leverage955

the capabilities of instance-level contrastive learn-956

ing. Conversely, when λI is too large, it suppresses957

the ability of category-level contrastive learning,958

thereby diminishing clustering performance. Based959

on experience, we select λI = 10 for all datasets.960

A.5 Computational Budget961

The training environment we used is the GeForce962

RTX 4090 GPU, with each dataset taking approxi-963

mately 15-30 minutes to run.964
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