
Under review as a conference paper at ICLR 2023

NEURAL COLLABORATIVE FILTERING BANDITS VIA
META LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Contextual multi-armed bandits provide powerful tools to solve the exploitation-
exploration dilemma in decision making, with direct applications in the personal-
ized recommendation. In fact, collaborative effects among users carry the signif-
icant potential to improve the recommendation. In this paper, we introduce and
study the problem by exploring ‘Neural Collaborative Filtering Bandits’, where the
rewards can be non-linear functions and groups are formed dynamically given dif-
ferent specific contents. To solve this problem, we propose a meta-learning based
bandit algorithm, Meta-Ban (meta-bandits), where a meta-learner is designed to
represent and rapidly adapt to dynamic groups, along with an informative UCB-
based exploration strategy. Furthermore, we analyze that Meta-Ban can achieve
the regret bound of O(

√
nT log T ), which is sharper over state-of-the-art related

works. In the end, we conduct extensive experiments showing that Meta-Ban
outperforms six strong baselines.

1 INTRODUCTION

The contextual multi-armed bandit has been extensively studied in machine learning to resolve
the exploitation-exploration dilemma in sequential decision making, with wide applications in
personalized recommendation (Li et al., 2010), online advertising (Wu et al., 2016), etc.

Recommender systems play an indispensable role in many online businesses, such as e-commerce
platforms and online streaming services. It is well-known that user collaborative effects are strongly
associated with the user preference. Thus, discovering and leveraging collaborative information in
recommender systems has been studied for decades. In the relatively static environment, e.g., in
a movie recommendation platform where catalogs are known and accumulated ratings for items
are provided, the classic collaborative filtering methods can be easily deployed (e.g., matrix/tensor
factorization (Su and Khoshgoftaar, 2009)). However, such methods can hardly adapt to more
dynamic settings, such as news or short-video recommendation, due to: (1) the lack of cumulative
interactions for new users or items; (2) the difficulty of balancing the exploitation of current user-item
preference knowledge and the exploration of the new potential matches (e.g., presenting new items to
the users).

To address this problem, a line of works, clustering of bandits (collaborative filtering bandits) (Gentile
et al., 2014; Li et al., 2016; Gentile et al., 2017; Li et al., 2019; Ban and He, 2021), have been proposed
to incorporate collaborative effects among users which are largely neglected by conventional bandit
algorithms (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Valko et al., 2013; Ban and He, 2020).
These works use the graph-based method to adaptively cluster users and explicitly or implicitly utilize
the collaborative effects on user sides while selecting an arm. However, this line of works have a
significant limitation that they all build on the linear bandit framework (Abbasi-Yadkori et al., 2011)
and the user groups are represented by the simple linear combinations of individual user parameters.
The linear reward assumptions and linear representation of groups may not be true in real-world
applications (Valko et al., 2013).

To learn non-linear reward functions, neural bandits (Collier and Llorens, 2018; Zhou et al., 2020;
Zhang et al., 2021; Kassraie and Krause, 2022) have attracted much attention, where a neural network
is assigned to learn the reward function along with an exploration strategy (e.g., Upper Confidence
Bound (UCB) or Thompson Sampling (TS)). However, this class of works do not incorporate any
collaborative effects among users, overlooking the crucial potential in improving recommendation.
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In this paper, to overcome the above challenges, we introduce the problem, Neural Collaborative
Filtering Bandits (NCFB), built on either linear or non-linear reward assumptions while introducing
relative groups. Groups are formed by users sharing similar interests/preferences/behaviors. However,
such groups are usually not static over specific contents (Li et al., 2016). For example, two users may
both like "country music" but may have different opinions on "rock music". "Relative groups" are
introduced in NCFB to formulate groups given a specific content, which is more practical in real
problems.

To solve NCFB, we propose a meta-learning based bandit algorithm, Meta-Ban (Meta-Bandits),
distinct from existing related works (i.e., graph-based clustering of linear bandits (Gentile et al.,
2014; Li et al., 2016; Gentile et al., 2017; Li et al., 2019; Ban and He, 2021)). Inspired by recent
advances in meta-learning (Finn et al., 2017; Yao et al., 2019), in Meta-Ban, a meta-learner is
assigned to represent and rapidly adapt to dynamic groups, which allows the non-linear representation
of collaborative effects. And a user-learner is assigned to each user to discover the underlying
relative groups. Here, we use neural networks to formulate both meta-learner and user learners, in
order to learn linear or non-linear reward functions. To solve the exploitation-exploration dilemma
in bandits, Meta-Ban has an informative UCB-type exploration. In the end, we provide rigorous
regret analysis and empirical evaluation for Meta-Ban. To the best of our knowledge, this is the first
work incorporating collaborative effects in neural bandits. The contributions of this paper can be
summarized as follows:

(1) Problem. We introduce the problem, Neural Collaborative Filtering Bandits (NCFB), to incorpo-
rate collaborative effects among users with either linear or non-linear reward assumptions.

(2)Algorithm. We propose a meta-learning based bandit algorithm working in NCFB, Meta-Ban,
where the meta-learner is introduced to represent and rapidly adapt to dynamic groups, along with
a new informative UCB-type exploration that utilizes both meta-side and user-side information.
Meta-Ban allows the non-linear representation of relative groups based on user learners.

(3) Theoretical analysis. Under the standard assumptions of over-parameterized neural networks,
we prove that Meta-Ban can achieve the regret upper bound of complexity O(

√
nT log T ), where n

is the number of users and T is the number of rounds. Our bound is sharper than existing related
works. Moreover, we provide a correctness guarantee of groups detected by Meta-Ban.

(4) Empirical performance. We evaluate Meta-Ban on 10 real-world datasets and show that
Meta-Ban significantly outperforms 6 strong baselines.

Next, after introducing the problem definition in Section 2, we present the proposed Meta-Ban in
Section 3 together with theoretical analysis in Section 4. In the end, we show the experiments in
Section 5 and conclude the paper in Section 6. More discussion regarding related work is placed in
Appendix Section A.1.

2 NEURAL COLLABORATIVE FILTERING BANDITS

In this section, we introduce the problem of Neural Collaborative Filtering Bandits, motivated by
generic recommendation scenarios.

Suppose there are n users, N = {1, . . . , n}, to serve on a platform. In the tth round, the platform
receives a user ut ∈ N and prepares the corresponding k arms (items) Xt = {xt,1,xt,2, . . . ,xt,k} in
which each arm is represented by its d-dimensional feature vector xt,i ∈ Rd,∀i ∈ {1, . . . , k}. Then,
like the conventional bandit problem, the platform will select an arm xt,i ∈ Xt and recommend it to
the user ut. In response to this action, ut will produce a corresponding reward (feedback) rt,i. We
use rt,i|ut to represent the reward produced by ut given xt,i, because different users may generate
different rewards towards the same arm.

Group behavior (collaborative effects) exists among users and has been exploited in recommender
systems. In fact, the group behavior is item-varying, i.e., the users who have the same preference
on a certain item may have different opinions on another item (Gentile et al., 2017; Li et al., 2016).
Therefore, we define a relative group as a set of users with the same opinions on a certain item.
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Definition 2.1 (Relative Group). In round t, given an arm xt,i ∈ Xt, a relative group N (xt,i) ⊆ N
with respect to xt,i satisfies

1) ∀u, u′ ∈ N (xt,i),E[rt,i|u] = E[rt,i|u′]

2) ∄ N ′ ⊆ N, s.t. N ′ satisfies 1) and N (xt,i) ⊂ N ′.

Such flexible group definition allows users to agree on certain items while disagree on others, which
is consistent with the real-world scenario.

Therefore, given an arm xt,i, the user pool N can be divided into qt,i non-overlapping groups:
N1(xt,i),N2(xt,i), . . . ,Nqt,i(xt,i), where qt,i ≤ n. Note that the group information is unknown to
the platform. We expect that the users from different groups have distinct behavior with respect to
xt,i. Thus, we provide the following constraint among groups.
Definition 2.2 (γ-gap). Given two different groups N (xt,i), N ′(xt,i), there exists a constant γ > 0,
such that

∀u ∈ N (xt,i), u
′ ∈ N ′(xt,i), |E[rt,i|u]− E[rt,i|u′]| ≥ γ.

For any two groups in N , we assume that they satisfy the γ-gap constraint. Note that such an
assumption is standard in the literature of online clustering of bandit to differentiate groups (Gentile
et al., 2014; Li et al., 2016; Gentile et al., 2017; Li et al., 2019; Ban and He, 2021).

Reward function. The reward rt,i is assumed to be governed by an unknown function with respect
to xt,i given ut:

rt,i|ut = hut(xt,i) + ζt,i, (1)
where hut

is an either linear or non-linear but unknown reward function associated with ut, and ζt,i
is a noise term with zero expectation E[ζt,i] = 0. We assume the reward rt,i ∈ [0, 1] is bounded, as
in many existing works (Gentile et al., 2014; 2017; Ban and He, 2021). Note that online clustering
of bandits assume hut is a linear function with respect to xt,i (Gentile et al., 2014; Li et al., 2016;
Gentile et al., 2017; Li et al., 2019; Ban and He, 2021).

Regret analysis. In this problem, the goal is to minimize the pseudo regret of T rounds:

RT =

T∑
t=1

E[r∗t − rt | ut], (2)

where rt is the reward received in round t and E[r∗t |ut,Xt] = maxxt,i∈Xt
hut

(xt,i).

The introduced problem definition above can naturally formulate many recommendation scenarios.
For example, for a music streaming service provider, when recommending a song to a user, the
platform can exploit the knowledge of other users who have the same opinions on this song, i.e., all
‘like’ or ‘dislike’ this song. Unfortunately, the potential group information is usually not available to
the platform before the user’s feedback. To solve this problem, we will introduce an approach that
can infer and exploit such group information to improve the recommendation, in the next section.

Notation. Denote by [k] the sequential list {1, . . . , k}. Let xt be the arm selected in round t and
rt be the reward received in round t. We use ∥xt∥2 and ∥xt∥1 to represent the Euclidean norm and
Taxicab norm. For each user u ∈ N , let µu

t be the number of rounds that user u has been served
up to round t, i.e., µu

t =
∑t

τ=1 1{uτ = u}, and T u
t be all of u’s historical data up to round t,

i.e., T u
t = {(xτ , rτ ) : uτ = u ∧ τ ∈ [t]}. m is the width of neural network and L is depth of

neural network in the proposed approach. Given a group N , all it’s data up to t can be denoted by
{T u

t }u∈N = {T u
t |u ∈ N}. We use standard O,Θ, and Ω to hide constants.

3 PROPOSED ALGORITHM

In this section, we propose a meta-learning based bandit algorithm, Meta-Ban, to tackle the challenges
in the NCFB problem as follows: (1) Challenge 1 (C1): Given an arm, how to infer a user’s relative
group, and whether the returned group is the true relative group? (2) Challenge 2 (C2): Given a
relative group, how to represent the group’s behavior in a parametric way? (3) Challenge 3 (C3):
How to generate a model to efficiently adapt to the rapidly-changing relative groups? (4) Challenge 4
(C4): How to balance between exploitation and exploration in bandits with relative groups?
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Algorithm 1: Meta-Ban
1 Input: T (number of rounds), ν, γ(group exploration parameter), α(exploration parameter),
λ(regularization parameter), δ(confidence level) , J1(number of iterations for user), J2(number of
iterations for meta), η1(user step size), η2(meta step size), L(depth of neural network).

2 Initialize Θ0; θu0 = Θ0, µ
u
0 = 0,∀u ∈ N

3 Observe one data for each u ∈ N
4 for t = 1, 2, . . . , T do
5 Receive a user ut ∈ N and observe k arms Xt = {xt,1, . . . ,xt,k}
6 for i ∈ [k] do
7 Determine ut’s relative groups:

N̂ut(xt,i) = {u ∈ N | |f(xt,i; θ
u
t−1)− f(xt,i; θ

ut
t−1)| ≤ ν−1

ν γ}.

8 Θt,i = GradientDecent_Meta
(
N̂ut

(xt,i),Θt−1

)
9 Ut,i = f(xt,i; Θt,i) + α ·

(
∥g(xt,i;Θt,i)−g(xt,i;θ

ut
0 )∥2√

t
+ L+1√

2µ
ut
t

+
√

log(t/δ)

µ
ut
t

)
10 i′ = argi∈[k] maxUt,i

11 Play xt,i′ and observe reward rt,i′
12 xt = xt,i′ ; rt = rt,i′ ; Θt = Θt,i′

13 µut
t = µut

t−1 + 1
14 θut

t = GradientDecent_User(ut,Θt)
15 for u ∈ N and u ̸= ut do
16 θut = θut−1; µu

t = µu
t−1

Meta-Ban has one meta-learner Θ to represent the group behavior and n user-learners for each user
respectively, {θu}u∈N , sharing the same neural network f . Given an arm xt,i, we use g(xt,i; θ) =
▽θf(xt,i; θ) to denote the gradient of f for the brevity. The workflow of Meta-Ban is divided into
three parts as follows.
Group inference (to C1). As defined in Section 2, each user u ∈ N is governed by an unknown
function hu. It is natural to use the universal approximator (Hornik et al., 1989), a neural network
f (defined in Section 4), to learn hu. In round t ∈ [T ], let ut be the user to serve. Given ut’s
past data up to round t − 1, T ut

t−1, we can train parameters θut by minimizing the following loss:
L
(
T ut
t−1; θ

ut
)
= 1

2

∑
(x,r)∈T ut

t−1
(f(x; θut)− r)2.

Let θut
t−1 represent θut trained with T ut

t−1 in round t − 1. The training of θut can be conducted by
(stochastic) gradient descent, e.g., as described in Algorithm 3.

Therefore, for each u ∈ N , we can obtain the trained parameters θut−1. Then, given ut and an arm
xt,i, we return ut’s estimated group with respect to arm xt,i by

N̂ut(xt,i) = {u ∈ N | |f(xt,i; θ
u
t−1)− f(xt,i; θ

ut
t−1)| ≤

ν − 1

ν
γ}. (3)

where γ ∈ (0, 1) represents the assumed γ-gap and ν > 1 is a tuning parameter to trade off between
the exploration of group members and the cost of playing rounds.
Meta learning (to C2 and C3). In this paper, we propose to use one meta-learner Θ to represent
and adapt to the behavior of dynamic groups. In meta-learning, the meta-learner is trained based
on a number of different tasks and can quickly adapt to new tasks with a small amount of new data
(Finn et al., 2017). Here, we consider each user u ∈ N as a task and its collected data T u

t as the task
distribution. Therefore, Meta-Ban has two phases: User adaptation and Meta adaptation.

User adaptation. In the tth round, given ut, after receiving the reward rt, we have available data
T ut
t . Then, the user parameter θut is updated in round t based on meta-learner Θ, denoted by θut

t ,
described in Algorithm 3.

Meta adaptation. In the tth round, given a group N̂ut
(xt,i), we have the available collected data

{T u
t−1}u∈N̂ut (xt,i)

. The goal of meta-learner is to fast adapt to these users (tasks). Thus, given
an arm xt,i, we update Θ in round t, denoted by Θt,i, by minimizing the following meta loss:
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Algorithm 2: GradientDecent_Meta (N ,Θt−1)
1 Θ(0) = Θt−1 (or Θ0)
2 for j = 1, 2, . . . , J2 do
3 for u ∈ N do
4 Collect T u

t−1

5 Randomly choose T̃ u ⊆ T u
t−1

6 L
(
θuµu

t−1

)
= 1

2

∑
(x,r)∈T̃ u(f(x; θ

u
µu
t−1

)− r)2

7 LN =
∑

u∈N L
(
θuµu

t−1

)
+ λ√

m

∑
u∈N ∥θuµu

t−1
∥1.

8 Θ(j) = Θ(j−1) − η2▽{θu
µu
t−1

}u∈NLN

9 Return: Θt = Θ(J2)

Algorithm 3: GradientDecent_User (u, Θt)
1 Collect T u

t # Historical data of u up to round t
2 θu(0) = Θt ( or Θ0)
3 for j = 1, 2, . . . , J1 do
4 Randomly choose T̃ u ⊆ T u

t

5 L
(
T̃ u; θu

)
= 1

2

∑
(x,r)∈T̃ u(f(x; θ

u)− r)2

6 θu(j) = θu(j−1) − η1▽θu
(j−1)

L
(
T̃ u; θu

)
7 Return: θut = θu(J1)

LN̂ut (xt,i)
=
∑

u∈N̂ut (xt,i)
L
(
θuµu

t−1

)
+ λ√

m

∑
u∈N̂ut (xt,i)

∥θuµu
t−1

∥1. where θuµu
t−1

are the stored
user parameters in Algorithm 3 at round t− 1. Here, we add L1-regularization on meta-learner to
prevent overfitting in practice and neutralize vanishing gradient in convergence analysis. Then, the
meta-learner is updated by: Θ = Θ− η2▽{θu

µu
t−1

}
u∈N̂ut (xt,i)

LN̂ut (xt,i)
, where η2 is the meta learning

rate and ▽{θu
µu
t−1

}
u∈N̂ut (xt,i)

LN̂ut (xt,i)
is the sum of gradients of LN̂ut (xt,i)

with respect to all the

user learners in the group N̂ut
. Algorithm 2 shows meta update with stochastic gradient descent

(SGD) .

Note that in linear clustering of bandits (Gentile et al., 2014; Li et al., 2016; Gentile et al., 2017; Li
et al., 2019; Ban and He, 2021), they represent the group behavior Θ by the linear combination of
user-learners, e.g., Θ = 1

|N̂ut (xt,i)|

∑
u∈N̂ut (xt,i)

θuµu
t−1

. This may not be true in real world. Instead,

we use the meta adaptation to update the meta-learner Θ according to N̂ut
(xt,i), which can represent

non-linear combinations of user learners (Finn et al., 2017; Wang et al., 2020b).

UCB Exploration (to C4). To balance the trade-off between the exploitation of the current group
information and the exploration of new matches, we introduce the following UCB-based selection
criterion. Based on Lemma C.2, with probability at least 1 − δ, after T rounds, the cumula-
tive error induced by meta-learner is upper bounded by

∑T
t=1 E

rt|xt

[|f(xt; Θt)− rt| | ut] ≤

∑T
t=1

O (∥g(xt; Θt)− g(xt; θ
ut
0 )∥2)√

t︸ ︷︷ ︸
Meta-side info

+
∑

u∈N µu
t

[
O
(
L+ 1√
2µu

t

)
+

√
2 log(t/δ)

µu
t︸ ︷︷ ︸

User-side info

]
, where

g(xt; Θt) incorporates the discriminative information of meta-learner acquired from the col-
laborative effects within the relative group N̂ut

(xt) and O( 1√
µu
t

) shows the shrinking confidence

interval of user-learner to a specific user ut. This bound provides necessary information we should
include in the selection criterion (Ut,i in Algorithm 1), which paves the way for the regret analysis
(Theorem 4.2). Therefore, we say that the bound Ut,i leverages both the collaborative effects existed
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in N̂ut
(xt,i) and ut’s personal behavior for exploitation and exploration. Then, we select an arm

according to: xt = argxt,i∈Xt
max(Ut,i).

To sum up, Algorithm 1 depicts the workflow of Meta-Ban. In each round, given a served user and a
set of arms, we compute the meta-learner and its bound for each relative group (Line 5-9). Then, we
choose the arm according to the UCB-type strategy (Line 10). After receiving the reward, we update
the meta-learner for next round (Line 12) and update the user-learner θut (Line 13-14) because only
ut’s collected data is updated. In the end, we update all the other parameters (Lines 15-16).

Remark 3.1 (Time Complexity). Recall that n is the number of users. It takes O(n) to find the group.
Given the detected group N̂u, let b be the batch size of SGD and J2 be the number of iterations for
the updates of Meta-learner. Thus, it takes O(|N̂u|bJ) to update the meta-learner. Based on the fast
adaptation ability of meta-learner, J2 is a typically small number. b is controlled by the practitioner,
and |N̂u| is upper bound by n. Therefore, the test time complexity is O(n)+O(|N̂u|bJ). In the large
recommender system, despite the large number of users, given a serving user u, the computational
cost of Meta-Ban is mostly related to the inferred relative group N̂u, i.e., O(|N̂u|bJ). Inferring N̂u is
efficient because it takes O(n) and only needs to calculate the output of neural networks. Therefore,
as long as we can control the size of N̂u, Meta-Ban can work properly. The first solution is to set the
hyperparameter γ to a small value, so |N̂u| is usually small. Second, we confine the size of |N̂u|, i.e.,
we always choose the top-100 similar users for u. With a small size of N̂u(|N̂u| << n), Meta-Ban
can do fast meta adaptation to N̂u and make prompt decisions. Therefore, it is feasible for Meta-Ban
to scale to large recommender systems, with some proper approximated decisions.

4 REGRET ANALYSIS

In this section, we provide the regret analysis of Meta-Ban and the comparison with close related
works. The analysis is built in the framework of meta-learning under the the over-parameterized
neural networks regimen (Jacot et al., 2018; Allen-Zhu et al., 2019; Zhou et al., 2020).

Given an arm xt,i ∈ Rd with ∥xt,i∥2 = 1, t ∈ [T ], i ∈ [k], without loss of generality, we define f as
a fully-connected network with depth L ≥ 2 and width m:

f(xt,i; θ or Θ) = WLσ(WL−1σ(WL−2 . . . σ(W1x))) (4)

where σ is the ReLU activation function, W1 ∈ Rm×d, Wl ∈ Rm×m, for 2 ≤ l ≤ L − 1,
WL ∈ R1×m, and θ,Θ = [vec(W1)

⊺, vec(W2)
⊺, . . . , vec(WL)

⊺]⊺ ∈ Rp. To conduct the analysis,
we need the following initialization and mild assumptions.

Initialization. For l ∈ [L− 1], each entry of Wl is drawn from the normal distribution N (0, 2/m);
Each entry of WL is drawn from the normal distribution N (0, 1/m).

Assumption 4.1 (Arm Separability). For any pair xt,i,xt′,i′ , t, t′ ∈ [T ], i, i′ ∈ [k], (t, i) ̸= (t′, i′),
these exists a constant 0 < ρ ≤ O( 1

L ), such that ∥xt,i − xt′,i′∥2 ≥ ρ.

Assumption 4.1 is satisfied as long as no two arms are identical. Assumption 4.1 is the standard
input assumption in over-parameterized neural networks (Allen-Zhu et al., 2019). Moreover, most of
existing neural bandit works (e.g., Assumption 4.2 in (Zhou et al., 2020), 3.4 in (Zhang et al., 2021),
4.1 in (Kassraie and Krause, 2022)) have the comparable assumptions with equivalent constraints.
They require that the smallest eigenvalue λ0 of neural tangent kernel (NTK) matrix formed by all arm
contexts is positive, which implies that any two arms cannot be identical. As L can be set manually,
the condition 0 < ρ ≤ O( 1

L ) can be easily satisfied (e.g., L = 2).

Then, we provide the following regret upper bound for Meta-Ban with gradient descent.

Theorem 4.2. Given the number of rounds T , assume that each user is uniformly served and set
T̃ u = T u

t , ∀t ∈ [T ]. For any δ ∈ (0, 1), 0 < ρ ≤ O( 1
L ), 0 < ϵ1 ≤ ϵ2 ≤ 1, λ > 0, suppose
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m, η1, η2, J1, J2 satisfy

m ≥ Ω̃
(
max

{
poly(T, L, ρ−1), e

√
log(O(Tk)/δ)

})
, η1 = Θ

(
ρ

poly(T, L) ·m

)
,

η2 = min

{
Θ

( √
nρ

T 4L2m

)
,Θ

( √
ρϵ2

T 2L2λn2

)}
, J1 = Θ

(
poly(T, L)

ρ2
log

1

ϵ1

)
J2 = max

{
Θ

(
T 5(O(T log2 m)− ϵ2)L

2m
√
nϵ2ρ

)
,Θ

(
T 3L2λn2(O(T log2 m− ϵ2))

ρϵ2

)}
.

(5)

Then, with probability at least 1− δ over the random initialization, Algorithms 1-3 has the following
regret upper bound:

RT ≤ O(
√
n)
(√

T + L
√
T +

√
2T log(O(T )/δ)

)
+O(1).

Comparison with clustering of bandits. The existing works on clustering of bandits (Gentile et al.,
2014; Li et al., 2016; Gentile et al., 2017; Li et al., 2019; Ban and He, 2021) are all based on the linear
reward assumption and achieve the following regret bound complexity: RT ≤ O(d

√
Tn log T ).

Comparison with neural bandits. The regret analysis in a single neural bandit (Zhou et al., 2020;
Zhang et al., 2021) has been developed recently (n = 1 in this case), achieving

RT ≤ O(d̃
√
T log T ), d̃ =

log det(I+H/λ)

log(1 + Tn/λ)

where H is the neural tangent kernel matrix (NTK) (Zhou et al., 2020; Jacot et al., 2018) and λ is
a regularization parameter. d̃ is the effective dimension first introduced by Valko et al. (2013) to
measure the underlying non-linear dimensionality of the NTK kernel space.

Remark 4.3 (Improve O(
√
log T )). It is easy to observe that Meta-Ban achieves O(

√
T log T ),

improving by a multiplicative factor of O(
√
log T ) over above existing works. Note that these works

(Gentile et al., 2014; Li et al., 2016; Gentile et al., 2017; Li et al., 2019; Ban and He, 2021; Zhou
et al., 2020; Zhang et al., 2021) all explicitly apply the Confidence Ellipsoid Bound (Theorem 2 in
(Abbasi-Yadkori et al., 2011)) to their analysis, which inevitably introduces the complexity term
O(log(T )). In contrast, Meta-Ban builds generalization bound for the user-learner (Lemma E.1),
inspired by recent advances in over-parameterized network (Cao and Gu, 2019), which only brings in
the complexity term O(

√
log T ). Then, we show that the estimations of meta-learner and user-learner

are close enough when θ and Θ are close enough, to bound the error incurred by the meta-learner
(Lemma C.1). Thus, we have a different and novel UCB-type analysis from previous works. These
different techniques lead to the non-trivial improvement of O(

√
log T ).

Remark 4.4 (Remove Input Dimension). The regret bound of Meta-Ban does not have d or d̃.
When input dimension is large (e.g., d ≥ T ), it may cause a considerable amount of error for
RT . The effective dimension d̃ may also incur this predicament when the determinant of H is
very large. As (Gentile et al., 2014; Li et al., 2016; Gentile et al., 2017; Li et al., 2019; Ban and
He, 2021) build the confidence ellipsoid for θ∗ (optimal parameters) based on the linear function
E[rt,i | xt,i] = ⟨xt,i, θ

∗⟩, their regret bounds contain d because of xt,i ∈ Rd. Similarly, (Zhou
et al., 2020; Zhang et al., 2021) construct the confidence ellipsoid for θ∗ according to the linear
function E[rt,i | xt,i] = ⟨g(xt,i; θ0), θ

∗ − θ0⟩ and thus their regret bounds are affected by d̃ due to
g(xt,i; θ0) ∈ Rp (d̃ reaches to p in the worst case). On the contrary, the generalization bound derived
in our analysis is only comprised of the convergence error (Lemma D.1) and the concentration bound
(Lemma E.3). These two terms both are independent of d and d̃, which paves the way for Meta-Ban
to remove the curse of d and d̃.

Remark 4.5 (Remove i.i.d. Arm Assumption). We do not impose any assumption on the distribution
of arms. However, the related clustering of bandit works (Gentile et al., 2014; Li et al., 2016; Gentile
et al., 2017) assume that the arms are i.i.d. drawn from some distribution in each round, which may
not be a mild assumption. In our proof, we build the martingale difference sequence only depending
on the reward side (Lemma E.3), which is novel, to derive the generalization bound of user-learner
and remove the i.i.d. arm assumption.

7
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Relative group guarantee. Compared to detected group N̂ut
(xt,i) (Eq.(3)), we emphasize that

Nut
(xt,i) (ut ∈ Nut

(xt,i)) is the ground-truth relative group satisfying Definition 2.1. Suppose
γ-gap holds among N , we prove that when t is larger than a constant, i.e., t ≥ T̃ (as follows),
with probability at least 1 − δ, it is expected over all selected arms that N̂ut

(xt) ⊆ Nut
(xt) and

N̂ut(xt) = Nut(xt) if ν ≥ 2. Then, for ν, we have: (1) When ν ↑, we have more chances to
explore collaboration with other users while costing more rounds (T̃ ↑); (2) When ν ↓, we limit the
potential cooperation with other users while saving exploration rounds (T̃ ↓). More details and proof
of Lemma 4.6 are in Appendix F.

Lemma 4.6 (Relative group guarantee). Assume the groups in N satisfy γ-gap (Definition 2.2) and
the conditions of Theorem 4.2 hold. For any ν > 1, with probability at least 1− δ over the random
initialization„ there exist constants c1, c2, such that when

t ≥
n64ν2(1 + ξt)

2
(
log 32ν2(1+ξt)

2

γ2 +
9L2c21+4ϵ1+2ζ2

t

4(1+ξt)2
− log δ

)
γ2(1 +

√
3n log(n/δ))

= T̃ ,

given a user u ∈ N , it holds uniformly for Algorithms 1-3 that

E
xτ∼T u

t |x
[N̂u(xτ ) ⊆ Nu(xτ )] and E

xτ∼T u
t |x

[N̂u(xτ ) = Nu(xτ )], if ν ≥ 2,

where xτ is uniformly drawn from T u
t |x and T u

t |x = {xτ : ut = u ∧ τ ∈ [t]} is all the historical
selected arms when serving u up to round t.

5 EXPERIMENTS

Figure 1: Regret comparison on ML datasets (10 runs). Meta-Ban outperforms all baselines.
Specifically, compared to the best baseline, Meta-Ban improves 26.2% on Mnist and Notmnist,
12.2% on Cifar10, 25.2% on EMNIST(Letter), and 28.8% on Shuttle.

In this section, we evaluate Meta-Ban’s empirical performance on 8 ML and 2 real-world recommen-
dation datasets, compared to six strong state-of-the-art baselines. We first present the setup and then
the results of experiments. More details are in Appendix A.

ML datasets. We totally use 8 public classification datasets: Mnist (LeCun et al., 1998), Notmnist
(Bulatov, 2011), Cifar10 (Krizhevsky et al., 2009), Emnist (Letter) (Cohen et al., 2017), Shuttle (Dua
and Graff, 2017), Fashion (Xiao et al., 2017), Mushroom (Dua and Graff, 2017), and Magictelescope
(Dua and Graff, 2017). Note that ML datasets are widely used for evaluating the performance of neural
bandit algorithms (e.g., (Zhou et al., 2020; Zhang et al., 2021)), which test the algorithm’s ability in
learning various non-linear functions between rewards and arm contexts. On ML datasets, we consider
each class as a user to hold an exclusive reward function. As some classes have correlations, the goal
of ML datasets also is to find the classes with strong correlations and leverage this information to
improve the qualify of classification.

8
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Recommendation datasets. We alse use two recommendation datasets for evaluation: Movielens
(Harper and Konstan, 2015) and Yelp1. The descriptions are in Appendix A.2.

Baselines. We compare Meta-Ban to six State-Of-The-Art (SOTA) baselines as follows: (1) CLUB
(Gentile et al., 2014); (2) COFIBA (Li et al., 2016); (3) SCLUB (Li et al., 2019); (4) LOCB (Ban
and He, 2021); (5) NeuUCB-ONE (Zhou et al., 2020); (6) NeuUCB-IND (Zhou et al., 2020). See
detailed descriptions in Appendix A.2. Since LinUCB Li et al. (2010) and KernalUCB Valko et al.
(2013) are outperformed by the above baselines, we do not include them in comparison.

Figure 2: Regret comparison on ML datasets. Meta-Ban outperforms all baselines. Specifically,
compared to the best baseline, Meta-Ban improves 41.6% on Fashion-Mnist, 28.4% on Mnist, 47.1%
on Mushroom, and 61.5% on Magictelescope.
Results. Figure 1 - 2 shows the regret comparison on ML datasets in which Meta-Ban outperforms
all baselines. Each class can be thought of as a user in these datasets. As the rewards are non-linear
to the arms on these datasets, conventional linear clustering of bandits (CLUB, COFIBA, SCLUB,
LOCB) perform poorly. Thanks to the representation power of neural networks, NeuUCB-ONE
obtains better performance. However, it treats all the users as one group, neglecting the disparity
among groups. In contrast, NeuUCB-IND deals with the user individually, not taking collaborative
knowledge among users into account. Meta-Ban significantly outperforms all the baselines, because
Meta-Ban can exploit the common knowledge of the correct group of classes where the samples from
these classes have non-trivial correlations, and train the parameters on the previous group to fast
adapt to new tasks, which existing works do not possess. Figure 3 reports the regret comparison on
recommendation datasets where Meta-Ban still outperforms all baselines. Since these two datasets
contain considerably inherent noise, all algorithms show the linear growth of regret. As rewards are
almost linear to the arms on these two datasets, conventional clustering of bandits (CLUB, COFIBA,
SCLUB, LOCB) achieve comparable performance. But they still are outperformed by Meta-Ban
because a simple vector cannot accurately represent a user’s behavior. Similarly, because Meta-Ban
can discover and leverage the group information automatically, it obtains the best performance
surpassing NeuUCB-ONE and NeuUCB-IND. Furthermore, hyper-parameter sensitivity study is in
Appendix A.3.

6 CONCLUSION

In this paper, we introduce the problem, Neural Collaborative Filtering Bandits, to incorporate
collaborative effects in bandits with generic reward assumptions. Then, we propose, Meta-Ban, to
solve this problem, where a meta-learner is assigned to represent and rapidly adapt to dynamic groups,
along with a new informative UCB-type exploration. Moreover, we provide the regret analysis of
Meta-Ban and shows that Meta-Ban can achieve a sharper regret upper bound than the close related
works. In the end, we conduct extensive experiments to evaluate its empirical performance compared
to SOTA baselines.

1https://www.yelp.com/dataset
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Figure 3: Regret comparison on recommendation datasets (10 runs). Meta-Ban outperforms all
baselines. Specifically, compared to the best baseline, Meta-Ban improves 7.02% on Movielens and
2.6% on Yelp.

A SUPPLEMENTARY

In this section, we first introduce the related works and present the experiments setup coming with
extensive ablation studies.

A.1 RELATED WORK

In this section, we briefly review the related works, including clustering of bandits and neural bandits.

Clustering of bandits. CLUB Gentile et al. (2014) first studies exploring collaborative effects among
users in contextual bandits where each user hosts an unknown vector to represent the behavior based
on the linear reward function. CLUB formulates user similarity on an evolving graph and selects an
arm leveraging the clustered groups. Then, Li et al. (2016); Gentile et al. (2017) propose to cluster
users based on specific contents and select arms leveraging the aggregated information of conditioned
groups. Li et al. (2019) improve the clustering procedure by allowing groups to split and merge. Ban
and He (2021) use seed-based local clustering to find overlapping groups, different from globally
clustering on graphs. Korda et al. (2016); Yang et al. (2020); Wu et al. (2021) also study clustering of
bandits with various settings in recommendation system. However, all the series of works are based
on the linear reward assumption, which may fail in many real-world applications.

Neural bandits. Allesiardo et al. (2014) use a neural network to learn each action and then selects
an arm by the committee of networks with ϵ-greedy strategy. Lipton et al. (2018); Riquelme et al.
(2018) adapt the Thompson Sampling to the last layer of deep neural networks to select an action.
However, these approaches do not provide regret analysis. Zhou et al. (2020) and Zhang et al. (2021)
first provide the regret analysis of UCB-based and TS-based neural bandits, where they apply ridge
regression on the space of gradients. Ban et al. (2021a) study a combinatorial problem in multiple
neural bandits with a UCB-based exploration. Jia et al. (2021) perturb the training samples for
incorporating both exploitation and exploration portions. EE-Net(Ban et al., 2021b) proposes to
use another neural network for exploration. Xu et al. (2020) combine the last-layer neural network
embedding with linear UCB to improve the computation efficiency. Unfortunately, all these methods
neglect the collaborative effects among users in contextual bandits. Dutta et al. (2019) use an off-the-
shelf meta-learning approach to solve the contextual bandit problem in which the expected reward
is formulated as Q-function. Santana et al. (2020) propose a Hierarchical Reinforcement Learning
framework for recommendation in dynamic experiment, where a meta-bandit is used for the select
independent recommender system. Kassraie and Krause (2022) revisit Neural-UCB type algorithm
and show the Õ(T ) regret bound without the restrictive assumptions on the context. Maillard and
Mannor (2014); Hong et al. (2020) study the latent bandit problem where the reward distribution of
arms are conditioned on some unknown discrete latent state and prove the Õ(T ) regret bound for
their algorithm as well.

Key Differences from Related Work. We emphasize that we made important improvements
compared to each aspect. (1) Compared to (Gentile et al., 2017), the only similarity is that we adopt
the idea of leveraging relative groups. (2) Compared to NeuUCB (Zhou et al., 2020), in addition
to the fact that they do not incorporate collaborative filtering effects, we have provided important
technical improvements. The UCB in NeuUCB has to maintain a gradient outer product matrix (Zt

in NeuUCB) which occupies space Rp×p (θ ∈ Rp), and only incorporates user-side information.
The new UCB introduced in our paper does not need to keep the gradient matrix and contains
both group-side and user-side information. (3) Compared to (Wang et al., 2020a), we achieved the
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convergence of meta-learner in the online learning setting with bandit feedback, where we need to
tackle the challenge that the training data of each round may come from different user distributions.

A.2 EXPERIMENTS SETUP AND ADDITIONAL RESULTS

ML Datasets. In all ML datasets, following the evaluation setting of existing works (Zhou et al.,
2020; Valko et al., 2013; Deshmukh et al., 2017), we transform the classification problem into a
bandit problem. Take Mnist as an example. Given an image x ∈ Rd, it will be transformed into 10
arms, x1 = (x⊤, 0, . . . , 0)⊤,x2 = (0,x⊤, . . . , 0)⊤, . . . ,x10 = (0, 0, . . . ,x⊤)⊤, matching 10 class
in sequence. The reward is defined as 1 if the index of selected arm equals x’ ground-truth class;
Otherwise, the reward is 0. In the experiments of Cifar10, Emnist, and Shuttle, we consider each
class as a user and randomly draw a class first and then randomly draw a sample from the class. Note
that some classes have strong correlations and thus these datasets evaluate one approach’s ability to
detect and leverage these correlated classes. In the experiments of Mnist and Notmnist (in Figure 1),
we add these datasets together as these two both are 10-class classification datasets, to increase the
difficulty of this problem. Thus, we consider these two datasets as two groups, where each class can
be thought of as a user. In each round, we randomly select a group (i.e., Mnist or Notmnist), and then
we randomly choose an image from a class (user). Note that we run all approaches on the Mnist as
well (in Figure 2) only this time instead of on Mnist and Notmnist together (in Figure 1).

Movielens (Harper and Konstan, 2015) and Yelp2 datasets. MovieLens is a recommendation
dataset consisting of 25 million reviews between 1.6 × 105 users and 6 × 104 movies. Yelp is a
dataset released in the Yelp dataset challenge, composed of 4.7 million review entries made by 1.18
million users to 1.57× 105 restaurants. For both these two datasets, we extract ratings in the reviews
and build the rating matrix by selecting the top 2000 users and top 10000 restaurants(movies). Then,
we use the singular-value decomposition (SVD) to extract a normalized 10-dimensional feature vector
for each user and restaurant(movie). The goal of this problem is to select the restaurants (movies)
with bad ratings (due to the imbalance of these two datasets, i.e., most of the entries have good
ratings). Given an entry with a specific user, we generate the reward by using the user’s rating stars
for the restaurant(movie). If the user’s rating is less than 2 stars (5 stars totally), its reward is 1;
Otherwise, its reward is 0. From these two datasets, as a single user may not have enough entries to
run the experiments, we use K-means to divide users into 50 clusters, where each cluster forms a
new user. Therefore, the user pool totally consists of 50 users for these two datasets. Then, in each
round, a user to serve ut is randomly drawn from the user pool. For the arm pool, we randomly
choose one restaurant (movie) rated from ut with reward 1 and randomly pick the other 9 restaurants
(movies) rated by ut with 0 reward. Therefore, there are totally 10 arms in each round. We conduct
experiments on these two datasets, respectively.

Baselines. We compare Meta-Ban to six State-Of-The-Art (SOTA) baselines as follows: (1) CLUB
(Gentile et al., 2014) clusters users based on the connected components in the user graph and refine
the groups incrementally. When selecting arm, it uses the newly formed group parameter instead
of user parameter with UCB-based exploration; (2) COFIBA (Li et al., 2016) clusters on both user
and arm sides based on evolving graph, and chooses arms using a UCB-based exploration strategy;
(3) SCLUB (Li et al., 2019) improves the algorithm CLUB by allowing groups to merge and split
to enhance the group representation; (4) LOCB (Ban and He, 2021) uses the seed-based clustering
and allow groups to be overlapped, and chooses the best group candidates when selecting arms; (5)
NeuUCB-ONE (Zhou et al., 2020) uses one neural network to formulate all users and select arms
via a UCB-based recommendation; (6) NeuUCB-IND (Zhou et al., 2020) uses one neural network
to formulate one user separately (totally N networks) and apply the same strategy to choose arms.
Since LinUCB (Li et al., 2010) and KernalUCB (Valko et al., 2013) are outperformed by the above
baselines, we do not include them in comparison.

Configurations. For all the methods, they all have two parameters: λ that is to tune regularization at
initialization and α which is to adjust the UCB value. To find their best performance, we conduct
the grid search for λ and α over (0.01, 0.1, 1) and (0.0001, 0.001, 0.01, 0.1) respectively. For LOCB,
the number of random seeds is set as 20 following their default setting. For Meta-Ban, we set ν
as 5 and γ as 0.4 to tune the group set. To compare fairly, for NeuUCB and Meta-Ban, we use the
same simple neural network with 2 fully-connected layers and the width m is set as 100. To save the

2https://www.yelp.com/dataset
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running time, we train the neural networks every 10 rounds in first 1000 rounds and train the neural
networks every 100 rounds afterwards. In our implementation, the gradient descent (Algorithm 2 and
3) stops when the training error is smaller than 0.001, but the J1 and J2 are restricted by 1000. In
the end, we choose the best results for the comparison and report the mean and standard deviation
(shadows in figures) of 10 runs for all methods.

A.3 SENSITIVITY STUDY FOR ν AND γ

In this section, we conduct the ablation study for the group parameter ν. Here, we set γ as a fixed
value 0.4 and change the value of ν to find the effects on Meta-Ban’s performance.
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Figure 4: Sensitivity study for ν on MovieLens Dataset.

Figure 4 shows the varying of performance of Meta-Ban with respect to ν. When setting ν = 1.1,
the exploration range of groups is very narrow. This means, in each round, the inferred group size
|N̂ut

(xt,i)| tends to be small. Although the members in the inferred group N̂ut
(xt,i) is more likely

to be the true member of ut’s relative group, we may lose many other potential group members in the
beginning phase. When setting ν = 5, the exploration range of groups is wider. This indicates we
have more chances to include more members in the inferred group, while this group may contain
some false positives. With a larger size of group, the meta-learner Θ can exploit more information.
Therefore, Meta-Ban with ν = 5 outperforms ν = 1.1. But, keep increasing ν does not always mean
improve the performance, since the inferred group may consist of some non-collaborative users,
bringing into noise. Therefore, in practice, we usually set ν as a relatively large number. Even we
can set ν as the monotonically decreasing function with respect to t.

A.4 SENSITIVITY STUDY FOR α
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Figure 5: Sensitivity study for α on Mnist Dataset.

Figure 5 depicts the sensitivity of Meta-Ban with regard to α. Meta-Ban shows the robust performance
as α is varying, which stems from the strong discriminability of meta learner and the derived upper
bound. Despite that the magnitude of α is changing, the order of arms ranked by Meta-Ban is slightly
influenced. Thus, the Meta-Ban can obtain the robust performance, alleviating the hyperparameter
tuning.

A.5 ABLATION STUDY FOR INPUT DIMENSION

We run the experiments on MovieLens dataset with different input dimensions and report the results
as follows. Table 3 summarizes the final regret of each method with different input dimensions (5
runs). Meta-Ban keeps the similar regret with the small fluctuation. This fluctuation is acceptable
given that different input dimensions may contain different amount of information. NeuUCB-ONE
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and NeuUCB-IND also use the neural network to learn the reward function, so they have the similar
property. In contrast, the regret of linear bandits (CLUB, COFIBA, SCLUB, LOCB) is affected more
drastically by the input dimensions, which complies with their regret analysis.

CLUB COFIBA SCLUB LOCB NeuUCB-ONE NeuUCB-IND Meta-Ban
10 dim 6174.8 5040.4 6232.8 5499.3 4939.6 7491.0 4673
20 dim 6845.4 7726.0 6742.3 5828.6 5643.0 7888.4 5190.2
50 dim 7384.6 7804.2 7563.2 6030 5403.4 7239.0 5178.3
100 dim 7188 7877 7433.0 6354 5523.9 7991.1 5463.4
200 dim 7450.5 8463.5 7805.1 6674.3 5821.1 8032.6 5245.9

Table 1: The cumulative regret of 10000 rounds on MovieLens with different input dimensions.

A.6 ABLATION STUDY FOR NETWORK LAYERS

We run the experiments on MovieLens and Yelp datasets with the different number of layers of neural
networks and report the results as follows. Meta-Ban achieves the best performance in the most of
cases. In this paper, we try to propose a generic framework to combine meta-learning and bandits
with the neural network approximation. Since the UCB in Meta-Ban only depends on the gradient,
the neural network can be easily replaced by other different structures.

NeuUCB-ONE NeuUCB-IND Meta-Ban
2 layers 4939 7491 4673
4 layers 5017 7603 4498
8 layers 5033 7764 4796
10 layers 5008 7797 4824

Table 2: The cumulative regret of 10000 rounds on MovieLens with the different number of layers.

NeuUCB-ONE NeuUCB-IND Meta-Ban
2 layers 7683 8351 7587
4 layers 7603 8386 7767
8 layers 7764 8366 7604
10 layers 7797 8373 7541

Table 3: The cumulative regret of 10000 rounds on Yelp with the different number of layers.
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B PROOF OF THEOREM 4.2

Theorem B.1 (Theorem 4.2 restated). Given the number of rounds T , assume that each user is
uniformly served and set T̃ u = T u

t , ∀t ∈ [T ]. For any δ ∈ (0, 1), 0 < ρ ≤ O( 1
L ), 0 < ϵ1 ≤ ϵ2 ≤

1, λ > 0, suppose m, η1, η2, J1, J2 satisfy

m ≥ Ω̃
(
max

{
poly(T, L, ρ−1), e

√
log(O(Tk)/δ)

})
, η1 = Θ

(
ρ

poly(T, L) ·m

)
,

η2 = min

{
Θ

( √
nρ

T 4L2m

)
,Θ

( √
ρϵ2

T 2L2λn2

)}
, J1 = Θ

(
poly(T, L)

ρ2
log

1

ϵ1

)
J2 = max

{
Θ

(
T 5(O(T log2 m)− ϵ2)L

2m
√
nϵ2ρ

)
,Θ

(
T 3L2λn2(O(T log2 m− ϵ2))

ρϵ2

)}
.

(6)

Then, with probability at least 1− δ, Algorithms 1-3 has the following regret upper bound:

RT ≤ 2
√
n
( √

ϵ1T +O
(
L
√
T
)
+ (1 + ξ1)

√
2T log(T/δ)

)
+O

(
T
√
logmβ

4/3
T L4

)
+ ZT

where

ξT =2 +O
(
T 4nL logm

ρ
√
m

)
+O

(
T 5nL2 log11/6 m

ρm1/6

)
,

βT =
O(n2T 3

√
ϵ2 log

2 m) +O(T 2 log2 m− tϵ2)ρ
1/2λn

O(ρ
√
mϵ2)

,

ZT =O

(
T 5L2 log11/6 m

ρm1/6

)
+ T (L+ 1)2

√
m logmβ

4/3
t +O

(
LT 4

ρ
√
m

logm

)
+O

(
L4T 5

ρ4/3m2/3
log4/3 m

)
.

With the proper choice of m, we have

RT ≤ O(
√
n)
(√

T + L
√
T +

√
2T log(T/δ)

)
+O(1). (7)

Proof Overview. Different from existing works (Zhou et al., 2020; Zhang et al., 2021) that bound
the regret of one round by kernel regression in Neural Tangent Kernel , we directly upper bound the
mean of regret of overall T rounds by building martingale difference sequence with respect to hu.
First, we decompose the regret of T rounds into three key terms (Eq. (9)), where the first term is
the error induced by user learner θu, the second term is the distance between user learner and meta
learner, and the third term is the error induced by the meta learner Θ.

Then, Lemma E.2 provides an upper bound for the first term. Lemma E.2 is an extension of Lemma
E.3, which is key to remove input dimension. Lemma E.3 has three terms with the complexity
O(

√
T ), where the first term is the training error induced by a class of functions around initialization,

the second term is the price of choose the function class, and the third term is confidence interval
induced by concentration inequality for f(·; θu). Lemma C.1 bounds the distance between user
learner and meta learner. As this bound has the term O(1/

√
m), this bound can be reduce to

√
T

with proper choice of m. Lemma C.2 bounds the error induced by the meta learner using triangle
inequality bridged by the user learner.

Bounding the three terms in Eq. (9) completes the proof.
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Proof. Let x∗
t = argmaxxt,i∈Xt

hut
(xt,i) given Xt, ut, and let Θ∗

t be corresponding parameters
trained by Algorithm 2 based on N̂ ut

t (x∗
t ). Then, for the regret of one round t ∈ [T ], we have

Rt|ut

= E
rt,i|xt,i,i∈[k]

[r∗t − rt | ut]

= E
rt,i|xt,i,i∈[k]

[
r∗t − f(x∗

t ; θ
ut,∗
t−1 ) + f(x∗

t ; θ
ut,∗
t−1 )− rt

]
= E

rt,i|xt,i,i∈[k]

[
r∗t − f(x∗

t ; θ
ut,∗
t−1 ) + f(x∗

t ; θ
ut,∗
t−1 )− f(x∗

t ; Θ
∗
t ) | N̂

ut
t (x∗

t ) + f(x∗
t ; Θ

∗
t ) | N̂

ut
t (x∗

t )− rt

]
≤ E

r∗t |x∗
t

[
r∗t − f(x∗

t ; θ
ut,∗
t−1 )

]
+ |f(x∗

t ; θ
ut,∗
t−1 )− f(x∗

t ; Θ
∗
t ) | N̂

ut
t (x∗

t )|

+ E
rt|xt

[
f(x∗

t ; Θ
∗
t ) | N̂

ut
t (x∗

t )− rt

]
(8)

where the expectation is taken over rt,i conditioned on xt,i for each i ∈ [k], θut,∗
t−1 are intermediate

user parameters introduced in Lemma E.4 trained on Bayes-optimal pairs by Algorithm 3, e.g.,
(x∗

t−1, r
∗
t−1), and Θ∗

t are meta parameters trained on the group N̂ ut
t (x∗

t ) using Algorithm 2. Then,
the cumulative regret of T rounds can be upper bounded by

RT =

T∑
t=1

Rt|ut

≤
T∑

t=1

E
r∗t |x∗

t

[
|r∗t − f(x∗

t ; θ
ut,∗
t−1 )|

]
+

T∑
t=1

|f(x∗
t ; θ

ut,∗
t−1 )− f(x∗

t ; Θ
∗
t )|+

T∑
t=1

E
rt|xt

[
f(x∗

t ; Θ
∗
t ) | N̂

ut
t (x∗

t )− rt

]
(a)

≤
∑
u∈N

[√
ϵ1µu

T +O
(
L
√
µu
t

)
+ (1 + ξ1)

√
2µu

t log(T/δ)

]

+

T∑
t=1

[
βt · ∥g(x∗

t ; Θ
∗
t )− g(x∗

t ; θ
ut,∗
0 )∥2 + Zt

]
+

T∑
t=1

E
rt|xt

[
f(x∗

t ; Θ
∗
t ) | N̂

ut
t (x∗

t )− rt

]
(b)

≤
∑
u∈N

[√
ϵ1µu

T +O
(
L
√
µu
t

)
+ (1 + ξ1)

√
2µu

t log(T/δ)

]

+

T∑
t=1

[βt · ∥g(xt; Θt)− g(xt; θ
ut
0 )∥2 + Zt] +

T∑
t=1

E
rt|xt

[
f(xt; Θt) | N̂ ut

t (xt)− rt

]
(9)
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where (a) is the applications of Lemma E.2 and Lemma C.1, and (b) is due to the selection criterion
of Algorithm 1 where θut

0 = θut,∗
0 according to our initialization. Thus, we have

RT =

T∑
t=1

Rt|ut

≤
∑
u∈N

[√
ϵ1µu

T +O
(
L
√

µu
t

)
+ (1 + ξ1)

√
2µu

t log(T/δ)

]

+

T∑
t=1

[βt · ∥g(xt; Θt)− g(xt; Θ0)∥2 + Zt]

+

T∑
t=1

E
rt|xt

[
f(xt; Θt) | N̂ ut

t (xt)− f(xt; θ
ut
t−1) + f(xt; θ

ut
t−1)− rt

]
≤
∑
u∈N

[√
ϵ1µu

T +O
(
L
√

µu
t

)
+ (1 + ξ1)

√
2µu

t log(T/δ)

]

+

T∑
t=1

[βt · ∥g(xt; Θt)− g(xt; Θ0)∥2 + Zt]

+

T∑
t=1

|f(xt; Θt) | N̂ ut
t (xt)− f(xt; θ

ut
t−1)|+

T∑
t=1

E
rt|xt

[
f(xt; θ

ut
t−1)− rt

]
(c)

≤2
∑
u∈N

[√
ϵ1µu

T +O
(
L
√
µu
t

)
+ (1 + ξ1)

√
2µu

t log(T/δ)

]

+ 2

T∑
t=1

[βt · ∥g(xt; Θt)− g(xt; Θ0)∥2 + Zt]

(d)

≤2
√
n

√ϵ1T +O
(
L
√
T
)
+ (1 + ξ1)︸ ︷︷ ︸

I3

√
2T log(T/δ)


+ 2

T∑
t=1

βt · ∥g(xt; Θt)− g(xt; Θ0)∥2︸ ︷︷ ︸
I1

+2

T∑
t=1

Zt︸ ︷︷ ︸
I2

where (c) is an application of Lemma E.1 and Lemma C.1 and (d) is an application of Lemma E.1
with Hoeffding-Azuma inequality.

For I1, recall that βt =
O(n2t3

√
ϵ2 log2 m)+O(t2 log2 m−tϵ2)ρ

1/2λn

O(ρ
√
mϵ2)

. Then, using Theorem 5 in (Allen-
Zhu et al., 2019), we have

I1 ≤
T∑

t=1

βt · O
(√

logmβ
1/3
t L3∥g(xt; Θ0)∥2

)
≤︸︷︷︸
E2

O
(
T
√

logmβ
4/3
T L4

)
≤︸︷︷︸
E3

O(1) (10)

where , E2 is as the Lemma E.10 and E3 is because of the choice of m (βt has the complexity of
Õ
(

1
m1/2

)
and m ≥ Ω̃(T 30)).
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For I2, recall that Zt = O
(

(t−1)4L2 log11/6 m
ρm1/6

)
+(L+1)2

√
m logmβ

4/3
t +O

(
L
(

(t−1)3

ρ
√
m

logm
))

+O(Lβt) +O
(
L4
(

(t−1)3

ρ
√
m

logm
)4/3)

. Then, we have

I2 ≤O

(
T 5L2 log11/6 m

ρm1/6

)
+ T (L+ 1)2

√
m logmβ

4/3
t +O

(
LT 4

ρ
√
m

logm

)
+O

(
L4T 5

ρ4/3m2/3
log4/3 m

)
=ZT .

(11)

I2 has the complexity of Õ
(

1
m1/6

)
. Therefore, I2 ≤ O(1) when m ≥ Ω̃(T 30).

For I3, as the choice of m, we have (1 + ξ1) ≤ O(1). The proof is complete.

C BRIDGE META-LEARNER AND USER-LEARNER

Lemma C.1. For any δ ∈ (0, 1), ρ ∈ (0,O( 1
L )], 0 < ϵ1 ≤ ϵ2 ≤ 1, λ > 0, suppose m, η1, η2, J1, J2

satisfy the conditions in Eq.(6). Then, with probability at least 1− δ, for any t ∈ [T ] and xt satisfying
∥xt∥2 = 1, given the serving user u ∈ N and Θt returned by Algorithm 2 based on N̂ u

t (xt), it holds
uniformly for Algorithms 1-3 that

|f(xt; θ
u
t−1)− f(xt; Θt)| ≤ βt · ∥g(xt; Θt)− g(xt; θ

u
0 )∥2 + Zt, (12)

where

βt =
O(n2t3

√
ϵ2 log

2 m) +O(t2 log2 m− tϵ2)ρ
1/2λn

O(ρ
√
mϵ2)

,

Zt =O

(
(t− 1)4L2 log11/6 m

ρm1/6

)
+ (L+ 1)2

√
m logmβ

4/3
t

+O
(
L

(
(t− 1)3

ρ
√
m

logm

))
.

Proof. First, we have

|f(xt; θ
u
t−1)− f(xt; Θt)| ≤ |fut(xt; θ

u
t−1)− ⟨g(xt; θ

u
t−1), θ

u
t−1 − θu0 ⟩ − f(xt; θ

u
0 )|︸ ︷︷ ︸

I1

+ |⟨g(xt; θ
u
t−1), θ

u
t−1 − θu0 ⟩+ f(xt; θ

u
0 )− f(xt; Θt)|︸ ︷︷ ︸

I2

(13)

where the inequality is using Triangle inequality. For I1, based on Lemma E.9, we have

I1 ≤ O(w1/3L2
√
m log(m))∥θut−1 − θu0 ∥2 ≤ O

(
t4L2 log11/6 m

ρm1/6

)
,

where the second equality is based on the Lemma E.8 (4): ∥θut−1 − θu0 ∥2 ≤ O
(

(µu
t−1)

3

ρ
√
m

logm
)
≤

O
(

(t−1)3

ρ
√
m

logm
)
= w.
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For I2, we have
|⟨g(xt; θ

u
t−1), θ

u
t−1 − θu0 ⟩+ f(xt; θ

u
0 )− f(xt; Θt)|

≤︸︷︷︸
E1

|⟨g(xt; θ
u
t−1), θ

u
t−1 − θu0 ⟩ − ⟨g(xt; Θt),Θt −Θ0⟩|

+ |⟨g(xt; Θt),Θt −Θ0⟩+ f(xt; θ
u
0 )− f(xt; Θt)|

≤︸︷︷︸
E2

|⟨g(xt; θ
u
t−1), θ

u
t−1 − θu0 ⟩ − ⟨g(xt; θ

u
0 ),Θt −Θ0⟩|︸ ︷︷ ︸

I3

+ |⟨g(xt; θ
u
0 ),Θt −Θ0⟩ − ⟨g(xt; Θt),Θt −Θ0⟩|︸ ︷︷ ︸

I4

+ |⟨g(xt; Θt),Θt −Θ0⟩+ f(xt; θ
u
0 )− f(xt; Θt)|︸ ︷︷ ︸

I5

(14)

where E1, E2 use Triangle inequality. For I3, we have

|⟨g(xt; θ
u
t−1), θ

u
t−1 − θu0 ⟩ − ⟨g(xt; θ

u
0 ),Θt −Θ0⟩|

≤|⟨g(xt; θ
u
t−1), θ

u
t−1 − θu0 ⟩ − ⟨g(xt; θ

u
0 ), θ

u
t−1 − θu0 ⟩|+ |⟨g(xt; θ

u
0 ), θ

u
t−1 − θu0 ⟩ − ⟨g(xt; θ

u
0 ),Θt −Θ0⟩|

≤ ∥g(xt; θ
u
t−1)− g(xt; θ

u
0 )∥2 · ∥θut−1 − θu0 ∥2︸ ︷︷ ︸

M1

+ ∥g(xt; θ
u
0 )∥2 · ∥θut−1 − θu0 − (Θt −Θ0)∥2︸ ︷︷ ︸

M2

(15)
For M1, we have

M1 ≤︸︷︷︸
E3

O
(
(t− 1)3

ρ
√
m

logm

)
· ∥g(xt; θ

u
t−1)− g(xt; θ

u
0 )∥2

≤︸︷︷︸
E4

O

(
L4

(
(t− 1)3

ρ
√
m

logm

)4/3
) (16)

where E3 is the application of Lemma E.8 and E4 utilizes Theorem 5 in Allen-Zhu et al. (2019) with
Lemma E.8. For M2, we have

∥g(xt; Θ0)∥2
(
∥θut−1 − θu0 − (Θt −Θ0)∥2

)
≤∥g(xt; Θ0)∥2

(
∥θut−1 − θu0 ∥2 + ∥Θt −Θ0∥2

)
≤︸︷︷︸
E5

O(L) ·
[
O
(
(t− 1)3

ρ
√
m

logm

)
+ βt

] (17)

where E5 use Lemma E.10, E.8, and D.1. Combining Eq.(16) and Eq.(C), we have

I3 ≤ O

(
L4

(
(t− 1)3

ρ
√
m

logm

)4/3
)

+O
(
L

(
(t− 1)3

ρ
√
m

logm

))
+O(Lβt). (18)

. For I4, we have
I4 =|⟨g(xt; Θ0),Θt −Θ0⟩ − ⟨g(xt; Θt),Θt −Θ0⟩|

≤∥g(xt; Θt)− g(xt; Θ0)∥2∥Θt −Θ0∥2
≤βt · ∥g(xt; Θt)− g(xt; Θ0)∥2

(19)

where the first inequality is because of Cauchy–Schwarz inequality and the last inequality is by
Lemma D.1. For I5, we have

I5 = |⟨g(xt; Θt),Θt −Θ0⟩+ f(xt; Θ0)− f(xt; Θt)| ≤ (L+ 1)2
√

m logmβ
4/3
t (20)

where this inequality uses Lemma D.2 with Lemma D.1.

Combing Eq.(13), (18), (19), and (20) completes the proof.

Lemma C.2. For any δ ∈ (0, 1), ρ ∈ (0,O( 1
L )], 0 < ϵ1 ≤ ϵ2 ≤ 1, λ > 0, suppose m, η1, η2, J1, J2

satisfy the conditions in Eq.(6). Then, with probability at least 1− δ over the random initialization,

21



Under review as a conference paper at ICLR 2023

after t rounds, the error induced by meta-learner is upper bounded by:

T∑
t=1

E
rt|xt

[|f(xt; Θt)− rt| | ut]

≤
T∑

t=1

O (∥g(xt; Θt)− g(xt; θ
ut
0 )∥2)√

t
+
∑
u∈N

µu
t

[
O
(
L+ 1√
2µu

t

)
+

√
2 log(t/δ)

µu
t

]
.

(21)

where the expectation is taken over rt conditioned on xt.

Proof.
T∑

t=1

E
rt|xt

[|f(xt; Θt)− rt||ut]

=

T∑
t=1

E
rt|xt

[|f(xt; Θt)− f(xt; θ
ut
t−1) + f(xt; θ

ut
t−1)− rt| | ut]

≤
T∑

t=1

|f(xt; Θt)− f(xt; θ
ut
t−1)|︸ ︷︷ ︸

I1

+

T∑
t=1

E
rt|xt

[|f(xt; θ
ut
t−1)− rt| | ut]︸ ︷︷ ︸

I2

.

(22)

For I1, applying Lemma C.1, with probability at least 1− δ, for any ∥xt,j∥2 = 1, we have

I1 ≤
T∑

t=1

(βt · ∥g(xt; Θt)− g(xt; θ
u
0 )∥2 + Zt)

E1

≤
T∑

t=1

O (∥g(xt; Θt)− g(xt; θ
ut
0 )∥2)√

t
(23)

where E1 is the result of choice of m (m ≥ Ω̃(T 27)) for βt and Zt.

For I2, based on the Lemma E.1, with probability at least 1− δ, for any ϵ1 ∈ (0, 1], we have

I2 ≤
∑
u∈N

[√
ϵ1µu

t +O
(
L
√
µu
t

)
+ (1 + ξt)

√
2µu

t log(t/δ)

]

≤
∑
u∈N

µu
t

[
O
(
L+ 1√
2µu

t

)
+

√
2 log(t/δ)

µu
t

]
.

(24)

The proof is complete.

D ANALYSIS FOR META-LEARNER

Lemma D.1. Given any δ ∈ (0, 1), 0 < ϵ1 ≤ ϵ2 ≤ 1, λ > 0, ρ ∈ (0,O( 1
L )], suppose

m, η1, η2, J1, J2 satisfy the conditions in Eq.(6) and Θ0, θ
u
0 are randomly initialized ,∀u ∈ N .

Then, with probability at least 1− δ, these hold for Algorithms 1-3:

1. Given any N ⊆ N , define LN (Θt,i) = 1
2

∑
u∈N

(x,r)∈T u
t−1

(f(x; Θt,i)− r)
2, where Θt,i is re-

turned by Algorithm 2 given N . Then, we have LN (Θt,i) ≤ ϵ2 in J2 rounds.

2. For any j ∈ [J2], ∥Θ(j) −Θ(0)∥2 ≤ O(n2t3
√

ϵ2 log2 m)+O(t2 log2 m−tϵ2)ρ
1/2λn

O(ρ
√
mϵ2)

= β1.

Proof. Define the sign matrix

sign(θ[i]) =
{
1 if θ[i] ≥ 0;

−1 if θ[i] < 0
(25)
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where θ[i] is the i-th element in θ.

For the brevity, we use θ̂ut to denote θ̂uµu
t

, For each u ∈ N , we have T u
t−1. Given a group N , then

recall that
LN =

∑
u∈N

L
(
θ̂ut

)
+

λ√
m

∑
u∈N

∥θ̂ut ∥1.

Then, in round t+ 1, for any j ∈ [J2] we have

Θ(j) −Θ(j−1) = η2 · ▽{θ̂u
t }u∈N

LN

= η2 ·

(∑
n∈N

▽θ̂u
t
L+

λ√
m

∑
u∈N

sign(θ̂ut )

)
(26)

According to Theorem 4 in (Allen-Zhu et al., 2019), given Θ(j),Θ(j−1), we have

LN (Θ(j)) ≤LN (Θ(j−1))− ⟨▽Θ(j−1)
LN ,Θ(j) −Θ(j−1)⟩

+
√
tLN (Θ(j−1)) · w1/3L2

√
m logm · O(∥Θ(j) −Θ(j−1)∥2) +O(tL2m)∥Θ(j) −Θ(j−1)∥22

≤︸︷︷︸
E1

LN (Θ(j−1))− η2∥
∑
n∈N

▽θ̂u
t
L+

λ√
m

∑
u∈N

sign(θ̂ut )∥2∥▽Θ(j−1)
LN ∥2+

+ η2w
1/3L2

√
tm logm∥

∑
n∈N

▽θ̂u
t
L+

λ√
m

∑
u∈N

sign(θ̂ut )∥2
√
LN (Θ(j−1))

+ η22O(tL2m)∥
∑
n∈N

▽θ̂u
t
L+

λ√
m

∑
u∈N

sign(θ̂ut )∥22

(27)

⇒ LN (Θ(j)) ≤ LN (Θ(j−1))− η2
√
n
∑
u∈N

∥▽θ̂u
t
L∥2∥▽Θ(j−1)

LN ∥2+

+ η2w
1/3L2

√
tnm logm

∑
n∈N

∥▽θ̂u
t
L∥2

√
LN (Θ(j−1)) + η22O(tL2m)n

∑
n∈N

∥▽θ̂u
t
L∥22

− η2λ√
m
∥▽Θ(j−1)

LN ∥2 + η2w
1/3nL2

√
t logmλ

√
LN (Θ(j−1)) +O(2η22tL

2)λ2n2

(28)

⇒ LN (Θ(j)) ≤︸︷︷︸
E2

LN (Θ(j−1))−η2
√
n
∑
u∈N

ρm

tµu
t

√
L(θ̂ut )LN (Θ(j−1))+︸ ︷︷ ︸
I1

+η2w
1/3L2m

√
tρn logm

∑
n∈N

√
L(θ̂ut )LN (Θ(j−1)) + η22t

2L2m2n
∑
n∈N

L(θ̂ut )︸ ︷︷ ︸
I1

−
η2λ

√
ρ

t

√
LN (Θ(j−1)) + η2w

1/3nL2
√

t logmλ
√

LN (Θ(j−1)) +O(2η22tL
2)λ2n2︸ ︷︷ ︸

I2

(29)
where E1 is because of Cauchy–Schwarz inequality inequality, E2 is due to Theorem 3 in (Allen-Zhu
et al., 2019), i.e., the gradient lower bound. Recall that

η2 = min

{
Θ

( √
nρ

t4L2m

)
,Θ

( √
ρϵ2

t2L2λn2

)}
, LN (Θ0) ≤ O(t log2 m)

J2 = max

{
Θ

(
t5(O(t log2 m)− ϵ2)L

2m
√
nϵ2ρ

)
,Θ

(
t3L2λn2(O(t log2 m− ϵ2))

ρϵ2

)}
.

(30)
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Before achieving LN (Θ(j)) ≤ ϵ2, we have, for each u ∈ N , L(θ̂ut ) ≤ LN (Θ(j−1)), for I1, we have

I1 ≤− η2
√
n
∑
u∈N

ρm

tµu
t

√
L(θ̂ut )LN (Θ(j−1))+

+ η2w
1/3L2m

√
tρn logm

∑
n∈N

√
L(θ̂ut )LN (Θ(j−1)) + η22t

2L2m2n
∑
n∈N

√
L(θ̂ut )LN (Θ(j−1))

≤− η2n
√
nρm

t2

∑
n∈N

√
L(θ̂ut )LN (Θ(j−1))

+
(
η2w

1/3L2m
√
tρn logm+ η22t

2L2m2n
) ∑

n∈N

√
L(θ̂ut )LN (Θ(j−1))

≤︸︷︷︸
E3

−Θ

(
η2n

√
nρm

t2

) ∑
n∈N

√
L(θ̂ut )LN (Θ(j−1))

≤︸︷︷︸
E4

−Θ

(
η2n

√
nρm

t2

) ∑
n∈N

L(θ̂ut )

(31)
where E3 is because of the choice of η2. As LN (Θ0) ≤ O(t log2 m), we have LN (Θ(j)) ≤ ϵ2 in
JΘ rounds. For I2, we have

I2 ≤︸︷︷︸
E5

−
η2λ

√
ρ

t

√
ϵ2 + η2w

1/3nL2
√
t logmλ

√
LN (Θ(0)) +O(2η22tL

2)λ2n2

≤︸︷︷︸
E6

−
η2λ

√
ρ

t

√
ϵ2 + η2w

1/3nL2
√
t logmλ

√
O(t log2 m) +O(2η22tL

2)λ2n2

≤
(
−
η2
√
ρ

t

√
ϵ2 + η2w

1/3nL2
√
t logm

√
O(t log2 m) +O(2η22tL

2)λn2

)
λ

≤︸︷︷︸
E7

−Θ(
η2
√
ρϵ2

t
)λ

(32)

where E5 is by LN (Θ(j−1)) ≥ ϵ2 and LN (Θ(j−1)) ≤ LN (Θ(0)), E6 is according to Eq.(30), and
E7 is because of the choice of η2.

Combining above inequalities together, we have

LN (Θ(j)) ≤LN (Θ(j−1))−Θ

(
η2n

√
nρm

t2

) ∑
n∈N

L(θ̂ut )−Θ(
η2
√
ρϵ2

t
)λ

≤LN (Θ(j−1))−Θ(
η2
√
ρϵ2

t
)λ

(33)

Thus, because of the choice of J2, η2, we have

LN (Θ(J2)) ≤ LN (Θ(0))− J2 ·Θ(
η2
√
ρϵ2

t
)λ

≤ O(t log2 m)− J2 ·Θ(
η2
√
ρϵ2

t
) ≤ ϵ2.

(34)

The proof of (1) is completed.

According to Lemma E.8, For any j ∈ [J1], L(θu(j)) ≤ (1− Ω( ηρm
dµu

t
2 ))L(θu(j−1)). Therefore, for any

u ∈ [n], we have √
L(θ̂ut ) ≤

J1∑
j=0

√
L(θu(j)) ≤ O

(
(µu

t )
2

η1ρm

)
·
√

L(θu(0))

≤ O
(
(µu

t )
2

η1ρm

)
· O(

√
µu
t log

2 m),

(35)
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where the last inequality is because of Lemma E.8 (3).

Second, we have

∥Θ(J2) −Θ0∥2 ≤
J2∑
j=1

∥Θ(j) −Θ(j−1)∥2

≤
J2∑
j=1

η2∥
∑
n∈N

▽θ̂u
t
L+

λ√
m

∑
u∈N

sign(θ̂ut )∥2

≤
J2∑
j=1

η2∥
∑
u∈N

▽θ̂u
t
L∥F︸ ︷︷ ︸

I3

+
J2η2λn√

m

(36)

For I3, we have
J2∑
j=1

η2∥
∑
u∈N

▽θ̂u
t
L∥2 ≤

J2∑
j=1

η2
√
|N |

∑
u∈N

∥▽θ̂u
t
L∥2

≤︸︷︷︸
E8

J2∑
j=1

η2
√
n
∑
u∈N

∥▽θ̂u
t
L∥2

≤︸︷︷︸
E9

O
J2∑
j=1

(η2)
√
ntm

∑
u∈N

√
L(θ̂ut )

(37)

⇒
J2∑
j=1

η2∥
∑
u∈N

▽θ̂u
t
L∥2 ≤︸︷︷︸

E10

O(η2)
√
ntm

∑
u∈N

J2∑
j=1

√
L(θ̂ut )

≤︸︷︷︸
E11

O(η2)
√
ntm · n · O

(
(µu

t )
2

η1ρm

)
· O(

√
µu
t log

2 m)

≤ O

(
η2n

3/2t5/2
√
t log2 m

η1ρ
√
m

)
(38)

where E1 is because of |N | ≤ n, E2 is due to Theorem 3 in (Allen-Zhu et al., 2019), and E3 is as
the result of Eq.(35).

Combining Eq.(36) and Eq.(38), we have

∥Θ(J2) −Θ0∥2 ≤ O

(
η2n

3/2t3
√
log2 m+ J2η2η1ρλn

η1ρ
√
m

)

≤O

(
η2n

3/2t3
√
log2 m+O(t2 log2 m− tϵ2))η1

√
ρλn

η1ρ
√
mϵ2

)

≤O(n2t3
√
ϵ2 log

2 m) +O(t2 log2 m− tϵ2)ρ
1/2λn

O(ρ
√
mϵ2)

=βt.

(39)

The proof is completed.

D.1 ANCILLARY LEMMAS

Lemma D.2 ((Wang et al., 2020a)). Suppose m satisfies the condition2 in Eq.(6), if

Ω(m−3/2L−3/2[log(TkL2/δ)]3/2) ≤ ν ≤ O((L+ 1)−6
√
m).
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then with probability at least 1− δ, for all Θ,Θ′ satisfying ∥Θ−Θ0∥2 ≤ ν and ∥Θ′ −Θ0∥2 ≤ ν,
x ∈ Rd, ∥x∥2 = 1, we have

|f(x; Θ)− f(x; Θ′)− ⟨▽Θf(x; Θ),Θ′ −Θ⟩| ≤ O(ν4/3(L+ 1)2
√
m logm).

Lemma D.3. With probability at least 1 − δ, set η2 = Θ( ν√
2tm

), for any Θ′ ∈ Rp satisfying
∥Θ′ −Θ0∥2 ≤ β1 , such that

t∑
τ=1

|f(xτ ; Θ(j) − rτ | ≤
t∑

τ=1

|f(xτ ; Θ
′)− rτ |+O

(
3L

√
t√

2

)

Proof. Then, the proof is a direct application of Lemma 4.3 in (Cao and Gu, 2019) by setting the loss
as Lτ (Θ̂τ ) = |f(xτ ; Θ̂τ )− rτ |, R = β1

√
m, ϵ = LR√

2νt
, and ν = R2.

E ANALYSIS FOR USER-LEARNER

Lemma E.1. For any δ ∈ (0, 1), 0 < ρ ≤ O( 1
L ), suppose 0 < ϵ1 ≤ 1 and m, η1, J1 satisfy the

conditions in Eq.(6). After T rounds, with probability 1 − δ over the random initialization, the
cumulative error induced by the user-learners is upper bounded by

1

T

T∑
t=1

E
rt|xt

[|f(xt; θ
ut
t−1)− rt| | T ut

t−1, ut]

≤
√
n

[√
ϵ1
T

+O
(
LR√
T

)
+O(1 + ξt)

√
2 log(T/δ)

T

]
,

where the expectation is taken over rut conditioned on xu
t and T u

t is the historical data of u up to
round t.

Proof. Applying Lemma E.3 over all users, we have

1

T

T∑
t=1

E
rt|xt

[|f(xt; θ
ut
t−1)− rt| | T ut

t−1, ut]

=
1

T

∑
u∈N

∑
(xτ ,rτ )∈T u

t

E
rt|xt

[|f(xτ ; θ
u
t−1)− rτ | | T u

t−1, u]

≤ 1

T

∑
u∈N

[√
ϵ1µu

T +O
(
L
√

µu
t

)
+ (1 + ξt)

√
2µu

t log(T/δ)

] (40)

where we applied the union bound to δ over all n users and so we get log(T/δ) because of∑
u∈N µu

T = T . Then, given a user u, then, µu
T =

∑T
t=1 1{ut = u} where 1{ut = u} is the

indicator function. Then, applying Hoeffding-Azuma inequality on the sequence
√

µu
T ,∀u ∈ N , we

have ∑
u∈N

√
µu
T ≤

∑
u∈N

E[
√
µu
T ] +

√
2n log(1/δ)

=
√
nT +

√
2n log(1/δ).

Then, by simplification, we have

1

T

T∑
t=1

E
rt|xt

[|f(xt; θ
ut
t−1)− rt| | T ut

t−1, ut]

≤
√
n

[√
ϵ1
T

+O
(

L√
T

)
+O(1 + ξt)

√
2 log(T/δ)

T

]
.

(41)

The proof is complete.
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Lemma E.2. For any δ ∈ (0, 1), 0 < ρ ≤ O( 1
L ), suppose 0 < ϵ1 ≤ 1 and m, η1, J1 satisfy the

conditions in Eq.(6). In round t ∈ [T ], given u ∈ N , let

x∗
t = arg max

xt,i,i∈[k]
hu(xt,i)

the Bayes-optimal arm for u and r∗t is the corresponding reward. Then, with probability at least 1− δ
over the random initialization, after T rounds, with probability 1− δ over the random initialization,
the cumulative error induced by the user-learners is upper bounded by:

1

T

T∑
t=1

E
r∗t |x∗

t

[|f(x∗
t ; θ

ut,∗
t−1 )− r∗t | | T

ut,∗
t−1 , ut]

≤
√
n

[√
ϵ1
T

+O
(

L√
T

)
+O(1 + ξt)

√
2 log(T/δ)

T

]
.

where the expectation is taken over r∗τ conditioned on x∗
τ , T u,∗

t = {(x∗
τ , r

∗
τ ) : uτ = u, τ ∈ [t]}

are stored Bayes-optimal pairs up to round t for u, and θut,∗
t−1 are the parameters trained on T ut,∗

t−1
according to Algorithm 3 in round t− 1.

Proof. Based on Lemma E.4, we have

1

T

T∑
t=1

E
r∗t |x∗

t

[|f(x∗
t ; θ

ut,∗
t−1 )− r∗t | | T

ut,∗
t−1 , ut]

=
1

T

∑
u∈N

∑
(x∗

τ ,r
∗
τ )∈T u,∗

t

E
r∗t |x∗

t

[|f(x∗
τ ; θ

u,∗
t−1)− r∗τ | | T

u,∗
t−1 , u]

≤ 1

T

∑
u∈N

[√
ϵ1µu

T +O
(
L
√

µu
t

)
+ (1 + ξt)

√
2µu

t log(T/δ)

] (42)

where we applied the union bound to δ over all n users and so we get log(T/δ) because of∑
u∈N µu

T = T . Then, given a user u, then, µu
T =

∑T
t=1 1{ut = u} where 1{ut = u} is the

indicator function. Then, applying Hoeffding-Azuma inequality on the sequence
√

µu
T ,∀u ∈ N , we

have ∑
u∈N

√
µu
T ≤

∑
u∈N

E[
√
µu
T ] +

√
2n log(1/δ)

=
√
nT +

√
2n log(1/δ).

Then, we have
1

T

T∑
t=1

E
r∗t |x∗

t

[|f(xt; θ
ut,∗
t−1 )− r∗t | | T

ut,∗
t−1 , ut]

≤
√
n

[√
ϵ1
T

+O
(

L√
T

)
+O(1 + ξt)

√
2 log(T/δ)

T

]
.

(43)

The proof is complete.

Lemma E.3. For any δ ∈ (0, 1), 0 < ρ ≤ O( 1
L ), suppose 0 < ϵ1 ≤ 1 and m, η1, J1 satisfy the

conditions in Eq.(6). In a round τ where u ∈ N is serving user, let xτ be the arm selected by some
fixed policy πτ and rτ is the corresponding received reward. Then, with probability at least 1− δ
over the randomness of initialization, after t ∈ [T ] rounds, the cumulative regret induced by u is
upper bounded by:

1

µu
t

∑
(xτ ,rτ )∈T u

t

E
rτ |xτ

[|f(xτ ; θ
u
τ−1)− rτ | | πτ , u]

≤
√

ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

.

where the expectation is taken over rτ conditioned on xτ and T u
t = {(xτ , rτ ) : uτ = u, τ ∈ [t]} is

the historical data of u up to round t.
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Proof. According to Lemma E.5, with probability at least 1− δ, given any ∥x∥2 = 1, r ≤ 1, for any
round τ in which u is the serving user, we have

|f(x; θuτ−1)− r| ≤ ξt + 1.

Here, we will apply the union bound of δ over all µu
T rounds, to make this bound hold for every round

of u. Then, in a round τ where u is the serving user, let xτ be the arm selected by some fixed policy
πτ and rτ is the corresponding reward. Then, we define

Vτ = E
rτ |xτ

[|f(xτ ; θ
u
τ−1)− rτ |]− |f(xτ ; θ

u
τ−1)− rτ |, (44)

where the expectation is taken over rτ conditioned on xτ . Then, we have

E[Vτ |Fu
τ ] = E

rτ |xτ

[|f(xτ ; θ
u
τ−1)− rτ |]− E[|f(xτ ; θ

u
τ−1)− rτ | | Fu

τ ] = 0

where Fu
τ denotes the σ-algebra generated by T u

τ−1. Thus, we have the following form:

1

µu
t

∑
(xτ ,rτ )∈T u

t

Vτ =
1

µu
t

∑
(xτ ,rτ )∈T u

t

E
rτ |xτ

[|f(xτ ; θ
u
τ−1)− rτ |]−

1

µu
t

∑
(xτ ,rτ )∈T u

t

|f(xτ ; θ
u
τ−1)− rτ |.

(45)
Because V1, . . . , Vµu

t
is the martingale difference sequence, applying Hoeffding-Azuma inequality

over V1, . . . , Vµu
t

, we have

1

µu
t

∑
(xτ ,rτ )∈T u

t

E
rτ |xτ

[|f(xτ ; θ
u
τ−1)− rτ | | πτ , u]

≤ 1

µu
t

∑
(xτ ,rτ )∈T u

t

|f(xτ ; θ
u
τ−1)− rτ |︸ ︷︷ ︸

I1

+(1 + ξt)

√
2 log(1/δ)

µu
t

.
(46)

For I1, for any θ̃ satisfying ∥θ̃ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

, we have

1

µu
t

∑
(xτ ,rτ )∈T u

t

|f(xτ ; θ
u
τ−1)− rτ |

(a)

≤ 1

µu
t

∑
(xτ ,rτ )∈T u

t

|f(xτ ; θ̃)− rτ |+O
(

3L√
2µu

t

)
(b)

≤ 1

µu
t

√
µu
t

√ ∑
(xτ ,rτ )∈T u

t

(f(xτ ; θ̃)− rτ )2 +O
(

3L

2
√
µu
t

)

≤︸︷︷︸
I3

√
2ϵ1
µu
t

+O
(

3L√
µu
t

)
.

(47)

where I2 is because of Lemma E.6 and I3 is the direct application of Lemma E.8 (2): there exists θ̃
satisfying ∥θ̃ − θu0 ∥2 ≤ O

(
(µu

t )
3

ρ
√
m

logm
)

such that 1
2

∑µu
t

τ=1(f(xτ ; θ̃)− rτ )
2 ≤ ϵ1.

Combing Eq.(46) and Eq.(47), we have

1

µu
t

∑
(xτ ,rτ )∈T u

t

E
rτ |xτ

[|f(xt; θ
u
t−1)− rt| | πτ , u]

]
≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(1/δ)

µu
t

.

(48)
Then, applying the union bound over δ, for any i ∈ [k], τ ∈ [µu

t ].

Based on Lemma E.8 (4), for any θ̂uτ , τ ∈ [t], we have ∥θ̂uτ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

. Thus, it

holds that ∥θuτ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

.

Then, apply the union bound of δ over all µu
T rounds. The proof is completed.
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Lemma E.4. For any δ ∈ (0, 1), 0 < ρ ≤ O( 1
L ), suppose 0 < ϵ1 ≤ 1 and m, η1, J1 satisfy the

conditions in Eq.(6). In a round τ where u ∈ N is the serving user, let x∗
τ be the arm selected

according to Bayes-optimal policy π∗:

x∗
τ = arg max

xτ,i,i∈[k]
hu(xτ,i),

and r∗τ is the corresponding reward. Then, with probability at least 1 − δ over the randomness
of initialization, after t ∈ [T ] rounds, the cumulative regret induced by u with policy π∗ is upper
bounded by:

1

µu
t

∑
(x∗

τ ,r
∗
τ )∈T u,∗

t

E
r∗τ |x∗

τ

[|f(x∗
τ ; θ

u,∗
τ−1)− r∗τ | | π∗, u]

≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

.

where the expectation is taken over r∗τ conditioned on x∗
τ , T u,∗

t = {(x∗
τ , r

∗
τ ) : uτ = u, τ ∈ [t]}

are stored Bayes-optimal pairs up to round t for u, and θu,∗τ−1 are the parameters trained on T u,∗
τ−1

according to Algorithm 3 in round τ − 1.

Proof. This proof is analogous to Lemma E.3. In a round τ where u is the serving user, we define

Vτ = E
r∗τ |x∗

τ

[|f(x∗
τ ; θ̂

u,∗
τ−1)− r∗τ |]− |f(x∗

τ ; θ̂
u,∗
τ−1)− r∗τ |. (49)

where the expectation is taken over r∗τ conditioned on x∗
τ . Then, we have

E[Vτ |Fτ ] = E
r∗τ |x∗

τ

[|f(x∗
τ ; θ̂

u,∗
τ−1)− rτ,∗|]− E[|f(x∗

τ ; θ̂
u,∗
τ−1)− r∗τ | | Fτ ] = 0

Therefore, V1, . . . , Vµu
t

is the martingale difference sequence. Then, following the same procedure of
Lemma E.3, we can derive

1

µu
t

∑
(x∗

τ ,r
∗
τ )∈T u,∗

t

E
r∗τ |x∗

τ

[|f(x∗
τ ; θ

u,∗
τ−1)− r∗τ | | u]

≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(1/δ)

µu
t

.

Based on Lemma E.8 (4), for any θ̂u,∗τ , τ ∈ [t], we have ∥θ̂u,∗τ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

. Thus, it

holds that ∥θu,∗τ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

.

E.1 ANCILLARY LEMMAS

Lemma E.5. Suppose m, η1, η1 satisfy the conditions in Eq. (6). With probability at least 1− δ, for
any x with ∥x∥2 = 1 and t ∈ [T ], u ∈ N , it holds that

|f(x; θut )| ≤ 2 +O
(
t4nL logm

ρ
√
m

)
+O

(
t5nL2 log11/6 m

ρm1/6

)
= ξt.
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Proof. This is an application of Lemma C.3 in (Ban et al., 2021b). Let θ0 be randomly initialized.
Then applying Lemma E.9, for any ∥x∥2 = 1 and ∥θ̂ut − θ0∥ ≤ w, we have

|f(x; θ̂ut )| ≤ |f(x; θ0)|︸ ︷︷ ︸
I1

+|⟨▽θ0f(xi; θ0), θ̂
u
t − θ0⟩|+O(L2

√
m log(m))∥θ̂ut − θ0∥2w1/3

≤ 2∥x∥2︸ ︷︷ ︸
I1

+ ∥▽θ0f(xi; θ0)∥2∥θ̂ut − θ0∥2︸ ︷︷ ︸
I2

+O(L2
√

m log(m)) ∥θ̂ut − θ0∥2w1/3︸ ︷︷ ︸
I3

≤ 2 +O(L) · O
(

t3

ρ
√
m

logm

)
︸ ︷︷ ︸

I2

+O
(
L2
√
m log(m)

)
· O
(

t3

ρ
√
m

logm

)4/3

︸ ︷︷ ︸
I3

= 2 +O
(
t3L logm

ρ
√
m

)
+O

(
t4L2 log11/6 m

ρm1/6

)
(50)

where I1 is an application of Lemma 7.3 in (Allen-Zhu et al., 2019), I2 is by Lemma E.10 (1) and
Lemma E.8 (4), and I3 is due to Lemma E.8 (4).

Lemma E.6. For any δ ∈ (0, 1), suppose m satisfy the conditions in Eq.(6) and ν = Θ((µu
t )

6/ρ2).
Then, with probability at least 1 − δ, set η1 = Θ( ν√

2µu
t m

) for algorithm 1-3, for any θ̃ satisfying

∥θ̃ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

such that

µu
t∑

τ=1

|f(xτ ; θ
u
τ−1)− rτ | ≤

µu
t∑

τ=1

|f(xτ ; θ̃)− rτ |+O
(
3L

√
µu
t√

2

)
(51)

Proof. This is a direct application of Lemma 4.3 in (Cao and Gu, 2019) by setting the loss as
Lτ (θ

u
τ−1) = |f(xτ ; θ

u
τ−1) − rτ |, and R =

(µu
t )

3

ρ logm, ϵ = LR√
2νµu

t

, and ν = ν′R2, where ν′ is

some small enough absolute constant. Then, for any θ̃ satisfying ∥θ̃ − θu0 ∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

,
there exist a small enough absolute constant ν′, such that

t∑
τ=1

Lτ (θ̂
u
τ−1) ≤

t∑
τ=1

Lτ (θ̃) + 3µu
t ϵ. (52)

Then, replacing ϵ completes the proof.

Lemma E.7 (Lemma C.2 (Ban et al., 2021b)). For any δ ∈ (0, 1), ρ ∈ (0,O( 1
L )), suppose the

conditions in Theorem 4.2 are satisfied. Then, with probability at least 1− δ, in each round t ∈ [T ],

for any ∥x∥2 = 1, θu,∗t−1, θ
u
t−1 satisfying ∥θu,∗t−1 − θu0 ∥2 ≤ O

(
(µu

t )
3

ρ
√
m

logm
)

and ∥θut−1 − θu0 ∥2 ≤

O
(

(µu
t )

3

ρ
√
m

logm
)

, we have

(1) |f(x; θu,∗t−1)− f(x; θut−1)|

≤

(
1 +O

(
tL3 log5/6 m

ρ1/3m1/6

))
O
(

Lt3

ρ
√
m

logm

)
+O

(
t4L2 log11/6 m

ρ4/3m1/6

)
=ζt

(53)

(2)∥▽θu
t−1

f1(x; θ
u
t−1)∥2 ≤

(
1 +O

(
tL3 log5/6 m

ρ1/3m1/6

))
O(L) . (54)

Lemma E.8 (Theorem 1 in (Allen-Zhu et al., 2019)). For any 0 < ϵ1 ≤ 1, 0 < ρ ≤ O(1/L). Given
a user u, the collected data {xτ , r

u
τ }

µu
t

τ=1, suppose m, η1, J1 satisfy the conditions in Eq.(6). Define
L (θu) = 1

2

∑
(x,r)∈T u

t
(f(x; θu)− r)2. Then with probability at least 1− δ, these hold that:
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1. For any j ∈ [J ], L(θu(j)) ≤ (1− Ω(η1ρm
µu
t
2 ))L(θu(j−1))

2. L(θ̂uµu
t
) ≤ ϵ1 in J1 =

poly(µu
t ,L)

ρ2 log(1/ϵ1) rounds.

3. L(θu0 ) ≤ O(µu
t log

2 m).

4. For any j ∈ [J ], ∥θu(j) − θu(0)∥2 ≤ O
(

(µu
t )

3

ρ
√
m

logm
)

.

Lemma E.9 (Lemma 4.1, (Cao and Gu, 2019)). Suppose O(m−3/2L−3/2[log(TnL2/δ)]3/2) ≤
w ≤ O(L−6[logm]−3/2). Then, with probability at least 1 − δ over randomness of θ0, for any
t ∈ [T ], ∥x∥2 = 1, and θ, θ′ satisfying ∥θ − θ0∥ ≤ w and ∥θ′ − θ0∥ ≤ w , it holds uniformly that

|f(x; θ)− f(x; θ′)− ⟨▽θ′f(x; θ′), θ − θ′⟩| ≤ O(w1/3L2
√
m log(m))∥θ − θ′∥2.

Lemma E.10. For any δ ∈ (0, 1), suppose m, η1, J1 satisfy the conditions in Eq.(6) and θ0 are
randomly initialized. Then, with probability at least 1− δ, for any ∥x∥2 = 1, these hold that

1. ∥▽θ0f(x; θ0)∥2 ≤ O(L),

2. |f(x; θ0)| ≤ 2.

Proof. For (2), based on Lemma 7.1 in (Allen-Zhu et al., 2019), we have |f(x; θ0)| ≤ 2. Denote by
D the ReLU function. For any l ∈ [L],

∥▽Wl
f(x; θ0)∥F ≤ ∥WLDWL−1 · · ·DWl+1∥F · ∥DWl+1 · · ·x∥F ≤ O(

√
L)

where the inequality is according to Lemma 7.2 in (Allen-Zhu et al., 2019). Therefore, we have
∥▽θ0f(x; θ0)∥2 ≤ O(L).

F RELATIVE GROUP GUARANTEE

In this section, we provide a relative group guarantee with the expectation taken over all past selected
arms. For u, u′ ∈ N ∧ u ̸= u′, we define

E
xτ∼T u

t |x
[N̂u(xτ )] = {u, u′ : E

xτ∼T u
t |x

[|f(xτ ; θ
u
t−1)]− E

xτ∼T u
t |x

[f(xτ ; θ
u′

t−1)|] ≤
ν − 1

ν
γ} (55)

and
E

xτ∼T u
t |x

[Nu(xτ )] = {u, u′ : E
xτ∼T u

t |x
[E[rτ |u]] = E

xτ∼T u
t |x

[E[rτ |u′]]} (56)

where N̂u(xτ ) is the detected group and Nu(xτ ) is the ground-truth group. Then, we provide the
following lemma.
Lemma F.1 (Lemma 4.6 Restated). Assume the groups in N satisfy γ-gap (Definition 2.2) and the
conditions of Theorem 4.2 are satisfied. For any δ ∈ (0, 1), ν > 1, with probability at least 1 − δ
over the random initialization, there exist constants c1, c2, such that when

t ≥
n64ν2(1 + ξt)

2
(
log 32ν2(1+ξt)

2

γ2 +
9L2c21+4ϵ1+2ζ2

t

4(1+ξt)2
− log δ

)
γ2(1 +

√
3n log(n/δ))

= T̃ ,

given a user u ∈ N , it holds uniformly for Algorithms 1-3 that

E
xτ∼T u

t |x
[N̂u(xτ ) ⊆ Nu(xτ )]

and E
xτ∼T u

t |x
[N̂u(xτ ) = Nu(xτ )], if ν ≥ 2,

where xτ is uniformly drawn from T u
t |x and T u

t |x = {xτ : ut = u ∧ τ ∈ [t]} is all the historical
selected arms when serving u up to round t. Recall that

ζt =

(
1 +O

(
tL3 log5/6 m

ρ1/3m1/6

))
O
(

Lt3

ρ
√
m

logm

)
+O

(
t4L2 log11/6 m

ρ4/3m1/6

)
;

ξt = 2 +O
(
t4nL logm

ρ
√
m

)
+O

(
t5nL2 log11/6 m

ρm1/6

)
.
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Proof. Given two user u, u′ ∈ N and an arm xτ , let rτ be the reward u generated on xτ and r′τ be
the reward u′ generated on xτ . Then, in round t ∈ [T ], we have

E
xτ∼T u

t |x

[
E

rτ ,r′τ
[|rτ − r′τ | | xτ ]

]
=

1

µu
t

∑
xτ∈T u

t |x

E
rτ ,r′τ

[|rτ − r′τ | | xτ ]

=
1

µu
t

∑
xτ∈T u

t |x

E
rτ ,r′τ

[|rτ − f(xτ ; θ
u
t−1) + f(xτ ; θ

u
t−1)− f(xτ ; θ

u′

t−1) + f(xτ ; θ
u′

t−1)− r′τ | | xτ ]

≤ 1

µu
t

∑
xτ∈T u

t |x

E
rτ |xτ

[|rτ − f(xτ ; θ
u
t−1)| | u] +

1

µu
t

∑
xτ∈T u

t |x

[|f(xτ ; θ
u
t−1)− f(xτ ; θ

u′

t−1)|]

+
1

µu
t

∑
xτ∈T u

t |x

E
r′τ |xτ

[|f(xτ ; θ
u′

t−1)− r′τ | | u′],

(57)
where the expectation is taken over rτ , r′τ conditioned on xτ . According to Lemma E.3 and Corollary
F.2 respectively, for each u ∈ N , we have

1

µu
t

∑
xτ∈T u

t |x

E
rτ |xτ

[|rτ − f(xτ ; θ
u
t−1)| | u],

≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

;

1

µu
t

∑
xτ∈T u

t |x

E
r′τ |xτ

[|f(xτ ; θ
u′

t−1)− r′τ | | u′]

≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

+ ζt.

(58)

Due to the setting of Algorithm 1, |f(xτ ; θ
u
t−1) − f(xτ ; θ

u′

t−1)| ≤ ν−1
ν γ for any u, u′ ∈ N̂ut(xτ ),

given xτ ∈ T u
t |x. Therefore, we have

E
xτ∼T u

t |x

[
E

rτ ,r′τ
[|rτ − r′τ | | xτ ]

]

≤ν − 1

ν
γ + 2

(√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

+ ζt

) (59)

Next, we need to lower bound t as the following:√
2ϵ1
t

+
3Lc1√
2µu

t

+ (1 + ξt)

√
2 log(t/δ)

µu
t

+ ζt ≤
γ

2ν(√
2ϵ1
µu
t

+
3Lc1√
2µu

t

+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

+ ζt

)2

≤ γ2

4ν2

⇒ 4

(√2ϵ1
µu
t

)2

+

(
3Lc1√
2µu

t

)2

+

(
(1 + ξt)

√
2 log(µu

t /δ)

µu
t

)2

+ (ζt)
2

 ≤ γ2

4ν2

(60)

By simple calculations, we have

logµu
t ≤ γ2µu

t

32ν2(1 + ξt)2
− 9L2c21 + 4ϵ1 + 2ζ2t

4(1 + ξt)2
+ log δ (61)

Then, based on Lemme 8.1 in (Ban and He, 2021), we have

µu
t ≥ 64ν2(1 + ξt)

2

γ2

(
log

32ν2(1 + ξt)
2

γ2
+

9L2c21 + 4ϵ1 + 2ζ2t
4(1 + ξt)2

− log δ

)
(62)
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Given the binomially distributed random variables, x1, x2, . . . , xt, where for τ ∈ [t], xτ = 1 with
probability 1/n and xτ = 0 with probability 1− 1/n. Then, we have

µu
t =

t∑
τ=1

xτ and E[µu
t ] =

t

n
. (63)

Then, apply Chernoff Bounds on the µu
t with probability at least 1− δ, for each u ∈ N , we have

µu
t ≤

(
1 +

√
3n log(n/δ)

t

)
t

n
⇒ t ≥ nµu

t

1 +
√

3n log(n/δ)
(64)

Combining Eq.(62) and Eq.(64), we have: When

t ≥
n64ν2(1 + ξt)

2
(
log 32ν2(1+ξt)

2

γ2 +
9L2c21+4ϵ1+2ζ2

t

4(1+ξt)2
− log δ

)
γ2(1 +

√
3n log(n/δ))

= T̃

it holds uniformly that:

2

(√
2ϵ1
µu
t

+
3L√
2µu

t

+ (1 + ξt)

√
2 log(t/δ)

t
+ ζ2t

)
≤ γ

ν
.

This indicates for any u, u′ ∈ N and satisfying |f(xτ ; θ
u
t−1) − f(xτ ; θ

u′

t−1)| ≤ ν−1
ν γ, i.e., u, u′ ∈

N̂u(xτ ), we have

E
xτ∼T u

t |x

[
E

rτ ,r′τ
[|rτ − r′τ | | xτ ]

]
≤ γ. (65)

This implies E
xτ∼T u

t |x
[N̂u(xτ ) ⊆ Nu(xτ )].

For any u, u′ ∈ Nu(xτ ), we have

E
xτ∼T u

t |x

[
E

rτ ,r′τ
[rτ − r′τ | xτ ]

]
=

1

µu
t

∑
xτ∈T u

t |x

E
rτ |xτ

[rτ − f(xτ ; θ
u
t−1) | u] +

1

µu
t

∑
xτ∈T u

t |x

[f(xτ ; θ
u
t−1)− f(xτ ; θ

u′

t−1)]

+
1

µu
t

∑
xτ∈T u

t |x

E
r′τ |xτ

[f(xτ ; θ
u′

t−1)− r′τ | u′]

=0

Thus, when t ≥ T̃ , we have

E
xτ∼T u

t |x
[|f(xτ ; θ

u
t−1)− f(xτ ; θ

u′

t−1)|]

≤ 1

µu
t

∑
xτ∈T u

t |x

E
rτ |xτ

[|rτ − f(xτ ; θ
u
t−1)| | u] +

1

µu
t

∑
xτ∈T u

t |x

E
r′τ |xτ

[|f(xτ ; θ
u′

t−1)− r′τ | | u′]

≤γ

ν

Because γ
ν ≤ ν−1

ν γ when ν ≥ 2. Thus, we have E
xτ∼T u

t |x
[|f(xτ ; θ

u
t−1) − f(xτ ; θ

u′

t−1)|] ≤ ν−1
ν γ.

Therefore, by induction, this is enough to show E
xτ∼T u

t |x
[N̂u(xτ ) = Nu(xτ )] when ν ≥ 2 and t ≥ T̃ .

The proof is completed.

Corollary F.2. For any δ ∈ (0, 1), ρ ∈ (0,O( 1
L )], suppose 0 < ϵ1 ≤ 1 and m, η1, J1 satisfy the

conditions in Eq.(6). In each round t ∈ [T ], given u ∈ N , let (xt,j , rt,j) be pair produced by some
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policy πj . Then, with probability at least 1− δ over the random initialization, for the user-learner
θut−1, we have

1

µu
t

∑
(rτ,j ,xτ,j)∈T u

t |πj

E
rτ,j |xτ,j

[
|rτ,j − f(xτ,j ; θ

u
τ−1)| | πj , u

]
≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(µu

t /δ)

µu
t

+ ζt,

where T u
t |πj = {(rτ,j ,xτ,j) : ut = u, τ ∈ [t]} is the historical data according to πj in the rounds

where u is the serving user.

Proof. By the application of Lemma E.4, there exists θu,jt−1 satisfying ∥θu,jt−1 − θu0 ∥2 ≤
O
(

(µu
t )

3

ρ
√
m

logm
)

trained on T u
t |πj following Algorithm 3. Then, similar to Lemma E.2, we have

1

µu
t

∑
(rτ,j ,xτ,j)∈T u

t |πj

E
rτ,j |xτ,j

[
|rt,j − f(xt,j ; θ

u
t−1)|

]
≤ 1

µu
t

∑
(rτ,j ,xτ,j)∈T u

t |πj

E
rτ,j |xτ,j

[
|rt,j − f(xt,j ; θ

u,j
t−1)|

]
︸ ︷︷ ︸

I1

+
1

µu
t

∑
(rτ,j ,xτ,j)∈T u

t |πj

[|f(xt,j ; θ
u,j
t−1)− f(xt,j ; θ

u
t−1)|]︸ ︷︷ ︸

I2

≤

√
2ϵ1
µu
t

+O
(

3L√
2µu

t

)
+ (1 + ξt)

√
2 log(O(µuk)/δ)

µu
+ ζt.

(66)

where I1 is an application of Lemma E.4 and I2 is because of E.7. The proof is complete.
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