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ABSTRACT

Despite the significant advancements made by Diffusion Transformer (DiT)-based
methods in video generation, there remains a notable gap with camera-pose per-
spectives. Existing works such as OpenSora do not adhere precisely to antic-
ipated trajectories, thereby limiting the utility in downstream applications such
as content creation. Therefore, we introduce a novelty approach that achieves
fine-grained control by embedding sparse camera-pose information into the tem-
poral self-attention layers. We employ LoRA to minimize the impact on the orig-
inal attention layer parameters during fine-tuning and enhance the supervision of
camera-pose in the loss function. After fine-tuning the OpenSora’s ST-DiT frame-
work on the RealEstate10K dataset, experiments demonstrate that our method
outperforms LDM-based methods for long video generation, while maintaining
optimal performance in trajectory consistency and object consistency.

1 INTRODUCTION

The rapid evolution on video generation has been marked by the rise of DiT method Peebles &
Xie (2023), which is well-suited for generating long video sequences. Despite these advances, DiT
models often struggle with controllability, particularly in the precise control of camera movements,
which is essential for many creative applications.

The recent video generation methods such as AnimateDiff Guo et al. (2023), Lumiere Bar-Tal et al.
(2024), and SVD Blattmann et al. (2023a) have advanced from text-to-image (T2I) to text-to-video
(T2V) domains by modifying the U-Net Ronneberger et al. (2015). Currently, the guidance by cam-
era motion and object motion information, like MotionCtrl Wang et al. (2024b) and CameraCtrl He
et al. (2024), takes more possibility to video content creation. However, these methods are mainly
constrained by the Latent Diffusion Models (LDM) Rombach et al. (2022), which imposes strict
limitations on the latent space, resulting in videos generated by U-Net fail to adjust resolution and
duration. With the release of Sora Brooks et al. (2024) earlier this year, researchers start to focus on
DiT-based methods. Recent works such as Kling, OpenSora Zheng et al. (2024), and Open-Sora-
Plan Lab & etc. (2024) have conducted extensive explorations on 3D-VAE and spatial-temporal DiT
(ST-DiT). These methods have achieved promising results in the T2V task. For applications involv-
ing motion manipulation, Tora Zhang et al. (2024b) has implemented the extraction of trajectory data
into motion-guided fusion. However, there is currently no effective solution for the enhancement of
controllable video generation with camera-pose sequences.

Therefore, we propose a camera-pose controllable method for DiT-based video generation (CCM-
DiT), which effectively embeds camera-pose sequences into DiT and generates videos according to
the corresponding camera-pose sequence. Our method utilizes the OpenSora-v1.2 framework and
extracts inter-frame motion sequences from reference videos in camera perspectives. First, each
frame is annotated with a 12-dimension motion matrix, including a 3 × 3 rotation matrix and a
3 × 1 translation matrix. Effectively capturing the precision of camera-pose remains a challenge.
We propose the Sparse Motion Encoding Module for converting a pixel-wise motion field based on
Plücker coordinates into a sparse motion field. Second, compared to the U-Net, the DiT framework
compresses the temporal dimension to reduce VRAM usage, making it difficult to align frame-based
motion information with the temporal attention layer, thus complicating the embedding of camera-
pose motion. Inspired by Tora, we train a VAE Kingma (2013) for the latent space of camera-pose
sequences, improving its alignment with the temporal attention layer.
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Figure 1: The overview of the CCM-DiT. CCM-DiT includes the Sparse Motion Encoding Module
and the Temporal Attention Injection Module. It establishes a sparse motion sequence representation
based on Plücker coordinates and feeds it into the VAE for latent space encoding, handling the
camera-pose sequences for multiple frames. By employing the adaptive normalization method, it
achieves alignment of the temporal attention layer and the latent motion. The inputs of the video
and text caption are consistent with OpenSora, feeding into the ST-DiT and cross-attention layers
through the 3D-VAE and T5 model, respectively.

The training of CCM-DiT consists two parts. First, the reconstruction loss is used for the camera-
pose sequences during VAE training. We use RealEstate10K Zhou et al. (2018), a video dataset
with over 60k camera-pose annotations, to train the VAE for sparse motion sequences. Second, we
fine-tune the OpenSora by introducing a motion injection module after the VAE. To reduce memory
usage, most of the original parameters are frozen while applying LoRA in the temporal attention
layer. We evaluate our method and the experiments show that our approach achieved state-of-the-
art (SOTA) performance for long video generation tasks.

Our main contributions are:

• We propose a method to embed camera-pose sequences into the DiT framework, enabling
video generation to accurately follow camera-pose motion.

• We introduce sparse motion encoding module and LoRA fine-tuning for temporal attention,
allowing for efficient encoding of camera-pose sequences. Meanwhile, we design a loss
function related to camera-pose.

• Our method achieves SOTA during long video generation with camera-pose sequences.

2 RELATED WORK

2.1 VIDEO GENERATION

With diffusion models being proven as an effective method for creating high-quality images, re-
search on dynamic video generation has gradually emerged. Make-a-video Singer et al. (2022)
and MagicVideo Zhou et al. (2022) use 3D U-Net in LDM to learn temporal and spatial attention,
though the training cost is relatively expensive. VideoComposer Wang et al. (2024a) expands the
conditional input forms by training a unified encoder. Other methods (Align Your Latents Blattmann
et al. (2023b), VideoElevator Zhang et al. (2024a), AnimateDiff, Direct a Video Yang et al. (2024a),
Motioni2v Shi et al. (2024), Consisti2v Ren et al. (2024)) improve the performance by reusing T2I
models and make adjustments in the temporal and spatial attention parts to reduce issues such as
flicker reduction. Video generation models based on DiT or Transformer Vaswani (2017) adopt
spatial-temporal attention from LDM, such as Latte Ma et al. (2024), Vidu Bao et al. (2024),
CogVideoX Yang et al. (2024b) and SnapVideo Menapace et al. (2024), which have significant
advantages in terms of resolution and duration compared to LDM methods.

2.2 CONTROLLABLE GENERATION

Controllable generation is one of the key research topics for generative tasks. For T2I task, Con-
trolNet Zhang et al. (2023) enables fine-tuning samples while retaining the backbone, and Control-
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Figure 2: VAE to encode camera-pose sequences. The matrix parameters between adjacent frames
are calculated to obtain the camera-pose sequence, which is then transformed into RGB space
through the sparse motion field and finally processed into motion latent by the VAE.

NeXT Peng et al. (2024) significantly improves training efficiency. For controllable video gen-
eration, tune-a-video Wu et al. (2023) enables single sample fine-tuning, changing styles while
maintaining consistent object motion. MotionClone Ling et al. (2024) implements a plug-and-play
motion-guided model. MotionCtrl and CameraCtrl use motion consistency modules to introduce
camera-pose sequences. PixelDance Zeng et al. (2024) uses the first and the last frame as reference
for video generation. Image Conductor Li et al. (2024) and FreeTraj Qiu et al. (2024) introduce
tracking schemes based on trajectories and bounding boxes, respectively. ViewDiff Höllein et al.
(2024) reconstructs 3D information of objects based on camera-pose sequences. As for Transformer
or DiT, there are few researches for camera-pose. VD3D builds on SnapVideo, embedding camera-
pose into cross-attention layers via Plücker coordinates. Tora and TrackGoZhou et al. (2024) ex-
plore controllable video generation by trajectories and masks. Currently, there is still limited work
for camera-pose information on DiT.

3 METHOD

3.1 PRELIMINARY

The LVDM (Latent Video Diffusion Model) He et al. (2022) aims to video generation through a
denoising diffusion network like U-Net. It proposes a strategy for the separation of spatiotemporal
self-attention to address the frame motion coherence in video generation. The loss function for the
U-Net is shown in the following formula:

L(θ) = Ez0,c,t,ϵ[∥ϵθ(zt, c, t)− ϵ∥22] (1)

Here, ϵθ is the predicted noise, zt and cc represent the latent space at t step and text condition,
respectively. The latent space of the U-Net conforms to the following Markov chain:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (2)

where ᾱt =
∏t

i=1 αt, αt represents the noise strength in step t.

The DiT-based method replaces the U-Net with Transformer, remaining its sequential processing
capabilities to greatly enhance the image quality and duration in video generation. To reduce com-
putational complexity, the 3D-VAE in OpenSora performs a 4× compression on the temporal di-
mension. Compared to LVDM’s latent space of b × L × w × h, OpenSora’s latent space size is
b× f × w × h(f = L/4), which is more lightweight on the temporal dimension.

3.2 CCM-DIT

As depicted in Fig. 1, the proposed CCM-DiT consists of two modules: the Sparse Motion Encoding
Module and the Temporal Attention Injection Module. Previous works describe camera motion in
various ways, such as using Plücker coordinates He et al. (2024); Bahmani et al. (2024) or directly
based on motion matrices Wang et al. (2024b). Methods based on Plücker coordinates calculate the
Plücker embedding for each pixel in the image coordinate space, with the corresponding equation:

Px,y = [oc, 1]
(

RK−1 [x, y, 1]
T
+ t

)
(3)
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Figure 3: Embedding Methods. (a) channel-dimension concatation directly; (b) adaptive normal-
ization, the latent motion is scaled and shifted for alignment with temporal attention; and (c) cross-
attention, while temporal attention and latent motion are reconstructed for cross-attention.

Here, oc, t ∈ R3×1 represent the camera center and the translation part, and R, K are the rotation
matrix and intrinsic parameters of the camera-pose. RK−1 [x, y, 1]

T
+ t forms the direction vector

from the camera center to the pixel point (x, y). For the method of directly using motion matrices,
camera poses are serialized frame-by-frame into RT ∈ RL×12, where L denotes the frame num-
ber. During motion injection, the parameters are replicated in spatial dimension to align temporal
attention layer. However, this approach may encounter problems for DiT-based method that exists
time-dimensional compression.

Sparse Motion Encoding Module. In this work, we propose a method for converting a pixel-wise
motion field based on Plücker coordinates into a sparse motion field, as shown in Fig. 2. Although
Plücker coordinates can precisely describe the motion trajectory for each pixel in the image, we
perform sparse sampling of the motion field to enhance computational efficiency and adapt to spatial
domain feature representations. Specifically, the image is sampled at regular intervals and Plücker
motion vectors are calculated on these sparse points, forming a sparse motion vector field. Assuming
the image resolution is W ×H , we sample every sx pixels in the x direction and every sy pixels in
the y direction to obtain a sparse point sequence {(xi, yj)}, with the corresponding sparse motion
trajectory given by:

Pxi,yj
= [oc, 1]

(
RK−1 [xi, yj , 1]

T
+ t

)
(4)

where xi = i · sx and yj = j · sy , with i and j being the sampling indices. Here, we get a sparse
motion field Fs ∈ RL×M×N , the M = W/sx, N = H/sy .

We trained a VAE to compress the sparse motion field, aligning it with the temporal sequences
in OpenSora. MegViT-v2 Yu et al. (2023) is selected to maintain consistency with the temporal
attention layers and the reconstruction loss of the camera-pose motion is calculated.

Temporal Attention Injection Module. We consider three typical embedding methods, including
channel-dimension concatation, adaptive normalization, and cross-attention, as shown in Fig. 3.
Direct channel-dimension concatation adds the camera-pose motion latent to the temporal layers,
which is used in MotionCtrl. Adaptive normalization uses multi-layer perceptron (MLP) for latent
motion alignment with temporal layers. β, γ are used for shift & scale during linear projection,
respectively. For cross attention, temporal layers represents query, while latent motion represents
key and value, calculates the hidden layers. We experiment three injection methods, and adaptive
normalization gives the best performance and consistency during video generation.

3.3 TRAINING DETAILS AND DATA PROCESSING

Training Details. The Open-Sora’s second training stage is ultilized to train the VAE of camera-
pose sequences. Specifically, the training strategy supervises the reconstruction process, including
reconstruction loss and KL loss. The reconstruction loss aims to minimize the gap between the
predicted result and the ground truth, while the KL loss minimizes the divergence between the
VAE’s output distribution and the standard normal distribution. During the fine-tuning of the latent
motion using MLP, we freeze the ST-DiT parts except for the temporal attention layer, and introduce
LoRA during the update of the self-attention to reduce VRAM usage. Additionally, a novelty loss
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Figure 4: Camera-pose visualization. We visualize image sequence after sparse motion sampling,
with each row representing frame 0, frame 5, frame 10, and frame 15 (final frame) of the camera-
pose series from left to right. The arrows in the image indicate the motion of the sampling points.
The first row shows a camera zoom-in motion, and the second row shows a pan-right motion.

function is introduced for fine-tuning, which incorporates pm as camera-pose motion conditional
inputs, comparing to equation 1.

L(θ) = Ez0,c,t,ϵ,pm
[∥ϵθ(zt, c, t, pm)− ϵ∥22] (5)

Data Processing. Various forms of condition input, including camera-pose representation, text
prompt and reference image, are carefully considered before fine-tuning. For a better camera-pose
representation, we randomly select 17-frame video segments and get their 12-point camera-pose
from timestamp information. Then we use sparse motion sampling method mentioned in Section 3.2
to get the RGB image of the motion field as the camera-pose representation, which gets the alignment
with the sampling frame motion. For text prompt and reference image, we follow the pretrained
model in OpenSora, with T5 model and 3D-VAE model, respectively.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We use the weights and network structure following OpenSora-v1.2. When training the Sparse
Motion Encoding, only the parameters of the motion-relative part and the temporal-attention part
are trained, while the backbone parameters are frozen to retain the original capabilities. During
training, the approach of MotionCtrl is followed. We extract 16-frame camera pose information and
convert it into a RGB sparse representation (as shown in Fig. 4), and feeding it into the VAE for
reconstruction. The guidance scale is set to 7.0. We fine-tunes on 4 Nvidia L40s with the learning
rate of 5 × 10−5, requiring 100k steps and with the batch size of 1, which takes approximately 2.5
days.

4.2 DATASETS

To validate the effectiveness of the proposed method, we use the RealEstate10K dataset, consistent
with MotionCtrl and VD3D. We randomly select 20 videos from the test set, which include common
camera movements such as pan left/right, up and down, zoom in/out, as well as roundabout and other
complex movements.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 5: The video generation performance on basic camera movements. The text prompt is: The
waves are surging inside the house. Each row representing frame 0, frame 23, frame 47 and frame
71 (last frame) of the actual video. The first row shows a camera zoom-in motion, and the second
row shows a camera zoom-out motion.

4.3 METRICS

We use Fréchet Inception Distance (FID)Heusel et al. (2017), Fréchet Video Distance (FVD) Un-
terthiner et al. (2018), and CLIP Similarity (CLIPSIM) Radford et al. (2021) as metrics to evalu-
ate the image quality, video consistency, and semantic similarity of the generated videos. For the
camera-pose consistency metric, we adopt the CamMC, the same approach mentioned in MotionC-
trl. Since DiT demonstrates advantages in long video generation, we test the performance of video
generation extended to 72 frames. For LDM methods, we produce long videos by using the final
frame of the previous segment as the reference for the subsequent segment.

4.4 QUANTITATIVE AND QUALITATIVE RESULTS

We evaluate the performance of several video generation models on both short video (16 frames)
and long video (72 frames) generation tasks. The methods include LDM-based approaches such as
SVD, AnimateDiff, MotionCtrl, and CameraCtrl, and DiT-based methods like EasyAnimate, VD3D,
and OpenSora, as shown in Table 1. The resolution for LDM-based methods is mainly 256 × 256
or 384 × 256, while DiT-based methods use a unified resolution of 640 × 360. For short video
generation tasks, MotionCtrl shows an advantage, achieving the best results in video consistency
metrics (FVD and CamMC). However, in long video generation tasks, CCM-DiT demonstrates sig-
nificant advantages in consistency metrics. This is mainly attributed to CCM-DiT’s more precise
camera-pose sequences input during long video generation, which allows for fine-grained control
over each frame. Additionally, it outperforms previously proposed methods in the CLIPSIM metric
as well, which demonstrates that CCM-DiT effectively retains reference image. This is because we
freeze other irrelevant parameters as much as possible when introducing camera-pose sequences,
preserving the model’s original video generation capabilities.

We also present the visualized performance of video generation using CCM-DiT (Fig. 5 and 6).
For simple camera-pose, such as zoom in and zoom out, CCM-DiT performs excellently on these
basic camera movement tasks, accurately following the camera motion poses. For complex tasks,
such as camera movement with rotation, CCM-DiT achieves smooth transitions while maintaining
the object pose effectively.

4.5 ABLATION STUDIES

We conduct ablation studies for CCM-DiT, focusing on the sampling interval of camera-pose RGB
series and the temporal injection methods, corresponding to the Sparse Motion Encoding and Tem-
poral Attention Injection Module introduced in Section 3.2.

In the sampling interval experiment, we conduct three sets of motion extraction strategies: 20×,
40×, and 80×. For example, for 640×360 video resolution, the 40× strategy corresponds to 16×9
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Figure 6: The video generation performance on complex camera movements. The text prompt is:
The dog is watching and moving around. Each row representing frame 0, frame 23, frame 47 and
frame 71 (last frame) of the actual video. This case shows a camera roundabout motion.

Table 1: Comparison of consistency performance using different video generation methods, our
method CCM-DiT achieves the best results in long video task.

Models
FID (↓) FVD (↓) CLIPSIM (↑) CamMC (↓)

Short Long Short Long Short Long Short Long

SVD Blattmann et al. (2023a) 185 261 1503 1628 0.1604 0.1102 0.160 0.885

AnimateDiff Guo et al. (2023) 167 175 1447 1512 0.2367 0.2045 0.051 0.473

MotionCtrl Wang et al. (2024b) 132 168 1004 1464 0.2355 0.2268 0.029 0.472

CameraCtrl He et al. (2024) 173 254 1426 1530 0.2201 0.2194 0.052 0.205

EasyAnimateV3Xu et al. (2024) 165 245 1401 1498 0.2305 0.2250 0.046 0.068

VD3DBahmani et al. (2024) – 171 – 1400 – 0.2032 – 0.044

OpenSora Zheng et al. (2024) 141 161 1587 1682 0.2496 0.2284 – –

CCM-DiT (Ours) 147 158 1310 1387 0.2521 0.2438 0.037 0.042

Table 2: Ablation study results showing the effect of sample ratios for camera pose latents.
Ratios FID (↓) FVD (↓) CLIPSIM (↑) CamMC (↓)

20× 156 1395 0.2328 0.045

40× 148 1313 0.2521 0.038
80× 151 1358 0.2462 0.042

motion extraction points. We train the VAE using different sampling strategies and evaluate the
video generation performance, as shown in Table 2. We find that the 40× achieves the best results
across all metrics, indicating that the camera-pose motion sampling quantity at 40× is relatively
optimal. For the 20× and 80×, we observe varying degrees of target drift or weakened motion
consistency during evaluation. The possible reason is that for 80×, the sampling density is sparse
(around 40 vectors per frame), making it easy for targets to be distorted and reducing motion control
capability. On the other hand, for 20×, there are over 500 vectors each frame, making it difficult to
align with each motion vector and leading to a decrease in motion consistency. This ablation study
provides a reference for quantifying sparse motion sampling.

In the injection method experiment, we also use three strategies: channel-dimension concatation
(concat), adaptive normalization, and cross-attention. The video generation performance for the
three methods are shown in Table 3. We find that adaptive normalization achieves better consistency
results compared to the other methods. The reason is that for channel-dimension concatation, which
fails to align the motion latent with the temporal attention at first, leading to weaker camera-pose
control during generation. For cross-attention, which alters the dimension of both motion latent
and temporal attention, causes more disruption to the temporal attention in the original network.
Additionally, we observe that adaptive normalization is able to unify motion and temporal latent
into a similar distribution, which is crucial for the effective injection of camera-pose.
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Table 3: Ablation study results showing the effect of different injection modules for camera-pose
latents.

Methods FID (↓) FVD (↓) CLIPSIM (↑) CamMC (↓)

Concat 152 1342 0.2328 0.046

Cross Attn. 149 1326 0.2335 0.041

Adapt. Norm. 148 1313 0.2521 0.038

4.6 DISCUSSIONS

CCM-DiT demonstrates excellent performance in maintaining camera consistency for long video
generation, but there are still the following challenges and limitations:

• The performance of the main object is relatively weak. We focus on maintaining the
consistency of camera-pose motion. Although object consistency is also preserved, due to
the conservative nature of motion estimation, the object movement tends to be limited to
small-scale motions, making large-scale motion generation more challenging.

• There is limited support for camera-pose motion trajectories. To ensure consistency in
our study, we use camera-pose condition based on 16 frames. More frame requirements
rely on frame interpolation for completion. Currently, generating more complex motion
videos remains a challenge.

5 CONCLUSION

We propose a novelty method for camera-pose controllable video generation based on DiT archi-
tecture. To effectively inject camera-pose sequences into the temporal-attention layer, we introduce
a Sparse Motion Encoding Module that transforms motion into sampling points in the RGB space
and use a VAE to achieve latent motion feature embedding. Our method achieves SOTA in camera
motion control for long video scenarios. We believe this work will find valuable applications in the
future of controllable video creation.
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