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Abstract

Imputation methods play a critical role in enhancing the quality of practical time-
series data, which often suffer from pervasive missing values. Recently, diffusion-
based generative imputation methods have demonstrated remarkable success com-
pared to autoregressive and conventional statistical approaches. Despite their
empirical success, the theoretical understanding of how well diffusion-based mod-
els capture complex spatial and temporal dependencies between the missing values
and observed ones remains limited. Our work addresses this gap by investigating
the statistical efficiency of conditional diffusion transformers for imputation and
quantifying the uncertainty in missing values. Specifically, we derive statistical
sample complexity bounds based on a novel approximation theory for conditional
score functions using transformers, and, through this, construct tight confidence
regions for missing values. Our findings also reveal that the efficiency and accuracy
of imputation are significantly influenced by the missing patterns. Furthermore, we
validate these theoretical insights through simulation and propose a mixed-masking
training strategy to enhance the imputation performance.

1 Introduction
Sequential data are ubiquitous in real-world applications such as finance [John et al., 2019, Chen
et al., 2016], healthcare [Tonekaboni et al., 2021, Kazijevs and Samad, 2023], transportation [Li et al.,
2020, Tedjopurnomo et al., 2020], and meteorology [Yozgatligil et al., 2013]. However, these datasets
often suffer from missing values due to factors such as sensor malfunctions, data transmission errors,
and human oversight [Greco et al., 2012, Yi et al., 2016]. Missing data can significantly degrade the
performance of downstream tasks [Ribeiro and Castro, 2022, Alwateer et al., 2024], making accurate
and robust imputation a critical challenge.
One of the earliest imputation methods dates back to Allan and Wishart [1930], which provided
formulas for estimating single missing observations. Over the past century, this foundational idea
of imputation has been extended to broader application domains. Statistical imputation methods
have gained sustained attention due to their computational efficiency and ease of implementation.
These approaches range from simple techniques, such as imputation using the mean or median
of observations, to interpolation-based methods [Tukey, 1952], and more sophisticated model-
based techniques, including Kalman filters and autoregressive models [Gómez and Maravall, 1994,
Shumway et al., 2000]. However, these methods often rely on strong assumptions such as linearity and
stationarity, which may not hold in complex real-world scenarios, thereby limiting their applicability
and accuracy [Fuller, 2009].
To address the limitations of statistical methods, recent research has increasingly turned to machine
learning approaches for imputation. These methods are capable of capturing complex spatio-temporal
patterns and nonlinear dependencies without requiring strict assumptions [Fang and Wang, 2020].
Typical examples include training neural networks such as recurrent neural networks and transformer

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



architectures for inferring missing values [Wang et al., 2024]. In parallel, generative models such as
Variational AutoEncoders (VAEs) and Generative Adversarial Networks (GANs) have shown promise
by introducing uncertainty-aware imputations [Fortuin et al., 2020, Miao et al., 2021]. However,
these generative models often spell limitations in expressiveness or training stability. More recently,
diffusion-based generative models have emerged as a powerful alternative, offering robust imputations
and strong empirical performance across diverse and high-dimensional time series datasets [Tashiro
et al., 2021, Zhou et al., 2024].
Despite their widespread empirical success, diffusion-based imputation methods exhibit two key
challenges. First, their performance is highly sensitive to dataset characteristics, often displaying sub-
stantial variability across benchmarks [Zhang et al., 2024, Zheng and Charoenphakdee, 2022, Tashiro
et al., 2021]. Second, they are significantly affected by missing patterns, leading to inconsistencies in
imputation quality [Zhang et al., 2024, Ouyang et al., 2023, Zhou et al., 2024]. These observations
motivate the following fundamental questions:

How well can diffusion models capture the underlying conditional distribution of missing values?

How does the missing pattern affect the imputation performance?

In this paper, we answer the two questions from a statistical learning perspective. Our analysis centers
on Diffusion Transformers (DiT, Peebles and Xie [2022]) applied to imputation tasks with Gaussian
process (GP) data. Despite their conceptual simplicity, GPs exhibit rich spatio-temporal dependencies
and long-horizon dependencies that pose challenges for modeling and imputation. On the other
hand, GPs are powerful statistical tools widely used in regression, classification, and forecasting
tasks [Seeger, 2004, Banerjee et al., 2013, Borovitskiy et al., 2021].
We establish sample complexity bounds for DiTs in learning the underlying conditional distribution
of missing values given observed ones. The obtained bounds demonstrate the role of missing patterns
in imputation performance, highlighting how the condition number of the covariance matrix for the
missing values and distribution shifts contribute to variability in accuracy. Furthermore, we derive
confidence intervals for imputed values and show the coverage probability of them converging to the
desired level. We summarize our contributions as follows.
• Statistical Efficiency. We show that DiTs capture the conditional distribution of missing values
effectively. The sample complexity in Theorem 2 scales at a rate Õ(

√
Hd2κ5/

√
n), where n denotes

the training sample size. We obtain a n−1/2 convergence rate with a mild polynomial dependence on
the sequence length H . In addition, κ is the condition number induced by the missing patterns. To
establish Theorem 2, we develop a novel score representation theory (Theorem 1) for DiTs, where
we utilize an algorithm unrolling technique.
• Uncertainty Quantification. Leveraging the generative power of trained DiTs, we construct
confidence regions (intervals) from massive generated missing values. This approach possesses its
natural appeal and enjoys strong coverage guarantees (Corollary 1). We show that the coverage
probability converges to the desired level at a Õ(n−1/2) rate. Meanwhile, the missing patterns
influences the convergence.
• Mixed-Masking Training Strategy. Motivated by our theoretical results, we propose a training
strategy blending different masking schemes to cover diverse missing patterns. The performance of
our method on synthetic datasets validates our findings and outperforms benchmark methods.
Notations We use bold lowercase letters to denote vectors and bold uppercase letters to denote
matrices. For a vector v, ∥v∥2 denotes its Euclidean norm. For a matrix A, ∥A∥2 and ∥A∥F denote
its spectral norm and Frobenius norm, respectively, and ∥A∥∞ = maxi,j |Aij |. When matrix A
is positive definite, we denote λmax(A) and λmin(A) as its largest and smallest eigenvalues; its
condition number is κ(A) = λmax(A)/λmin(A). We denote f ≲ g if there exists a constant C > 0

such that f ≤ Cg. Notation O(·) suppresses constants, while Õ(·) further hides logarithmic factors.
Due to space limit, the related work section is deferred to Appendix A.

2 Imputation in Gaussian Processes via Conditional Diffusion Models
In this section, we formalize the imputation task as a conditional distribution estimation problem.
When the data are sampled from a Gaussian process, we identify rich structures in the conditional
distribution. We then utilize a DiT to learn the distribution of missing values. Lastly, we summarize
diffusion-based imputation method in Algorithm 1.
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2.1 Imputation for Gaussian Process Data
Imputation refers to the task of inferring missing values given the observed ones. Denote by
I = {1, . . . ,H} the set of all time indices. For a multivariate sequence X = [x1, . . . ,xH ] ∈ Rd×H

of length H , we consider a block-missing setting, where certain time frames are entirely unobserved.
The subset of observed indices is denoted by Iobs = {i1, . . . , i|Iobs|}, where |Iobs| denotes the
cardinality. Correspondingly, Imiss = I \ Iobs denotes the time indices of missing frames. To avoid
degenerate cases, we assume 0 < |Imiss| < H . In the sequel, we focus on the Missing Completely
at Random case [Little, 1988], where each index in Imiss is independently sampled from some
underlying distribution.

We represent the vectorized observed partial sequence as xobs = [x⊤i1 , . . . ,x
⊤
i|Iobs|

]⊤ ∈ Rd|Iobs|, and

the vectorized missing part as xmiss = [x⊤j1 , . . . ,x
⊤
j|Imiss|

]⊤ ∈ Rd|Imiss|. We estimate the missing
values by learning the conditional distribution P (xmiss | xobs). Notably, learning the conditional
distribution goes beyond point estimates of the missing values, but provides easy access to confidence
regions. We slightly abuse the notation by using x to simultaneously refer to random vectors.
Throughout our theoretical analysis, we focus on d-dimensional Gaussian process data. To uniquely
distinguish a Gaussian process, it suffices to specify its mean and covariance functions. In particular,
we denote the mean as µi = E[xi] and we parameterize the covariance matrix by Cov[xi,xj ] =
γ(i, j)Λ, where Λ = Var[xh] ∈ Rd×d for any h and γ is a kernel function. It is worth mentioning
that Λ captures the spatial dependencies and function γ represents temporal correlation. The kernel
function γ dictates the strength and decay of the temporal dependencies among different data frames.
The joint distribution of a sequence vec(X) = [x⊤1 , · · · ,x⊤H ]⊤ is Gaussian N (µ,Γ⊗Λ), where

µ =

µ1,
...

µH

 and Γ⊗Λ =

 γ(1, 1)Λ · · · γ(1, H)Λ
...

. . .
...

γ(H, 1)Λ · · · γ(H,H)Λ

 .
Here Γij = γ(i, j) and ⊗ is the matrix Kronecker product. We impose the following assumption for
characterizing the temporal dependencies.
Assumption 1. There exists de-dimensional embedding {ei ∈ Rde}Hi=1 such that ∥ei∥2 = r for a
constant r. Moreover, for any i, j, it holds that ∥ei − ej∥2 = f(|i− j|), and for |i1 − j1| ≠ |i2 − j2|,
f(|i1 − j1|) ̸= f(|i2 − j2|) . Kernel function γ(i, j) only depends on ∥ei − ej∥2. Furthermore, we
assume Γ and Λ are positive definite.

Assumption 1 ensures that the pairwise distances in the embedding uniquely identifies positional gaps.
We do not specify a particular form of the kernel function, which encodes many commonly ones
such as Gaussian Radial Basis Function (RBF), Ornstein–Uhlenbeck kernels, and Matérn kernels
[Rasmussen and Williams, 2006]. As a concrete example, sinusoidal embedding is widely used in
transformer networks [Vaswani et al., 2017]. Consider a two-dimensional embedding defined as
ei = [r sin(2πi/C), r cos(2πi/C)]⊤, where r > 0 is a fixed radius and C > 0 is a scaling constant.
The Euclidean distance between any two embedding is ∥ei − ej∥2 = 2r| sin (π(i− j)/C) |, which
is strictly positive for i ̸= j, and approximately linear in |i− j| when C is sufficiently large.
Under the Gaussian process setting, the conditional distribution of xmiss|xobs is still Gaussian [Bishop
and Nasrabadi, 2006]. The conditional mean and covariance are given by

µcond(xobs) = µmiss +Σ⊤corΣ
−1
obs(xobs − µobs), Σcond = Σmiss −Σ⊤corΣ

−1
obsΣcor,

where we denote µobs = E[xobs] (the same holds for µmiss), Σcor = Cov[xobs,xmiss], and Σobs

(resp. Σmiss) as the covariance of xobs (resp. xmiss). See Figure 1 for a graphical demonstration. We
check that Σobs = Γobs ⊗Λ with Γobs ∈ R|Iobs|×|Iobs| capturing correlation among index set Iobs.
2.2 Training Diffusion Transformers for Imputation
We estimate the conditional distribution P (xmiss | xobs) using diffusion transformers. A diffusion
model consists of two coupled processes—a forward and a backward process. We adopt a continuous-
time description. In the forward process, we gradually corrupt data by

dxt = −1

2
xtdt+ dwt with x0 ∼ P (· | xobs), (1)

and wt is a Wiener process. The forward process terminates at a sufficiently large time T and we
denote the distribution of xt as Pt(·|xobs) with density pt(·|xobs). Note that we only corrupt the
missing values by Gaussian noise, but keep the observed partial sequence xobs unchanged.
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Corresponding to the forward process, the backward process simulates the reverse evolution of the
forward process. As a result, it generates new samples by progressively removing noise:

dvt =

[
1

2
vt +∇vt log pT−t(vt | xobs)

]
dt+ dw̄t with v0 ∼ PT (· | xobs), (2)

where w̄t is another Wiener process and ∇vt
log pt(vt | xobs) is the conditional score function. In

the remaining of the paper, we drop the subscript vt in the score function for simplicity. Unfortunately,
∇ log pT−t(vt | xobs) is typically unknown and must be estimated using a neural network. We
denote the estimated score function by ŝ(vt,xobs, t). Consequently, the sample generation process
follows an alternative backward SDE:

dv̂t =

[
1

2
v̂t + ŝ(v̂t,xobs, t)

]
dt+ dw̄t with v̂0 ∼ N (0, Id|Imiss|). (3)

Here, we also replace the unknown PT by a standard Gaussian distribution.
When training the score estimator ŝ, we assume access to fully observed sequences. To simulate
a partially observed sequence, we sample a masking sequence {τ1, . . . , τH} ∈ {0, 1}H , where 0
denotes missing the observation and 1 keeping the observation. Then xobs is extracted according to
the masking sequence. In later context, we will investigate how to choose masking strategies. We
summarize the diffusion-based method for sequence imputation in Algorithm 1.

Algorithm 1 Diffusion-Based Sequence Imputation
1: Module I: Training
2: Input: Fully observed sequences D := {Xi}ni=1, a masking strategy.
3: Simulate {x(i)

obs,x
(i)
miss}ni=1 pairs via the masking strategy, and train a conditional diffusion model.

4: Output: A well-trained conditional diffusion model.

5: Module II: Imputation
6: Input: Conditional diffusion model from Module I, a new partial sequence x∗obs, repetition

time Z, and confidence level 1− α.
7: Conditioned on x∗obs, independently generate B missing sequences x̂(z)

miss for z = 1, . . . , Z.
8: ⋆ Point estimate: Mean x̂∗miss =

1
Z

∑Z
z=1 x̂

(z)
miss (or median of the generated sequences).

9: ⋆ Confidence region: ĈR
∗
1−α =

{
xmiss : ∥xmiss − x̂∗miss∥2 ≤ D̂∗1−α

}
,

where D̂∗1−α is the 1− α upper quantile of ∥x̂(z)
miss − x̂∗miss∥2 for z = 1, . . . , Z.

10: Return: x̂∗miss and ĈR
∗
1−α.

For the rest of the paper, we parameterize the conditional score function using a transformer network.
A transformer [Vaswani et al., 2017], comprises a series of blocks and each block encompasses a
multi-head attention layer and a feedforward layer. Let Y = [y1, . . . ,yH ] ∈ RD×H be the (column)
stacking matrix of H patches. In a transformer block, the multi-head attention layer computes

Attn(Y) = Y +
∑M

m=1 V
mY · σ

(
(QmY)⊤KmY

)
, (4)

where Vm,Qm,Km are weight matrices of corresponding sizes in the m-th attention head, and σ is
an activation function. The attention layer is followed by a feedforward layer, which computes

FFN(Y) = Y +W1 · ReLU(W2Y + b21
⊤) + b11

⊤.

Here, W1,W2 are weight matrices, b1 and b2 are offset vectors, 1 denotes a vector of ones,
and the ReLU activation function is applied entry-wise. This feedforward layer performs a linear
transformation to the output of the attention module with more flexibility. For our study, the raw
input to a transformer is H patches of d-dimensional vectors and time t in the backward process. We
refer to T (D,L,M,B,R) as a transformer architecture defined by

T (D,L,M,B,R) =
{
f : f = fout ◦ (FFNL ◦AttnL) ◦ · · · ◦ (FFN1 ◦Attn1) ◦ fin,
Attni uses entrywise ReLU activation for i = 1, . . . , L,

number of heads in each Attn is bounded by M,

the Frobenius norm of each weight matrix is bounded by B,
the output range ∥f∥2 is bounded by R}. (5)
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3 Conditional Score Approximation via Algorithm Unrolling
Suggested by the sample generation process (3), the key is to learn the conditional score function.
This section devotes to establishing a novel score approximation theory of transformers based on
algorithm unrolling.
Since xmiss|xobs is Gaussian, the forward process (1) yields the following closed-form score function:

∇ log pt(vt|xobs) = −(α2
tΣcond + σ2

t I)
−1(vt − αtµcond(xobs)), (6)

where αt = e−
t
2 and σt =

√
1− e−t. The matrix inverse poses a challenge in representing the score

by a transformer, as it may deteriorate structures in Σcond. Therefore, we reformulate the conditional
score function as the optimal solution of a quadratic optimization problem:

∇ log pt(vt|xobs) = argmin
s

Lt(s) :=
1

2
s⊤
(
α2
tΣcond + σ2

t I
)
s+ s⊤ (vt − αtµcond(xobs)) . (7)

It suffices to obtain an approximate optimal solution of (7) using a gradient descent algorithm. At the
k-th iteration, with a step size ηt, we have

s(k+1) = s(k) − ηt

[
(σ2

t I+ α2
tΣmiss)s

(k) + α2
tΣ
⊤
corΣ

−1
obsΣcors

(k) + (vt − αtµcond(xobs))
]

︸ ︷︷ ︸
∇Lt(s(k))

, (8)

for k = 0, . . . ,K − 1. Unfortunately, we encounter another matrix inverse in Σ−1obsΣcors
(k). Analo-

gous to (7), we consider an auxiliary quadratic optimization problem:

Σ−1obsΣcors
(k) = argmin

u
L(k)
aux(u) :=

1

2
u⊤Σobsu− u⊤Σcors

(k). (9)

Via a gradient descent algorithm with step size θ, the update reads

u(kaux+1) = u(kaux) − θ∇L(k)
aux(u) = u− θ

(
Σobsu−Σcors

(k)
)
, (10)

where iteration index kaux = 0, . . . ,Kaux − 1.

We substitute the last iterate u(Kaux) into the right-hand side of (8) to obtain ∇̃Lt(s
(k)) as an

approximation to ∇Lt(s
(k)). We summarize the nested gradient descent algorithm for calculating

the conditional score function in Algorithm 2.

Algorithm 2 Nested Gradient Descent for Representing Score Function

1: Input: Observation xobs, current state vt, time t, step sizes ηt, θ, iteration counts Kaux,K.
(Major) Gradient Descent:

2: Initialize s(0) = 0.
3: for k = 0, 1, . . . ,K − 1 do

Auxiliary Gradient Descent:
4: Initialize u(0) = 0.
5: for kaux = 0, 1, . . . ,Kaux − 1 do
6: u(kaux+1) = u(kaux) − θ∇L(k)

aux(u(kaux)).

7: Calculate ∇̃Lt(s
(k)) using u(Kaux).

8: s(k+1) = s(k) − ηt∇̃Lt(s
(k)).

9: Return: s(K).

With sufficiently large Kaux and K, the representation error of Algorithm 2 can be well-controlled.
Lemma 1 (Representation error of Algorithm 2). Suppose Assumption 1 holds. For an arbitrarily
fixed time t ∈ (0, T ], given an error tolerance ϵ ∈ (0, 1), choose K,Kaux as

K = O
(
κ(Σcond) log

(Hdκ(Σcond)κ(Σobs)

ϵ

))
,Kaux = O

(
κ(Σobs) log

(Hdκ(Σobs)

σtϵ

))
.

Then, given δ > 0, for any xobs and vt in a compact region Cδ, there exist step sizes ηt and θ such
that running Algorithm 2 gives rise to

∥s(K) −∇ log pt(vt | xobs)∥2 ≤ σ−1t ϵ.
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Detailed proof of Lemma 1 is provided in Appendix B. The compact region Cδ truncates the norm of
xobs and vt, which is plausible due to the Gaussian tail; see a precise definition of Cδ in Appendix
Equation (13). Lemma 1 suggests that the computational complexity of Algorithm 2 for approximating
the score function is governed by the condition numbers of Σcond and Σobs. A large condition
number on Σcond implies that the variability of missing values among different directions changes
significantly. Equivalently, with a large condition number, given xobs, the missing values exhibit
strong anistropic uncertainty that complicates the imputation.
Representing the conditional score function by a nested gradient descent algorithm enables an
effective transformer network approximation. We show that transformers can realize each gradient
descent iteration using a constant number of attention blocks. We provide the following score
approximation theory using transformers.

Theorem 1. Suppose Assumption 1 holds. Given an early stopping time t0 ∈ (0, T ] and an error
level ϵ ∈ (0, 1), for any xobs,vt ∈ Cδ, there exists a transformer architecture T (D,L,M,B,R)
such that, with proper weight parameters, it yields an approximation s̃ satisfying

∥s̃(vt,xobs, t)−∇ log pt(vt|xobs)∥2 ≤ σ−1t ϵ for all t ∈ [t0, T ].

The configuration of the transformer architecture satisfies

D = O(d+ de), L = O
(
κ2max(Σcond)κmax(Σobs) log

3

(
Hdκ2max(Σcond)κmax(Σobs)

ϵ

))
,

M = 4H, B = O
(√

Hd3(r2 + κmax(Σobs)σ
−1
t0 )
)
, R = O(σ−2t0

√
Hdκmax(Σobs)),

where we define κmax(·) = supIobs
κ(·).

The proof is provided in Appendix C. Figure 1 depicts the transformer architecture in our constructive
proof, which unrolls Algorithm 2 efficiently. To obtain the approximation error bound, we develop
a careful analysis of the error propagation in the auxiliary gradient descent for calculating ∇̃Lt.
Theorem 1 also reinforces the insights from Lemma 1, where we observe that the size of the
transformer network scales with the worst-case condition number. We will further discuss the relation
between missing patterns and the condition number in Theorem 2.

Approximating auxiliary GD iteration:
Compute ,

Approximating major GD iteration:
Compute 

: Samples & Current States & Time Embeddings

Transformer Blocks

Attention Heads: 
Missing Part

Attention Heads: 
Observed Part

Attention Heads: 
Correlation Part

Capture Different Parts of Spatial and Temporal Correlations Separately

Perform Matrix-Vector Multiplications to Approximate GD Iterations

Transformer Blocks

Figure 1: Constructed transformer architecture: Within each transformer block, attention heads focus
on capturing information of different covariance components (Σobs, Σcor, Σmiss) separately, and
approximate corresponding matrix–vector multiplications. A total of K block groups perform major
GD steps, with Kaux inner blocks in each group dedicated to solving the auxiliary problem.

4 Capturing Conditional Distribution and Uncertainty Quantification
Given a properly chosen transformer architecture, we establish guarantees for learning the conditional
distribution of missing values and uncertainty quantification. We consider an estimated score network
ŝ obtained by minimizing the following empirical score matching loss (a detailed derivation is
deferred to Appendix E):

ŝ ∈ argmins∈T L̂(s) := 1
n

∑n
i=1 ℓ(x

(i)
miss,x

(i)
obs; s), (11)
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where

ℓ(x
(i)
miss,x

(i)
obs; s) =

∫ T

t0

E
vt|v0=x

(i)
miss

[
∥s(vt,x

(i)
obs, t)− (vt − αtv0)/σ

2
t ∥22
]
dt. (12)

Substituting the learned score ŝ into the backward SDE (3) yields generated distribution vt0 ∼ P̂t0(· |
xobs). We introduce an early-stopping time t0 to stabilize the training and sample generation [Song
et al., 2020]. We now present a convergence guarantee of P̂t0 to the true conditional distribution.
Theorem 2. Referring to the training procedure in Algorithm 1, by choosing the transformer
architecture as in Theorem 1 with ϵ = n−

1
2 , terminal time T = O(log n), and early-stopping time

t0 = O(λmin(Σcond)n
− 1

2 ), it holds that

ϵ
(n)
dist := ED(n)

[
Exobs

[
TV(P (·|xobs), P̂t0(·|xobs))

]]
= Õ(

√
Hd2κ5(Σcond)κ2(Σobs)/

√
n).

The proof of Theorem 2 is provided in Appendix D. This result establishes that DiT can efficiently
learn the true conditional distribution of missing values. The sample complexity mildly depends on
the sequence length. More importantly, the bound highlights that the estimation error depends on the
condition numbers of Σcond and Σobs, reflecting the discussion after Lemma 1.
We provide an example to demonstrate that different missing patterns can lead to distinct condition
numbers. Consider data of length H = 96 with time correlation modeled by a Laplace kernel
γ(i, j) = exp(−∥ei − ej∥2/128), and missing length |Imiss| = 16. Clustered missingness—16
consecutive missing entries at the tail—yields a large condition number κ(Σcond) = 415.40, making
the task challenging. In contrast, dispersed missing patterns, 16 randomly placed missing entries,
result in much smaller κ(Σcond) = 3.00, making estimation easier. We provide numerical results on
this example in Section 5.

Confidence Region Construction Given the learned conditional distribution P̂t0 and a new ob-
served sequence x∗obs, we deploy the model to generate samples and form point estimates and
confidence regions as in Algorithm 1. Since x∗obs may not be seen in the training samples, we
encounter a distribution shift, meaning that we need to transfer the knowledge in the learned model
to the new testing instance. The subtlety here is how to quantify the knowledge transfer rate. Our
proposal is the following class-dependent distribution shift coefficient.
Definition 1. The distribution shift between two probability distributions P1 and P2 with respect to a
function class G is defined as DS(P1, P2;G) = supg∈G

Ey∼P1
[g(y)]

Ey∼P2
[g(y)] .

In our analysis, we specialize G to a function class induced by the transformer network:

G = {g(y) = Exmiss
[ℓ(xmiss,y; s)] : s ∈ T (D,L,M,B,R)} .

Since G might be insensitive to certain distinctions, it introduces some smoothing effect to capture the
difference between P1 and P2. We consider P1 and P2 as the marginal training distribution of xobs

and the point mass of the testing distribution 1{· = x∗obs}, denoted as Pxobs
and Px∗

obs
, respectively.

The following corollary provides a guarantee for the coverage probability of the constructed CR.

Corollary 1. Under the setting of Theorem 2, given x∗obs, Algorithm 1 yields ĈR
∗
1−α satisfying

ED(n)

[
P(x∗miss ∈ ĈR

∗
1−α)

]
≥ (1− α)− ϵ

(n)
dist ·

√
DS(Px∗

obs
, Pxobs

;G)− n−
1
2ψ(x∗obs),

where ψ(x∗obs) is independent of n and proportional to ∥x∗obs∥2 and κ(Σcond).

Detailed proof is provided in Appendix D. Corollary 1 says that the coverage probability of the
constructed CR converges to the desired level at the same rate of the conditional distribution estimation.
More importantly, the distribution shift coefficient directly influences the coverage probability. We
present a detailed discussion in the following remark.
Remark 1. There are two factors controlling the distribution shift coefficient: 1) the observed values
in x∗obs and 2) the missing pattern. From our theoretical analysis, we identify a profound impact
of the missingness patterns on the learning efficiency and the choice of transformer architectures.
Indeed, when the masking strategy in Algorithm 1 is relatively easy, ϵ(n)dist is small. However, x∗obs
can deviate significantly from the training samples, causing a large distribution shift. On the contrary,
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including harder masks can effectively reduce the distribution shift, but elevates learning difficulty.
As a result, there is a trade-off between the masking strategy and the reliability of the trained diffusion
transformer for imputation. In Section 5, we introduce a mixed-masking training strategy to enhance
the performance of diffusion transformers, where diverse masking patterns are randomly sampled.
This reduces distribution shift and improves robustness to varying imputation difficulty.

5 Experiments
We evaluate the performance of DiT through simulation to validate our theoretical results on im-
putation efficiency, uncertainty quantification, and the effectiveness of the mixed-masking train-
ing strategy. Experiments are conducted on Gaussian processes and, additionally, on more com-
plex latent Gaussian processes to assess generalization beyond our theoretical scope. The DiT
implementation builds on the DiT codebase [Peebles and Xie, 2022]. Further experimental de-
tails and real-world dataset experiments are provided in Appendix F. Our code is available at
https://github.com/liamyzq/DiT_time_series_imputation.
5.1 Gaussian Processes
We generate Gaussian process data with sequence length H = 96, dimension d = 8, and define
the missing segment length as |Imiss| = 16. In addition to applying Algorithm 1 to construct
95% confidence regions (CRs), we sample from the true conditional distribution to evaluate CR
coverage—the proportion of true values that fall within the estimated CR for comparison.

20 40 60 80 100

P1: =415.4
P2: =29.57
P3: =9.47
P4: =3.0

Figure 2: Visualization of the four missing patterns for a sequence of length 96. Each horizontal line
shows the positions of missing values (highlighted in blue, orange, green and red for Patterns 1-4),
and annotations on the right indicate the pattern number and its condition number κ(Σcond).

We first vary two factors: training sample size n ∈ {103, 103.5, 104, 104.5, 105}, and missing patterns
1-4 (denoted as P1-P4) as shown in Figure 2. As discussed in Theorem 2, κ(Σcond) acts as a
key varying parameter. To mitigate distribution shift, we apply the same missing patterns to both
training and test data. Results in Figure 3 show that small training sets (n = 103, 103.5) result
in low variability and poor distribution estimation. As sample size increases, DiT yields CRs that
significantly better match the true distribution. We further vary sequence length (H) and report
the results in Table 1. The results suggest that CR coverage rate decreases as sequence length
increases, which supports our theoretical findings. Regarding missing patterns, those with lower
condition numbers reduce the sample complexity needed for effective estimation. These findings
are consistent with our theory, suggesting that the conditional covariance condition number serves
as a practical measure of estimation difficulty. Patterns with lower condition numbers retain richer
temporal correlations, enabling accurate estimation with fewer samples.
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Figure 3: Percentage of real data samples
that fall within the DiT-generated 95% CR.

Table 1: Sequence length vs CR coverage rates (%)(↑).

H 16 32 64 96 128

CR 92.67 (±1.95) 88.63 (±2.01) 82.14 (±1.70) 80.25 (±1.64) 77.81 (±1.87)

Table 2: CR coverage rates (%) (↑) of models trained
using different strategies on different missing patterns.

P1 P2 P3 P4
S1 34.58 (±1.22) 58.46 (±1.89) 72.42 (±1.66) 80.25 (±1.64)
S2 66.22 (±3.86) 83.71 (±2.86) 74.04 (±1.90) 81.50 (±2.12)
S3 56.04 (±6.48) 81.05 (±2.09) 74.59 (±1.27) 83.09 (±1.48)
S4 57.27 (±5.34) 79.00 (±2.42) 74.38 (±3.00) 82.74 (±2.40)
Only 8×2 36.74 (±1.31) 60.51 (±1.65) 71.24 (±1.52) 80.46 (±2.01)
Only 4×4 34.15 (±1.16) 59.23 (±1.88) 73.08 (±1.10) 79.83 (±1.84)
Only 1×16 32.68 (±1.50) 54.23 (±1.76) 69.46 (±1.53) 76.72 (±2.20)
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Mixed-Masking training strategy. Based on our insights from our distribution shift analysis, we
introduce mixed-masking training strategy. Remark 1 highlights that discrepancies between training
and test distributions can impair CR estimation, especially in real-world settings with limited training
data. A common practice is to train on fully random masks, which tend to have lower condition
numbers and thus pose easier estimation tasks. However, this intensifies the mismatch with test cases
featuring more challenging, clustered missing patterns, limiting model adaptability. To address this,
we propose mixed-masking training strategy. Using the same n = 105 training samples, we evaluate
the four test patterns in Figure 2. During training, we define four different mixed-masking strategies
(each with 16 missing entries):

• S1: 100% random missing pattern (16×1, sixteen randomly placed missing entries).

• S2: 50% random (16×1) + 50% weakly grouped (8×2, eight randomly placed blocks of two
consecutive missing entries).

• S3: 33.3% random (16×1) + 33.3% weakly grouped (8×2) + 33.3% moderately grouped
(4×4, four randomly placed blocks of four consecutive missing entries).

• S4: 25% random (16×1) + 25% weakly grouped (8×2) + 25% moderately grouped (4×4) +
25% strongly grouped (1×16, one randomly placed block of sixteen consecutive missing
entries).

Results in Table 2 show that models trained with mixed masking consistently outperform the baseline
trained with completely random placed masks (S1). We also evaluate the strategies only containing
individual patterns (8×2, 4×4, and 1×16 separately), and the results suggest that they yield inferior
imputation performance compared to appropriately mixing different patterns. This supports our
proposed mixed-masking strategies and aligns well with our theoretical insights. Yet determining
optimal mixing ratios is instance based and remains an open question for future work.
Regarding how these strategies relate to our theoretical results, intuitively, different missing patterns
during training lead to different training distributions Pxobs

, resulting in varying condition numbers
and consequently different DS values. Training with diverse missing patterns—ranging from easy
to hard—helps the model adapt to imputation tasks with varying levels of difficulty by effectively
covering more scenarios. As for a more concrete example, let us denote the training distributions
corresponding to S1 and S4 as P (1)

xobs and P (4)
xobs , respectively. Consider a test sample x∗obs following

the strongly grouped missing pattern P1 (consecutive missing entries). Intuitively, the resulting
distribution Px∗

obs
is closer to P (4)

xobs than to P (1)
xobs , which implies the distribution shift coefficient

of P (4)
xobs is smaller than the one of P (1)

xobs . Empirically, we calculate the average ratio across all test
samples with missing pattern P1 and find that:

DS(Px∗
obs
, P

(1)
xobs ,G)

DS(Px∗
obs
, P

(4)
xobs ,G)

≈ 47.93.

This clearly indicates that the mixed-masking training strategy (S4) yields significantly smaller
distribution-shift coefficients compared to purely random missingness (S1). According to Corollary
1, this provides strong theoretical support for the superior empirical performance achieved by our
mixed-masking strategy.
5.2 Latent Gaussian Processes
We conduct additional experiments to assess whether our findings generalize beyond the theo-
retical setting—specifically, whether different missing patterns affect imputation and uncertainty
quantification performance, and whether the mixed-masking training strategy improves them. For
X drawn from the Gaussian process in Section 5.1, we consider a corresponding latent Gaus-
sian process: Y = ϕ(X) + ϵ with vec(ϵ) ∼ N (0, 0.1 · IdH), where the non-linear transform
ϕ(x) = x+ exp(−x2) + 2 sin(x) is applied entry-wise. We adopt a training sample size of n = 105.
This introduces nonlinearity and noise, increasing the difficulty of distribution estimation.
We evaluate DiT on this transformed dataset using the same four missing patterns and four training
strategies from Section 5.1. For comparison, we implement two representative generative imputation
models—CSDI [Tashiro et al., 2021] and GPVAE [Fortuin et al., 2020], ensuring all models have
comparable numbers of trainable parameters. We report Mean Squared Error (MSE) against the true
conditional mean and CR coverage rates, following the setup in Section 5.1. Results are shown in
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Table 3: MSE (↓) on latent Gaussian process data.
DiT CSDI GPVAE

P1

S1 0.70 (±0.03) 0.75 (±0.03) 5.24 (±0.75)
S2 0.68 (±0.02) 0.69 (±0.02) 5.45 (±1.05)
S3 0.67 (±0.03) 0.70 (±0.03) 5.13 (±0.49)
S4 0.67 (±0.02) 0.68 (±0.02) 5.28 (±0.68)

P2

S1 0.64 (±0.03) 0.66 (±0.03) 5.09 (±0.70)
S2 0.62 (±0.02) 0.63 (±0.03) 5.01 (±0.62)
S3 0.60 (±0.03) 0.62 (±0.02) 4.94 (±0.56)
S4 0.62 (±0.03) 0.63 (±0.03) 4.84 (±0.60)

P3

S1 0.62 (±0.02) 0.65 (±0.02) 4.63 (±0.58)
S2 0.60 (±0.03) 0.64 (±0.03) 5.12 (±1.00)
S3 0.58 (±0.02) 0.63 (±0.03) 4.50 (±0.52)
S4 0.58 (±0.03) 0.61 (±0.02) 4.59 (±0.54)

P4

S1 0.56 (±0.01) 0.59 (±0.03) 4.89 (±0.69)
S2 0.53 (±0.03) 0.60 (±0.02) 4.79 (±0.61)
S3 0.53 (±0.01) 0.58 (±0.03) 4.39 (±0.49)
S4 0.53 (±0.02) 0.58 (±0.02) 4.45 (±0.54)

Table 4: CR coverage rates (%) (↑).
DiT CSDI

P1

S1 36.46 (±1.62) 54.75 (±1.89)
S2 53.68 (±3.26) 56.68 (±2.75)
S3 54.26 (±2.79) 58.64 (±3.11)
S4 56.43 (±3.76) 55.67 (±4.03)

P2

S1 55.81 (±1.55) 63.67 (±1.77)
S2 65.77 (±2.87) 64.89 (±3.43)
S3 66.24 (±3.22) 63.13 (±2.95)
S4 63.95 (±4.38) 65.97 (±3.59)

P3

S1 63.53 (±1.72) 61.35 (±1.49)
S2 71.29 (±2.99) 65.69 (±2.79)
S3 70.89 (±2.45) 63.48 (±2.90)
S4 73.36 (±4.37) 67.17 (±3.93)

P4

S1 76.46 (±1.33) 68.60 (±1.74)
S2 78.63 (±2.62) 70.48 (±2.34)
S3 78.79 (±2.67) 73.46 (±2.53)
S4 80.64 (±3.72) 72.89 (±3.78)

Tables 3 and 4. Since GPVAE performs poorly in point estimation, we omit its CR coverage. DiT
consistently outperforms in both MSE and CR coverage, indicating transformers may better suit this
task than CSDI’s convolutional design. Moreover, mixed-masking training improves performance not
only for DiT but also for other models, demonstrating its broader benefit. These findings reinforce
our conclusions from Gaussian process experiments and support the generalization of our theory and
training methodology to more complex, nonlinear settings.

6 Conclusion and Discussion
Our work addresses a critical gap in the theoretical understanding of diffusion-based time series impu-
tation and uncertainty quantification by investigating the statistical efficiency of diffusion transformers
on Gaussian process data. This result enables efficient and accurate imputation and confidence region
construction. Motivated by the theory, we propose a mixed-masking training strategy that introduces
diverse missing patterns during training, rather than relying solely on completely random masks.
Our experiments validate the theoretical findings and further demonstrate that the proposed strategy
performs well and generalizes to more complex data beyond our analytical scope.
Looking ahead, investigating the behavior of diffusion transformers on heavy-tailed time series (e.g.,
financial data) would further clarify their limitations and guide practical design choices. Moreover, a
more detailed analysis of optimal mixed-masking training strategies—especially those leveraging
prior knowledge—could significantly improve the performance of imputation models.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experiment settings are provided in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is provided in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Simulation details are provided in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard deviations of the experimental results are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our theoretical research is not tied to particular negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of assets used in the paper are properly
credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work
In the early stages of time series imputation, statisticians developed a wide range of traditional
statistical methods aimed at both imputation (point estimation) and quantifying uncertainty, often
by leveraging well-established statistical tools to construct confidence intervals [Cox et al., 1981,
Shumway et al., 2000]. Initial techniques were relatively simple, such as imputing missing values
using the mean or median of observed entries. These were later followed by more advanced interpola-
tion approaches based on regression models, including linear regression and splines [Shumway et al.,
2000]. To better exploit the spatio-temporal structure inherent in time series data, model-based meth-
ods emerged, such as ARIMA, GARCH, Kalman filters, and Bayesian inference frameworks [Fuller,
2009]. These approaches are advantageous for their interpretability, ability to incorporate domain
knowledge, and support for formal statistical testing. Moreover, many of them naturally allow for
uncertainty quantification through predictive intervals or posterior distributions. However, these
methods come with notable limitations: they typically rely on strong assumptions about stationarity,
linearity, or noise distributions, making them less effective for complex real-world data with nonlinear
or high-dimensional spatio-temporal dependencies [Anderson, 2011]. Additionally, their computa-
tional cost often scales poorly with data dimensionality, posing challenges for modern large-scale
applications.
To address the limitations of statistical approaches, machine-based imputation methods have be-
come increasingly popular in recent years. Early approaches include classical machine learning
models [Jerez et al., 2010] such as support vector machines [Wu et al., 2015] and tree-based meth-
ods (including bagging and boosting techniques) [Vateekul and Sarinnapakorn, 2009, Yang et al.,
2017]. With the advancement of model architectures and increasing computational power, deep
learning-based models have gained prominence for their ability to capture complex temporal de-
pendencies [Fang and Wang, 2020, Wang et al., 2024, Du et al., 2024]. Predictive models such as
RNNs [Che et al., 2018, Yoon et al., 2018b, Cao et al., 2018], CNNs [Wu et al., 2022, Fu et al., 2024a],
GNNs [Cini et al., 2021], and transformer-based networks [Bansal et al., 2021, Du et al., 2023]
directly estimate missing values using well-designed architectures. Generative imputation methods
model the distribution of missing data and perform better in quantifying uncertainty; representative
techniques include GAN-based methods [Luo et al., 2018, Yoon et al., 2018a, Miao et al., 2021],
VAE-based approaches [Mattei and Frellsen, 2019, Fortuin et al., 2020, Mulyadi et al., 2021, Peis
et al., 2022, Kim et al., 2023], and diffusion models. Among diffusion approaches, CSDI [Tashiro
et al., 2021] introduced conditional diffusion for time series imputation, and subsequent work [Alcaraz
and Strodthoff, 2022, Wang et al., 2023, Liu et al., 2023, Zhou et al., 2024] improved conditioning
strategies and computational efficiency. DiT [Peebles and Xie, 2022, Cao et al., 2024] extends this
line by integrating a transformer backbone into the diffusion framework, achieving better imputation
accuracy and uncertainty quantification. These methods resolve certain issues and perform well
empirically, however, are still limited by lacks of uncertainty quantification in many methods and
theoretical understanding.
Our work also contributes towards the theoretical foundations of diffusion models [Chen et al., 2024,
Tang and Zhao, 2024]. Some prior works have established sample efficiency and learning guarantees
for diffusion models when modeling the original data distribution. Chen et al. [2022], Benton et al.
[2023], Li et al. [2024] show that the generated distribution remains close to the target distribution,
assuming access to an relatively accurate score function. By incorporating score approximation
procedures and corresponding theoretical analysis, Chen et al. [2023], Oko et al. [2023], Mei and Wu
[2025] provide end-to-end guarantees, covering various types of data including manifold data and
graphical models. In the case of conditional diffusion models, sharp statistical bounds of distribution
estimation have been derived in Fu et al. [2024c]. Additionally, Fu et al. [2024b] explores the
theoretical regime of modeling spatio-temporal dependencies in sequential data. However, these
results do not directly apply to more concrete and complex scenarios, such as how conditional DiT
models can learn intricate dependencies to accomplish time series imputation tasks.

B Proof of Lemma 1
We provide the detailed proof of Lemma 1 in this section.
To simplify our analysis, we begin by making some assumptions. Firstly, without loss of generality,
we assume the mean of the Gaussian process data µ = 0. Large norms in x and vt often lead to
training instability, making it practical to perform clipping. Inspired by this, leveraging the Gaussian
and light-tailed nature of x and vt, we truncate the domain of the data and diffused samples by
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defining an event that occurs with high probability 1− δ:

Cδ = {∥x∥2 ≤ Cδ
data, ∥vt∥2 ≤ Cδ

data}, (13)

where Cδ
data = O(

√
Hd) is a threshold depending on δ. Our score approximation analysis of

Lemma 1 and Theorem 1 is conducted under the condition of event Cδ (ensuring the conclusions
hold with high probability 1−δ), which significantly simplifies the process. The relationship between
the truncation range Cδ

data, and high probability δ is deferred to Lemma 11. Outside event Cδ
(i.e., on Cc

δ ), the unbounded range complicates obtaining a meaningful score approximation in the
second-norm sense. However, as Cc

δ occurs with a small probability, we can still achieve reliable
results in distribution estimation, where evaluation is based on expectation.

Some Useful Results In this part, we present some key results regarding the eigenvalues and
condition numbers of covariance matrices, which will be instrumental in our analysis.
We first define:

κt :=
λmax

(
α2
tΣcond + σ2

t I
)

λmin (α2
tΣcond + σ2

t I)
.

Using the positive definiteness of Γ and Λ, we obtain:

λmax(Λ) = ∥Λ∥2 > 0, λmin(Λ) = ∥Λ−1∥−12 > 0.

Furthermore, by the properties of the Kronecker product, we derive:
λmax(Σobs) = λmax(Γobs)λmax(Λ), λmin(Σobs) = λmin(Γobs)λmin(Λ),

κ(Σobs) =
λmax(Λ)λmax(Γobs)

λmin(Λ)λmin(Γobs)
= κ(Γobs)κ(Λ).

Finally, we assume:
λmax(Γobs), λmax(Γmiss), λmax(Λ) = O(1).

B.1 Key Steps for Proving Lemma 1
In Lemma 1, we aim to show that the gradient-based Algorithm 2 provides a good approximation of
the conditional score function.
The algorithm employs gradient descent to solve two types of optimization problems: the major GD
problem (7), and the auxiliary GD problem (9), which is solved within each update step of the major
GD. It is critical to note that the major GD updates are inherently noisy due to various reasons, such
as the auxiliary GD approximating certain quantities at each step, and later using transformers to
approximate each step. Therefore, to establish the result in Lemma 1, our proof consists of two key
steps:
Step 1. We demonstrate that, with a sufficient number of auxiliary iterations Kaux, the approximation
error of the auxiliary GD loop’s result can be controlled below a specified threshold.
Step 2. We then show that, by controlling the perturbation level in each major GD update step, the
score approximation error (i.e., the gap between the output of the major GD and the ground truth
score function) can also be bounded, provided there are enough major iterations N .
In the following, we elaborate on each step by providing precise statements and subsequently use
them to prove Lemma 1. All supporting results are deferred to later sections.
B.2 Detailed Statements in Steps 1-2 and Proof of Lemma 1
Now we present formal statements in Step 1-2 and use them to prove Lemma 1.
B.2.1 Formal Statements in Steps 1-2
This section contains the statements of Lemma 2 and Lemma 3.
Lemma 2. For an arbitrarily fixed time t ∈ (0, T ] and given an error tolerance ϵ0 ∈ (0, 1), let
b := Σcors

(k) ∈ Rd|Imiss|, running the auxiliary gradient descent in (10) with a suitable step size
θ = 2/(λmin(Σobs) + λmax(Σobs)) for

Kaux =

⌈
κ(Σobs) + 1

2
log

(
∥b∥2

λmin(Γobs)λmin(Λ)ϵ0

)⌉
iterations produces a solution u(Kaux) that satisfies

∥u(Kaux) − u∥2 ≤ ϵ0.
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Here, we introduce ϵ0 to distinguish the noise arising from the auxiliary GD loop approximation from
the error level ϵ stated in Lemma 1. This distinction provides additional flexibility to adjust ϵ0 in
subsequent proofs.
Next, we establish a lemma for the convergence of the major GD. In each major GD step (referring to
(8)), we incorporate an error term and represent our gradient update as:

s(k+1) = s(k) − ηt∇Lt(s
(k)) + ξ(k), (14)

where ξ(k) represents the error term in each perturbed major GD step. Explicitly accounting for the
noise present in each perturbed gradient step, we can establish:
Lemma 3. For an arbitrarily fixed time t ∈ (0, T ] and given an error tolerance ϵ ∈ (0, 1),
suppose ∥ξ(k)∥2 ≤ ϵ, then running the major gradient descent in (14) and a suitable step size
ηt = 2/(λmin(α

2
tΣcond + σ2

t I) + λmax(α
2
tΣcond + σ2

t I)) for

K = O
(
κt log

(
Hdκ(Λ)κ(Γobs)

σtϵ

))
iterations produces a solution s(K) that satisfies

∥s(K) − s∥2 ≤
(κt
2

+ 1
)
ϵ,

where κt := κ(α2
tΣcond + σ2

t I).

With the convergence of both the auxiliary and major GD established, we are ready to prove Lemma
1.
B.2.2 Proof of Lemma 1
Proof. By the statement in Lemma 3, we need to control the noise level in each major GD step, i.e.
ensure ξ(k) ≤ ϵ. We analyze this error as

∥ξ(k)∥2 ≤ ∥α2
tΣ
⊤
corΣ

−1
obsΣcors

(k) − α2
tΣ
⊤
corΣ̂

−1
obsΣcors

(k)∥2
+ ∥Σ⊤corΣ−1obsxobs −Σ⊤corΣ̂

−1
obsxobs∥2

≤ α2
t ∥Σ⊤cor∥2∥Σ−1obsΣcors

(k) − Σ̂−1obsΣcors
(k)∥2

+ ∥Σ⊤cor∥2∥Σ−1obsxobs − Σ̂−1obsxobs∥2.

Here, the latter term arises from approximating µcond(xobs), and Σ̂−1obs(xobs − µobs) represents the
Kaux-iteration auxiliary GD approximation of the matrix-vector product.
We provide a useful lemma to help control the error above.

Lemma 4. For an arbitrarily fixed time t ∈ (0, T ], we have

∥vt − µcond(xobs)∥2 ≤
(
1 +

∥Γcor∥2κ(Λ)

λmin(Γobs)

)
Cδ

data,

and
∥st∥2 ≤ σ−2t ∥vt − µcond(xobs)∥2.

Invoking Lemma 2 and Lemma 4, letting ϵ0 =
(
(α2

t + 1)∥Σcor∥2
)−1

ϵ, to ensure that ∥ξ(k)∥2 ≤ ϵ.,
we can bound the required auxiliary iteration steps by:

Kaux =
κ(Σobs) + 1

2
log

(√
Hd(Cδ

data + ∥s∥∞)(α2
t + 1)∥Σcor∥22

λmin(Γobs)λmin(Λ)ϵ

)

= O
(
κ(Λ)κ(Γobs) log

(
Hdκ(Λ)κ(Γobs)

σtϵ

))
.

Lastly, we invoke Lemma 3, substitute ϵ with ϵ = σ−1t

(
2

κt+2

)
ϵ, we have

K = O
(
κt log

(
Hdκtκ(Γobs)κ(Λ)

ϵ

))
.
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Finally, notice that

κt =
λmax(α

2
tΣcond + σ2

t I)

λmin(α2
tΣcond + σ2

t I)
≤ κ(Σcond),

and leveraging
κ(Σobs) = κ(Γobs)κ(Λ),

we have

K = O
(
κ(Σcond) log

(Hdκ(Σcond)κ(Σobs)

ϵ

))
,Kaux = O

(
κ(Σobs) log

(Hdκ(Σobs)

σtϵ

))
.

This completes the proof of Lemma 1.

B.3 Proofs of Lemma 2 and Lemma 3
To prove the lemmas, we first state a standard result in convex optimization.

Lemma 5 (Theorem 3.12 in [Bubeck et al., 2015]). Let f be β-smooth and α-strongly convex on Rd

and x∗ be the global minimizer. Then gradient descent with η = 2
α+β satisfies∥∥∥x(k+1) − x∗

∥∥∥
2
≤
(
κ− 1

κ+ 1

)∥∥∥x(k) − x∗
∥∥∥
2
, k = 0, 1, . . . ,

where x(k+1) = x(k) − η∇f(x(k)) is the outcome at the (k + 1)-th iteration of gradient descent,
and κ = β

α .

Equipped with this lemma, the proof process is straightforward.
B.3.1 Proof of Lemma 2
Proof. Referring to (10) (expression of auxiliary GD step), the update steps are

u+ = u− θ∇Linner(u)

= u− θ (Σobsu− b)

We should notice that Laux is λmax(Σobs)-smooth and λmin(Σobs)-strongly convex. Then by Lemma
5, we have

∥u(kaux+1) − u∥2 ≤
(
κ(Σobs)− 1

κ(Σobs) + 1

)
∥u(kaux) − u∥2

= (1− 2

κ(Σobs) + 1
)kaux+1∥u(0) − u∥2

≤ exp

{
−2(kaux + 1)

κ(Σobs) + 1

}
∥u∥2.

We also have

∥u∥2 = ∥Σ−1obsb∥2 ≤ ∥Σobs∥−12 ∥b∥2 ≤ λmin(Γobs)λmin(Λ)−1∥b∥2.

With preset error ϵ0 > 0, taking number of iterations Kaux ≥ ⌈κ(Σobs)+1
2 log( ∥b∥2

λmin(Γobs)λmin(Λ)ϵ0
)⌉,

we obtain
∥u(Kaux) − u∥2 ≤ ϵ0.

B.3.2 Proof of Lemma 3
Proof. In each step, we incorporate an error term and represent our gradient update as in (14):

s(k+1) = s(k) − η∇Lt(s
(k)) + ξ(k).

We should also notice that Lt is λmax

(
α2
tΣcond + σ2

t I
)
-smooth and λmin

(
α2
tΣcond + σ2

t I
)
-strongly

convex. Then with ∥ξ(k)∥2 ≤ ϵ, by Lemma 5,
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∥s(k+1) − s∥2 ≤ ∥s(k) − η∇Lt(s
(k))∥2 + ∥ξ(k)∥2,

≤ ∥s(k) − η∇Lt(s
(k))∥2 + ϵ,

≤
(
κt − 1

κt + 1

)
∥s(k) − s∥2 + ϵ.

Then we have

∥s(k+1) − s∥2 −
κt + 1

2
ϵ ≤

(
κt − 1

κt + 1

)n+1(
∥s(0) − s∥2 −

κt + 1

2
ϵ

)
.

Similar to the proof of Lemma 2, we obtain

∥s(K) − s∥2 −
κt + 1

2
ϵ ≤ exp

{
−2N

κt + 1

}(
∥s∥2 −

κt + 1

2
ϵ

)
≤ exp

{
−2N

κt + 1

}
(∥s∥2) .

By invoking Lemma 4, we also have

∥s∥2 = ∥(α2
tΣcond + σ2

t I)∥−12 ∥(vt − αtµcond)∥2 ≤ σ−2t

[(
1 +

κ(Λ)

λmin(Γobs)

)
Cδ

data

]
.

Lastly, taking K = O
(
κt log

(
Hdκ(Λ)κ(Γobs)

σtϵ

))
, we obtain

∥s(K) − s∥2 ≤
(κt
2

+ 1
)
ϵ.

This finishes the proof of Lemma 3.
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C Proof of Theorem 1
We provide the detailed proof of Theorem 1 in this section by explicitly construct a transformer
architecture to unroll Algorithm 2. Firstly, we assume that the mean function µobs,µmiss can be
constructed by an additional preprocessing network. Thus, the analysis in this section can also be
conducted under the condition of event Cδ and still assuming µ = 0 as stated in Appendix B.
C.1 Key Steps for Proving Theorem 1
The proof of Theorem 1 is presented in a constructive framework. Revisiting the architecture in (5), we
observe that it comprises the encoder fin, which transforms the original input into a form compatible
with the unrolling of Algorithm 2; the raw transformer blocks, which perform the algorithm unrolling;
and the decoder fout, which extracts and truncates the output to provide the final score approximation.
We define the major GD step with k = 1 as the first major GD step and those with k > 1 as the later
major GD steps. Similarly, we categorize the auxiliary GD steps. Notably, the first major GD step is
relatively simpler, while the later major GD steps are analogous to it. Accordingly, we separate our
analysis into the first and later major GD steps. To establish Theorem 1, the proof proceeds through
the following steps:
Step 1. Construct the encoder, decoder, and essential components that are critical for constructing the
subsequent raw transformer architectures.
Step 2. Construct the raw transformer architecture for the first major GD step.
Step 3. Construct the raw transformer architecture for the later major GD steps analogously.
Step 4. Analyze the error and configuration of the raw transformer architectures constructed in the
previous steps.
Step 5. Summarize the constructions and analyses to establish the result in Theorem 1.
C.2 Constructing Encoder, Decoder and Some Crucial Transformer Components

For sake of simplicity, given a time step t ∈ (t0, T ], we denote (vt)j = xj ∈ Rd in the following
analysis. Additionally, we define each (FFNl ◦ Attnl) as a transformer block. The architecture
composed solely of transformer blocks, excluding the encoder fin and decoder fout, is referred to as
the raw transformer, denoted by Traw(D,L,M,B).

Encoder The encoder we need is to mapping our input x to higher dimensions in an attepmpt to
include some useful values (e.g. time embeddings) and also some buffer spaces to finish the gradient
descent process. For simplicity, at a specific time t, we suppose the encoder converts the initial input
into Y = fin([x1,x2, . . . ,xH , t]) = [y⊤1 , . . . ,y

⊤
N ]⊤ ∈ RD×H , which satisfies

yi =
[
x⊤i , e

⊤
i , ϕ(t)

⊤,0⊤6d, 1, 0, 1,x
⊤
i ,0

⊤
4d

]
,

yj =
[
x⊤j , e

⊤
i , ϕ(t)

⊤,0⊤6d, 1, 0, 1,0
⊤
5d

]
.

where ϕ(t) = [ηt, αt, σ
2
t , α

2
t ]
⊤ ∈ Rdt with dt = 4. Specifically, we use different subscriptions

for observed indices and missing indices, i.e. i ∈ Iobs, j ∈ Imiss. For simplicity, we omitted the
subscript t here, and 0⊤6d, 0⊤5d, 0⊤4d serve as the buffer space for storing the components necessary for
unrolling the algorithm.

Decoder Suppose the output tokens from the transformer blocks has produced a conditional
score approximator in matrix shape, and the stability for the computation inside the network, we
design the decoder fout = fnorm ◦ flinear. Where flinear : RD×H → Rd|Imiss| extracts and
flattens the input into a vector that aligns with the dimension of the conditional score function,
and fnorm : Rd|Imiss| → Rd|Imiss| controls the output range of the network by the upper bound of the
score function. By Lemma 4, denote σ−2t

(
1 + κ(Λ)

λmin(Γobs)

)
Cδ

data as Rt, we can set

fnorm(s) =

{
s, if ∥s∥2 ≤ Rt,
Rt

∥s∥2 s, otherwise.

fmult Module At the end of this part, we also provide the construction of the multiplication module,
which approximates the product between scalars and vectors. This is a crucial component in
constructing fGD later. We introduce a lemma, which is a modified version of Corollary 3 in [Fu
et al., 2024b]:
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Lemma 6. Suppose input to be Y = [y1,y2, · · · ,yH ] ∈ RD×H with yi = [x⊤i ,0
⊤
3d, wi, z

⊤
i ], where

xi ∈ [−B,B]d, wi ∈ [−B,B] and zi ∈ Rdz . Given any ϵmult > 0, there exists a (FFN-only)
transformer architecture such that

fmult = FFNL ◦ FFNL−1 ◦ · · · ◦ FFN1

with L = O(log(B/ϵmult)) layers that approximately multiply each component xi with the weight
wi and put it into a buffer, keeping other dimensions the same. This can be formally written as

fmult(Y) =


x1, · · · , xH

fmult(w1,x1), · · · , fmult(wH ,xH)
02d, · · · , 02d

w1, · · · , wH

z1, · · · , zH

 ,where ∥fmult(wi,xi)− wixi∥∞ ≤ ϵmult.

The number of nonzero coefficients in each weight matrices or bias vectors is at most O(d), and the
norm of the matrices and bias are all bounded by O(Bd).

C.3 First Major GD Step
In this section, we construct the transformer architecture unrolling the first step of major GD procedure,
and the result can be summarized as:
Lemma 7 (Construct first major GD step). There exists a raw transformer architecture fGD,1 ∈
Traw(D,L,M,B), which can construct an approximate first step major GD result s̃(1) from the
output of the encoder.

Given an error level ϵ > 0 and learning rate ηt > 0, the approximated first step GD result satisfies
s̃(1) − s(1) = ξ(1),where ∥ξ(1)∥2 ≤ ϵ,

where s(1) is the groundtruth gradient step.

The configuration of the raw transformer architecture satisfies

D = 12d+ de + dt + 3, L = O
(
κ(Λ)κ(Γobs) log

2

(
Hdκ(Λ)κ(Σobs))

ϵ

))
,

M = 4H,B = O
(√

Hd3(r2 + κ(Λ)κ(Γobs)σ
−1
t )
)
.

We defer the analysis of transformer configuration to C.5.
Following the encoder network construction above, we obtain the following input:

Y =



xi · · · xj

ei · · · ej
ϕ(t) · · · ϕ(t)
06d · · · 06d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d


.

Revisiting the major GD gradient step in (8), our goal is to form the following at major GD first step:
s
(1)
j = s

(0)
j + ηtαtµcond − ηtxj ≈ 0d + (Σ⊤corΣ̂

−1
obs(fmult(ηtαt,xobs)))j︸ ︷︷ ︸

ηtαtµj,cond

−fmult(ηt,xj). (15)

Initially, we apply a multiplication module to construct:

fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)

fmult(ηtαt,xi − µi,obs) · · · 0d

05d · · · 05d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

03d · · · 04d


.

This encapsulates the fundamental operations required for constructing the first major GD iteration.
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C.3.1 Auxiliary GD for First Major GD Step

In this section, we approximate the term Σ−1obs(ηtαtxobs) using an iterative auxiliary GD procedure.

First Auxiliary GD Step Starting from the initialization u
(0)
i = 0d for i ∈ Iobs, we want the first

auxiliary GD iteration finish the update:
u
(1)
i = u

(0)
i + θ (ηtαtxobs) .

Using fmult, we can easily obtain

fmult ◦ fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)

fmult(θ, fmult(ηtαt,xi))(= u
(1)
i ) · · · 0d

05d · · · 05d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d


.

This finished the first step of auxiliary GD.

Auxiliary GD Later Steps For subsequent iterations, the updated rule for the auxiliary GD
becomes:

u
(kaux+1)
i = u

(kaux)
i + θ(ηtαtxobs)− θ

∑
k∈Iobs

Γi,kΛuk,

= u
(kaux)
i + θ(ηtαtxobs)− θ

H−1∑
m=0

∑
k∈Iobs

γm1{|i− k| = m}Λuk, (16)

for kaux = 1, 2, · · · ,Kaux − 1.

Similar to the first auxiliary GD step performed above, we firstly use fmult to obtain

fmult ◦ fmult ◦ fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)

u
(kaux)
i · · · 0d

0d · · · 0d

fmult(θηtαt,xi) · · · 0d

fmult(θ,u
(kaux)
i ) · · · 0d

02d · · · 02d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d



.

Then, by constructing a 4H-head attention block as described in C.6.1, we obtain

fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)

u
(kaux)
i · · · 0d∑H−1

m=0

∑
k∈Iobs

γm1{|i− k| = m}Λfmult(θ,u
(kaux)
k ) · · · 0d

fmult(θηtαt,xi) · · · 0d

fmult(θ,u
(kaux)
i ) · · · 0d

02d · · · 02d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d



.
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Lastly, after combining an linear transformation FFN block with the attention block above to build up
the basic transformer block T Bobs, we will have

T Bobs ◦ fmult ◦ fmult ◦ fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)

u
(kaux+1)
i · · · 0d

05d · · · 05d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d


,

where

ũ
(kaux+1)
i = u

(kaux)
i −

H−1∑
m=0

∑
k∈Iobs

γm1{|i−k| = m}Λfmult(θ,u
(kaux)
k )+fmult(θηtαt,xi−µi,obs).

This completes a later step auxiliary GD update.

Final result for Auxiliary GD We denote the iterative blocks (T Bobs ◦ fmult ◦ fmult)
Kaux as finner.

The result of the auxiliary GD for approximating (Σ−1obs(ηtαt(xobs − µobs)))i is expressed as:

ũi =
(
Σ̂−1obsfmult(ηtαt, (xobs))

)
i
.

After completing Kaux auxiliary GD iterations, we obtain at the following transformation:

finner ◦ fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
ũi · · · 0d

05d · · · 05d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d


,

which incorporates the iterative updates. The resulting output includes ũi for each observation entry,
alongside the original data. We therefore finish the auxiliary GD procedure for the first major GD
step.
C.3.2 Matrix Multiplication
After Kaux steps of auxiliary GD iterations, we proceed with an additional matrix multiplication step
to compute Σ⊤corũ.
The multiplication can be expressed as:

(Σ⊤corũ)j =

H−1∑
m=0

∑
i∈Iobs

γm1{|i− j| = m}Λũi.

Referring to the construction in C.6.2, this computation can be implemented using a 4H-head
attention block:

fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
ũi · · · 0d

0d · · ·
∑H−1

m=0

∑
i∈Iobs γm1{|i− j| = m}Λũi(≈ ηtαt(µ̂j,condxobs))

04d · · · 04d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

04d · · · 04d


.

30



Combining the attention block described above with a linear transformation through a FFN block,
which we denote as T Bcort, we obtain:

fGD,1 = T Bcort ◦ finner ◦ fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
ũi · · · 0d

0d · · · s̃
(1)
j

04d · · · 04d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · (Σ⊤cor(Σ̂
−1
obsfmult(ηtαt,xobs)))j

03d · · · 03d



.

We now define s̃
(1)
j as:

s̃
(1)
j = fmult(ηtαt,µj,miss) +

(
Σ⊤cor

(
Σ̂−1obsfmult(ηtαt,xobs)

))
j
− fmult(ηt,xj).

Comparing this result with (15), we observe that the first step of the major gradient descent is now
complete. We represent this step as fGD,1.
For simplicity, we introduce the notation:

̂ηtαtµj,cond =
(
Σ⊤cor

(
Σ̂−1obsfmult(ηtαt,xobs)

))
j
.

C.4 Major GD Later Steps
In this section, we construct the transformer architecture unrolling the later steps of major GD
procedure, and the result can be summarized as

Lemma 8 (Construct major GD later steps). There exists a raw transformer architecture fGD ∈
Traw(D,L,M,B) (i.e. without encoder and decoder), which can construct a new approximate later
step GD result s̃+ from the output of the latest step of major GD. Given an error level ϵ ∈ (0, 1) and
learning rate ηt > 0, the approximated first step GD result satisfies

s̃(k+1) − s(k+1) = ξ+,where ∥ξ+∥2 ≤ ϵ,

where s(k+1) is the groundtruth gradient step.

Furthermore, the configuration of the raw transformer architecture satisfies

D = 12d+ de + dt + 3, L = O
(
κtκ(Λ)κ(Γobs) log

2

(
Hdκ(Λ)κ(Γobs)

σtϵ

))
,

M = 4H,B = O
(√

Hd3(r2 + κ(Λ)κ(Γobs)σ
−1
t )
)
.

We defer the analysis of transformer configuration to C.5.
In the later steps of the major GD, we need to compute the following update:

s(k+1) = s(k) − η
[
−α2

tΣ
⊤
corΣ

−1
obsΣcors

(k) − αtµcond(xobs) + α2
tΣmisss

(k) + σ2
t s

(k) + vt

]
≈ s(k) +Σ⊤corΣ̂

−1
obsΣcorfmult(ηtα

2
t , s

(k)) + ̂ηtαtµcond(xobs) +Σmissfmult(ηtα
2
t , s

(k))

− fmult(ηtσ
2
t , s

(k))− fmult(ηt,vt).
(17)

In the following proof, for the sake of simplicity, we use s+, s as abbreviation for s(k+1), s(k),
respectively.
In each new major GD step, the input to the iteration is the output of the most recent GD step. For
simplicity, we continue to represent this input using Y.
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Similar to the construction in the first step, we first apply a multiplication module to obtain:

fmult(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
0d · · · sj
03d · · · 03d

0d · · · fmult(ηtα
2
t , sj)

0d · · · fmult(ηtσ
2
t , sj)

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · ̂ηtαtµj,cond

03d · · · 03d



.

Next, we proceed to the matrix multiplication step, followed by the auxiliary GD process.
C.4.1 Matrix Multiplication 1
To begin, we compute Σcors, which can be expressed as:

(Γcor ⊗Λ)s.

For each i corresponding to the observations, this can be further rewritten as:

H−1∑
m=0

∑
j∈Imiss

γm1{|i− j| = m}Λsj .

To perform this computation, similar to the construction in the first step major GD, we employ a
4H-head attention block combined with an identical FFN block to form T Bcor:

T Bcor(Y)

=



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
0d · · · sj∑H−1

m=0

∑
j∈Imiss

γm1{|i− j| = m}Λfmult(ηtσ
2
t , sj) · · · 0d

02d · · · 02d

0d · · · fmult(ηtα
2
t , sj)

0d · · · fmult(ηtσ
2
t , sj)

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · ̂ηtαtµj,cond

03d · · · 03d



.

C.4.2 Auxiliary GD

In this step, we compute Σ−1obsΣcors.
Following the auxiliary GD procedure described in C.3.1, we employ a similar iterative approach
using finner to approximate the multiplication between a matrix inverse and vectors:
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finner ◦ T Bcor(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
0d · · · sj

(Σ̂−1obsΣcorfmult(ηtα
2
t , s))i · · · 0d

04d · · · 04d

0d · · · fmult(ηtα
2
t , sj)

0d · · · fmult(ηtσ
2
t , sj)

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · ̂ηtαtµj,cond

03d · · · 03d



.

C.4.3 Matrix Multiplication 2

In this step, we compute Σ⊤corΣ
−1
obsΣcors.

Following a similar procedure as in C.3.2, we construct a transformer block T Bcort. This block
similarly employs a 4H-head attention mechanism combined with an identity FFN to perform the
matrix multiplication:

T Bcort ◦ finner ◦ T Bcor(Y)

=



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
0d · · · sj

(Σ̂−1obsΣcorfmult(ηtα
2
t , s))i · · · 0d

0d · · · (Σ⊤corΣ̂
−1
obsΣcorfmult(ηtα

2
t , s))j

0d · · · 0d

0d · · · fmult(ηtα
2
t , sj)

0d · · · fmult(ηtσ
2
t , sj)

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · ̂ηtαtµj,cond

03d · · · 03d



.

C.4.4 Matrix Multiplication 3
In this step, we compute Σmisss.
Following a similar procedure as in C.6.1, we construct a transformer block T Bmiss. This attention
layer utilizes a 4H-head attention block to obtain:
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T Bmiss ◦ T Bcort ◦ finner ◦ T Bcor(Y)

=



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
0d · · · sj

(Σ̂−1obsΣcorfmult(ηtα
2
t , s))i · · · 0d

0d · · · (Σ⊤corΣ̂
−1
obsΣcorfmult(ηtα

2
t , s))j

0d · · · (Σmissfmult(ηtσ
2
t , s))j

0d · · · fmult(ηtα
2
t , sj)

0d · · · fmult(ηtσ
2
t , sj)

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · ̂ηtαtµj,cond

03d · · · 03d



.

Then, with a linear transformation FFN layer, we get the final output

T Bmiss ◦ T Bcort ◦ finner ◦ T Bcor(Y) =



fmult(ηt,xi) · · · fmult(ηt,xj)
ei · · · ej
ϕ(t) · · · ϕ(t)
0d · · · s̃+j
05d · · · 05d

1 · · · 1
1 · · · 0
0 · · · 1
xi · · · 0d

0d · · · ̂ηtαtµj,cond

03d · · · 03d


.

where
s̃+j = sj +

(
Σ⊤corΣ̂

−1
obsfmult(ηtα

2
t , s)

)
j
+ ̂ηtαtµj,cond(xobs)

+
(
Σmissfmult(ηtα

2
t , s)

)
j
− fmult(ηtσ

2
t , sj)− fmult(ηt,xj).

Comparing this expression with (17), we conclude that one major GD update has been completed.
We can represent the later major GD steps compactly as:

fGD = T Bmiss ◦ T Bcort ◦ finner ◦ T Bcor.

C.5 Error Analysis and Transformer Configurations
In this section, we analyze the error induced by using transformer architectures to unroll the gradient
descent procedure, and derive the corresponding transformer configurations to formally establish the
result in Lemma 7 and 8. Lastly, we combine these results to finish the proof of Theorem 1.
Above all, we should notice that, by our construction above, leveraging transformer to approximate
each step of Auxiliary GD also induces noise. Consequently, similar to (14), in each auxiliary GD
step, we incorporate an error term and represent the update as:

u(kaux+1) = u(kaux) − θ∇Lt,aux(u
(kaux)) + ξ

(kaux)
0 , (18)

where ξ(kaux)
0 represents the approximation error term in each auxiliary GD step. We can also state a

corresponding Lemma that sharing the same proof strategy with its counterpart in major GD (Lemma
3):
Lemma 9. For an arbitrarily fixed time t ∈ (0, T ] and given an error tolerance ϵ0 ∈ (0, 1), if we
can control ∥ξ(kaux)

0 ∥2 ≤ ϵ0, then running the auxiliary GD in (14) with a suitable step size θ for

Kaux =

⌈
κ(Σobs) + 1

2
log

(
∥b∥2

λmin(Γobs)λmin(Λ)ϵ0

)⌉
iterations gives:

∥u(Kaux) − u∥2 ≤ κ(Σobs) + 3

2
ϵ0.
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C.5.1 First Major GD Step
In this part, we analyze the noise introduced by the construction in C.3, and corresponding transformer
architecture configuration (i.e. D,L,M,B).

Bounding Approximation Error Let s(1) denote the exact major GD update, and s̃(1) represent
our approximation. According to (15), in first major GD step, transformer blocks are utilized to
compute:

s̃
(1)
j = Σ⊤cor(Σ̂

−1
obsfmult(ηtαt,xobs))j − fmult(ηt,xj),

for j ∈ |Imiss|, as an approximation to:

s(1) = ηt
(
αt

(
µmiss +Σ⊤corΣ

−1
obsxobs − vt

))
.

In first major GD step, auxiliary GD is responsible for computing Σ̂−1obs(ηtαt(xobs − µobs)).
From (16), each auxiliary GD step updates as (here we only analyze the later auxiliary GD step, and
we use u+,u for ũ(kaux+1), ũ(kaux) for the sake of simplicity):

u+
i = ui + θ(ηtαtxobs)− θ

H−1∑
m=0

∑
k∈Iobs

γm1{|i− k| = m}Λuk,

and we approximate it using:

ũ+
i = ui −

H−1∑
m=0

∑
k∈Iobs

γm1{|i− k| = m}Λfmult(θ,uk) + fmult(θηtαt,xi).

To ensure control over the error ∥ũ+ − u+∥2 = ∥ξ0∥2 ≤ ϵ0, Lemma 6 indicates that setting
ϵmult,aux,1 = ϵ0

(H3/2∥Λ∥F+H1/2)
√
d

suffices. This requires Lmult,aux,1 = O
(
log
(

dN∥Λ∥F
ϵ0

))
itera-

tions.
With each step noise controlled, the entire auxiliary GD procedure, combined with the subsequent
matrix product blocks, yields ΣcorΣ̂

−1
obsfmult(ηtαt,xobs − µobs). According to Lemma 9, setting

Kaux =

⌈
κ(Σobs) + 1

2
log

(
ηtαt∥xobs∥2

λmin(Γobs)λmin(Λ)ϵ0

)⌉
,

ensures that:

∥Σ⊤corΣ̂−1obsfmult(ηtαt,xobs − µobs)−Σ⊤corΣ
−1
obsηtαtxobs∥2 ≤ ∥Σcor∥2

κ(Σobs) + 3

2
ϵ0. (19)

This provides an approximation of Σ⊤corΣ
−1
obs with controlled error bounds.

Finally, the fmult module approximates scalar and vector multiplications to complete the first step of
gradient descent. The overall error for each j is computed as:

∥s̃(1)j − s
(1)
j ∥2 ≤ ∥fmult(ηtαt,µj,miss)− ηtαtµj,miss∥2

+ ∥Σ⊤corΣ̂−1obsfmult(ηtαt,xobs)−Σ⊤corΣ
−1
obsηtαt(xobs)∥2

+ ∥fmult(ηt,xj)− ηtxj∥2

≤ ∥Σcor∥2
κ(Σobs) + 3

2
ϵ0 + 2

√
dϵmult.

By setting ϵ0 =
(
∥Σcor∥F(κ(Σobs) + 3)

√
H
)−1

ϵ, which leads to an auxiliary gradient descent
step count of

Kaux,1 =

(κ(Σobs) + 1) log


(
ηtαt∥Σcor∥2(κ(Σobs) + 3)

√
H
)√

HdCδ
data

λmin(Γobs)λmin(Λ)ϵ

 ,
and by Lemma 6, setting ϵmult =

(
8
√
dN
)−1

ϵ, which leads to

Lmult,1 = O
(
log

(
dN

ϵ

))
,

we successfully control the error ∥ξ(1)∥2 = ∥s̃(1) − s(1)∥2 ≤ ϵ
2 < ϵ.
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Configuration of Transformer Architecture for Approximating the First Major GD Step We
finally summarize our construction by characterizing the configuration of the architecture:

• The input to the transformer is of dimension D ×H with D = 12d+ de + dt + 3.

• In each auxiliary GD step, we use 1 transformer block to form the matrix product and some
fmult modules, requiring a total of Lmult,aux transformer blocks. We need to perform P1

auxiliary GD steps. After completing the auxiliary GD, additional fmult modules are used to
compute scalar and vector products, which require Lmult,1 blocks. Thus, the number of the
transformer blocks is bounded by

L = Kaux,1(1 + Lmult,aux,1) + Lmult,1

= O
(
κ(Λ)κ(Γobs) log

2

(
Hdκ(Λ)κ(Σobs))

ϵ

))
.

• The number of transformer blocks is bounded by M = 4H .

• With the constructions above, referring to Lemma 6, the norm of the multiplication module
is bounded by O(d(∥x∥∞+∥s∥∞);, and Lemma 4 helps us bound x∞ and ∥v∥∞. Referring
to the attention module constructed in C.6.2 and C.6.1, the norm of the attention matrices are
bounded by O(d(r2 + λmax(Λ))); and considering the weight matrices in the FFN, since
they only do linear transformations and only have at most O(d) nonzero weights, their norm
are bounded by O(d). To sum up, we have the norm of the transformer parameters bounded
by

O
(√

Hd3(r2 + κ(Λ)κ(Γobs)σ
−1
t )
)
.

And this finishes the proof of Lemma 7.
C.5.2 Major GD Later Steps
In this part, we analyze the noise introduced by the construction in C.4, and corresponding transformer
architecture configuration.

Bounding Approximation Error In later steps, according to 17, we use

s̃+ = s+Σ⊤corΣ̂
−1
obsΣcorfmult(ηtα

2
t , s) + ̂ηtαtµcond

+Σmissfmult(ηtα
2
t , s)− fmult(ηtσ

2
t , s)− fmult(ηt,vt)

to approximate

s+ = s− ηt[−α2
tΣ
⊤
corΣ

−1
obsΣcors− αtµcond + α2

tΣmisss+ σ2
t s+ vt].

We first consider the auxiliary gradient descent which computes Σ̂−1obsΣcorfmult(ηtα
2
t , s). Compared

to the first step analysis, we simply replace xobs with s. So we can completely follow the procedure
in (19). To control ∥ũ+−u+∥2 = ∥ξ∥2 ≤ ϵ0, we set the corresponding inside multiplication module
error as

ϵmult,aux =
ϵ0

(H3/2∥Λ∥F +H1/2)
√
d
,

which requires

Lmult,aux,+ = O
(
log

(
∥Σcor∥2∥s∥∞dN∥Λ∥F

ϵ0

))
.

Combining the auxiliary GD output with the following matrix multiplication blocks, we obtain
Σ⊤corΣ̂

−1
obsΣcorfmult(ηtα

2
t , s). By Lemma 9, with Kaux = ⌈κ(Σobs)+1

2 log( ηtαt∥Σcor∥F∥s∥2
λmin(Γobs)λmin(Λ)ϵ0

)⌉, we
have

∥Σ⊤corΣ̂−1obsΣcorfmult(ηtα
2
t , s)− ηtα

2
tΣ
⊤
corΣ

−1
obsΣcors∥2 ≤ ∥Σcor∥F

κ(Σobs) + 3

2
ϵ0.

Next, we decompose the overall error term. Recall that

̂ηtαtµj,cond = fmult(ηtαt,µj,miss) +
(
Σ⊤cor

(
Σ̂−1obsfmult(ηtαt, (xobs))

))
j
,
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similar to the analysis in the first iteration, we can derive the error bound for approximating s+j as:

∥s̃+j − s+j ∥2 ≤ ∥Σ⊤corΣ̂−1obsΣcorfmult(ηtα
2
t , s)− ηtα

2
tΣ
⊤
corΣ

−1
obsΣcors∥2

+ ∥ ̂ηtαtµcond(xobs)− ηtαtµcond(xobs)∥2
+ ∥Σmissfmult(ηtα

2
t , s)− ηtα

2
tΣmisss∥2

+ ∥fmult(ηtσ
2
t , s)− ηtσ

2
t s∥2

+ ∥fmult(ηt,xj)− ηtxj∥2

≤ ∥Σcor∥2
κ(Σobs) + 3

2
ϵ0 + 2

√
dϵmult +

ϵ

2
+ ∥Σmiss∥2

√
dϵmult,

where the second term, ̂ηtαtµcond(xobs), was computed in the first iteration bound and is thus
bounded by ϵ

2 .

By setting ϵ0 =
(
2∥Σcor∥F(κ(Σobs) + 3)

√
H
)−1

ϵ, which leads to the auxiliary gradient descent
step count:

Kaux,+ =

(κ(Σobs) + 1) log


(
ηtαt∥Σcor∥22(κ(Σobs) + 3)

√
H
)
∥s∥2

λmin(Γobs)λmin(Λ)ϵ

 ,
and setting ϵmult =

(
8
√
dN(∥Σmiss∥F + 2)

)−1
ϵ, which leads to

Lmult,+ = O
(
log

(
dH(∥s∥∞ + Cδ

data)∥Σmiss∥∞
ϵ

))
,

we successfully control the error ∥ξ+∥2 = ∥s̃+ − s+∥2 ≤ ϵ.

Size of Transformer Architecture for Approximating the Later Steps Major GD We finally
summarize our construction by characterizing the size of the architecture:

• The input to the transformer is of dimension D ×H with D = 12d+ de + dt + 3.
• In the later major GD steps, , we use 1 + Lmult,aux,+ transformer blocks for each auxiliary

GD step, and a total of Kaux,+ auxiliary GD steps are required. After completing the
auxiliary GD, we perform additional matrix multiplications (e.g., multiplying vectors by
Σcor, Σ⊤cor, and Σmiss), which require 3 transformer blocks for attention. Subsequently,
fmult modules are used to complete the major GD, requiring Lmult,+ blocks. Thus, the total
number of transformer blocks required for each subsequent major GD step is bounded by:

L = Kaux,+(1 + Lmult,aux,+) + 3 + Lmult,+

= O
(
κtκ(Λ)κ(Γobs) log

2

(
Hdκ(Λ)κ(Γobs)

σtϵ

))
.

• The number of transformer blocks is bounded by M = 4H .
• Same as the analysis in the first step of major GD, we have the norm of the transformer

parameters bounded by

O
(√

Hd3(r2 + κ(Λ)κ(Γobs)σ
−1
t )
)
.

And this finishes the proof of Lemma 8.
C.5.3 Proof of Theorem 1
Proof. We formally construct the conditional score approximation transformer as follows:

s̃(vt,xobs) = fout ◦ fGD ◦ · · · ◦ fGD︸ ︷︷ ︸
(K−1)×fGD

◦fGD,1 ◦ fin(vt,xobs).

Recalling that κt = κ(α2
tΣcond + σ2

t I), by the major GD convergence result in Lemma 3, to
ensure ∥s̃ − s∥2 ≤ σ−1t ϵ, the total major GD iteration number required is upper bounded by
K = O

(
κt log

(
Hdκtκ(Λ)κ(Γobs)

ϵ

))
, which is obtained by substituting ϵ with σ−1t

(
2

κt+2

)
ϵ.
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Utilizing Lemma 7 and 8, and substituting ϵ with σ−1t

(
2

κt+2

)
ϵ, the following transformer configura-

tion can control the error in each major GD step:

D = 12d+ de + dt + 3, L = O
(
κ2tκ(Λ)κ(Γobs) log

3

(
Hdκtκ(Λ)κ(Γobs)

ϵ

))
,

M = 4H, B = O
(√

Hd3(r2 + κ(Λ)κ(Γobs)σ
−1
t )
)
,

where ℓ is computed by K times the transformer block required in each major GD step.

Finally, by substituting σ−1t , κt with σ−1t0 , κt0 , and considering the truncation range which is induced
by the decoder (R = O(σ−2t0

√
Hdκ(Λ)κ(Γobs))), we obtain a uniform bound for any t ∈ [t0, T ].

Taking supremum over all admissible Iobs ⊂ I, and leverage the relationship that κ(Σcond) =
κ(Λ)κ(Γobs), we finish the proof of Theorem 1.

C.6 Construction of Attention Layers
In this section, we construct the attention layers used in the transformer architectures built up in C.3
and C.4.
We utilize the added 

xi · · · xj

· · · · · · · · ·
1 · · · 1
1 · · · 0
0 · · · 1
· · · · · · · · ·


to construct different types of interaction between different types of samples. (i.e. When we want
attention exclusively among observed samples or missing samples, we use the construction method as
described in T Bobs below; When we want attention between observed samples and missing samples,
while setting all other interactions to zero, we use the construction method as described in T Bcort

below. )
The intuition of (16) suggests a construction of a multi-head attention layer. Formally, for an
arbitrary value of m, we construct four attention heads with ReLU activation. The indicator function
1{|i− j| = m} can be realized by calculating the auxiliary product e⊤i ej of time embedding. To see
this, we observe

e⊤i ej =
1

2

(
2r2 − ∥ei − ej∥22

)
=

1

2

(
2r2 − f2(|i− j|)

)
.

Therefore, it holds that

1{|i− j| = m} = 1

{
e⊤i ej = r2 − 1

2
f2(m)

}
,

since f Assumption 1 ensures that the time embeddings uniquely identify discrete time gaps through
their pairwise distances. Directly approximating an indicator function using a ReLU network can
be difficult. Yet we note that |i − j| can only take integer values. Therefore, we can slightly
widen the decision band for the indicator function. Specifically, we denote a minimum gap ∆ =
mini=1,...,H−1{f2(i+ 1)− f2(i)}. Thus, we deduce

1{|i− j| = m} = 1

{
e⊤i ej ∈

[
r2 − 1

2
f2(m)− 1

4
∆, r2 − 1

2
f2(m) +

1

4
∆

]}
.

We can use four ReLU functions to approximate the right-hand side of the last display, and simultane-
ously take different type of interaction types into account. We use another indicator function (which
can be realized by the 0s and 1s added above) to represent what types of interaction we want in this
specific transformer block.
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We construct a trapezoid function as follows:

1{|i− j| = m} =
8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m) +

1

4
∆

)
− 8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m) +

1

8
∆

)
− 8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m)− 1

8
∆

)
+

8

∆
ReLU

(
e⊤i ej − r2 +

1

2
f2(m)− 1

4
∆

)
.

C.6.1 Construction of attention matrices related to the observed part
We construct the attention matrices for T Bobs here.
For particular m, we utilize

(Q1)⊤K1 = diag

([
0d×d, Ide ,0dt×dt ,0(6d)×(6d), 0,−r2 +

1

2
f2(m) +

1

4
∆, 0,0(3d)×(3d)

])
,

V1 =

0(4d+de+dt)×(2d+de+dt) 0(4d+de+dt)×d 0(4d+de+dt)×(5d+3)

0d×(d+de+dt)
8
∆γmΛ 0d×(6d+3)

0(6d+1)×(2d+de+dt) 0(6d+1)×d 0(6d+1)×(5d+3)

 .
and

(Q2)⊤K2 = diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d), 0,−r2 +

1

2
f2(m) +

1

8
∆, 0,0(5d)×(5d)

])
,

V2 = −V1

and

(Q3)⊤K3 = diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d), 0,−r2 +

1

2
f2(m)− 1

8
∆, 0,0(5d)×(5d)

])
,

V3 = −V1

and

(Q4)⊤K4 = diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d), 0,−r2 +

1

2
f2(m)− 1

4
∆, 0,0(5d)×(5d)

])
,

V4 = V1.

It is easy to verify that

4∑
a=1

yTi (Q
a)⊤Kayj = 1{|i− j| = m}1{i, j ∈ Iobs}.

We can claim that 4H attention heads and identity FFN are enough for constructing this block.
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C.6.2 Construction of attention matrices related to the correlation part
We only need to do some small changes to T Bobs.
For particular m, let

(Q1)⊤K1

= diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d),−r2 +

1

2
f2(m) +

1

4
∆,

1

2
∆,

1

2
∆,0(5d)×(5d)

])
,

V1 =

0(2d+de+dt)×(d+de+dt) 0(2d+de+dt)×d 0(2d+de+dt)×(6d+3)

0d×(d+de+dt)
8
∆γmΛ 0d×(6d+3)

0(8d+1)×(d+de+dt) 0(8d+1)×d 0(8d+1)×(6d+3)

 .
and

(Q2)⊤K2

= diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d),−r2 +

1

2
f2(m) +

1

8
∆,

1

2
∆,

1

2
∆,0(5d)×(5d)

])
,

V2 = −V1

and

(Q3)⊤K3

= diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d),−r2 +

1

2
f2(m)− 1

8
∆,

1

2
∆,

1

2
∆,0(5d)×(5d)

])
,

V3 = −V1

and

(Q4)⊤K4

= diag

([
0d×d, Ide

,0dt×dt
,0(6d)×(6d),−r2 +

1

2
f2(m)− 1

4
∆,

1

2
∆,

1

2
∆,0(5d)×(5d)

])
.

V4 = V1

It is easy to verify that
4∑

a=1

yTi (Q
a)⊤Kayj = 1{|i− j| = m}1{{i ∈ Iobs, j ∈ Imiss} ∪ {i ∈ Imiss, j ∈ Iobs}}.

We can thus state that 4H attention heads and identity FFN are enough for constructing this block.
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D Proofs of Theorem 2 and Corollary 1
In this section, we provide the detailed proof of Theorem 2 and Corollary 1.
Firstly, we introduce some notations specifically for this part for sake of simplicity. We denote our
training set with n i.i.d. samples as

D(n) = {x(i)}ni=1 = {(x(i)
miss,x

(i)
obs)}

n
i=1 = {(x(i),y(i))}ni=1.

We introduce the corollary below which will act as an significant role in our later proof:

Corollary 2. By choosing the transformer architecture T (D,L,M,B,R) as in Theorem 1, the
early-stopping time t0 < 1 and the terminal time T = O(log n), it holds that

E{(x(i),y(i)}ni=1
[R(ŝ)] ≲

Hd2κ4t0κ
2(Λ)κ2(Γobs)t

−1
0

n
log(Hdκ(Λ)κ(Γobs)nt

−1
0 ),

where κt0 := κ(α2
tΣcond + σ2

t I).

The proof of Corollary 2 is deferred to Appendix E.
D.1 Proof of Theorem 2
Although our assumption on Gaussian processes does not ensure the Novikov’s condition to hold,
according to [Chen et al., 2022], as long as we have bounded the second moment for the score
estimation error and finite KL divergence w.r.t the standard Gaussian, we could still adopt Girsanov’s
Theorem and bound the KL divergence between the two distribution. We restate the Lemma as
follows:

Lemma 10 (Corollary D.1 in [Oko et al., 2023], see also Theorem 2 in [Chen et al., 2022]). Let
p0 be a probability distribution, and let Y = {Yt}t∈[0,T ] and Y ′ = {Y ′t }t∈[0,T ] be two stochastic
processes that satisfy the following SDEs:

dYt = s(Yt, t)dt+ dWt, Y0 ∼ p0,

dY ′t = s′(Y ′t , t)dt+ dWt, Y ′0 ∼ p0.

We further define the distributions of Yt and Y ′t by pt and p′t. Suppose that∫
x

pt(x)∥(s− s′)(x, t)∥2dx ≤ C (20)

for any t ∈ [0, T ]. Then we have

KL (pT ∥p′T ) ≤
∫ T

0

1

2

∫
x

pt(x)∥(s− s′)(x, t)∥2dx dt.

Equipped with Corollary 2 and Lemma 10, we are ready to prove Theorem 2.

Proof of Theorem 2. Firstly, following the proof of Lemma 12, we can easily verify that for any
s ∈ T (D,L,M,B,R),∫

x

pt(vt | y)∥s(vt,y, t)−∇ log pt(vt | y)∥22dx ≲
1

σ4
t

.

Thus, the condition (10) holds for all t ∈ [t0, T ], which means that we could apply Girsanov’s
theorem in this time range.
To further distinguish the SDE defined in (1), (2), and (3), we denote the distribution of xt,vt, v̂t

as Pt, P
←
t , P̂←t , respectively. Additionally, we need to introduce another intermediate backward

process between P←t , P̂←t as follows

dv′←t =

[
1

2
v′←t +∇ log pT−t(v

′←
t |y)

]
dt+ dw̄t with v′←0 ∼ N (0, Id|Imiss|),

and we denote the marginal distribution of v′←t (conditioned on y) as P ′T−t(·|y).
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Equipped with these notations, we can decompose the total variation between P and P̂←t0 as

Ey

[
TV(P, P̂←t0 )

]
≤ Ey

[
TV(P, Pt0) + TV(Pt0 , P

←
t0 ) + TV(P←t0 , P

′←
t0 ) + TV(P ′←t0 , P̂←t0 )

]
= Ey

[
TV(P, Pt0) + TV(P←t0 , P

′←
t0 ) + TV(P ′←t0 , P̂←t0 )

]
. (21)

We denote {ξi}d|Imiss|
i=1 as the eigenvalues of Σcond, and we can do eigenvalue decompositions to

Σcond as Σcond = QΞQ⊤, where (Ξ)ii = ξi.
Considering the second last term„ by Data Processing Inequality and Pinsker’s Inequality (see e.g.
Lemma 2 in [Canonne, 2022]), we have
Ey[TV(P←t0 , P

′←
t0 )]

≲
√

Ey[KL(P←t0 ||P
′←
t0 )] (Pinsker’s Inequality)

≲
√

Ey[KL(PT ||N (0, Id|Imiss|)] (Data Processing Inequality)

≲
√
Ey[KL(P ||N (0, Id|Imiss|)] exp(−T )

=
√

Ey[− log(|Σcond|) + tr(Σcond) + y⊤Σ−1obsΣcorΣ⊤corΣ
−1
obsy]− d|Imiss| exp(−T )

≤
√

− log(|Σcond|) + tr(Σcond) + Ez∼N (0,I)[z⊤Σ
− 1

2

obsΣcorΣ⊤corΣ
− 1

2

obsz]− d|Imiss| exp(−T )

=
√
− log(|Σcond|) + tr(Σcond +Σ⊤corΣ

−1
obsΣcor)− d|Imiss| exp(−T )

≲
√

− log(|Σcond|) + tr(Σcond +Σ⊤corΣ
−1
obsΣcor)− d|Imiss| exp(−T )

≲
√

−Hd log(ξmin) + tr(Σmiss)− d|Imiss| exp(−T )

≲
√
Hdξ−1min exp(−T ), (22)

where we leverage the close-form solution of the KL-divergence between two gaussian distributions
in the first equality.
Regarding the first term, by Pinsker’s Inequality and the close-form solution of the KL-divergence
between Gaussian distributions [Pardo, 2018], we have

Ey [TV(P (·|y), Pt0(·|y))]
= Ey [TV(Pt0(·|y), P (·|y))]

≲ Ey

[√
KL(Pt0(·|y)||P (·|y))

]
= Ey

[√
KL(N (αt0Σ

⊤
corΣ

−1
obsy, α

2
t0Σcond + σ2

t0Id|Imiss|)||N (Σ⊤corΣ
−1
obsy,Σcond))

]
≤
√
Ey

[
KL(N (αt0Σ

⊤
corΣ

−1
obsy, α

2
t0Σcond + σ2

t0Id|Imiss|)||N (Σ⊤corΣ
−1
obsy,Σcond))

]
,

Leveraging the close-form solution of the KL-divergence between two gaussian distributions, we
further have

Ey

[
KL(N (αt0Σ

⊤
corΣ

−1
obsy, α

2
t0Σcond + σ2

t0Id|Imiss|)||N (Σ⊤corΣ
−1
obsy,Σcond))

]
≲ − log

( |α2
t0Σcond + σ2

t0I|
|Σcond|

)
︸ ︷︷ ︸

A

+tr(Σ−1cond(α
2
t0Σcond + σ2

t0I))︸ ︷︷ ︸
B

+ (1− αt0)
2Ey

[
y⊤Σ−1obsΣcorΣ

−1
condΣ

⊤
corΣ

−1
obsy

]︸ ︷︷ ︸
C

−d|Imiss|.

Considering term A, we have
|α2

t0Σcond + σ2
t0I| = |Σcond| · |α2

t0I+ σ2
t0Σ
−1
cond|

= |Σcond| ·
d|Imiss|∏
i=1

(α2
t0 + σ2

t0ξ
−1
i ).
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Then we obtain

A = −
d|Imiss|∑
i=1

log(α2
t0 + σ2

t0ξ
−1
i ).

Regarding term B, we have

B = tr(Σ−1cond(α
2
t0Σcond + σ2

t0I)) = tr(Q(α2
t0Ξ+ σ2

t0I)Q
⊤(QΞ−1Q⊤))

= tr((α2
t0Ξ+ σ2

t0I)Ξ
−1)

=

d|Imiss|∑
i=1

(α2
t0 + σ2

t0ξ
−1
i )

≤ d|Imiss|+ d|Imiss|ξ−1minσ
2
t

Considering term C, we have

C = (1− αt0)
2Ey

[
y⊤Σ−1obsΣcorΣ

−1
condΣ

⊤
corΣ

−1
obsy

]
= (1− αt0)

2Ez∼N (0,Id|Iobs|)

[
z⊤Σ

− 1
2

obsΣcorΣ
−1
condΣ

⊤
corΣ

− 1
2

obsz
]

= (1− αt0)
2 tr(Σ⊤corΣ

−1
obsΣcorΣ

−1
cond).

Thus, with αt0 = e−
t0
2 , σt0 =

√
1− e−t0 , we can take t0 = O(ξminn

− 1
2 ), and

Ey [TV(P (·|y), Pt0(·|y))] ≲ n−
1
2 (Hd)

1
2 . (23)

Combining (21), (23), (22), and invoking Lemma 10, we have:

Ey

[
TV(P, P̂←t0 )

]
≲ n−

1
2 (Hd)

1
2 +

√
Hd(ξ−1min + κ(Λ)) exp(−T )+

+ Ey

√∫ T

t0

1

2

∫
vt

pt(vt|y)||̂s(vt,y, t)−∇ log pt(vt|y)||22dvtdt

 (24)

≲ n−
1
2 (Hd)

1
2 +

√
Hd(ξ−1min + κ(Λ)) exp(−T ) +

√
R(ŝ).

Plugging in the result in Corollary 2 (taking T = O(log n), and t0 = O(ξminn
− 1

2 )), we finally
obtain

ED
[
Ey

[
TV(P, P̂←t0 )

]]
≲
H

1
2 dκ

5
2 (Γcond)κ(Λ)κ(Γobs)

n
1
2

log
1
2 (Hdκ(Λ)κ(Γobs)n),

= Õ(
√
Hd2κ5(Σcond)κ2(Σobs)/

√
n).

where Γcond = Γmiss − Γ⊤corΓ
−1
obsΓcor. We complete our proof.

D.2 Proof of Corollary 1
With Theorem 2 established, the conclusion in Corollary 1 goes straightforward.

Proof. Firstly, by the definition of total variation distance, we have the relationship

|P̂t0(x
∗
miss ∈ ĈR

∗
1−α)− P (x∗miss ∈ ĈR

∗
1−α)| ≤ TV(P̂t0(·|x∗obs), P (·|x∗obs)).

Following the decomposition in (21), we can obtain

TV(P̂t0(·|x∗obs), P (·|x∗obs))
≤ TV(P (·|x∗obs), Pt0(·|x∗obs)) + TV(Pt0(·|x∗obs), P←t0 (·|x

∗
obs))

+ TV(P←t0 (·|x
∗
obs, P̂t0(·|x∗obs))).
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Regarding the right hand side, following the derivation in (24), we can bound each term similarly by
taking t0 = O(λmin(Σcond)n

− 1
2 ) and T = O(log n).

For the second term, we leverage the close-form solution of the KL-divergence between two gaussian
distributions:

TV(Pt0(·|x∗obs), P←t0 (·|x
∗
obs))

≲
√

− log(|Σcond|) + tr(Σcond) + x∗obs
⊤Σ−1obsΣcorΣ⊤corΣ

−1
obsx

∗
obs − d|Imiss| exp(−T )

≤ 1

n

√
− log(|Σcond|) + tr(Σcond) + x∗obs

⊤Σ−1obsΣcorΣ⊤corΣ
−1
obsx

∗
obs − d|Imiss|

≲
1

n

√
−Hd log(λmin(Σcond)) + x∗obs

⊤Σ−1obsΣcorΣ⊤corΣ
−1
obsx

∗
obs

≲ ϵ
(n)
diff +

1

n

√
x∗obs

⊤Σ−1obsΣcorΣ⊤corΣ
−1
obsx

∗
obs.

For the last term, recalling the definition of DS(Pxobs
, Px∗

obs
;G), we have

ED(n)

[
TV(P←t0 (·|x

∗
obs, P̂t0(·|x∗obs)))

]
≲ ED(n)

√∫ T

t0

1

2

∫
vt

pt(vt|x∗obs)||̂s(vt,x∗obs, t)−∇ log pt(vt|x∗obs)||22dvtdt


≲ ED(n)

√∫ T

t0

Evt
[||̂s(vt,x∗obs, t)−∇ log pt(vt|x∗obs)||22]dt


≲ ED(n)

[√∫ T

t0

Evt,y∼Pxobs
[||̂s(vt,y, t)−∇ log pt(vt|y)||22]dt · sup

ℓ∈G

Ey=x∗
obs

[ℓ(y)]

Ey∼Pxobs
[ℓ(y)]

]
≲
√

ED(n) [R(ŝ)] ·
√
DS(Px∗

obs
, Px∗

obs
;G)

≲ ϵ
(n)
diff ·

√
DS(Px∗

obs
, Px∗

obs
;G).

Let

ψ(x∗obs) := max

{√
λmin(Σcond)x∗obs

⊤Σ
− 1

2

obsΣcorΣ
−1
condΣ

⊤
corΣ

− 1
2

obsx
∗
obs,√

x∗obs
⊤Σ−1obsΣcorΣ⊤corΣ

−1
obsx

∗
obs

}
.

For the first term, leveraging the result in (23), and the decomposition of term C in the proof
Theorem 2, we have

TV(P (·|x∗obs), Pt0(·|x∗obs)) ≲ n−
1
2 (Hd)

1
2 + n−

1
2ψ(x∗obs) ≲ ϵ

(n)
diff + n−

1
2ψ(x∗obs).

Finally, we can combine all the bounds above to obtain

ED(n) [|P̂t0(x
∗
miss ∈ ĈR

∗
1−α)− P (x∗miss ∈ ĈR

∗
1−α)|]

≲ ED(n) [TV(P (·|x∗obs), Pt0(·|x∗obs)) + TV(Pt0(·|x∗obs), P←t0 (·|x
∗
obs))

+ TV(P←t0 (·|x
∗
obs, P̂t0(·|x∗obs)))]

≲ n−
1
2ψ(x∗obs) + ϵ

(n)
diff ·

√
DS(Px∗

obs
, Px∗

obs
;G)

≲ ϵ
(n)
diff ·

√
DS(Px∗

obs
, Px∗

obs
;G) + n−

1
2ψ(x∗obs),

and the corollary follows.
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E Proof of Corollary 2
In this section, we provide the detailed proof of Corollary 2.

Training Loss During training, given a state vt = αtv0 + σtz, z ∼ N (0, Id|Imiss|),v0 = xmiss,
we aim to minimize the ideal risk function:

R(s) =

∫ T

t0

Evt,xobs

[
∥s(vt,xobs, t)−∇vt log pt(vt|xobs)∥22

]
dt. (25)

However, in practice, the objective (25) is not directly accessible. According to Lemma C.3 in Vincent
[2011], an equivalent objective function L(s), which differs from R(s) only by a constant, can be
used for optimization:

L(s) =
∫ T

t0

E(xmiss,xobs)

[
Evt|v0=xmiss

[
∥s(vt,xobs, t)−∇vt

log ϕt(vt|v0)∥22
]]
dt. (26)

Here, ϕt is the Gaussian transition kernel of the forward process, satisfying ∇ log ϕt(vt|v0) =
−(vt−αtv0)

σ2
t

.

Thus, we can leverage the corresponding empirical loss (11):

ŝ ∈ argmin
s∈T

L̂(s),where L̂(s) = 1

n

n∑
i=1

ℓ(x(i),y(i); s),

where the loss function is defined in (12)

ℓ(x(i),y(i); s) =

∫ T

t0

Evt|v0=x(i)

[
∥s(vt,y, t)−∇vt

log ϕt(vt|v0)∥22
]
dt.

E.1 Steps for Proving Corollary 2
E.1.1 Risk Decomposition
The proof procedure is analogous to the proof of Theorem 4.1 in [Fu et al., 2024c], provided in
Appendix D of the same work. Our goal is to derive a bound on E{(x(i),y(i))}ni=1

[R(ŝ)] . We denote
the ground truth score function as s∗ and set R(s∗) = 0.
Following the setup, the risk can be decomposed as:

R(ŝ) = R(ŝ)−R(s⋆) = L(ŝ)− L(s⋆),
where ŝ is the score function trained on dataset D(\) using the empirical risk. By creating n i.i.d.
ghost samples

(D′)(n) = {(x(i′),y(i′))}ni′=1 ∼ Pxmiss,xobs
,

the population risk of ŝ can be rewritten as:

R(ŝ)−R(s⋆) = E(D′)(n)

[
1

n

n∑
i=1

(
ℓ(x(i),y(i); ŝ)− ℓ(x(i),y(i); s⋆)

)]
.

To bound the rewritten population risk, we can further decompose it by analyzing its behavior in a
truncated area (aligning with our score approximation analysis in Theorem 1, we analyze the error
conditioning on the event Cδ = {∥x∥2, ∥v∥2 ≤ Cδ

data}), and the error induced by truncation.
The truncated loss function is defined as

ℓtrunc(x,y; s) =

∫ T

t0

Evt|v0=x

[
∥s(vt,y, t)−∇vt

log ϕt(vt|v0)∥221Cδ
]
dt. (27)

Accordingly, we denote the truncated domain of the score function by X = [−Cδ
data, C

δ
data]d|Imiss|×

[−Cδ
data, C

δ
data]d|Iobs|, and the truncated loss function class defined as

S(Cδ
data) =

{
ℓtrunc(·, ·, s) : X → R|s ∈ T

}
. (28)

Define the following intermediate terms (̂s depends on D(\)):

L1 =
1

n

n∑
i=1

(
ℓ(x(i),y(i); ŝ)− ℓ(x(i),y(i); s⋆)

)
,
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Ltrunc
1 =

1

n

n∑
i=1

(
ℓtrunc(x(i),y(i); ŝ)− ℓtrunc(x(i),y(i); s⋆)

)
,

L2 =
1

n

n∑
i=1

(
ℓ(x′(i);y′(i), ŝ)− ℓ(x′(i),y′(i); s⋆)

)
,

and

Ltrunc
2 =

1

n

n∑
i=1

(
ℓtrunc(x′(i),y′(i); ŝ)− ℓtrunc(x′(i),y′(i); s⋆)

)
.

The decomposition for the expected empirical risk over D(\) then becomes:

ED(n) [R(ŝ)] = ED(n)

[
E(D′)(n)

[
L2 − Ltrunc

2

]]
+ ED(n)

[
Ltrunc
1 − L1

]︸ ︷︷ ︸
A

+ ED(n)

[
E(D′)(n)

[
Ltrunc
2

]
− Ltrunc

1

]︸ ︷︷ ︸
B

+ED(n)

[
L1

]︸ ︷︷ ︸
C

. (29)

The terms A, B, and C respectively represent the error incurred due to truncation, approximation in
truncation, and the in-sample empirical risk expectation.
E.1.2 Bound of Each Component
We first bound the data range with high probability. The proof of the lemmas stated in this section are
deferred to E.3.
Lemma 11 (Range of the data). Given a sufficiently large data truncation range Cδ

data > 0, we have

P
(
∪n
i=1

{
∥x(i)∥2, ∥v(i)∥2 ≤ Cδ

data

})
≥ 1− δn,d,

where δn,d = 2n exp
{ −C2C

2
data

8(Hd+1)(∥Λ∥F+1)

}
, and C2 is the absolute constant defined in Lemma 16.

We also have P[E] ≥ 1− δd, where δd = 1
nδn,d.

In the following analysis, for the sake of simplicity, we denote CΣ = 1 + ∥Γcor∥2κ(Λ)
λmin(Γobs)

, which origins
from Lemma 4. Then we state Lemma 12 to bound term A in (29), which is the counterpart of (D.12)
in [Fu et al., 2024c].
Lemma 12. For any s ∈ T ,

Ex,y

[
|ℓ(x,y; s)− ℓtrunc(x,y; s)|

]
≲
√
δd
[(
CΣC

δ
data

)2
+Hd

](
T +

1

t0

)
.

It is straightforward to conclude that

A ≲
√
δd
[(
CΣC

δ
data

)2
+Hd

](
T +

1

t0

)
. (30)

Then we proceed to the term C in (29). For any s ∈ T , we have the following relationship

C = ED(n) [L1]

= ED(n)

[
1

n

n∑
i=1

(
ℓ(x(i),y(i); ŝ)− ℓ(x(i),y(i); s⋆)

)]

≤ ED(n)

[
1

n

n∑
i=1

(
ℓ(x(i),y(i); s)− ℓ(x(i),y(i); s⋆)

)]
≤ R(s),

the inequality holds due to ŝ minimizes L̂.
Taking minimum w.r.t. s ∈ T , we have

C ≤ min
s∈T

R(s) = min
s∈T

∫ T

t0

Evt,y

[
∥s(vt,y, t)−∇vt

log pt(vt|y)∥22
]
dt. (31)
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Lemma 13. Given an error level ϵ ∈ (0, 1),

min
s∈T

R(s) ≲ ϵ2
(
T + log

(
1

t0

))
+
√
δd
[(
CΣC

δ
data

)2
+Hd

](
T +

1

t0

)
.

Finally, we can proceed to the bound of term B. In an attempt to providing the bound, we first need to
calculate the covering number of the loss function class S(Cδ

data), and correspondingly, the covering
number of our transformer architecture function class. The covering number is defined as follows:
Definition 2. We denote N (δ,F , ∥ · ∥) to be the δ−covering number of any function class F w.r.t
the norm ∥ · ∥, i.e.,

N (δ;F , ∥ · ∥) = argmin
H

{∃{fi}Ni=1 ⊆ F , s.t. ∀f ∈ F ,∃i ∈ [N ], ∥fi − f∥ ≤ δ}.

A modified version of Lemma 23 in [Fu et al., 2024b] provides the following result on transformer
covering numbers:
Lemma 14. Consider the entire transformer architecture F = T (D,L,M,B,R) (i.e. with encoder
and decoder). If the input to the transformer satisfy ∥vt∥2, ∥y∥2 ≤ Cδ

data, the time embedding e and
the diffusion time-step embedding ϕ(t) satisfy ∥e∥2 = r, ∥ϕ(t)∥2 ≤ Cdiff and r, Cdiff ≤ O(

√
Hd),

then the log-covering number of the transformer architecture is bounded by

logN (δs;F , ∥ · ∥F,∞) ≲ D2M

(
L2 log

(
BMNRCδ

dataCΣ

)
+ log

(
BMLHdCδ

dataCΣ

δs

))
.

Then, we can leverage the following lemma to calculate the covering number of the corresponding
truncated loss function class.
Lemma 15. Suppose ŝ(1), ŝ(2) ∈ T (D,L,M,B,R) such that ∥ŝ(1)(vt,y; t)− ŝ(2)(vt,y; t)∥2 ≤ δs
for any ∥vt∥2, ∥y∥2, ∥x∥2 ≤ Cδ

data and t ≥ t0, then we have

|ℓtrunc(ŝ(1))− ℓtrunc(ŝ(2))| ≤ 4δs

(
T + log

(
1

t0

))
(CΣC

δ
data +

√
Hd).

Equipped with this lemma, it is straight forward to derive that

logN (δl;S(Cδ
data), ∥ · ∥∞) ≲ D2M

(
L2 log

(
BMNRCδ

dataCΣ

)
+ log

(
BMLHdCδ

dataCΣ

δs

))
,

and δs satisfies

δl = 4δs

(
T + log

(
1

t0

))
(CΣC

δ
data +

√
Hd).

Invoking the bound provided in (D.16) of [Fu et al., 2024c], we have

B ≲ C +A+
1

n
logN (δl;S(Cδ

data), ∥ · ∥∞)

∫ T

t0

σ−4t dt+ 7δl

≲ C +A+
(T + 1

t0
)

n
D2M

(
L2 log

(
BMNRCδ

dataCΣ

)
+ log

(
BMLHdCδ

dataCΣ

δs

))
+ 28δs

(
T + log

(
1

t0

))
(CΣC

δ
data +

√
Hd). (32)

Combining the bound of A, B and C ((30),(32), (31)), we can leverage the empirical risk decomposi-
tion (29) to finalize the proof of Corollary 2.
E.2 Proof of Corollary 2
Proof of Corollary 2. By (29), (30),(32) and (31), we have
ED(n) [R(ŝ)] ≤ A+B + C

≲ 2
√
δd
[(
CΣC

δ
data

)2
+Hd

](
T +

1

t0

)
+

(T + 1
t0
)

n
D2M

(
L2 log

(
BMNRCδ

dataCΣ

)
+ log

(
BMLHdCδ

dataCΣ

δs

))
+ 28δs

(
T + log

(
1

t0

))
(CΣC

δ
data +

√
Hd) + ϵ2

(
T + log

(
1

t0

))
.
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Plugging in the configuration of our transformer architecture in Theorem 1, and take

Cδ
data = O(

√
Hdκ(Λ)κ(Γobs)∥Γcor∥2 log(Hdn)), ϵ =

1√
n
, δs =

1

nCδ
dataCΣ

, T = O(log(n)),

the inequality above gives rise to

ED(n) [R(ŝ)] ≲
Hd2κ4t0κ

2(Λ)κ2(Γobs)t
−1
0

n
log(Hdκ(Λ)κ(Γobs)nt

−1
0 ).

E.3 Proof of Supporting Lemmas in E.1.2
Proof of Lemma 11. We first state the polynomial concentration lemma for Gaussian random vari-
ables.

Lemma 16 (Lemma 24 in [Fu et al., 2024b]). Let g be a polynomial of degree p and x ∼ N (0, Id).
Then there exists an absolute positive constant Cp, depending only on p, such that for any δ < 1,

P
[
|g(x)− E[g(x)]| ≥ δ

√
Var(g(x))

]
≤ 2 exp

(
−Cpδ

2/p
)
.

For a random variable r ∼ N (0,Σ0), consider g(·) = ∥ · ∥22, we have

E[g(u)] = tr(Σ0),E[g(u)2] ≤ 3∥Σ0∥2F.

Applying Lemma 16, we can conclude that with high probability at least 1− 2 exp(−C2δ),

|∥u∥22 − E[∥u∥22]| ≤ δ
√

Var(∥g(u)∥22) ≤
√
3δ∥Σ0∥F.

Considering vt, we have Σ1 = α2
t (Γmiss ⊗Λ) + σ2

t I; and for x, we have Σ2 = Γ⊗Λ.
Therefore,

∥v(m)∥2 ≤
√

tr(Σ1) +
√
3δ∥Σ1∥F

≤
√

tr(Γmiss) tr(Λ) + d|Imiss|+
√
3δ(∥Γmiss∥F∥Λ∥F + d|Imiss|)

≤
√
d∥Λ∥F + d|Imiss|+

√
3δ(∥Γmiss∥F∥Λ∥F + d|Imiss|)

≤
√

(Hd+ 1)(∥Λ∥F + 1)(1 +
√
2δ),

the last inequality holds for δ < 1. Similar inequalities hold for ∥x(i)∥2.

Consider Cδ
data ≥ 2

√
(Hd+ 1)(∥Λ∥F + 1) and let δ =

(Cδ
data)

2

8Hd+1)(∥Λ∥F+1) . We can then obtain a

union bound. With probability at least 1− 2n exp
{ −C2(Cdata)

2

8(Hd+1)(∥Λ∥F+1)

}
,

max{∥x(i)∥2, ∥v(m)∥2}ni=1 ≤ Cδ
data.

We finish the proof by setting δn,d = 2n exp
{ −C2C

2
data

8Hd+1)(∥Λ∥F+1)

}
.
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Proof of Lemma 12. For any s ∈ T (s can depend on x,y),

Ex,y

[
|ℓ(x,y; s)− ℓtrunc(x,y; s)|

]
=

∫ T

t0

∫
x,y

Evt|v0=x

[
∥s(v,y, t)−∇ log ϕt(vt|v0)∥221Cδ

]
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≤ 2
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t0

∫
x,y

Evt|v0=x

[(
∥s(v,y, t)∥22 +

∥∥∥∥vt − αtv0

σ2
t

∥∥∥∥2
2

)
1Cδ

]
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t dt+
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∥∥∥∥2
2
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dt

≤ δd(CΣC
δ
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2

∫ T
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σ−4t dt+
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σt
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2

]
dt

≤ δd(CΣC
δ
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2
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σ−4t dt+
√
δd
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σ−2t Hddt

≤
√
δd
[(
CΣC

δ
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)2
+Hd
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t0

σ−4t dt

=
√
δd
[(
CΣC

δ
data

)2
+Hd
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(
et

et − 1

)2

dt

≲
√
δd
[(
CΣC

δ
data

)2
+Hd

](
T +

1

t0

)
,

where Rt is the truncation range of the decoder, and we apply triangular inequality in the third line.

Proof of Lemma 13. Since s̃ ∈ T , we can invoke Theorem 1 and triangular inequality:

min
s∈T

R(s) = min
s∈T

∫ T

t0

Evt,y

[
∥s(vt,y, t)−∇vt log pt(vt|y)∥22

]
dt

≤
∫ T
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Evt,y

[
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log pt(vt|y)∥221Cδ
]

dt

+ 2

∫ T
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[
(∥s̃(vt,y, t)∥22 + ∥∇vt log pt(vt|y)∥22)1Cδ

]
dt.
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σ−2t dt+ 2δd
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∥s̃(vt,y, t)∥22dt

+ 2
√
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+ 2
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t0

Evt,y

[
∥∇vt

log pt(vt|y)∥22
]

dt,

where we apply Cauchy-Schwarz inequality in the second step, Jensen’s inequality in the last step.
For the second last term, similar to the proof of Lemma 12, we have∫ T

t0

Evt,y

[
∥s̃(vt,y, t)∥22

]
dt ≤ (Cδ

dataCΣ)
2

∫ T

t0

σ−4t dt.

49



For the last term, we have∫ T

t0

Evt,y

[
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log pt(vt|y)∥22
]
dt

≤
∫ T

t0

σ−4t Evt,y

[
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where we utilize the positive definiteness of Σ⊤corΣ
−1
obsΣcor in the last inequality.

Combining all the terms together, we have
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R(s) ≤ ϵ2
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√
δd
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Proof of Lemma 15. We have∣∣∣Evt|v0=x
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Therefore, we obtain
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Figure 4: Comparison of imputation methods on the Electricity dataset, with 95% CR.

F Experiment Details
For our numerical experiments, we trained the models using a batch size of 64. Our adapted DiT
model architecture used a hidden size of 256, 12 transformer layers, and 16 attention heads per layer.
We utilized the PyPOTS [Du, 2023] framework to implement and handle hyperparameter tuning for
the baseline methods CSDI and GP-VAE. This tuning process aimed to find the best settings and
ensure the models had a comparable number of trainable parameters. Experiments were conducted on
hardware consisting of an NVIDIA RTX A6000 GPU (48GB) and an Intel(R) Xeon(R) Gold 6242R
CPU @ 3.10GHz. We report all the results as the average of 5 runs. Our implementation of DiT for
imputation is attached in supplementary materials.
F.1 Real World Datasets
Dataset Descriptions. We utilize two real-world datasets, BeijingAir [Zhang et al., 2017] and
ETT_m1, to benchmark the imputation performance of DiT. The BeijingAir dataset comprises hourly
measurements of six air pollutants and meteorological variables collected from 12 monitoring sites in
Beijing. The ETT_m1 dataset, part of the Electricity Transformer Temperature benchmark, records
clients’ electricity consumption data, including power load and oil temperature. Detailed statistics for
both datasets are provided in Table 5.

Dataset Total Samples Sequence Length Time Interval Number of Variables
Air Quality 1168 30 1H 132
Electricity 2321 48 15min 7

Table 5: 80% of the data is used for training, and 20% for testing.

Results. We report the Mean Absolute Error (MAE) in Table 6, the Mean Squared Error (MSE)
in Table 7 and the Mean Relative Error (MRE) in Table 8. Results are shown across different
missing data rates (10%, 20%, and 50%) for both datasets. The experimental results indicate that DiT
consistently outperforms the baseline methods on both datasets, demonstrating its effectiveness, and
our mixed-masking strategy can also enhance DiT’s performance on real-world datasets.
Figure 4 presents a comparison of imputation results on the ETT_m1 dataset, where we randomly
select samples from a 50% missing data scenario. From the plots, it is evident that although both DiT
and CSDI generate CRs that largely encompass the true data points, DiT achieves a tighter bandwidth,
leading to improved uncertainty quantification performance.
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Model ETTm_1 (Missing %) BeijingAir (Missing %)
10% 20% 50% 10% 20% 50%

CSDI [Tashiro et al., 2021] 0.1448 (±0.0105) 0.1521 (±0.0114) 0.1650 (±0.0097) 0.1780 (±0.0138) 0.1800 (±0.0129) 0.2141 (±0.0119)
GP-VAE [Fortuin et al., 2020] 0.2786 (±0.0077) 0.3267 (±0.0044) 0.4666 (±0.0073) 0.4152 (±0.0088) 0.4401 (±0.0080) 0.5265 (±0.0054)

DiT 0.1269 (±0.0076) 0.1377 (±0.0095) 0.1543 (±0.0102) 0.1753 (±0.0094) 0.1815 (±0.0208) 0.2057 (±0.0145)

Table 6: Time Series Imputation MAE Results

Model ETT_m1 (Missing %) BeijingAir (Missing %)
10% 20% 50% 10% 20% 50%

CSDI [Tashiro et al., 2021] 0.0615 (±0.0097) 0.0698 (±0.0106) 0.0797 (±0.0106) 0.4196 (±0.1726) 0.3926 (±0.0790) 0.4534 (±0.0379)
GP-VAE [Fortuin et al., 2020] 0.1567 (±0.0094) 0.2138 (±0.0067) 0.4249 (±0.0127) 0.4096 (±0.0202) 0.4777 (±0.0179) 0.7017 (±0.0189)

DiT 0.0534 (±0.0063) 0.0606 (±0.0076) 0.0684 (±0.0070) 0.3683 (±0.0351) 0.4025 (±0.0424) 0.4255 (±0.0670)
DiT w/ mixed-masking strategy 0.0502 (±0.0055) 0.0588 (±0.0081) 0.0711 (±0.0092) 0.3428 (±0.0275) 0.3864 (±0.0403) 0.4229 (±0.0539)

Table 7: Time Series Imputation MSE Results

Model ETT_m1 (Missing %) BeijingAir (Missing %)
10% 20% 50% 10% 20% 50%

CSDI [Tashiro et al., 2021] 0.1706 (±0.0123) 0.1808 (±0.0135) 0.1938 (±0.0114) 0.2380 (±0.0186) 0.2420 (±0.0174) 0.2929 (±0.0159)
GP-VAE [Fortuin et al., 2020] 0.3285 (±0.0091) 0.3882 (±0.0052) 0.5478 (±0.0085) 0.5598 (±0.0118) 0.5917 (±0.0107) 0.7042 (±0.0072)

DiT 0.1592 (±0.0084) 0.1701 (±0.0102) 0.1825 (±0.0094) 0.2154 (±0.0125) 0.2578 (±0.0375) 0.3073 (±0.0241)

Table 8: Time Series Imputation MRE Results
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