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Abstract

State-of-the-art self-supervised representation learning methods for Graphs are typically
based on contrastive learning (CL) principles. These CL objective functions can be posed
as a supervised discriminative task using ‘hard’ labels that consider any minor augmented
pairs of graphs as ‘equally positive’. However, such a notion of ‘equal’ pairs is incorrect
for graphs as even a smaller ‘discrete’ perturbation may lead to large semantic changes
that should be carefully encapsulated within the learned representations. This paper pro-
poses a novel CL framework for GNNs, called Teacher-guided Graph Contrastive Learning
(TGCL), that incorporates ‘soft’ pseudo-labels to facilitate a more regularized discrimi-
nation. In particular, we propose a teacher-student framework where the student learns
the representation by distilling the teacher’s perception. Our TGCL framework can be
adapted to existing CL methods to enhance their performance. Our empirical findings val-
idate these claims on both inductive and transductive settings across diverse downstream
tasks, including molecular graphs and social networks. Our experiments on benchmark
datasets demonstrate that our framework consistently improves the average AUROC scores
for molecules’ property prediction and social network link prediction. Our code is available
at https://github.com/jayjaynandy/TGCL.

1 Introduction

Graphs are versatile data structures representing relationships between entities in various domains, such as
social networks (Ohtsuki et al., 2006; Fan et al., 2019), bio-informatics (Muzio et al., 2021), and knowledge
graphs (Wang et al., 2014; Baek et al., 2020). Analyzing and understanding graph data is crucial in many
real-world applications, including community detection (Fortunato, 2010), node classification (Bhagat et al.,
2011), link prediction (Zhang & Chen, 2018; Rossi et al., 2021), recommendation (Wu et al., 2019), continual
learning (Mondal et al., 2024), and time-series analysis (Chauhan et al., 2022). Graph representation learning
can potentially make significant leaps in graph-based analysis and prediction.

Self-supervised Learning (SSL) for graphs has emerged as an important research area that leverages the
inherent structure or content of inputs to learn informative representations without relying on explicit la-
bels (Hu et al., 2020a; Hwang et al., 2020). Existing graph-SSL methods can be broadly categorized as:
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Figure 1: Illustrating the shortcomings of existing CL methods: (a) Even a ‘minor change,’ i.e., removal
of one edge can significantly change a graph’s semantics, leading to disconnected components that are
not captured using edit-distance-based discrepancy (Kim et al., 2022). (b & c) A more specific example
of correlated-structured molecules that either actively bind to a set of human β-secretase inhibitors or
inactive (Wu et al., 2018). (b) Molecules having dissimilar properties can have smaller edit distances, while
(c) molecules from the same class can have larger edit distances. In other words, edit distance remains
ineffective in capturing chemical semantics. Our proposed distilled perception distance form a pre-trained
teacher incorporates ‘soft’ semantic distances for any arbitrary graphs to train a better student representation
model.

(a) local similarity-based predictive learning & (b) global similarity-based contrastive learning. Predictive
learning-based methods (Hu et al., 2020a; Kim & Oh, 2021; Rong et al., 2020) produces artificial labels by
capturing specific local contextual information of neighborhood sub-graphical features to produce the repre-
sentations. However, it restricts them to capturing only the local graph semantics. Alternatively, contrastive
learning (CL)-based models for graphs aim to maximize the agreements between instances perturbed by
semantic-invariant augmentations (positive views) while repelling the others (negative views) to capture
global semantics. CL-based SSL models are extremely popular in the computer-vision community. For
such applications, we can easily generate such semantic-invariant perturbations using simple techniques e.g.,
rotation, flipping, and color jittering (Chen et al., 2020a; Grill et al., 2020b).

Several graph contrastive learning methods are also proposed where the positive pairs are produced using
transformations e.g., edge perturbation, attribute masking, and subgraph sampling. However, unlike con-
tinuous computer vision domains, even ‘minor’ modifications in the graph structures, such as removing one
edge or node, can significantly change the properties of graphs due to their discrete nature (Figure 1a & 1b).
Recently, (Kim et al., 2022) introduced discrepancy-based self-supervised learning (D-SLA) by incorporating
edit distance-based discrepancy measures between two graphs to address these limitations. However, com-
puting the edit distance between two arbitrary graphs is NP-hard (Sanfeliu & Fu, 1983; Zeng et al., 2009).
Further, it can only provide high-level structural information without capturing any semantic differences
(Figure 1a & 1b). In this paper, we propose a graph representation learning framework by incorporating
more semantically-rich soft-discriminative features using such an imperfect pre-trained teacher to regularize
the learning.

1.1 Motivation & Contributions

The existing CL methods for graphs can be viewed under the same umbrella where these techniques learn
representations by contrasting different views of the input graphs. In principle, their loss functions can be
considered as supervised classification objectives by creating pseudo-labels among different views of input
graphs (Oord et al., 2018; Gutmann & Hyvärinen, 2010). In contrast, in the supervised learning literature, it
has been observed that incorporating ‘soft labels’, even from an imperfect teacher, in the form of Knowledge
Distillation (KD) leads to better generalization (Hinton et al., 2015; Menon et al., 2021; Kaplun et al., 2022).
Given these prior results, we explore the following question: Can ‘soft’ guidance from an imperfect teacher
lead to a better CL framework for graphs?

The fundamental idea of KD is to use softened labels via a teacher network while minimizing the supervised
risk of a student network by reducing the divergence between their logits (Hinton et al., 2015). Prior works
have shown that Bayes-distilled risk has lower variance compared to naive undistilled counterpart, which
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Figure 2: Comparing our proposed TGCL framework with the existing contrastive learning You et al.
(2020); Xu et al. (2021), and D-SLA Kim et al. (2022). From the classification point of view, the standard
CL methods consider the similarity between the anchor and the perturbed graphs as “hard” positive pairs
while the other graphs as “hard” negative pairs. D-SLA introduces “hard” discrepancies using edit distance
between the anchor and the perturbed graphs, while the other graphs as “hard” negative pairs. Our proposed
TGCL introduces a novel distilled perception distance for smooth discrimination between arbitrary graphs.

leads to better generalization (Menon et al., 2021). Motivated by these results, we propose a novel Teacher-
guided Graph Contrastive Learning (TGCL) framework. We design a distilled perception distance (or distilled
distance) between two arbitrary input graphs using their deep features obtained from a pre-trained “teacher"
to define a softer notion of positive/negative pairs. We train the student network by incorporating such
‘soft labels’ for each pair of graphs. We argue that by introducing distilled distance, we can introduce the
regularized semantic difference between two arbitrary graphs, addressing the shortcomings of the existing
CL frameworks for graphs. For example, Figure 1c demonstrates that our distilled distance obtained from
the “teacher” can significantly differ among molecular graphs with correlated structures towards capturing
the chemical semantic differences for graphs. Figure 1b shows that the distilled distance captures the
chemical semantic difference of molecules with different chemical properties, however, with a minor structural
difference. The contributions of our work can be summarized as follows:

1. we propose to obtain distilled perceptual distances by comparing the deep features from a pre-trained
teacher, followed by injecting them as “soft pseudo-labels” into the contrastive loss objective to appropri-
ately capture the semantic differences between two arbitrary graphs in the student’s representation space.
Theoretically, by viewing the contrastive loss objective for graphs from a supervised loss, incorporating such
‘distilled perceptual distances’ acts as soft pseudo-labels that reduce the variance of Bayes-distilled risk to
provide better graph representations. To the best of our knowledge, we are the first to propose such a
teacher-guided soft-discrimination-based contrastive learning framework for the discrete domain of graphs.

2. Our proposed concept of ‘soft-labeled’ pairs of graphs can be adapted to any contrastive learning frame-
work. We demonstrated two variations of TGCL frameworks by modifying the well-known NT-Xent loss
Chen et al. (2020a); You et al. (2020) and D-SLA method Kim et al. (2022) to incorporate smooth perception
from a teacher network for training the student network. Notably, TGCL is specifically designed for graphs to
appropriately incorporate the representational distance even when minor perturbations significantly change
the input semantics.

3. Experiments on graph classification for molecular datasets and link prediction on social network datasets
where our proposed framework consistently outperforms the existing methods by improving upon the teacher.
we improve the average area under receiver operating curve (AUROC) score by ≈2.23% and ≈6%. for
molecules’ property prediction and social network link prediction tasks respectively.

2 Related Work

2.1 Representation Learning on Graphs

Classical Approaches: One of the most straightforward representations for a graph is to consider the ‘bag of
nodes’. Weisfeiler-Lehman kernel (Shervashidze et al., 2011) improves upon this idea by utilizing an iterative
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neighborhood aggregation strategy. One may also count the occurrence of small subgraph structures, called
graphlets. However, it is a combinatorially challenging problem, and approximate algorithms are required
(Ahmed et al., 2015; Hočevar & Demšar, 2014). A few other approaches enumerate different kinds of paths
in graphs (Kashima et al., 2003; Borgwardt & Kriegel, 2005).

Shallow Algorithms: DeepWalk (Perozzi et al., 2014) and LINE (Tang et al., 2015) are random walk-based
techniques using depth-first search (DFS) and breadth-first search (BFS), respectively. “node2vec" (Grover
& Leskovec, 2016) combines both BFS and DFS to learn node embeddings by maximizing the likelihood of
preserving node neighborhoods.

Predictive SSL for Graphs: These methods aim to predict specific graph properties, e.g., predicting the
attributes of masked nodes/edges (Hu et al., 2020a), existence of an edge (Hwang et al., 2020) or contextual
properties and presence of motifs (Hu et al., 2020b; Rong et al., 2020). These predictive tasks serve as self-
supervisions, as they do not require explicit supervised labels. Instead, they rely on the local sub-structure
of the graph for producing labels.

Contrastive SSL for Graphs: Deep Graph Infomax (DGI) (Veličković et al., 2019) maximizes the mutual
information between graph representation and patch representation. InfoGraph (Sun et al., 2020) maximizes
the mutual information between the graph-level representation and the representations of substructures of
different scales, such as nodes, edges, and triangles. Several other works (You et al., 2020; 2021; Zhu et al.,
2021; Yin et al., 2022; Wang et al., 2022) employ contrastive learning by generating perturbed views of
the original graph through attribute masking, edge perturbation, and subgraph sampling to obtain better
representations. Recent works (S et al., 2021; Yang et al., 2021) also explore adversarial augmentation
strategies to further improve these frameworks.

2.2 Knowledge Distillation (KD)

KD (Hinton et al., 2015) was originally introduced to transfer knowledge from a complex ‘teacher’ model
with large capacity to an efficient ‘student’ model with lower capacity while performing similarly to the
teacher. Several works also focus on improving the student’s performance on a wide range of applications
(Heo et al., 2019; Furlanello et al., 2018; Lopes et al., 2017; Li et al., 2021; Lee et al., 2018; Bhat et al.,
2021).

Surpassing the Teacher’s performance. KD allows the student to learn from both the raw data and
distilled knowledge of the teacher, improving their generalized performance (Menon et al., 2021). Therefore,
recent works successfully demonstrated that a student with a larger or the same capacity can consistently
exceed the teacher’s performance to produce a more generalized model.

Existing Distillation-based SSL. Existing distillation-based SSL methods were mainly explored in the
continuous domain (e.g., images, video) to remove the requirement of negative sampling for contrastive
learning frameworks Grill et al. (2020a); Caron et al. (2021). They were also explored to reduce the size of
the representation learning models (Abbasi Koohpayegani et al., 2020; Chen et al., 2020b). Many of these
approaches combined KD with CL methods (Fang et al., 2021; Gao et al., 2022). SimCLR-v2 (Chen et al.,
2020b) applied a larger teacher model, first trained using contrastive loss followed by supervised fine-tuning
to distill a smaller model using the teacher. (Xu et al., 2020) incorporates auxiliary contrastive loss to
obtain richer knowledge from the teacher network. A few other approaches also explored transferring the
final embeddings of a self-supervised pre-trained teacher (Navaneet et al., 2022; Song et al., 2023).

2.3 Limitation of Existing Distillation-based SSL methods for graphs

Since a minor perturbation does not change the input semantics in the continuous domain, existing KD-
based SSL methods did not focus on learning any semantic distance in the representation space for a pair of
‘positive’ samples. In contrast, we should design a novel representation learning framework for graphs that
appropriately incorporate semantic differences due to minor discrete perturbations.

Our proposed TGCL first aims to obtain the teacher’s distilled perception to calculate the semantic difference
for any pairs, followed by formulating soft self-supervised losses to train the student. The notion of “distilled
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perception" was previously explored in computer vision, typically to access the difference between two images
or mitigating representations for semantically similar inputs. However, we introduce distilled distance for
graphs to capture the semantic difference with subtle perturbations. Notably, such a notion is not necessary
for computer vision applications as a minor perturbation does not change the semantics of an image.

Therefore, our proposed loss functions are specifically designed to accommodate the discrete nature of graphs
and may not be appropriate for continuous domains (e.g., computer vision). To the best of our knowledge,
such teacher-guided distilled distance has not been explored so far for representation learning (even in the
vision domain) and is the key contribution of our paper.

3 Proposed Method

3.1 Preliminaries

Graph Neural Network (GNN). Let G = (V,E,XV , XE) be an undirected graph in the space of graphs
G, where V,E,XV , XE denote the set of nodes, edges, node attributes, and edge attributes respectively.
GNN encodes a graph G ∈ G to a d-dimensional embedding vector: f : G → Rd. f is often composed
by stacking multiple message-passing layers. Let h(l)

v denote the representation of a node v ∈ V having a
neighborhood Nv in the lth layer. h(l−1)

vu represents the attributes of edge (v, u) ∈ E in the (l − 1)th layer.
Then, h(l)

v can be expressed as follows:

h(l)
v = ϕ

(l−1)
U

(
h(l−1)

v , ⊕
u∈Nv

ψ
(l−1)
M

(
h(l−1)

v , h(l−1)
u , h(l−1)

vu

))
, (1)

where ϕ(l−1)
U , ψ

(l−1)
M are the update and the message function of (l−1)th layer respectively. ⊕ is a permutation

invariant aggregator.

Global Representations using Contrastive Learning. Contrastive learning (CL) aims to learn mean-
ingful representations by attracting the positive pairs (i.e., similar instances, such as two different perturba-
tions of the same graph) while repelling negative pairs (i.e., dissimilar instances, such as two different input
graphs) in an unsupervised manner, as shown in Figure 2a. Formally, let G0 denote the original graph and
Gp denote a perturbed version (i.e., positive sample), and {Gnj

}j are other input graphs that are treated
as negative sample. Then, the NT-Xent (normalized temperature-scaled cross-entropy) loss for CL objective
for G0 can be constructed as follows (Chen et al., 2020a; You et al., 2020):

LCL = − log
exp

(
sim

(
f(G0), f(Gp)

)
/τ
)

∑
G∈Gp∪{Gnj

}j
exp

(
sim

(
f(G0) · f(G)

)
/τ
) (2)

where f is a GNN and sim(·, ·) is a similarity measure for embeddings with temperature-scaling τ .

Minimization of Equation 2 brings positive pairs closer and pushes negative pairs further apart in the
embedding space. However, unlike image augmentation schemes (e.g., scaling, rotation, color jitter), graph
augmentation schemes (e.g., node/edge perturbations, subgraph sampling) may fail to preserve the graph
semantics. For example, Figure 1(a) illustrates that removing one edge leads to two disconnected graphs,
significantly changing the original semantics. Recently, D-SLA incorporates edit distances to introduce
representational discrepancy even between graphs with minor perturbations (Kim et al., 2022). However, it
only partly solves the issue.

3.2 Proposed TGCL Framework

This section presents our Teacher-guided Graph Contrastive Learning (TGCL) framework. Our proposed
TGCL is fundamentally based on the following theoretical propositions. While these two propositions were
proposed in two different literature of unsupervised contrastive learning and supervised distillation frame-
works, they provide the perfect motivation to propose our teacher’s distilled perception-guided contrastive
learning framework for discrete domains of graphs.
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Proposition 1. Noise-contrastive estimation (NCE) to estimate the probability density function of a random
variable is equivalent to training a binary classifier to distinguish between samples drawn from the true
distribution and samples drawn from a noise distribution. The estimation of the true density function is
derived from the learned binary classification function. (Gutmann & Hyvärinen, 2010)
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Figure 3: Block diagram of our proposed TGCL framework. We
obtain the representations from a pre-trained teacher model and
compute the distilled distance for each pair of inputs. These
pairwise distances are employed to “soften" the loss functions to
train the student.

Proposition 1 indicates that a CL loss
can be framed as a supervised classi-
fication loss where the network learns
to separate positive pairs from negative
pairs by artificially assigning “hard
pseudo-labels” for each pair. Specifically,
in Eq. 2, for LCL formulation, we com-
pute the probability for any arbitrary
graph, G′ ∈ Gp ∪ {Gnj

}j constructing a
positive pair with the original graph G0
as a softmax function i.e., Pr(G0, G

′) :=
exp
(

sim
(

f(G0),f(G′)
)

/τ

)
∑

G∈Gp∪{Gnj
}j

exp
(

sim
(

f(G0)·f(G)
)

/τ

) .

Hence, by labeling the ground truth
for a positive pair as y(G0,Gp) = 1 and
negative pairs as, y(G0,Gnj

) = 0 for
all j, we can rewrite CL objective as:
LCL := −[y(G0,Gp) logPr(G0, Gp) +∑

Gnj
y(G0,Gnj

) logPr(G0, Gnj
)], which

is precisely the cross-entropy loss for
classification.

Alternatively, we can construct a CL objective by directly distinguishing scores for positive pairs from negative
pairs without computing explicit probabilities (You et al., 2020). Similarly, in D-SLA (Kim et al., 2022),
both the graph discrimination loss and the edit-distance-based loss approach the task of distinguishing an
anchor graph from a perturbed graph as a “hard” binary classification problem. Furthermore, the margin
loss in D-SLA functions similarly to Lcl, with a primary focus on separating positive and negative pairs.
Proposition 2. In supervised learning, the variance of Bayesian-distilled risk, obtained using the soft labels,
weighted by the likelihood from the Bayes teacher in the form of knowledge distillation (KD), remains lower
than the variance of empirical risk, obtained using the ‘hard’ class-labels [Menon et al. (2021)]. That is,

VG∼G [R̂∗(f,G)] ≤ VG∼G [R̂(f,G)] (3)

where, V[·] denotes the variance of a random variable. | · | is the cardinality. p∗(Gi) is the Bayes class-
probability distribution, predicted using the Bayes teacher. R̂∗(f,G) = 1

|G|

∑
G∈G p∗(G)T ℓ(f(G)) is the

Bayesian-distilled risk. R̂(f,G) = 1
|G|

∑|G|
G∈G

eT
Gℓ(f(G)) is the empirical risk where eGi

are the hard ‘class’
labels for input graph Gi ℓ is the empirical loss on f (e.g., softmax cross-entropy). The equality holds
iff ∀G ∈ G, the loss values ℓ(f(G)) are constant on the support of p∗(G).

Proposition 2 suggests that irrespective of the size/capacity of a student model, it statistically produces a
better generalization. In particular, it achieves a better generalization by using ‘soft and distilled’ labels
for an existing CL method as the Bayes-distilled risk has lower variance compared to the naive un-distilled
counterpart (Menon et al., 2021). Notably, this result does not depend on the capacity of the teacher or the
student models.

Motivated by these results, we propose to obtain distilled perceptual distances, Ddp by comparing the deep
features from a pre-trained teacher, followed by injecting them as “soft pseudo-labels" into the contrastive
loss objective to learn the semantic differences between two arbitrary graphs in student’s representation
space.
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Algorithm 1: Proposed TGCL Framework
Input: Teacher model: fteacher; Unlabelled Training set: Dtrain

Output: Student Model: fs

1 for sampled mini-batch, GB := {Gi}i ∈ Dtrain do
/* Create multiple perturbations for each anchor graph. */

2 {Gpij
}j

perturbed←−−−−−−−
variations

Gi

/* Compute Ddp using fteacher. */
3 Obtain Ddp(Gi, Gpij ) ∀i, j between Gi and Gpij

4 Obtain Ddp(Gi, Gnij ) ∀i, j where Gnij ∈ GB −Gi

5 if Framework == TGCL-GraphCL then
6 minfs

∑
i LT GCL−GraphCL(Gi) (see Eq. 5)

7 else if Framework == TGCL-DSLA then
8 minfs

∑
i LT −soft(Gi;Gpij

) + λ1
∑

i LT −percept(Gi;Gpij
) + λ2

∑
i LT −Margin(Gi;Gpij

, Gnij
)

(Eq. 11)
Return: Student Model, fs

3.2.1 Distilled Perceptual Distance

Let Ga and Gb be two arbitrary graphs. Consider a representation learning model with L message passing
layers as the teacher. At each layer, l, we obtain the node-embedding {h(l)

v }v∈V for a graph G and apply a
pooling operation (e.g., max-pool) to obtain a fixed-length vector, h(l)

G . We extract such fixed-length features
from each layer and concatenate them, i.e., hGa = [{h(l)

Ga
}l] and hGb

= [{h(l)
Gb
}l] for Ga and Gb respectively.

The distilled perception distance (or distilled distance) Ddp is then defined as the L2 distance between these
concatenated features, as:

Ddp(Ga, Gb) = ||hGa
− hGb

||2 (4)

The distilled distance is similar to the “perceptual distance” in computer vision (Johnson et al., 2016).
However, while we use distilled distance as a pseudo-label to inject semantic differences into the representation
space, perceptual distance is employed to reduce gaps between semantically similar inputs in computer vision.

3.3 Proposed Loss Functions

The concept of teacher-guided loss with “softer” positive/negative pairs to train the student network can
be introduced to any contrastive learning framework for graphs. To showcase the flexibility of our proposed
TGCL framework, we present two versions of our framework: (a) TGCL-GraphCL & (b) TGCL-DSLA.

3.3.1 TGCL-GraphCL: TGCL using GraphCL Loss.

NT-Xent (normalized temperature-scaled cross-entropy) is a well-known loss function for contrastive learning
models that have been widely explored for different domains, including graphs (Chen et al., 2020a; You et al.,
2020).

Loss Objective. For GraphCL, the contrastive loss is obtained by applying the similarity function, sim
(Eq. 2) using exponential of temperature scaled dot product of representations. In order to incorporate
the “soft” distilled perception for a pair of graphs, when the distilled perceptual distance, Ddp(G0, Gi) is
smaller, we want the dot product of their representations, fs(G0) · fs(Gi) to be higher. Therefore, we can
balance their similarities by multiplying the teacher’s distilled distance, Ddp(G0, Gi) with the normalized
dot product, fs(G0)·fs(Gi)

||fs(G0)||·||fs(Gi)|| for each pair of graphs. It leads to the following loss function:

LT GCL−GraphCL =
∑
Gpi

− log
exp

(
Ddp(G0, Gpi) · 1

τ ·
fs(G0)·fs(Gpi

)
||fs(G0)||·||fs(Gpi

)||

)
∑

Gnj
exp

(
Ddp(G0, Gnj ) · 1

τ ·
fs(G0)·fs(Gnj

)
||fs(G0)||·||fs(Gnj

)||

) (5)
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where, fs is the student network and fs(·) is the representations obtained from fs. || · ||2 denotes the L2
distance. G0 is the anchor sample, Gpi is the ith perturbed sample. Gnj is jth negative sample for the
anchor, G0. Notably, while we use dot-product-based similarity in Eq. 5, any other similarity measures
(e.g., L2-based) can also be used to design the loss function.

Analysis. In the numerator, for the positive pairs with a small distilled distance, Ddp, the student is forced
to produce larger fs(G0)·fs(Gpi

)
||fs(G0)||·||fs(Gpi

)|| to minimize the overall loss. However, when Ddp(G0, Gpi
) is large, the

model does not receive the same incentive to maximize fs(G0)·fs(Gpi
)

||fs(G0)||·||fs(Gpi
)|| as before. The student would still

maximize fs(G0)·fs(Gpi
)

||fs(G0)||·||fs(Gpi
)|| (at a smaller rate) to minimize the overall loss. Similarly, we can analyze the

negative pairs in the denominator.

Note that our LT GCL−GraphCL loss learns to discriminate the global representations of the whole graph
without capturing local structural changes. Therefore, the TGCL-GraphCL framework is more appropriate
for tasks related to global representations such as graph classification. In the following, we present the
TGCL-DSLA framework for other tasks (such as link prediction) where the representations should also
capture the local structural changes.

3.3.2 TGCL-DSLA: TGCL framework using D-SLA.

Next, we present TGCL-DSLA by introducing teacher-guided distilled perception distance for D-SLA. It
consists of three components as follows:

(a) Teacher-guided Soft Discrimination: We first discriminate the perturbed graphs from the original
anchor by introducing LT −Soft: It consists of two terms: The first one is a KD-based loss, LKD, while the
second component is a weighted graph discrimination loss (LwGD). We first obtain the distilled distances:
[Ddp(G0, G0), {Ddp(G0, Gpi)}i] between the anchor, G0, with itself and the ith perturbed variations, Gpi .
We obtain the similarities by taking reciprocals of the normalized distilled distance, followed by clipping to
ensure numerical stability:

s0 = clip
( 1
Ddp(G0, G0)

)
and si = clip

( 1
Ddp(G0, Gpi)

)
∀ i > 0 (6)

Next, we compute a probability distribution (soft labels) using the softmax-activation with temperature,
τ , i.e., softmax(s0, s1, · · · ;T = τ). Similarly, we obtain a score for each graph and compute a probability
distribution using temperature-scaled softmax: softmax

(
Ψ◦fs(Gpi

);T = τ
)
. Now, we obtain the distillation

loss, LKD by minimizing the entropy between these probability distributions:

LKD := τ2H
(

softmax
(
s0, s1, · · · ; τ

)
, softmax

(
Ψ ◦ fs(Gpi

); τ
))

(7)

where, H(y, ŷ) =
∑

y −y log ŷ is the cross-entropy function. Ψ is the scoring layer and fs is the student
network. Ψ ◦ fs is the composition of Ψ, and fs. The representations obtained from fs are fed into the Ψ
layer to obtain the scores. Therefore, we incorporate the smoothened perception of the teacher in the score
functions to learn the student’s representations.

The second term, LwGD, is a set of binary cross-entropy functions with G0 is labeled as 1 and Gpis’ are
labeled as 0 with the associated normalized soft-weights, wi = Ddp(G0,Gpi

)∑
i

Ddp(G0,Gpi
)
:

LwGD = H(1, σ(Ψ ◦ fs(G0))) +
∑

i

wiH(0, σ(Ψ ◦ fs(Gpi))) (8)

Therefore, LwGD incorporates the teacher’s soft label via wi. Next, LT −soft combines both components with
a hyper-parameter α:

LT −soft = αLKD + (1− α)LwGD (9)
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(b) Teacher-guided Perception Loss: Next, we introduce a perception loss, LT −percept. It ensures
that the embedding-level difference between original and perturbed graphs is proportional to the teacher’s
perspective of their corresponding distilled distances.

LT −percept =
∑
i,j

(
||fs(Gpi

)− fs(G0)||2
Ddp

(
Gpi

, G0
) −

||fs(Gpj )− fs(G0)||2
Ddp

(
Gpj

, G0
) )2

(10)

(c) Teacher-guided Margin Loss: The third component, LT −Margin is a modified margin loss where the
distilled distance acts as a regularizer, controlling the margin among the anchor, G0, its perturbed variations,
Gpi

and the negative sample, Gnj
:

LT −Margin =
∑
i,j

max
(

0, βij + ||fs(Gpi)− fs(Go)||2 − ||fs(Gnj )− fs(Go)||2
)

where, the margin βij = max
(
β, Ddp(G0, Gnj

)−Ddp(G0, Gpi
)
)

changes for each triplet based on teacher’s
perception.

(d) Overall Loss: Finally, we obtain the overall loss by combining all three components as follows:

LT GCL−DSLA = LT −soft + λ1LT −percept + λ2LT −Margin (11)

Where λ1 and λ2 are the hyper-parameters for training the

4 Experiments

In this section, we investigate the performance of TGCL for both TGCL-GraphCL and TGCL-DSLA frame-
works on two diverse sets of experiments: (i) Graph Classification task in the chemical and biological domain
and (ii) Link prediction on social network datasets. The graph classification task needs to capture the global
structural representation of the graphs to improve the performance. In contrast, the link prediction task
relies on the quality of capturing the local structural information. Therefore, it allows us to empirically
compare our proposed TGCL-GraphCL and TGCL-DSLA frameworks and understand their effectiveness for
different scenarios.

4.1 Main Results

4.1.1 Graph Classification.

Datasets. Following the prior works (You et al., 2021; Xu et al., 2021; Kim et al., 2022), we utilize ZINC15
(Sterling & Irwin, 2015) to train the self-supervised representation learning models. Next, we finetune the
models on eight different molecular benchmarks from MoleculeNet (Wu et al., 2018). We divide the datasets
based on the constituting molecules’ scaffold (molecular substructure). In table 1, we evaluate models’
generalization ability on out-of-distribution test data samples (Wu et al., 2018).

We also present results from biological domains where the datasets are produced by the sampled ego networks
from the PPI networks Zitnik et al. (2019). We use the same experimental setup as You et al. (2021) for
predicting proteins’ biological functions where we pre-train and fine-tune the model using the PPI network
dataset Zitnik et al. (2019). In Table 4, we provide the dataset statistics.

Evaluation Metric. We use the Area Under Receiver Operating Characteristic curve (AUROC) for
benchmarking (Davis & Goadrich, 2006). AUROC quantifies the overall discriminative power of the classifier
across all possible classification thresholds where higher values indicating better discrimination ability of the
model. We report mean ± std with 5 independent runs.

Performance Analysis. Table 1 compares with several different existing models along with “no pretrain-
ing" baselines. We can see that the “no pretraining" model achieves the least performance.
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Table 1: AUROC score (%) comparison for molecular property prediction (i.e., graph classification) task.
For our TGCL models, we indicate the corresponding teacher models within brackets. * - These models are
specifically designed for molecular graphs that incorporate an additional 50K 3D molecular graphs of GEOM
for training their self-supervised network.

Methods BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
No Pretrain 65.8 ± 4.5 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 57.3 ± 1.6 74.0 ± 0.8 63.4 ± 0.6 66.96

Predictive Edgepred (Hamilton et al., 2017) 67.3 ± 2.4 64.1 ± 3.7 74.1 ± 2.1 76.3 ± 1.0 79.9 ± 0.9 60.4 ± 0.7 76.0 ± 0.6 64.1 ± 0.6 70.28
AttrMasking (Hu et al., 2020a) 64.3 ± 2.8 71.8 ± 4.1 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6 61.0 ± 0.7 76.7 ± 0.4 64.2 ± 0.5 71.15
ContextPred (Hu et al., 2020a) 68.0 ± 2.0 65.9 ± 3.8 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2 60.9 ± 0.6 75.7 ± 0.7 63.9 ± 0.6 70.89
GraphMAE Hou et al. (2022) 70.1 ± 0.6 80.8 ± 1.2 74.5 ± 2.3 77.0 ± 0.4 81.4 ± 0.9 59.0 ± 0.7 74.4 ± 0.5 63.9 ± 0.4 72.64

Contrastive Infomax (Veličković et al., 2019) 68.8 ± 0.8 69.9 ± 3.0 75.3 ± 2.5 76.0 ± 0.7 75.9 ± 1.6 58.4 ± 0.8 75.3 ± 0.5 62.7 ± 0.4 70.29
GraphCL (You et al., 2020) 69.7 ± 0.7 76.0 ± 2.7 69.8 ± 2.7 78.5 ± 1.2 75.4 ± 1.4 60.5 ± 0.9 73.9 ± 0.7 62.4 ± 0.6 70.78
JOAO (You et al., 2021) 70.2 ± 1.0 81.3 ± 2.5 71.7 ± 1.4 76.7 ± 1.2 77.3 ± 0.5 60.0 ± 0.8 75.0 ± 0.3 62.9 ± 0.5 71.89
JOAOv2 (You et al., 2021) 71.4 ± 0.9 81.0 ± 1.6 73.7 ± 1.0 77.7 ± 1.2 75.5 ± 1.3 60.5 ± 0.7 74.3 ± 0.6 63.2 ± 0.5 72.16
GraphLoG (Xu et al., 2021) 72.5 ± 0.8 76.7 ± 3.3 76.0 ± 1.1 77.8 ± 0.8 83.5 ± 1.2 61.2 ± 1.1 75.7 ± 0.5 63.5 ± 0.7 73.36
BGRL (Thakoor et al., 2022) 66.7 ± 1.7 64.7 ± 6.5 69.4 ± 2.7 75.5 ± 1.9 71.3 ± 5.5 60.4 ± 1.4 74.8 ± 0.7 63.2 ± 0.8 68.25
SimGCL (Yu et al., 2022) 67.4 ± 1.2 55.7 ± 4.7 71.2 ± 1.8 75.0 ± 0.9 74.1 ± 2.7 57.4 ± 1.7 74.4 ± 0.5 62.3 ± 0.4 67.19
SimGRACE (Xia et al., 2022) 71.3 ± 0.9 64.2 ± 4.5 71.2 ± 3.4 74.5 ± 1.1 73.8 ± 1.4 60.59 ± 0.9 74.2 ± 0.6 63.4 ± 0.5 69.13
D-SLA (Kim et al., 2022) 72.6 ± 0.8 80.2 ± 1.5 76.6 ± 0.9 78.6 ± 0.4 83.8 ± 1.0 60.2 ± 1.1 76.8 ± 0.5 64.2 ± 0.5 74.13

+ Additional 3D-InfoMax Stärk et al. (2022) 67.9 ± 1.2 89.7 ± 0.5 76.7 ± 0.6 73.4 ± 1.2 79.9 ± 0.9 59.6 ± 0.7 75.3 ± 0.3 64.6 ± 0.4 73.4
Data (*) GraphMVP-G Liu et al. (2022) 70.1 ± 0.7 89.4 ± 1.5 77.7 ± 1.6 75.3 ± 0.8 80.2 ± 1.5 61.0 ± 0.5 75.3 ± 0.9 64.2 ± 0.9 74.1

FragCL Kim et al. (2023) 71.4 ± 0.4 95.2 ± 1.0 77.6 ± 1.0 76.3 ± 0.4 82.3 ± 1.6 61.0 ± 0.6 75.2 ± 0.7 65.1 ± 0.8 75.5
Ours TGCL-GraphCL (w/ GraphLoG) 74.9 ± 0.9 85.3 ± 2.2 78.9 ± 1.0 79.1 ± 0.5 83.7 ± 1.4 63.6 ± 0.6 76.7 ± 0.4 64.1 ± 0.4 75.79

TGCL-GraphCL (w/ D-SLA) 74.0 ± 0.4 82.8 ± 2.2 77.0 ± 0.9 77.9 ± 0.3 84.3 ± 1.0 64.2 ± 0.3 76.6 ± 0.1 64.7 ± 0.4 75.19
TGCL-DSLA (w/ GraphLoG) 74.8 ± 0.3 80.6 ± 0.5 77.4 ± 0.1 78.6 ± 0.2 83.0 ± 1.1 61.4 ± 0.4 76.1 ± 0.1 64.0 ± 0.3 74.49
TGCL-DSLA (w/ D-SLA) 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60

(a) Predictive vs. Contrastive Models. While predictive pretraining improves upon the no pertaining
model, their performance remains worse than the CL models. This is because predictive methods primarily
focus on the local structure, while molecular properties depend on the global structure. In contrast, CL
methods focus on the global structure by contrasting between original and perturbed graphs to achieve
better performance. While a few augmentation-free CL (Yu et al., 2022; Xia et al., 2022) methods are
proposed, their performance remains significantly lower than the state-of-the-art. GraphLoG achieves higher
AUROC scores by exploring both global semantics and local substructures. However, D-SLA achieves the
best performance among the existing models by exploring the local discrete graph structures.

Table 2: AUROC score(%) for PPI dataset. For our
TGCL models, we indicate the corresponding teacher
models within brackets.

Methods AUROC
DSLA 71.56 ± 0.46
GraphLog 66.92 ± 1.58
TGCL-GraphCL (w/ GraphLoG) 71.96 ± 0.77
TGCL-DSLA (w/ D-SLA) 71.63 ± 0.96

(b) Performace of Proposed TGCL. For our
TGCL, we report the results by using GraphLoG
and D-SLA as teacher modules for both TGCL-
GraphCL and TGCL-DSLA models, demonstrating
the generalizability of our framework. We observe
that our proposed method consistently boosts the
performance of teachers irrespective of the teacher’s
training methodology for both TGCL models. Fur-
thermore, we also outperformed the existing molec-
ular graph-specific representation learning models
that incorporate additional 3D molecular graphs of GEOM for training their representation models.

Next, we observe that TGCL-GraphCL (w/ GraphLoG) performs best. Also, TGCL-DSLA (w/ D-SLA)
achieves comparable performance as TGCL-GraphCL (w/ GraphLoG). In particular, we do not observe an
additional advantage of using more graph-specific D-SLA-based loss functions while learning global graph-
level representations for molecular property prediction tasks.

Performance on PPI network. In table 2, we compare with GraphLoG and D-SLA and the corresponding
student i.e., TGCL-GraphCL (w/ GraphLoG) and TGCL-DSLA (w/ D-SLA). The results show that the
student models consistently outperform their corresponding teachers. However, the observed improvements
are not substantial, and the teacher models have already approached their performance saturation point
Furlanello et al. (2018). This phenomenon, known as knowledge saturation, is further explored in Appendix
A.3.2.

Visualizing the learned latent representation space. In Figure 4, we visualize the learned latent
representation space of D-SLA and our TGCL-DSLA (w/ DSLA) utilizing t-SNE (Van der Maaten & Hinton,
2008). We observe that TGCL-DSLA segregates the positive and negative samples more successfully than
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DSLA. Therefore, it indicates that our TGCL-DSLA (w/ DSLA) produces a better representation to easily
predict the molecular properties.

4.1.2 Link Prediction.
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Figure 4: t-SNE visualization of representations for BBBP
dataset using (a) D-SLA teacher and (b) TGCL-DSLA.

Datasets. We consider COLLAB,
IMDB-Binary, and IMDB-Multi from TU
Benchmarks (Morris et al., 2020). We
separate the dataset into four parts: pre-
training, training, validation, and test
sets in the ratio of 5:1:1:3, as in Kim et al.
(2022). Additional details are provided in
Table 5 (Appendix).

Evaluation Metric. Table 3 presents
comparative results with several existing
models and “No Pretrain" baselines. We
compare average precision (as in (Kim
et al., 2022)) where a higher value in-
dicates better performance. We report
mean±std for 5 independent runs.

Performance Analysis.

(a) Predictive vs. Contrastive Models Unlike graph classification tasks, local context plays a crucial role
in link prediction. Therefore, the predictive models typically outperformed most of the CL methods. Among
the existing CL methods, GraphLog performs similarly to ContextPred as it focuses on both local and global
structures. D-SLA performs better by capturing local structures using edit-distance-based discriminations
that standard CL models fail to distinguish.

Table 3: Average precision score(%) comparison on link prediction task
on social networks. For our TGCL models, we indicate the correspond-
ing teacher models within brackets.

Methods COLLAB IMDB-Binary IMDB-Multi Avg.
No Pretrain 80.01 ± 1.14 68.72 ± 2.58 64.93 ± 1.92 71.22
AttrMasking (Hu et al., 2020a) 81.43 ± 0.80 70.62 ± 3.68 63.37 ± 2.15 71.81
ContextPred (Hu et al., 2020a) 83.96 ± 0.75 70.47 ± 2.24 66.09 ± 2.74 73.51
Infomax (Veličković et al., 2019) 80.83 ± 0.62 67.25 ± 1.87 64.98 ± 2.47 71.02
GraphCL (You et al., 2020) 76.04 ± 1.04 63.71 ± 2.98 62.40 ± 3.04 67.38
JOAO (You et al., 2021) 76.57 ± 1.54 65.37 ± 3.23 62.76 ± 1.52 68.23
GraphLoG (Xu et al., 2021) 82.95 ± 0.98 69.71 ± 3.18 64.88 ± 1.87 72.51
BGRL (Thakoor et al., 2022) 76.79 ± 1.13 67.97 ± 4.14 63.71 ± 2.09 69.49
SimGCL (Yu et al., 2022) 77.46 ± 0.86 64.91 ± 2.60 63.78 ± 2.28 68.72
SimGRACE (Xia et al., 2022) 74.51 ± 1.54 64.49 ± 2.79 62.81 ± 2.32 67.27
D-SLA (Kim et al., 2022) 86.21 ± 0.38 78.54 ± 2.79 69.45 ± 2.29 78.07
TGCL-GraphCL (w/ GraphLoG) 87.23 ± 0.14 75.09 ± 1.88 67.11 ± 3.73 76.48
TGCL-GraphCL (w/ D-SLA) 87.51 ± 1.24 77.95 ± 3.89 67.88 ± 2.20 77.78
TGCL-DSLA (w/ GraphLoG) 91.09 ± 0.33 83.15 ± 0.89 74.11 ± 1.44 82.78
TGCL-DSLA (w/ D-SLA) 87.51 ± 0.59 80.03 ± 4.13 70.97 ± 2.42 79.50

(b) Performace of Proposed
TGCL. In comparison, our pro-
posed distilled distance from the
teacher network integrates a regu-
larized approach to both local and
global semantics. Local semantics
are captured from the initial la-
tent features, while global seman-
tics are derived from deeper global
features. Therefore, we can sur-
pass existing local and global rep-
resentation learning-based models
by visible margins for all three
datasets. Interestingly, our TGCL-
DSLA (w/GraphLog) performs bet-
ter than TGCL-DLSA (w/D-SLA)
even though D-SLA outperformed
GraphLog. Therefore, a better teacher does not necessarily produce better distillation for the student,
as previously observed and analyzed in supervised learning Menon et al. (2021); Kaplun et al. (2022); Zong
et al. (2023).

4.1.3 TGCL-GraphCL vs. TGCL-DSLA: Choosing the correct framework for downstream tasks.

As we can see for the graph classification task (Table 1), our TGCL-GraphCL framework achieves better
performance while for link prediction tasks (Table 3), TGCL-DSLA produces better results. Therefore, these
empirical results indicate that TGCL-GraphCL produces better global representations for graphs, allowing
us to easily distinguish two arbitrary graphs in inductive settings. Hence, this framework is better suited
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for graph classification tasks. In contrast, TGCL-DSLA also effective in capturing the local structural in-
formation by explicitly learning to distinguish the anchor and augmented samples (using LT −soft [Eq. 7]
and LT −percept [Eq. 10]). Hence, it leads to better performance for the link prediction task in transduc-
tive settings. In summary, we should choose TGCL-GraphCL for inductive settings and TGCL-DSLA for
transductive settings.

5 Conclusion & Discussion

We utilize Knowledge distillation (KD) for graph representation learning, where a self-supervised pre-trained
teacher is used to guide a student model to produce more generalized representations. Extensive experi-
mentation demonstrates the effectiveness of the proposed method in improving the performance of graph
classification and link prediction tasks. However, there are still many open challenges in graph representation
learning, such as the efficient handling of large-scale graphs, the ability to handle heterogeneity and multi-
modality, and the development of robust methods for noisy or incomplete data. Probing these challenges
further and developing new graph representation learning techniques are in the scope of future research.

Discussion. Potential Advantages and Limitations of KD for CL
Advantages. KD typically enhances a CL framework to produce improved feature representations by
transferring insights from a well-trained teacher, improving the downstream performance (Hinton et al.,
2015; Furlanello et al., 2018; Yim et al., 2017). Further, by utilizing the teacher’s knowledge, we can speed
up the training time efficiency and reduce the sample requirement to learn the student model (Tian et al.,
2019). A well-trained teacher can also improve the student model’s robustness, leading to even better
representations compared to the teacher. Finally, regularizing the student model with softer probability
scores reduces the variance of Bayes-distilled risk, therefore, making the model more generalizable and less
prone to overfitting (Menon et al., 2021).

Limitations. The teacher-student framework for knowledge distillation may face several potential
challenges – (a) KD with CL adds both computation overhead and training complexity (Hinton et al., 2015;
Tian et al., 2019). (a) If the teacher model is flawed, the student may inherit its errors, leading to suboptimal
performance (Hinton et al., 2015). (b) Compatibility issues between teacher and student models and training
instability can hinder effective knowledge transfer. It requires intricate tuning of hyperparameters and
designing the loss functions. (Mirzadeh et al., 2020). (c) Further, the generalization may be restricted due
to limited knowledge of the teacher with respect to the downstream tasks Yim et al. (2017). (d) Finally,
there is a risk of knowledge saturation, where the benefits of additional knowledge transfer may diminish
after a certain saturation point (Furlanello et al., 2018).

Appendix A.3 and A.4 provide additional ablation studies to empirically investigate these challenges.

Broader Impact. KD can significantly impact graph representations, with broader implications for
various fields, including bioinformatics, drug discovery, social network analysis, recommendation systems,
etc. A few potential impacts of our work are as follows: (a) Improves the efficiency and scalability of graph
representation learning by enabling ‘soft’ knowledge transfer from a pre-trained teacher model to a smaller,
more efficient student network. (b) Improves the generalization performance of graph representation learning
by leveraging the ‘dark knowledge’ encoded in a pre-trained teacher model’s representations.
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A Experimental Setup

A.1 Molecular graph classification

This section presents the implementation details and dataset descriptions of our experiments on molecular
graph classification and link prediction tasks. For all experiments, we use PyTorch (Paszke et al., 2019) and
PyTorch Geometric libraries (Fey & Lenssen, 2019) with a single NVIDIA A30 Tensor Core GPU for all of
our experiments.

Datasets. For our first experiments on molecular graph classification, we use the ZINC dataset (Sterling
& Irwin, 2015), a large corpus of 2 million unlabelled molecules for pretraining the teacher and student
network. For the downstream tasks, we experimented with 8 labeled molecular datasets from MolecularNet
(Wu et al., 2018). The molecule classes are determined using the biophysical and physiological properties.

We also present results from biological domains where the datasets are produced by the sampled ego networks
from the PPI networks Zitnik et al. (2019). We use the same experimental setup as You et al. (2021) for
predicting proteins’ biological functions where we pre-train and fine-tune the model using the PPI network
dataset Zitnik et al. (2019). In Table 4, we provide the statistics of these datasets.

Table 4: Descriptions of Molecular and PPI network datasets.

Chemical Datasets #Graphs Avg. Nodes Avg. Edges Tasks
ZINC15 2,000,000 26.62 28.86 -
BBBP 2,039 24.06 25.95 1
ClinTox 1,478 26.16 27.88 2
MUV 93,087 24.23 26.28 17
HIV 41,127 25.51 27.47 1
BACE 1,513 34.09 36.86 1
SIDER 1,427 33.64 35.36 27
Tox21 7,831 18.57 19.29 12
ToxCast 8,575 18.78 19.26 617
Biological Datasets #Graphs Avg. Nodes Avg. Edges Tasks
PPI (Pre-training) 306,925 39.83 364.82 -
PPI (Finetune) 88,000 49.35 445.39 40

Implementation details. For our proposed framework, we use the same network architecture for both
the teacher and the student model. In particular, we use Graph Isomorphism Networks (GINs) (Xu et al.,
2019) as applied in the previous works Hu et al. (2020a); Xu et al. (2021); Kim et al. (2022). These networks
consist of 5 layers with 300 dimensional embeddings for nodes and edges along with average pooling strategies
for obtaining the graph representations. To obtain distilled perception distance from the teacher network,
we use global average pooling to extract the fixed-length features from each layer.

We use the official D-SLA codes1 provided by Kim et al. (2022) as the backbone for our experiments and
apply the same perturbation strategies as used in (Kim et al., 2022). In particular, their perturbation
strategy aims to minimize the risk of creating unreasonable cycles, reducing the chance of significant change
in the chemical properties. For our experiments, we use three perturbations for each input sample.

We report results using two different teacher modules, trained using existing GraphLog (Xu et al., 2021) and
D-SLA (Kim et al., 2022) while training the following student network using the loss functions as proposed
in Section 3.3. We divide the perceptual distances by 4 and 1 as we use GraphLog (Xu et al., 2021) and
D-SLA (Kim et al., 2022) as the teacher, respectively. For TGCL-GraphCL, we use τ = 10 in Equation 5.
For TGCL-DSLA, we use λ1 and λ2 to 1.0 and 0.5 respectively for the student model. For LT −soft loss, we
set the temperature, τ = 10 (Equation 7) and α = 0.95 (Equation 9). For LT −margin, we set β = 5. Both
teacher and student models are trained using batch-size of 256 and for 25 epochs with learning rate 1e − 3
and Adam optimizer (Kingma & Ba, 2014).

1https://github.com/dongkikim95/d-sla
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A.2 Link Prediction

Datasets. For this task, we select three datasets i.e., COLLAB, IMDB-Binary, and IMDB-Multi from
the TU dataset benchmark Morris et al. (2020).

Table 5: Statistics of social network datasets for link prediction.

Datasets #Graphs Avg. Nodes Avg. Edges
COLLAB 4320 76.12 2331.4
IMDB-B 2039 20.13 85.5
IMDB-M 1478 16.64 77.9

COLLAB is a dataset of scientific collaboration networks. It contains 4, 320 graphs where the researcher and
their collaborators are nodes and an edge indicates collaboration between two researchers. A researcher’s
ego network has three possible labels: High Energy Physics, Condensed Matter Physics, and Astro Physics,
representing the field of the researchers.

IMDB-Binary is a movie collaboration dataset. It consists of the ego networks of actors/actresses from the
movies in IMDB. It consists of 2, 039 graphs. For each graph, the nodes are actors/actresses, with an edge
between them if they appear in the same movie. These graphs are derived from the Action and Romance
genres.

IMDB-Multi is a relational dataset that consists of a network of actors or actresses, played in movies in
IMDB. It contains 1,478 graphs. As before, a node represents an actor or actress, and an edge connects two
nodes when they appear in the same movie. The edges are collected from three different genres: Comedy,
Romance, and Sci-Fi.

Implementation details. For our experiments, we use Graph Convolutional Network (GCN) Kipf
& Welling (2017) for both teacher and student models. These networks consist of three layers with 300
dimensions for embeddings. As before, we use the same perturbation strategy as applied in Kim et al.
(2022). We have also experimented with two different teachers, i.e., D-SLA Kim et al. (2022) and GraphLog
Xu et al. (2021). We use a batch size of 32 and a learning rate of 0.001 for training the student representation
learning models. For TGCL-GraphCL, we set τ = 10 (Eq. 5). For TGCL-DSLA, we use λ1 and λ2 to 0.7 and
0.0, respectively. For LT −soft loss, we select the temperature, τ from three different values i.e., {5, 10, 20}
(Equation 7) and set α = 0.95 (Eq. 9).

A.3 Ablation Study on Teacher-Student Framework for Graph COntrastive Learning

In this section, we evaluate the performance of TGCL models with various teacher models and model
capacities. We also analyze the trade-off between computational overhead and convergence by applying
undertrained teacher models vs. a well-trained teacher model.

A.3.1 Student Network with reduced Capacity

The original goal of Knowledge Distillation (KD) (Hinton et al., 2015) was to transfer knowledge from
a complex ’teacher’ model to a simpler ’student’ model, achieving comparable performance with reduced
computational cost. However, subsequent studies demonstrate that using a complex student model, similar
to the teacher, can also enhance model robustness, efficiency, and generalization across various applications
(Furlanello et al., 2018; Tian et al., 2019). Although our main experiments utilize identical architectures for
both teacher and student models, this section explores the impact of employing a smaller student network.

Table 6 demonstrates the performance of a student TGCL-DSLA model on the downstream molecular
property prediction task. We can see that, with the same capacity (i.e., 5 layers of GNN) as the teacher
module of D-SLA, our proposed student network consistently outperformed the teacher. As we decrease
the capacity of our student network by reducing the number of layers, the overall performance reduces.
However, we observe that even with 3 layers of GNN, our student module outperforms the teacher D-SLA
model. Therefore, these results demonstrate that our proposed TGCL framework can compress the student
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representation network by enabling smoothened knowledge transfer from a pre-trained teacher to the student
representation learning model.

Table 6: Impact of the capacity of the student TGCL-DSLA models (mean ± std) for graph classification.
“Full-capacity” denotes the same capacity as the teacher.

BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
D-SLA (Kim et al., 2022) 72.6 ± 0.8 80.2 ± 1.5 76.6 ± 0.9 78.6 ± 0.4 83.8 ± 1.0 60.2 ± 1.1 76.8 ± 0.5 64.2 ± 0.5 74.13
w/ full-capacity 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60
w/ 3-layer Student 74.6 ± 0.4 84.6 ± 1.4 76.4 ± 1.0 77.9 ± 0.1 82.7 ± 1.1 61.0 ± 0.3 75.0 ± 0.1 63.6 ± 0.4 74.48
w/ 2-layer Student 72.6 ± 0.5 81.4 ± 0.4 77.3 ± 1.5 77.6 ± 0.2 80.6 ± 0.4 60.8 ± 0.4 74.7 ± 0.4 63.0 ± 0.1 73.50

A.3.2 TGCL with multi-level teachers & Knowledge Saturation

Proposition 2 suggests that irrespective of the size/capacity of a student model, it statistically produces
a better generalization. Hence, it raises a natural question: can we further improve the performance by
iteratively using the student models as the teacher to train another follow-up student network? In Table 7,
we investigate this by training a 2-level iterative teacher model for our TGCL-DSLA framework. In other
words, we use the TGCL-DSLA (w/ D-SLA) student model to train another 2nd-level student, denoted as
TGCL2-DSLA (w/ D-SLA).

We can see that the performance of TGCL2-DSLA (w/ D-SLA) saturates and does not improve the overall
performance than the original TGCL-DSLA (w/ D-SLA). These results indicate that the TGCL-DSLA al-
ready receives sufficient probability calibrations from the first-level teacher model. Hence, their performance
improvement converges after the first-level teacher. This phenomenon is known as “knowledge saturation"
in the KD literature Furlanello et al. (2018).

Table 7: Performance comparison of TGCL models with two-level teachers.

BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg.
DSLA 72.6 ± 0.8 80.2 ± 1.5 76.6 ± 0.9 78.6 ± 0.4 83.8 ± 1.0 60.2 ± 1.1 76.8 ± 0.5 64.2 ± 0.5 74.1

TGCL-DSLA (w/ D-SLA) 73.5 ± 0.9 84.9 ± 0.9 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.6
TGCL2-DSLA (w/ D-SLA) 74.15 ±0.9 84.65 ±2.0 76.43 ±1.3 78.67 ±0.4 84.07 ± 0.8 62.73 ± 0.8 76.15 ± 0.4 64.32 ± 0.4 75.2

A.3.3 Choice of teacher models: Computational overhead and convergence

KD enhances a CL framework by improving feature representations but introduces additional computational
overhead and training complexity. In Table 8, we examine the performance of the TGCL student model
using an undertrained teacher model with early stopping.

We observe that the student model consistently outperforms the teacher models, even when the teacher
models are undertrained. For instance, our TGCL-GraphCL model with D-SLA (trained for 20 epochs)
achieves an average AUROC score of 74.4%, surpassing the performance of D-SLA model trained for 100
epochs. These results suggest that the TGCL student model can achieve comparable performance without
requiring a fully trained teacher model. Consequently, it is possible to enhance downstream performance
with only a modest increase in computational overhead.

Table 8: Performance comparison of TGCL students using an undertrained teacher model with early stop-
ping.

BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg.
DSLA [100 epochs] 72.6 ± 0.8 80.2 ± 1.5 76.6 ± 0.9 78.6 ± 0.4 83.8 ± 1.0 60.2 ± 1.1 76.8 ± 0.5 64.2 ± 0.5 74.1

TGCL-GraphCL
(w/ D-SLA [20 epochs]) 73.3 ± 0.1 82.7 ± 0.8 76.0 ± 1.1 78.5 ± 0.8 82.8 ± 0.8 62.4 ± 0.2 75.1 ± 0.2 64.2 ± 0.4 74.4

TGCL-GraphCL
(w/ D-SLA [60 epochs]) 73.4 ±0.6 84.3 ±1.3 75.6 ±0.8 79.3 ±0.6 84.9 ± 0.6 62.0 ± 0.6 75.4 ± 0.2 63.7 ± 0.2 74.8

TGCL-GraphCL
(w/ D-SLA [100 epochs]) 74.0 ±0.4 82.8 ±2.2 77.0 ±0.9 77.9 ±0.3 84.3 ±1.0 64.2 ± 0.3 76.6 ± 0.1 64.7 ± 0.4 75.2
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A.4 Ablation Studies on hyper-parameters and loss components

In this section, we investigate the effect of different hyperparameters and contributions of different loss
components for our TGCL framework and the sensitivity of their hyperparameters.

A.4.1 Impact of different loss components.

In Table 9, we first demonstrate the impact of different loss components. The first three rows demonstrate
the performance of individual loss components. We observe that Lsoft is the most essential component,
providing the maximum performance boost for the downstream molecular prediction tasks. The other two
loss components, i.e. LT −percept and LT −margin act as regularizer. While, individually, they do not perform
well, incorporating them with Lsoft in Loverall, we observe a significant boost in the overall performance.

Table 9: Impact of individual loss components. (at α = 0.95, τ = 10)

LT −soft LT −percept LT −margin BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
✓ ✗ ✗ 72.9 ± 1.4 79.8 ± 1.2 79.1 ± 0.7 77.7 ± 0.6 81.9 ± 0.3 62.1 ± 0.7 76.9 ± 0.2 64.1 ± 0.3 74.31
✗ ✓ ✗ 71.6 ± 0.8 74.5 ± 0.7 76.6 ± 1.3 78.5 ± 1.1 81.7 ± 0.9 61.7 ± 0.6 75.7 ± 0.6 62.9 ± 0.3 72.90
✗ ✗ ✓ 72.7 ± 0.6 77.9 ± 2.0 74.1 ± 0.9 76.6 ± 0.4 82.9 ± 0.6 62.8 ± 0.5 74.2 ± 0.1 61.9 ± 0.8 72.89
✗ ✓ ✓ 73.6 ± 0.5 81.2 ± 1.1 75.7 ± 0.4 77.3 ± 1.4 83.2 ± 0.3 62.8 ± 0.6 75.2 ± 0.2 63.3 ± 0.5 74.04
✓ ✓ ✗ 72.8 ± 0.1 81.6 ± 0.5 79.2 ± 0.5 78.8 ± 0.9 81.4 ± 1.2 59.7 ± 0.5 76.3 ± 0.2 63.8 ± 0.1 74.20
✓ ✗ ✓ 72.1 ± 0.5 84.0 ± 2.3 76.7 ± 1.3 77.9 ± 0.7 82.5 ± 0.5 61.4 ± 0.3 76.3 ± 0.2 64.3 ± 0.7 74.40
✓ ✓ ✓ 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60

A.4.2 Impact of hyper-parameters of LT −soft.

Since LT −soft is the most important loss component, we further analyze hyper-parameters associated with
it. We can see in Eq. 9, Lsoft is similar to the distillation loss for classification tasks, consisting of two loss
components, i.e. LKD (Eq. 7) and LwGD (Eq. 8). Here, we analyze the temperature term, τ for LKD,
followed by the weights of these components, α.

Table 10: Impact of the temperature, τ . (at α = 0.95)

τ BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
1 75.1 ± 0.4 86.7 ± 1.6 74.4 ± 0.1 77.5 ± 0.6 83.3 ± 1.0 61.2 ± 0.4 75.6 ± 0.1 63.4 ± 0.4 74.65
5 73.4 ± 0.2 81.8 ± 1.4 77.3 ± 2.3 78.6 ± 0.6 83.8 ± 0.8 61.7 ± 0.8 76.5 ± 0.3 63.9 ± 0.4 74.63
10 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60
20 72.9 ± 0.6 83.9 ± 2.6 77.1 ± 0.5 78.3 ± 0.7 84.0 ± 0.8 61.8 ± 0.4 76.2 ± 0.4 64.6 ± 0.5 74.85
100 73.6 ± 0.1 80.6 ± 0.2 76.8 ± 2.8 78.7 ± 1.1 84.0 ± 0.5 62.3 ± 0.5 76.1 ± 0.3 64.5 ± 0.2 74.58

In Table 10, we demonstrate the results by varying the temperature, τ to {1, 5, 10, 20, 100}. We observe that
at a lower temperature of τ = 1, we achieve the best performance for BBBP and Clintox datasets, while
the performance remains lower for the other datasets. On the other hand, at τ = 100, we achieve the best
performance for SIDER. Finally, we obtain the most consistent result as we select τ = 10 and set it to report
our results.

Table 11: Impact of α. (at τ = 10)

α BBBP ClinTox MUV HIV BACE SIDER Tox21 ToxCast Avg
0 73.2 ± 0.7 80.2 ± 1.8 76.4 ± 0.7 78.1 ± 0.6 84.1 ± 0.9 62.3 ± 0.5 75.5 ± 0.3 63.8 ± 0.3 74.20
0.5 73.6 ± 0.7 82.5 ± 1.2 75.0 ± 1.5 78.4 ± 0.6 85.6 ± 0.5 62.4 ± 0.1 75.8 ± 0.1 64.5 ± 0.3 74.73
0.95 73.5 ± 0.9 84.9 ± 1.3 79.4 ± 0.9 78.8 ± 0.5 85.2 ± 0.4 61.2 ± 1.0 76.9 ± 0.1 64.9 ± 0.2 75.60
1.0 72.8 ± 0.6 83.6 ± 1.2 77.6 ± 1.6 78.8 ± 0.4 83.4 ± 1.3 61.3 ± 0.6 76.6 ± 0.3 64.1 ± 0.2 74.78

Next, in Table 11, we analyze the impact of α with fixed τ = 10. A larger value of τ provides more weight to
LKD. We can see that increasing α to a non-zero value improves the model’s overall performance. However,
performance tends to reduce as we choose α = 1 to remove LwGD entirely. We achieve the best performance
at α = 0.95.
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Table 12: Sensitivity analysis of λ1 and λ2 for TGCL−DSLA(w/DSLA) model.

λ1 = 0.3 λ1 = 0.5 λ1 = 0.7 λ1 = 1.0
BBBP 72.55 ± 0.32 72.03 ± 0.59 74.46 ± 1.54 73.5 ± 0.9
ClinTox 81.60 ± 0.21 80.33 ± 2.39 82.95 ± 0.75 84.9 ± 1.3
BACE 83.64 ± 0.71 83.18 ± 1.02 83.38 ± 0.33 85.2 ± 0.4
MUV 76.28 ± 0.91 76.00 ± 0.37 77.08 ± 1.45 79.4 ± 0.9
HIV 78.61 ± 0.62 78.93 ± 0.58 78.64 ± 0.46 78.8 ± 0.5

λ2 = 0.3 λ2 = 0.5 λ2 = 0.7 λ2 = 1.0
BBBP 72.96 ± 0.27 73.5 ± 0.9 72.85 ± 0.24 74.12 ± 0.41
ClinTox 83.53 ± 1.51 84.9 ± 1.3 81.95 ± 0.93 80.83 ± 1.68
BACE 83.33 ± 0.31 85.2 ± 0.4 83.60 ± 0.90 83.53 ± 0.72
MUV 75.79 ± 0.78 79.4 ± 0.9 76.75 ± 1.54 76.02 ± 0.11
HIV 78.66 ± 0.81 78.8 ± 0.5 78.17 ± 0.62 79.49 ± 0.84

A.4.3 Sensitivity of λ1 and λ2

In Table 12, we present the performance of TGCL−DSLA(w/DSLA) model as we vary λ1 and λ2 in Eq.
11. We first vary λ1 to {0.3, 0.5, 0.7, 1.0} as we fix λ2 = 0.5. We observe that the performance improves as
we choose larger values, i.e., when we set λ1 to 0.7 or 1.0. Next, we vary λ2 to {0.3, 0.5, 0.7, 1.0} as we fix
λ1 = 1.0. Here, we observe that we achieve the average performance as we set λ2 = 0.5
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