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Abstract

The utility of agent-based models for practical decision making depends upon their1

ability to recreate populations with great detail and integrate real-world data streams.2

However, incorporating this data can be challenging due to privacy concerns. We3

alleviate this issue by introducing a paradigm for secure agent-based modeling.4

In particular, we leverage secure multi-party computation to enable decentralized5

agent-based simulation, calibration, and analysis. We believe this is a critical step6

towards making agent-based models scalable to the real-world application.7

1 Introduction8

Agent-based modeling (ABMing) is a bottom-up simulation technique wherein a system is modeled9

through the interaction of autonomous decision-making entities referred to as agents. Due to their10

granular approach, ABMs are a promising tool for real-world decision-making and policy design11

and constitute an active field of research across economics [5, 12, 33], biology [44, 27], and12

epidemiology [6, 52, 35, 32]. Wider adoption of ABMs, however, is hindered by (1) the need13

for microdata to generate the underlying agent population, and (2) the often large computational14

resources required to run, calibrate, and analyze an ABM. Recently, there has been significant15

progress towards developing new design patterns for ABMs, which exploit tensorization [18, 17]16

and differentiability [19, 3] of simulators. This has alleviated the computational burdens associated17

with ABM simulation [18], calibration [19, 49], and analysis [48] by granting access to modern18

computational techniques such as GPU computing and differentiable programming, allowing ABMs19

to scale to populations comprised of millions of agents [51, 10].20

Yet, the increase in computational efficiency for ABMs can be inconsequential if the quality of the21

underlying population microdata is poor. Currently, prevalent approaches involve the construction22

of synthetic populations designed to align with a predefined set of summary statistics derived from23

real-world observations. For instance, in epidemiological ABMs, the population is crafted to replicate24

summary statistics obtained from census data [45, 13, 6, 15, 46]. However, it is essential to recognize25

that the limited granularity of census data arises primarily from privacy considerations rather than26

actual scarcity of available data. As ABMs continue to scale towards one-to-one representations27

of real-world systems, there remains a fundamental limitation in their modeling potential as long28

as privacy are not in place. Previous attempts to augment ABM data with additional information,29

such as mobility or health data, have resulted in data leaks that exposed agents’ personal information30

[1, 34, 21]. These incidents underscore the need for a decentralized approach to ABMing, where31

each agent’s sensitive information is kept confidential throughout the modeling process.32

Motivated by this, we introduce a new paradigm for agent-based simulation that ensures the confiden-33

tiality of each agent’s sensitive information. Leveraging techniques drawn from secure multi-party34

computation [38], we develop privacy-preserving protocols for the simulation, calibration, and analy-35

sis of ABMs. These protocols offer robust security guarantees to agents while preserving the ability36

of ABMs to effectively model complex systems. Moreover, our methodology enables secure ABMs to37
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take advantage of differentiable programming, allowing them to be integrated into machine learning38

pipelines, further boosting their modeling capabilities.39

In summary, this work constitutes to our knowledge the first protocol for privacy-preserving ABMs40

that enables their simulation and calibration. We hope that this development will pave the way for the41

secure and practical utilization of ABMs as valuable tools for policy-making in real-world settings.42

2 Agent-based models43

Consider an ABM with N agents A = {1, 2, . . . , N}. We denote by zi(t) the state of agent i at time44

t which encapsulates both fixed and time-evolving properties of the simulation agents. For instance, z45

can represent age and disease status of human agents in epidemiological models; and account balance46

of firms in a financial auction model. As the simulation proceeds, an agent i updates their state zi(t)47

by interacting with their neighbors Ni(t) and the environment E(t). We assume that the interaction48

of agents with their neighbors can be conceived as message passing on a graph G = (V,E), where49

the vertices V of the graph correspond to the agents, the edges eij ∈ E connect neighboring agents,50

and interactions are represented as messages Mij(t) = M(zi(t), zj(t), eij(t),θ, t), where θ are51

the ABM structural parameters. This is is indeed the case for contagion models [22], for example,52

Mij(t) may represent the transmission of infection from agent j to agent i, which may depend on the53

susceptibility of agent i (zi), the infectivity of j (zj), the properties of the virus (θ), and the nature of54

the interaction (eij). Thus, at each step t, each agent updates its state following55

zi(t+ 1) = f

zi(t),
⊕

j∈Ni(t)

Mij(t), θ

 , (1)

where
⊕

denotes an aggregation function over all received messages. The specific form of f can be56

tailored to capture the unique dynamics of the system under investigation, for instance, the diversity57

of contagion models can be encapsulated by different functional forms of f [22].58

During the simulation of an ABM, a central agent (the modeler) collects a time-series of aggregate59

statistics over agent states, xt = h({zi(t) | i ∈ A}), which can be used to compare the output of the60

model to ground-truth data. For instance, in epidemiological ABMs, h may correspond to counting61

the number of infected agents, so that {xt}t is a time-series of daily infections.62

As we can see, both Equation (1) and the collection of the summary statistics require agents to63

communicate their state to other agents. In following sections we introduce a methodology to perform64

these operations in a privacy-preserving manner.65

3 Characterizing Privacy66

3.1 Threat Model67

We assume an honest-but-curious (a.k.a semi-honest) attacker [31] which aims to learn private68

information about participating agents. This private information is included in an agent’s state zj(t),69

interaction trace {Ni(t) | ∀t}, and neighborhood messages {Mij(t) | i ∈ A, j ∈ N (i)}. For70

instance, in epidemiological models, this can correspond to the health and demographic traits, and71

mobility patterns of individual agents. Such attacker can manifest as the coordinating server which72

wants to surveil agents using the mobility trace or a (sub-group) of adversarial agents which may73

be incentivized to steal personal health information of agent cohorts. In the context of agent-based74

modeling, this information can be leaked during message passing over per-step neighborhoods75

(Equation (1)) and during the collection of summary statistics over the population. The goal of this76

work is to alleviate such challenges and design a privacy-preserving mechanism which can compute77

functions over agents’ states without revealing private information.78

3.2 Secure Multi-party Computation79

Secure multi-party computation enables a set of agents to interact and compute a joint function of80

their private inputs while revealing nothing but the output [38]. MPC protocols are coordinated with a81

server (MPC server) and are designed to protect against malicious behavior of adversarial participants.82
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These malicious participants, either an agent or the server, aim to learn private information (of other83

entities) or cause the result of computation to be incorrect. The idea was first introduced by Yao for84

the two-party case [57] and generalized to multiparty settings by Goldreich, Micali and Wigderson85

(GMW) [26]. Among other properties, GMW protocols guarantee 1) privacy: so that no entity can86

learn anything more than its prescribed output and, 2) correctness: so that each agent receives the87

correct output. For instance, in an epidemiological ABM, this would ensure both that the personal88

disease status of agents is not leaked and also no agent can misrepresent their disease status. We89

formalize the GMW protocol and provide an intuitive example in the Appendix.90

4 Private Simulation of Agent-based Models91

First, we present the SECURESUM protocol, which enables the computation of the sum of agents92

inputs in a private way, based on the GMW protocol (see Subsection 6.1 for a detailed description93

and an example) in Algorithm 1.94

Algorithm 1: SECURESUM

Data: Agents {1, . . . , N} with secret inputs s1, . . . , sn, integer n > max{s1, . . . , sn}.
Result: The sum of all shares S = s1 + · · ·+ sn.

1 Splitting secret into shares and distributing:
2 Each party i generates N shares si1, . . . , siN ∈ Zn which sum up to si.
3 Each party i distributes all their shares si1, . . . , siN ∈ Zn to 1, . . . , N , including themselves.
4 Secure Computation (Addition):
5 To add the inputs securely, parties simply add their respective shares σi = s1i + · · · sNi mod n.
6 Reconstruction:
7 To reveal the final result of the computation, parties collaborate by summing their shares:
8 S = (σ1 + σ2 + · · ·+ σn) mod n.

This protocol enables the simulation of ABMs for the case where
⊕

corresponds to addition in95

Equation (1), which is indeed the case in all contagion models. Furthermore, as long as the agent’s96

update function f is differentiable respect to the structural parameters θ, which is indeed the case for97

many ABMs [19], each agent can store ∇θf for use during the calibration step. With all this in mind,98

we present in Algorithm 2, a privacy-preserving protocol for updating the agent’s states.99

Algorithm 2: SECUREAGENTUPDATE

Data: Agent i with state zi(t), Neighboring agent’s messages {Mij(t) | j ∈ N (i)}, Integer n,
State update rule f , ABM parameters θ

Result: New state zi(t+ 1)
1 Agent i calls the SECURESUM protocol with neighbors {j | j ∈ N (i)} and integer n to get the

sum Mi(t) =
∑

j∈N (i) Mij(t).
2 Agent i updates its state zi(t+ 1) = f (zi(t),Mi(t),θ) and stores the gradient ∇θf .

It is worth noting that, in contrast to general applications of the GMW protocol, only the agent who100

starts the protocol receives the result of the computation, since there is no need for the neighboring101

agents to have access to that information.102

Next, we introduce the SECURESIMULATION protocol in Algorithm 3, where, in addition to perform-103

ing agent updates, we collect a time-series of aggregate statistics over the agent’s population and its104

gradient respect to the ABM structural parameters θ.105

4.1 Private calibration of ABMs106

Calibration refers to the process of tuning the set of structural parameters θ so that ABM outputs x107

are compatible with given observational data y. In epidemiological ABMs, for instance, this entails108

determining values for parameters like the reproduction number R0 and mortality rates to align with109

the observed daily infection or mortality data. During the calibration of an ABM, the modeler (central110

MPC server) requires the ability to evaluate the ABM at different values of θ, and, in the case of111
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Algorithm 3: SECURESIMULATION

Data: MPC server C, Agents {1, . . . , N} with states {z1, . . . , zN}, ABM parameters θ, State
update rule f , Number of time-steps T

Result: Aggregate statistics x = x1, . . . , xT and gradients ∇θx.
1 C generates a large enough prime number P and the requested statistics collecting function h;

and sends them to all agents along ABM parameters θ.
2 for t = 1, . . . , T do
3 for i = 1, . . . , N do
4 Agent i calls the SECUREAGENTUPDATE protocol (Algorithm 2) to compute zi(t+ 1).
5 Agent i gathers its information of interest h(zi(t+ 1)) and gradient ∇θh(zi(t+ 1)).
6 C calls the SECURESUM protocol with all agents to collect the aggregate statistics xt and

their gradients ∇θxt.
7 C returns the accumulated x and ∇θx.

Figure 1: Diagram illustrating the SECURESIMULATION protocol for ABM parameters θ

gradient-assisted calibration, the gradient of the outputs with respect to θ. These values are stored at112

the MPC server where they are used as part of a ML pipeline to perform calibration. The retrieval of113

these quantities is seamlessly enabled by the SECURESIMULATION algorithm and so all the standard114

calibration techniques for ABM (see, e.g., [23, 47] can be easily adapted to this private framework115

to ensure a decentralized calibration process that respects agent’s privacy. Moreover, the ability to116

retrieve the gradient in a private way enables the use of more advanced gradient-assisted techniques117

such as generalized variational inference [49].118

5 Conclusion119

In this paper, we have introduced a new paradigm of decentralized agent-based modeling which120

enables simulation and calibration on real world data, all without compromising the privacy of the121

agents involved. Our approach leverages MPC techniques to develop robust privacy-preserving122

protocols, without compromising the correctness of the ABM output. Our paradigm may be readily123

integrated into established platforms such as contact-tracing mobile applications, as a means to greatly124

improving analysis and forecasting of complex systems across diverse domains. Further, we validate125

by scalability of our simulation and calibration protocols via a decentralized epidemiological ABM,126

in the appendix.127
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6 Appendix329

6.1 The GMW protocol330

The GMW protocol uses additive secret sharing to communicate (or aggregate) private inputs across331

the participant entities. The key insight is to divide a secret input into multiple shares in such a way332

that the secret can be reconstructed only when a sufficient number of shares are combined together.333

The scheme supports diverse aggregation queries such as secure addition, or secure multiplication [8]334

of the secrets held by the participating agents. Here we focus on the addition case and we assume335

that all participating agents are required to compute the secret, usually denoted by t = N , but the336

same methodology can be extended to multiplication and composite queries (see, e.g., [38]).337

Consider N agents holding private values si. We want to compute the sum
∑

i si without any338

agent j acquiring knowledge about s{k ̸=j}. To setup the protocol, the agents agree an integer339

n > max{s1, . . . , sN} defining the finite group Zn on which all computations will be carried 1. Each340

agent i then samples N − 1 random numbers, rij ∼ U{0, n− 1}, such that the input is divided into341

N shares, sij defined by342

si =

N∑
j=1

sij (mod n) =

N−1∑
j=1

rij +

si −
N−1∑
j=1

rij

 (mod n). (2)

Each agent then sends each share of their secret to each corresponding agent; agent i sends si1 share343

to agent 1, si2 share to agent 2, etc. Locally, each agent performs the sum344

σk =

N∑
i=1

sik (mod n). (3)

Finally, all values σk are shared so that the reconstructed sum, S =
∑

k σk (mod n), can be computed345

which corresponds to the sum of the agent inputs si by construction. Typically, this reconstruction346

may be conducted by a central MPC server or a trusted agent. We summarize the protocol in347

Algorithm 1 and we provide an illustrating example below.348

6.1.1 Additive secret sharing example349

Consider N = 3 agents—Alice, Bob, and Carol— holding private values sA = 2, sB = 3, and350

sC = 5. They wish to compute the sum of these values without disclosing their individual inputs.351

They agree on an integer n = 11, defining a finite group Zn. First, the agents generate 3 shares each,352

by sampling 2 random numbers from Zn. For instance, Alice generates random numbers 7 and 5, so353

that354

sA = sAA + sAB + sAC = 7 + 5 + 1 (mod 11) = 2, (4)
and similarly for Bob and Carol with sB = 2 + 0 + 1 (mod 11), and sC = 3 + 1 + 1 (mod 11).355

Second, the agents communicate with each other to keep one of the shares and send the other two to356

the other two agents and perform the sum of the received shares. For example, Alice receives sBA357

from Bob and sCA from Carol and computes358

σA = sAA + sBA + sCA = 7 + 2 + 3 (mod 11) = 1 (mod 11), (5)
and similarly for Bob and Carol with σB = 5 + 0 + 1 (mod 11) = 6 (mod 11) and σC =359

1 + 1 + 1 (mod 11) = 3 (mod 11). Finally, the secret can be reconstructed by doing S =360

σA + σB + σC = 10 (mod 11) as expected.361

In the following section, we apply the GMW protocol to generalize the above insight to share362

information containing agent’s private information to other agents or a central MPC server, providing363

protocols for the computation of agent updates (Equation (1)), and gradients in a secure way, enabling364

privacy-preserving simulation, calibration, and analysis of ABMs.365

1The choice to perform finite group arithmetics is so that no information about the secret can be gained by
holding < N shares.
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7 Case Study: Privacy-preserving Epidemiology366

In this section, we aim to illustrate a practical example where this new ABM methodology could be367

deployed, by showing a simulation and calibration of a decentralized, privacy-preserving, agent-based368

SIR model.369

The model follows a standard parameterization where agents’ interactions are specified through370

a contact graph G, which in this case is only locally defined by each agent having access to their371

neighbors. Each agent has 3 possible states, 0 (Susceptible), 1 (Infected), and 2 (Recovered). We372

initialize the simulation by infecting a fraction I0 of agents, which are sampled uniformly from the373

population, while the remaining agents are considered to be susceptible. Following the notation374

introduced in Section 2, at each time-step, agent i updates its state following Equation (1) with375

Mij(t) = Ij(t) (6)

where Ij(t) is the infected status of the neighbor (0 or 1), so that376

zi(t+ 1) = 1{zi=0} · Bernoulli
(
p
(i)
inf(t)

)
+

1{zi=1} ·
(
1 + Bernoulli

(
p(i)rec

))
+

1{zi=2} · 2

(7)

with377

p
(i)
inf(t) = 1− exp

−β Si∆t

ni

∑
j∈N (i)

Ij(t)

 , (8)

where N (i) is the set of neighbors of agent i, Si is the susceptibility of agent i, ni = #N (i) is the378

total number of neighbors, ∆t is the duration of the time-step, and β is a structural parameter of the379

ABM called the effective contact rate. Infected agents can recover at each time-step with recovery380

rate γ, so that381

p(i)rec = 1− exp (−γ∆t) . (9)

For the case of a complete graph, the model reduces to the standard ODE-based SIR model with382

R0 = β/γ as the basic reproduction number. The model is run for nt time-steps.383

To ground the example on real data, we consider the contact graph of the city of XXX, extracted from384

the June ABM model [6] to determine the the neighborhood of each agent, N (i). This contact graph385

includes the interactions of agents in households, companies, and schools and it is based on English386

census data. The choice of parameter values for the experiment is given in Table 1.387

Parameter Value
β 0.5 day−1

γ 0.1 day−1

I0 0.01
∆t 1 day
nt 60
G XXX

Table 1: Parameter values for the considered agent-based SIR model.

7.1 Private policy assessment with ABMs388

We first consider the application of the SECURESIMULATION protocol (Algorithm 3). Let us pose a389

situation where a policy maker wants to study the efficacy of mask-wearing at different compliance390

levels using agent-based simulation. We introduce a slight modification to Equation (8) to incorporate391

a reduction on the infection probability due to mask-wearing with certain compliance α,392

p
(i)
inf(t) = 1− exp

−β Si∆t

ni

∑
j∈N (i)

Ij(t)(1− cj)

 , (10)
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where cj ∼ Bernoulli(α), so that αi = 1 corresponds to full compliance where there is no trans-393

mission. Note that we are assuming, complete protection against infection when wearing a mask.394

We proceed to execute 3 simulations for 3 different values of α. At each simulation, α is sent to the395

agents, where they locally compute their own compliance to the measure. The SecureSimulation396

protocol is then used to run the simulation and retrieve the aggregate statistic of interest, x, which in397

this case is the number of infections over time. The results are shown in Figure 2, where we observe398

that little transmission occurs when compliance is above 75%.399
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Figure 2: Infection curves for different levels of compliance: 0% (blue), 25% (green), 50% (orange),
75% (red). The number of infections has been normalized to the number of agents N .

Thus we observe that within our privacy-preserving methodology, the policy maker could still have400

access to the same level of insight than a traditional ABM, all while protecting the individual agent’s401

privacy.402

7.2 Private calibration of ABMs403

Next, we pose a situation where we want to calibrate our ABM with structural parameters θ = (β, γ)404

to observed ground-truth data. For simplicity, we present the calibration of the β parameter given an405

observed curve of infections (y), obtained by running the ABM model with the baseline parameters406

in Table 1.407

The first step is to compute the gradient ∇θx, where x is the number of daily infections and θ = β.408

We note that this gradient can be approximated by the gradient of the average number of new409

infections with respect to β,410

∂xt

∂β
≈ ∂ E[∆I(t)]

∂β
=

N∑
i=1

χi(t) exp(−χi(t)/β), (11)

where411

χi(t) = exp

−β Si∆t

ni

∑
j∈N (i)

Ij(t)

 . (12)

The gradient can be safely retrieved by a central agent by performing the SECRETSHARING protocol412

across all agents as described in Algorithm 3. We thus conduct GVI by considering Q to be a413

masked-autoregressive normalizing flow, and assume the prior is a normal distribution with µ = 0.7414

and σ = 0.5.415
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Figure 3: Left: Probability density plot for the trained normalizing flow (blue) against the prior
distribution (orange). Ground-truth value is marked as a dashed black line. Right: Results from
simulating β samples from the trained flow (blue) and prior (orange) compared to the ground-truth
data (black). The number of infections has been normalized to the number of agents N .

Figure 3 (left) shows the trained normalizing flow which correctly assigns high probability mass to416

the ground-truth value. To further evaluate the goodness of the fit, we plot simulated runs from ABM417

parameters sampled from the trained flow in Figure 3 (right), where we compare it to runs simulated418

from prior samples.419

This experiment highlights how privacy-preserving ABM can be integrated into probabilistic pro-420

gramming pipelines, like the considered case where we have used the Bayesian gradient-assisted421

inference algorithms in the BLACKBIRDS software package. This opens the door into integrating422

ABM insight into more complex ML pipelines leveraging heterogeneous data streams to boost the423

model’s insight capabilities.424
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