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Abstract

Feature attribution (FA), or the assignment of class-relevance to different locations in an
image, is important for many classification and regression problems but is particularly
crucial within the neuroscience domain, where accurate mechanistic models of behaviours,
or disease, require knowledge of all features discriminative of a trait. At the same time,
predicting class relevance from brain images is challenging as phenotypes are typically
heterogeneous, and changes occur against a background of significant natural variation.
Here, we present an extension of the ICAM framework for creating prediction specific FA
maps through image-to-image translation.
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1. Introduction

Brain images represent a significant resource in the development of mechanistic models
of behaviour and neurological/psychiatric disease as, in principle, they capture measurable
neuroanatomical traits that are heritable, present in unaffected siblings and detectable prior
to disease onset. For many complex disorders, however, these features of disease are subtle,
variable and obscured by a back-drop of significant natural variation in brain shape and
appearance; this makes them extremely difficult to detect.

To detect features of disease in brain imaging, recent studies have started to apply deep
learning methods that examine features or the weights of CNNs, called feature attribution
(FA) methods. These methods include gradient based methods that analyse the gradients
with respect to a given input image such as guided backpropagation (Springenberg et al.,
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Figure 1: Overview of method. An example of how ICAM performs classification/ regres-
sion with attribute map generation for 2 given input images x and y.

2014), and perturbation methods such as occlusion. These methods however are low reso-
lution, also do not detect heterogeneous structures (i.e. features that do not appear in all
subjects), and often require averaging across multiple subjects to achieve good detection
(Böhle et al., 2019). An alternative method called VA-GAN (Baumgartner et al., 2018)
that uses a generative model, was still unable to detect all salient features.

To address these challenges, in Bass et al. (2020) we developed ICAM; which ad-
dressed this problem through disentangling class-relevant disease attributes (attr) from
class-irrelevant shape content. In this way the method was able to generate much more
accurate maps of cortical atrophy due to Alzheimer’s. Here, we extend the approach with
a regression module, to enable the network to do regression as well as classification.

2. Methods

The goal of the ICAMreg framework (Bass et al., 2020, 2021) is to perform classification
(or regression) with simultaneous feature attribution, by training a VAE-GAN to swap the
classes of input images: x, y; changing only the features of each image which are specific to
the target phenotype. The design of the network is outlined in Fig. 1.

3. Results

Here, we show our results on the UK Biobank for age prediction (see Bass et al. (2021) for
full experiments on 2 other datasets). In our regression experiments, we found that brain age
prediction by ICAMreg (2.20 ± 1.86 MAE) performs competitively relative to other deep
learning methods trained on age prediction using the UK Biobank (reported test MAE
scores of 2.14± 0.05 (Peng et al., 2021)). In addition, we give a highlight of our qualitative
results with ICAMreg in Fig. 2, showing an example of outlier explanation and interpolation
between 2 subjects. In Fig. 2 A), aged match subjects with one subject predicted as an
outlier (subject 2, predicted=56, true=47 years), are used to demonstrate outlier detection.
Evidence for the outlier prediction of subject 2 is presented through translating between the
2 subjects, indicating the presence of larger ventricles, hippocampal atrophy and cortical
shrinking in subject 2. In Fig. 2 B), we demonstrate that the latent space is interpretable
by linearly interpolation between the encoded attribute vectors (i.e. of 2 subjects with
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Figure 2: Highlights of UK Biobank results: outlier explanation, and interpolation between
groups. Green arrows, cortex; blue arrows, ventricles.

different ages), and showing clear interpolation between them, where both the predicted
ages and FA maps the are smoothly translated.
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