
Dense Associative Memory Through the Lens of
Random Features

Benjamin Hoover
IBM Research & Georgia Tech
benjamin.hoover@ibm.com

Duen Horng Chau
Georgia Tech

polo@gatech.edu

Hendrik Strobelt
IBM Research & MIT-IBM

hendrik.strobelt@ibm.com

Parikshit Ram
IBM Research

parikshit.ram@ibm.com

Dmitry Krotov
IBM Research

krotov@ibm.com

Abstract

Dense Associative Memories are high storage capacity variants of the Hopfield
networks that are capable of storing a large number of memory patterns in the
weights of the network of a given size. Their common formulations typically
require storing each pattern in a separate set of synaptic weights, which leads to
the increase of the number of synaptic weights when new patterns are introduced.
In this work we propose an alternative formulation of this class of models using
random features, commonly used in kernel methods. In this formulation the number
of network’s parameters remains fixed. At the same time, new memories can be
added to the network by modifying existing weights. We show that this novel
network closely approximates the energy function and dynamics of conventional
Dense Associative Memories and shares their desirable computational properties.

1 Introduction

Hopfield network of associative memory is an elegant mathematical model that makes it possible to
store a set of memory patterns in the synaptic weights of the neural network [1]. For a given prompt
σi(t = 0), which serves as the initial state of that network, the neural update equations drive the
dynamical flow towards one of the stored memories. For a system of K memory patterns in the D-
dimensional binary space the network’s dynamics can be described by the temporal trajectory σi(t),
which descends the energy function

E = −
K∑

µ=1

(D∑
i=1

ξµi σi

)2
(1)

Here ξµi (index µ = 1...K, and index i = 1...D) represent memory vectors. The neural dynamical
equations describe the energy descent on this landscape. In this formulation, which we call the
memory representation, the geometry of the energy landscape is encoded in the weights of the
network ξµi , which coincide with the memorised patterns. Thus, in situations when the set of the
memories needs to be expanded by introducing new patterns one must introduce additional weights.

Alternatively, one could rewrite the above energy in a different form, which is more commonly used
in the literature. Specifically, the sum over the memories can be computed upfront and the energy can
be written as

E = −
D∑

i,j=1

Tijσiσj , where Tij =

K∑
µ=1

ξµi ξ
µ
j (2)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: The Distributed Representation for Dense Associative Memory (DrDAM) approximates both
the energy and fixed-point dynamics of the traditional Memory Representation for Dense Associative
Memory (MrDAM) while having a parameter space of constant size. A) Diagram of DrDAM using a

basis function parameterized by random features (e.g., see eq. (8)). In the distributed representation,
adding new memories does not change the size of the memory tensor. B) Comparing energy descent
dynamics between DrDAM and MrDAM on 3x64x64 images from Tiny Imagenet [11]. Both models
are initialized on queries where the bottom two-thirds of pixels are occluded with zeros; dynamics are
run while clamping the visible pixels and their collective energy traces shown. DrDAM achieves the
same fixed points as MrDAM, and these final fixed points have the same energy. The energy decreases
with time for both MrDAM and DrDAM, although the dependence of the energy relaxation towards the
fixed point is sometimes different between the two representations. Experimental setup is described
in appendix D.

In this form one can think about weights of the network being the symmetric tensor Tij instead of
ξµi . One advantage of formulating the model this way is that the tensor Tij does not require adding
additional parameters when new memories are introduced. Additional memories are stored in the
already existing set of weights by redistributing the information about new memories across the
already existing network parameters. We refer to this formulation as distributed representation.

A known problem of the network (eqs. (1) and (2)) is that it has a small memory storage capacity,
which scales at best linearly as the size of the network D is increased [1]. This limitation has been
resolved with the introduction of Dense Associative Memories (DenseAMs), also known as Modern
Hopfield Networks [2]. This is achieved by strengthening the non-linearities (interpreted as neural
activation functions) in eq. (1), which can lead to the super-linear and even exponentially large
memory storage capacity [2, 3]. Using continuous variables x ∈ RD, the energy is defined as1

E = −Q
[K∑
µ=1

F
(
S
[
ξµ,g(x)

])]
, (3)

where the function g : RD → RD is a vector function (e.g., a sigmoid, a linear function, or a
layernorm), the function F (·) is a rapidly growing separation function (e.g., power F (·) = (·)n or
exponent), S[x,x′] is a similarity function (e.g., a dot product or a Euclidean distance), and Q is a
scalar monotone function (e.g., linear or logarithm). For instance, in order to describe the classical
Hopfield network with binary variables (eq. (1)) one could take: linear Q, quadratic F (·) = (·)2,
dot product S, and a sign function for gi = sign(xi) = σi. There are many possible combinations
of various functions g, F (·), S(·, ·) that lead to different models from the DenseAM family [2–7];
many of the resulting models have proven useful for various problems in AI and neuroscience [8].
Diffusion models have been linked to even more sophisticated forms of the energy landscape [9, 10].

From the perspective of the information storage capacity DenseAMs are significantly superior
compared to the classical Hopfield networks. At the same time, most2 of the models from the
DenseAM family are typically formulated using the memory representation, and for this reason

1Throughout the paper we use bold symbols for denoting vectors and tensors, e.g., ξµ is a D-dimensional
vector in the space of neurons for each value of index µ. Individual elements of those vectors and tensors are
denoted with the same symbol, but with plain font. In the example above, these individual elements have an
explicit vector index, e.g., ξµi . Same applies to vectors in the feature space introduced later.

2This is true for all DenseAMs with the exception of the power model of Krotov and Hopfield [2], which can
be written using n-index tensors Ti1,i2,...,in in analogy with the 2-tensor Tij as in eq. (2).

2

Figure 2: DrDAM achieves parameter compression over MrDAM, successfully storing 20 different
64x64x3 images from TinyImagenet [11] and retrieving them when occluding the lower 40% of each
query. The memory matrix of MrDAM is of shape (20, 12288) while the memory tensor of DrDAM is
of shape Y = 2 · 105, a ∼20% reduction in the number of parameters compared to MrDAM; all other
configurations for this experiment match those in appendix D. Further compression can be achieved
with a higher tolerance for DrDAM’s retrieval error, smaller β, and fewer occluded pixels, see § 4.
Top: Occluded query images. Middle: Fixed-point retrievals from DrDAM. Bottom: (ground truth)
Fixed-point retrievals of MrDAM.

require introduction of new weights when additional memory patterns are added to the network. The
main question that we ask in our paper is: how can we combine superior memory storage properties
of DenseAMs with the distributed (across synaptic weights) formulation of these models in the spirit
of classical Hopfield networks (eq. (2))? If such a formulation is found, it would allow us to add
memories to the existing network by simply recomputing already existing synaptic weights, without
adding new parameters.

A possible answer to this question is offered by the theory of random features and kernel machines.
Given an input domain X , kernel machines leverage a positive definite Mercer kernel function
k : X × X → R+ that measures the similarity between pairs of inputs. The renowned “kernel trick”
allows one to compute the inner-product

k(x,x′) = ⟨φ(x),φ(x′)⟩ =
Y∑

α=1

φα(x)φα(x
′) (4)

between two inputs x,x′ ∈ X in a rich feature space defined by the feature map φ(x) without ever
explicitly realizing the feature map φ(x). Various machine learning models (such as support vector
machines [12], logistic regression, and various others [13, 14]) can be learned with just access to
pairwise inner-products, and thus, the kernel trick allows one to learn such models in an extremely
expressive feature space. Kernel functions have been developed for various input domains beyond
the Euclidean space such as images, documents, strings (such as protein sequences [15]), graphs
(molecules [16], brain neuron activation paths) and time series (music, financial data) [17]. Common
kernels for Euclidean data are the radial basis function or RBF kernel k(x,x′) = exp(−γ∥x− x′∥22)
and the polynomial kernel k(x,x′) = (⟨x,x′⟩+ b)p. To appreciate the expressivity of these kernel
machines, note that, for input domain RD, the RBF kernel corresponds to an infinite dimensional
feature space (Y =∞) and the polynomial kernel to a O(Dp) dimensional feature space.

Interpreting the composition of the separation and similarity functions in eq. (3) as the left hand
side of the kernel trick eq. (4) we can map the energy into the feature space, using appropriately
chosen feature maps. Subsequently, the order of the summations over memories and features can be
swapped, and the sum over memories can be computed explicitly. This makes it possible to encode
all the memories in a tensor Tα, which we introduce in section § 3, that contains all the necessary
information about the memories. The energy function then becomes defined in terms of this tensor
only, as opposed to individual memories. This functionality is summarized in fig. 1. Additionally,
we show examples of retrieved Tiny ImageNet images that have been memorised using the original
DenseAM model, which we call MrDAM, and the “featurized” version of the same model, which we
call DrDAM (please see the explanations of these names in the caption to fig. 1). These examples
visually illustrate that mapping the problem into the feature space preserves most of the desirable
computational properties of DenseAMs, which normally are defined in the “kernel space”.

Contributions:

▶ We propose a novel approximation of a DenseAM network utilizing random features commonly
used in kernel machines. This novel architecture does not require the storage of the original
memories, and can incorporate new memories without increasing the size of the network.

3

▶ We precisely characterize the approximation introduced in the energy descent dynamics by this
architecture, highlighting the different critical factors that drive the difference between the exact
energy descent and the proposed approximate one.

▶ We validate our theoretical guarantee with empirical evaluations.

In the past, kernel trick has been used for optimizing complexity of the attention mechanism in
Transformers [18], and those results have been recently applied to associative memory [19], given the
various connections between Transformers and DenseAMs [4, 20]. Existing studies [18, 19] focus on
settings when attention operation or associative memory retrieval is done in a single step update. This
is different from our goals here, which is to study the recurrent dynamics of the associative memory
updates and convergence of that dynamics to the attractor fixed points. Iatropoulos et al. [21] propose
kernel memory networks which are a recurrent form of a kernel support vector machine, and highlight
that DenseAM networks are special cases of these kernel memory networks. Making a connection
between nonparametric kernel regression and associative memory, Hu et al. [22] propose a family
of provably efficient sparse Hopfield networks [23, 24], where the dynamics of any given input are
explicitly driven by a subset of the memories due to various entropic regularizations on the energy.
DenseAMs have been also used for sequences [25, 26, 24]. To reduce the complexity of computing
all the pairs of F (S[ξ,x]) for a given set of memories and queries, Hu et al. [27] leverage a low-rank
approximation of this separation-similarity matrix using polynomial expansions. The kernel trick has
also recently been used to increase separation between memories (with an additional learning stage
to learn the kernel), thereby improving memory capacity [28]. There are also very recent theoretical
analysis of the random feature Hopfield networks [29, 30], where their focus in on the construction of
memories using random features. Kernels are also related to density estimation [31], and recent works
have leveraged a connection between mixtures of Gaussians and DenseAMs for clustering [32, 33].
Lastly, random features have been used for biological implementations of both Transformers and
DenseAMs [34, 35].

To the best of our knowledge there is no rigorous theoretical and empirical comparison of DenseAMs
and their distributed (featurized) variants in recurrent memory storage and retrieval settings, as well
as results pertaining to the recovery of the fixed points of the energy descent dynamics. This is the
main focus of our work.

2 Technical background

Given the energy function in eq. (3), a variable x is updated in the forward pass through the “layers”
of this recurrent model such that its energy decreases with each update. If the energy is bounded from
below, this ensures that the input will (approximately) converge to a local minimum. This can be
achieved by performing a “gradient descent” in the energy landscape. Considering the continuous
dynamics, updating the input x over time with dx/dt, we need to ensure that dE/dt < 0. This can
be achieved by setting dx/dt ∝ −∇xE.

Discretizing the above dynamics, the update of an input x at the t-th recurrent layer is given by:

x(t) ← x(t−1) − η(t−1)∇xE
(t−1), (5)

where η(t) is a (step dependent) step-size for the energy gradient descent, E(t) is the energy of the
input after the t-th layer, and the input to the first layer x(0) ← x. The final output of the associative
memory network after L layers is x(L).

DenseAMs significantly improve the memory capacity of the associative memory network by utiliz-
ing rapidly growing nonlinearity-based separation-similarity compositions such as F (S[x, ξµ]) =
exp(β ⟨x, ξµ⟩) or F (S[x, ξµ]) = exp(−β/2∥x−ξµ∥2) or F (S[x, ξµ]) = (⟨x, ξµ⟩)p , p > 2, among
other choices, with β > 0 corresponding to the inverse temperature that controls how rapidly the
separation-similarity function grows. However, these separation-similarity compositions do not allow
for the straightforward simplifications as in eq. (2), except for the power composition. For a general
similarity function, the update based on gradient descent over the energy in eq. (3) is given by:

∇xE = − dQ(y)

dy

∣∣∣∣
y=

∑
µ F (S[ξµ,g(x)])

·
K∑

µ=1

(
dF (s)

ds

∣∣∣∣
s=S[ξµ,g(x)]

· dS(ξ
µ, z)

dz

∣∣∣∣
z=g(x)

· dg(x)
dx

)
(6)

4

For example, with Q(·) = (1/β) log(·), F (·) = exp(β·), S[ξµ,x] = ⟨ξµ,x⟩ and g(x) = x/∥x∥2,
the energy function and the corresponding update3 are:

E(x) = − 1

β
log

K∑
µ=1

exp(β ⟨ξµ,g(x)⟩), ∇xE(x) = −
∑K

µ=1 exp(β ⟨ξ
µ,g(x)⟩)ξµ∑K

µ=1 exp(β ⟨ξ
µ,g(x)⟩)

· dg(x)
dx

. (7)

This form does not directly admit itself to a distributed storage of memories as in eq. (2), and thus,
in order to perform the gradient descent on the energy, it is necessary to keep all the memories in
their original form. We will try to address this issue by taking inspiration from the area of kernel
machines [36].

2.1 Random Features for Kernel Machines

The expressivity of kernel learning usually comes with increased computational complexity both dur-
ing training and inference, taking time quadratic and linear in the size of the training set respectively.
The groundbreaking work of Rahimi and Recht [37] introduced random features to generate explicit
feature maps φ : RD → RY for the RBF and other shift-invariant kernels4 that approximate the true
kernel function – that is ⟨φ(x),φ(x′)⟩ ≈ k(x,x′). Various such random maps have been developed
for shift-invariant kernels [18, 19, 38] and polynomials kernels [39–41].

For the RBF kernel and the exponentiated dot-product or EDP kernel k(x,x′) = exp(⟨x,x′⟩), there
are usually two classes of random features – trigonometric features and exponential features. For the
RBF kernel k(x,x′) = exp(−∥x− x′∥22/2), the trigonometric features [37] are given on the left and
the exponential features [18] are on the right:

φ(x) =
1√
Y


cos(

〈
ω1,x

〉
)

sin(
〈
ω1,x

〉
)

. . . ,
cos(

〈
ωY ,x

〉
)

sin(
〈
ωY ,x

〉
)

 , φ(x) =
exp(−∥x∥22)√

2Y


exp(+

〈
ω1,x

〉
)

exp(−
〈
ω1,x

〉
)

. . . ,
exp(+

〈
ωY ,x

〉
)

exp(−
〈
ωY ,x

〉
)

 , (8)

where ωα ∼ N (0, ID)∀α ∈ {1, . . . , Y } are the random projection vectors.5 A random feature map
φ for the RBF kernel can be used for the EDP kernel by scaling φ(x) with exp(∥x∥22/2). While
the trigonometric features ensure that k(x,x) = ⟨φ(x),φ(x)⟩ = 1, the exponential features ensure
that φ(x) ∈ R2Y

+ , which is essential in certain applications as in transformers [18, 19]. Furthermore,
while the random samples ωα ∼ N (0, ID) are supposed to be independent, Choromanski et al.
[42] show that the {ω1, . . . ,ωY } can be entangled to be exactly orthogonal to further reduce the
variance of the approximation while maintaining unbiasedness. In general, the approximation of
the random feature map is O(

√
D/Y), implying that a feature space with Y ∼ O(D/ϵ2) random

features will ensure, with high probability, for any x,x′ ∈ RD, |k(x,x′) − ⟨φ(x),φ(x′)⟩ | ≤ ϵ.
Scaling in the kernel functions such as exp(−β∥x− x′∥22/2) or exp(β ⟨x,x′⟩) can be handled with
the aforementioned random feature maps φ by applying them to

√
βx with

〈
φ(
√
βx),φ(

√
βx′)

〉
≈

exp(−β∥x− x′∥22/2).

3 DrDAM with Random Features

Revisting the general energy function in eq. (3), if we have available an explicit mapping φ : RD →
RY such that ⟨φ(ξµ),φ(x)⟩ ≈ F (S[ξµ,x]), then we can simplify the general energy function in
eq. (3) to

E(x) ≈ Ê(x) = −Q

(
K∑

µ=1

⟨φ(ξµ),φ(g(x))⟩

)
= −Q

(〈
K∑

µ=1

φ(ξµ),φ(g(x))

〉)
. (9)

3We are eliding the dg(x)/dx = (1/∥x∥2)[ID − (1/∥x∥3/22)xx⊤] term for the ease of exposition.
4Kernel functions that only depend on (x− x′) and not individually on x and x′.
5A technical detail here is that while we are using Y random samples, we are actually developing a 2Y -

dimensional feature map φ : RD → R2Y – we can get a Y dimensional feature map by dropping the sin(·)
terms in the trigonometric features (and add a random rotation term bα, α ∈ JY K to the cos(⟨ωα,x⟩ + bα)
term), and the exp(−·) term in the exponential features. This modification (using 2Y features instead of Y)
reduces the variance of the kernel function approximation [18, Lemma 1, 2].

5

Denoting T =
∑

µ φ(ξ
µ), we can write a simplified general update step for any input x as:

∇xÊ = − dQ(s)

ds

∣∣∣∣
s=⟨φ(g(x)),T⟩

·

(
φ(z)

dz

∣∣∣∣⊤
z=g(x)

T

)
· dg(x)

dx
(10)

where dφ(x)/dx ∈ RY×D is the gradient of the feature map with respect to its input. In the presence
of such an explicit map φ, we can distribute the memory in a MrDAM into the single Y -dimensional
vector T, and be able to apply the update in eq. (10). We can then use the random feature based
energy gradient∇xÊ(x) instead of the true energy gradient∇xE(x) in the energy gradient descent
step in eq. (5).6 We name this scheme “Distributed representation for Dense Associative Memory”
or DrDAM, and we compare the computational costs of DrDAM with the “Memory representation of
Dense Associative Memory” or MrDAM in the following:

Proposition 1. With access to the K memories {ξµ ∈ RD, µ ∈ JKK}, MrDAM takes O(LKD) time
and O(KD) peak memory for L energy gradient descent steps (or layers) as defined in eq. (5) with
the true energy gradient∇xE(x).

Algorithm 1: Procedures for DrDAM
with random features.
RF(Seed τ , Memory ξ)

Initialize p← 0Y
Set RNG R seed to τ
for α = 1, . . . , Y do

Sample random feature φα from R
pα ← φα(ξ)

return p

ProcMems(Seed τ , Mems {ξµ, µ ∈ {1, . . . , K})
Initialize T← 0Y
for µ = 1, . . . , K do

T← T+RF(τ , ξµ)
return T

GradComp(Seed τ , Distributed mems T, Input x)
p← RF(τ, g(x))
Initialize z← 0D

// Compute ∇yφ(y)⊤T in O(Y) mem
for i = 1, . . . , D do

Compute u← dφ(y)/dyi|y=g(x)

zi ← ⟨u,T⟩
Initialize z′ ← 0D
// Compute z∇xg(x) in O(D) mem
for i = 1, . . . , D do

Compute y ← dg(x)/dxi

z′
i ← ⟨y, z⟩

Compute q ← −dQ(s)/ds|s=⟨T,p⟩
return qz′

Naively, the random feature based DrDAM would require
O(DY) memory to store the random vectors and the
∇xφ(x) matrix. However, we can show that we can
generate the random vectors on demand to reduce the
overall peak memory to just O(Y). The various proce-
dures in DrDAM are detailed in Algorithm 1. The RF
subroutine generates the random feature for any memory
or input. The ProcMems subroutine consolidates all the
memories into a single T ∈ RY vector. The GradComp
subroutine compute the gradient ∇xÊ. The following
are the computational complexities of these procedures:

Proposition 2. The RF subroutine in Algorithm 1 takes
O(DY) time and O(D + Y) peak memory.

Proposition 3. ProcMems in Algorithm 1 takes
O(DYK) time and O(D + Y) peak memory.

Proposition 4. GradComp in Algorithm 1 takes
O(D(Y +D)) time and O(D + Y) peak memory.

Thus, the computational complexities of DrDAM neural
dynamics are (see appendix F.1 for proof and discus-
sions):

Theorem 1. With a random feature map φ utiliz-
ing Y random projections {φα, α ∈ {1, . . . , Y }}
and K memories {ξµ ∈ RD, µ ∈ {1, . . . ,K}}, the random-feature based DrDAM takes
O (D (Y K + L(Y +D))) time and O(Y +D) peak memory for L energy gradient descent steps
(or layers) as defined in eq. (5) with the random feature based approximation gradient∇xÊ(x) de-
fined in eq. (10).

However, note that the memory encoding only needs to be done once, while the same T can be utilized
for L steps of energy gradient steps for multiple input, and the cost of ProcMems is amortized over
these multiple inputs. We also show that the computational costs of the inclusion of a new memories ξ:

Proposition 5. The inclusion of a new memory ξ ∈ RD to a DrDAM with K memories distributed in
T ∈ RY takes O(DY) time and O(D + Y) peak memory.

The above result shows that inclusion of new memories correspond to constant time and memory
irrespective of the number of memories in the current DenseAM. Next, we study the divergence
between the output of a L-layered MrDAM using the energy descent in eq. (5) with the true gradient
in eq. (6) and that of DrDAM using the random feature based gradient in eq. (10).

6If Q(·) = log(·) in eq. (9), note that the inner product between unconstrained choices of φ can be negative
but the argument to log must not be; thus, we clip the value to the log to some small ε > 0.

6

Theorem 2. Consider the following energy function with K memories {ξµ ∈ RD, µ ∈ {1, . . . ,K}}
and inverse temperature β > 0:

E(x) = − 1

β
log

(
K∑

µ=1

exp(−β/2∥ξµ − x∥22)

)
. (11)

We further make the following assumptions: (A1) All memories ξµ and inputs x lie inX = [0, 1/
√
D]D.

(A2) Using a random feature map φ : RD → RY using Y random feature maps, for any x,x′ ∈ Rd

there is a constant C1 > 0 such that
∣∣exp(∥x− x′∥22/2)− ⟨φ(x),φ(x′)⟩

∣∣ ≤ C1

√
D/Y . Given an

input x ∈ X , let x(L) be the output of the MrDAM defined by the energy function in eq. (11) using
the true energy gradient in eq. (6) and x̂(L) be the output of DrDAM with approximate gradient in
eq. (10) using the random feature map φ using a constant step-size of η > 0 in (5). Then∥∥∥x(L) − x̂(L)

∥∥∥
2
≤ 2ηLC1KeβE(x)

√
D/Y

(
1−

(
ηL(1 + 2Kβeβ/2)

)L
1− ηL(1 + 2Kβeβ/2)

)
(12)

Assumption (A1) just ensures that all the memories and inputs have bounded norm, and can be
achieved via translating and scaling the memories and inputs. Assumption (A2) pertains to the
approximation introduced in the kernel function evaluation with the random feature map, and is
satisfied (with high probability) based on results such as Rahimi and Recht [37, Claim 1] and
Choromanski et al. [18, Theorem 4]. The above result precisely characterizes the effect on the
divergence ∥x(L) − x̂(L)∥ of the (i) initial energy of the input E(x) – lower is better, (ii) the inverse
temperature β – lower is better, (iii) the number of memories K – lower is better, (iv) the ambient
data dimensionality D – lower is better, (v) the number of random features Y – higher is better,
and (vi) the number of layers L – lower is better. The proof and further discussion are provided in
appendix F.2. Note that theorem 2 analyzes the discretized system, but as the step-size η → 0, we
approach the fully contracting continuous model. An appropriate choice for the energy descent step-
size η simplifies the above result, bounding the divergence to O(

√
D/Y):

Corollary 1. Under the conditions and definitions of theorem 2, if we set the step size η =
C2

L(1+2Kβeβ/2)
with C2 < 1, the divergence is bounded as:∥∥∥x(L) − x̂(L)

∥∥∥
2
≤ C1C2e

β(E(x)−1/2)

β(1− C2)

√
D/Y . (13)

These above results can be extended to the EDP based energy function E(x) =
−1/β log

∑
µ exp(β ⟨ξ

µ,x⟩) + 1/2∥x∥22 using the same proof technique.

4 Empirical evaluation

To be an accurate approximation of the traditional MrDAM, DrDAM must empirically satisfy the
following desiderata for all possible queries and at all configurations for inverse temperature β and
pattern dimension D:

(D1) for the same query, DrDAM must predict similar energies and energy gradients as MrDAM; and
(D2) for the same initial query, DrDAM must retrieve similar fixed points as MrDAM.

However, in our experiments we observed that the approximation quality of DrDAM is strongly
affected by the choice of β and that the approximation quality decreases the further the query patterns
are from the stored memory patterns, as predicted by theorem 2. We characterize this behavior in
the following experiments using the trigonometric “SinCos” basis function, which performed best in
our ablation experiments (see appendix C), but note that the choice of the random features do play a
significant role in the interpretations of these results.

4.1 (D1) How accurate are the energies and gradients of DrDAM?

Figure 3 evaluates how well DrDAM, configured at different feature sizes Y , approximates the energy
and energy gradients of MrDAM configured with different inverse temperatures β and storing random
binary patterns of dimension D. The experimental setup is described below.

7

Figure 3: DrDAM produces better approximations to the energies and gradients of MrDAM when
the queries are closer to the stored patterns. Approximation quality improves with larger feature
dimension Y , but decreases with higher β and higher pattern dimension D. Approximation error is
computed on 500 stored binary patterns normalized between {0, 1√

D
}. The Mean Approximation

Errors (MAE, eq. (14)) is taken over 500 queries initialized: at stored patterns (i.e., queries equal
the stored patterns), near stored patterns (i.e., queries equal the stored patterns where 10% of the
bits have been flipped), and randomly (i.e., queries are random and far from stored patterns). Error
bars represent the standard error of the mean but are visible only at poor approximations. Red
horizontal lines represent the expected error of random energies and gradients. The theoretical error
upper bounds of eq. (13) (dark curves on the gradient errors in the right plot only) show a tight fit to
empirical results at low β and D and are only shown if predictions are “better than random”. The
shaded area shows the difference between the theoretical bound and the empirical results.

We generated 2K = 1000 unique, binary patterns (where each value is normalized to be {0, 1√
D
}) and

stored K = 500 of them into the memory matrix Ξ of MrDAM. We denote these stored patterns as ξµ ∈
{0, 1√

D
}D, µ ∈ JKK, where D is a hyperparameter controlled by the experiment. For a given β, the

memory matrix is converted into the featurized memory vector Tα :=
∑

µ φα(ξ
µ) from eq. (9), where

α ∈ J2Y K. The remaining patterns are treated as the “random queries” xb
far, b ∈ JKK (i.e., queries

that are far from the stored patterns). Finally, in addition to evaluating the energy at these random
queries and at the stored patterns, we also want to evaluate the energy at queries xb

near that are “near”
the stored patterns; thus, we take each stored pattern ξµ and perform bit-flips on 0.1D of its entries.

For each set of queries xb ∈ {ξb,xb
near,x

b
far}, b ∈ JKK, and choice of β, Y , and D, we compute the

Mean Approximation Error (MAE) between MrDAM’s energy Eb := E(xb;β,Ξ) (whose gradient
matrix is denoted∇xEb) and DrDAM’s energy Êb := Ê(xb;β,T) (whose gradient is denoted∇xÊb).

MAEEnergy =
1

K

∑
b∈JKK

∣∣∣Eb − Êb

∣∣∣ , and MAEGradient =
1

K

∑
b∈JKK

∥∥∥∇xEb −∇xÊb

∥∥∥
2

(14)

We found it useful to visualize the results using log-scale and to compare the errors against the
expected error of a “random guess” of the energy/gradients (horizontal red dashed line in each plot
of fig. 3). The “random guess error” was empirically computed by sampling a new set of random
queries xb

guess, b ∈ JKK (independent of the reference queries) and computing the MAE between the
standard energy on the reference queries vs. the approximate energies on the random queries. This
error was averaged across Y for each β; the highest average error across all βs is plotted.
Observation 1: DrDAM approximations are best for queries near stored patterns DrDAM
approximations for both the energy and energy gradients are better the closer the query patterns are
to the stored patterns. In this regime, approximation accuracy predictably improves when increasing

8

Figure 4: A) Retrieval errors predictably follow the approximation quality of fig. 3. Error is lowest
at/near stored patterns but is completely random when energy and gradient approximations are poor,
i.e., at high values of β and D. Note that error improves across Y but follows a different (and
noisier) trace than the corresponding approximations for energy and gradient in fig. 3 due to error
accumulating over multiple update steps. B) DrDAM’s approximation quality improves as Y increases
(visible at low β), but larger Y ’s are needed for good approximations to the DAM’s fixed points
at higher β’s. (Left) The same corrupted query from CIFAR-10 where bottom 50% is masked is
presented to DAM’s with different β’s. (Middle) The fixed points of DrDAM for each β at different
sizes Y of the feature space. (Right) The “ground truth” fixed point of MrDAM. The top 50% of pixels
are clamped throughout the dynamics.

the value for Y within “reasonable” values (i.e., values corresponding into sizes of featurized queries
and memories that can operate within 46GB of GPU memory).

Observation 2: DrDAM approximations worsen as inverse temperature β increases Across
nearly all experiments, DrDAM approximations worsen as β increases. At queries near the stored
patterns, β = 50 has an energy error approximately 10× that of β = 30 and 100× that of β = 10
across all Y . At high D and when queries are far from the patterns, the error of β = 50 approaches
1000× the error of β = 10. This observation similarly holds for the errors of corresponding gradients,
corroborating the statement of theorem 2.

Observation 3: DrDAM approximations break at sufficiently high values of D and β In general,
DrDAM’s approximation errors remain the same across choices for D, especially when the queries
are near the stored patterns. However, when both β and D are sufficiently large (e.g., β ≥ 40 and
D ≥ 100 in fig. 3), increasing the value of Y does not improve the approximation quality: DrDAM
continues to return almost random gradients and energies. We explore this phenomenon more in § 4.2
in the context of the retrievability of stored patterns.

4.2 (D2) How accurate are the memory retrievals using DrDAM?

Memory retrieval is the process by which an initial query x(0) descends the energy function and is
transformed into a fixed point of the energy dynamics. This process can be described by the discrete
update rule in eq. (5), where E can represent either MrDAM’s energy or the approximate energy of
DrDAM. A memory is said to be “retrieved” when |E(x(L))−E(x(L−1))| < ε for some small ε > 0,
at which point x(L−1) ≈ x(L) =: x⋆ is declared to be the retrieved memory after L iterations because
x⋆ lives at a local minimum of the energy function E.

Quantifying retrieval error Given the same initial queries x(0) ∈ {0, 1√
D
}D, we want to quantify

the difference between the fixed points x̂⋆ retrieved by descending DrDAM’s approximate energy and
the fixed points x⋆ retrieved by descending the energy of MrDAM. We follow the experimental setup
of § 4.1, only this time we run full memory retrieval dynamics until convergence.

9

Note that since energy uses an L2-similarity kernel, memory retrieval is not guaranteed to return
binary values. Thus, we binarize x⋆ by assigning each entry to its nearest binary value before
computing the normalized Hamming approximation error ∆H , i.e.,

⌈x⌋ :=


1√
D
, x ≥ 1

2
√
D

0, otherwise
, and ∆H :=

1√
D

∑
i∈JDK

∣∣∣⌈x⋆
i ⌋ − ⌈x̂⋆

i ⌋
∣∣∣. (15)

The choice of normalized Hamming approximation error ∆H on our binary data is equivalent to the
squared L2 error on the left side of our bound in eq. (13) (up to a linear scaling of 1√

D
).

Figure 4A shows the results of this experiment. Many observations from § 4.1 translate to these
experiments: we notice that retrieval is random at high β and D, and that retrievals are of generally
higher accuracy nearer the stored patterns. However, we notice that high β values can retrieve better
approximations than lower values of β when the queries are at or near stored patterns. Additionally,
for sufficiently high β (e.g., see D = 1000, β = 50 near stored patterns), this accompanies an
interesting “thresholding” behavior for Y where retrieval error starts to improve rapidly once Y
reaches a minimal threshold. This behavior is corroborated in the high D regime in fig. 4B.

Visualizing retrieval error Figure 4B shows what retrieval errors look like qualitatively. We stored
K = 10 random images from CIFAR10 [43] into the memory matrix of MrDAM, resulting in patterns
of size D = 3× 32× 32 = 3072, and compared retrievals using βs that produced meaningful image
results with MrDAM. To keep β values consistent with our previous experiments, each pixel was
normalized to the continuous range between 0 and 1√

D
s.t. ξµi ∈ [0, 1√

D
], with µ ∈ JKK and i ∈ JDK.

From § 4.1 and fig. 4A, we know that approximate retrievals are inaccurate at high β and high D if
the query is far from the stored patterns. However, this is exactly the regime we test when retrieving
images in fig. 4B. The visible pixels (top half of the image) are clamped while running the dynamics
until convergence. Retrieved memories at different configurations for DrDAM are plotted against their
corresponding MrDAM retrievals in fig. 4B.

As β increases, insufficiently large values of Y fail to retrieve meaningful approximations to the
dynamics of MrDAM. We observe that image completions generally become less noisy as Y increases,
but with diminishing improvement in perceptible quality after some threshold where DrDAM goes
from predicting noise to predicting meaningful image completions.

5 Conclusion

Our study is explicitly designed to characterize where DrDAM is a good approximation to the energies
and dynamics of MrDAM. In pushing the limits of the distributed representation, we discovered that
DrDAM is most accurate when: (1) query patterns are nearer to the stored patterns; (2) β is lower; and
(3) Y is large. Error bounds for these situations are explicitly derived in theorem 2 and empirically
tested in § 4.

We have explored the use of distributed representations via random feature maps in DenseAMs. We
have demonstrated how this can be done efficiently, and we precisely characterized how it performs the
neural dynamics relative to the memory representation DenseAMs. Our theoretical results highlight
the factors playing a role in the approximation introduced by the distributed representations, and
our experiments validate these theoretical insights. As future work, we intend to explore how such
distributed representations can be leveraged in hierarchical associative memory networks [44, 45],
which can have useful inductive biases (e.g., convolutions, attention), and allow extensions with
multiple hidden layers.

10

References
[1] John J Hopfield. Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[2] Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances
in neural information processing systems, 29, 2016.

[3] Mete Demircigil, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet. On a model
of associative memory with huge storage capacity. Journal of Statistical Physics, 168(2):288–
299, 2017.

[4] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas
Gruber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer,
Johannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=tL89RnzIiCd.

[5] Dmitry Krotov and John J Hopfield. Large associative memory problem in neurobiology and
machine learning. In International Conference on Learning Representations, 2021.

[6] Beren Millidge, Tommaso Salvatori, Yuhang Song, Thomas Lukasiewicz, and Rafal Bogacz.
Universal hopfield networks: A general framework for single-shot associative memory models.
In International Conference on Machine Learning, pages 15561–15583. PMLR, 2022.

[7] Thomas F Burns and Tomoki Fukai. Simplicial hopfield networks. In The Eleventh International
Conference on Learning Representations, 2022.

[8] Dmitry Krotov. A new frontier for hopfield networks. Nature Reviews Physics, 5(7):366–367,
2023.

[9] Benjamin Hoover, Hendrik Strobelt, Dmitry Krotov, Judy Hoffman, Zsolt Kira, and Duen Horng
Chau. Memory in Plain Sight: Surveying the Uncanny Resemblances of Associative Memories
and Diffusion Models, 2023. URL https://arxiv.org/abs/2309.16750.

[10] Luca Ambrogioni. In Search of Dispersed Memories: Generative Diffusion Models Are
Associative Memory Networks. Entropy, 26(5), 2024. ISSN 1099-4300. doi: 10.3390/
e26050381. URL https://www.mdpi.com/1099-4300/26/5/381.

[11] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

[12] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995. URL https://link.springer.com/content/pdf/10.1007/bf00994018.pdf.

[13] Ryan R Curtin, Parikshit Ram, and Alexander G Gray. Fast exact max-kernel search. In
Proceedings of the 2013 SIAM International Conference on Data Mining, pages 1–9. SIAM,
2013. URL https://doi.org/10.1137/1.9781611972832.1.

[14] Ryan R Curtin and Parikshit Ram. Dual-tree fast exact max-kernel search. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 7(4):229–253, 2014. URL https://doi.
org/10.1002/sam.11218.

[15] Christina Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum kernel: A string
kernel for svm protein classification. In Biocomputing 2002, pages 564–575. World Scientific,
2001. URL https://www.worldscientific.com/doi/abs/10.1142/9789812799623_
0053.

[16] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioin-
formatics, 21(suppl_1):i47–i56, 2005. URL https://dl.acm.org/doi/abs/10.1093/
bioinformatics/bti1007.

11

https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://arxiv.org/abs/2309.16750
https://www.mdpi.com/1099-4300/26/5/381
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://link.springer.com/content/pdf/10.1007/bf00994018.pdf
https://doi.org/10.1137/1.9781611972832.1
https://doi.org/10.1002/sam.11218
https://doi.org/10.1002/sam.11218
https://www.worldscientific.com/doi/abs/10.1142/9789812799623_0053
https://www.worldscientific.com/doi/abs/10.1142/9789812799623_0053
https://dl.acm.org/doi/abs/10.1093/bioinformatics/bti1007
https://dl.acm.org/doi/abs/10.1093/bioinformatics/bti1007

[17] K-R Müller, Alexander J Smola, Gunnar Rätsch, Bernhard Schölkopf, Jens Kohlmorgen, and
Vladimir Vapnik. Predicting time series with support vector machines. In International
conference on artificial neural networks, pages 999–1004. Springer, 1997. URL https:
//link.springer.com/chapter/10.1007/BFb0020283.

[18] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. Proceedings of ICLR, 2020. URL https://arxiv.org/pdf/2009.
14794.pdf.

[19] Deepali Jain, Krzysztof Marcin Choromanski, Kumar Avinava Dubey, Sumeet Singh, Vikas
Sindhwani, Tingnan Zhang, and Jie Tan. Mnemosyne: Learning to train transformers with
transformers. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=Fdfyga5i0A.

[20] Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng
Chau, Mohammed Zaki, and Dmitry Krotov. Energy transformer. Advances in Neural Infor-
mation Processing Systems, 36, 2024. URL https://proceedings.neurips.cc/paper_
files/paper/2023/file/57a9b97477b67936298489e3c1417b0a-Paper-Conference.
pdf.

[21] Georgios Iatropoulos, Johanni Brea, and Wulfram Gerstner. Kernel memory networks: A
unifying framework for memory modeling. Advances in neural information processing systems,
35:35326–35338, 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/e55d081280e79e714debf2902e18eb69-Paper-Conference.pdf.

[22] Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024. URL https://arxiv.org/pdf/
2404.03900.pdf.

[23] Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu.
On sparse modern hopfield model. Advances in Neural Information Processing Systems,
36, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
57bc0a850255e2041341bf74c7e2b9fa-Paper-Conference.pdf.

[24] Saul José Rodrigues Dos Santos, Vlad Niculae, Daniel C Mcnamee, and Andre Martins.
Sparse and structured hopfield networks. In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pages
43368–43388. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/v235/
santos24a.html.

[25] Hamza Chaudhry, Jacob Zavatone-Veth, Dmitry Krotov, and Cengiz Pehlevan. Long
sequence hopfield memory. Advances in Neural Information Processing Systems, 36,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
aa32ebcdd2ce1bed4ef7f456fc8fa5c1-Paper-Conference.pdf.

[26] Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=6iwg437CZs.

[27] Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 19327–19343. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/hu24j.html.

[28] Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval
with larger capacity for modern hopfield models. arXiv preprint arXiv:2404.03900, 2024. URL
https://arxiv.org/pdf/2404.03827.pdf.

[29] Matteo Negri, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, and Enrico Maria Malatesta.
Random feature hopfield networks generalize retrieval to previously unseen examples. In
Associative Memory & Hopfield Networks in 2023, 2023.

12

https://link.springer.com/chapter/10.1007/BFb0020283
https://link.springer.com/chapter/10.1007/BFb0020283
https://arxiv.org/pdf/2009.14794.pdf
https://arxiv.org/pdf/2009.14794.pdf
https://openreview.net/forum?id=Fdfyga5i0A
https://proceedings.neurips.cc/paper_files/paper/2023/file/57a9b97477b67936298489e3c1417b0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/57a9b97477b67936298489e3c1417b0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/57a9b97477b67936298489e3c1417b0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e55d081280e79e714debf2902e18eb69-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e55d081280e79e714debf2902e18eb69-Paper-Conference.pdf
https://arxiv.org/pdf/2404.03900.pdf
https://arxiv.org/pdf/2404.03900.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/57bc0a850255e2041341bf74c7e2b9fa-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/57bc0a850255e2041341bf74c7e2b9fa-Paper-Conference.pdf
https://proceedings.mlr.press/v235/santos24a.html
https://proceedings.mlr.press/v235/santos24a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/aa32ebcdd2ce1bed4ef7f456fc8fa5c1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/aa32ebcdd2ce1bed4ef7f456fc8fa5c1-Paper-Conference.pdf
https://openreview.net/forum?id=6iwg437CZs
https://openreview.net/forum?id=6iwg437CZs
https://proceedings.mlr.press/v235/hu24j.html
https://proceedings.mlr.press/v235/hu24j.html
https://arxiv.org/pdf/2404.03827.pdf

[30] Matteo Negri, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, and Enrico Malatesta.
Storage and learning phase transitions in the random-features hopfield model. Physical Review
Letters, 131(25):257301, 2023.

[31] Bernard W Silverman. Density estimation for statistics and data analysis. Chapman &
Hall/CRC, 1998.

[32] Bishwajit Saha, Dmitry Krotov, Mohammed J Zaki, and Parikshit Ram. End-to-end differen-
tiable clustering with associative memories. In Proceedings of the 40th International Confer-
ence on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
29649–29670. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
saha23a.html.

[33] Rylan Schaeffer, Nika Zahedi, Mikail Khona, Dhruv Pai, Sang Truong, Yilun Du, Mitchell
Ostrow, Sarthak Chandra, Andres Carranza, Ila Rani Fiete, Andrey Gromov, and Sanmi Koyejo.
Bridging associative memory and probabilistic modeling, 2024. URL https://arxiv.org/
abs/2402.10202.

[34] Leo Kozachkov, Ksenia V Kastanenka, and Dmitry Krotov. Building transformers from neurons
and astrocytes. Proceedings of the National Academy of Sciences, 120(34):e2219150120, 2023.

[35] Leo Kozachkov, Jean-Jacques Slotine, and Dmitry Krotov. Neuron-astrocyte associative memory.
arXiv preprint arXiv:2311.08135, 2023.

[36] Léon Bottou. Large-scale kernel machines. MIT press, 2007.

[37] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 2007. URL https://proceedings.neurips.cc/
paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf.

[38] Valerii Likhosherstov, Krzysztof Marcin Choromanski, Kumar Avinava Dubey, Frederick Liu,
Tamas Sarlos, and Adrian Weller. Dense-exponential random features: Sharp positive estimators
of the gaussian kernel. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=S0xrBMFihS.

[39] Purushottam Kar and Harish Karnick. Random feature maps for dot product kernels. In Artificial
intelligence and statistics, pages 583–591. PMLR, 2012. URL https://proceedings.mlr.
press/v22/kar12/kar12.pdf.

[40] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 239–247, 2013. URL https://dl.acm.org/doi/pdf/10.1145/
2487575.2487591.

[41] Raffay Hamid, Ying Xiao, Alex Gittens, and Dennis DeCoste. Compact random feature
maps. In International conference on machine learning, pages 19–27. PMLR, 2014. URL
https://proceedings.mlr.press/v32/hamid14.pdf.

[42] Krzysztof M Choromanski, Mark Rowland, and Adrian Weller. The unreasonable effec-
tiveness of structured random orthogonal embeddings. Advances in neural information pro-
cessing systems, 30, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
bf8229696f7a3bb4700cfddef19fa23f-Paper.pdf.

[43] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[44] Dmitry Krotov. Hierarchical associative memory, 2021. URL https://arxiv.org/abs/
2107.06446.

[45] Benjamin Hoover, Duen Horng Chau, Hendrik Strobelt, and Dmitry Krotov. A universal ab-
straction for hierarchical hopfield networks. In The Symbiosis of Deep Learning and Differential
Equations II, 2022. URL https://openreview.net/forum?id=SAv3nhzNWhw.

13

https://proceedings.mlr.press/v202/saha23a.html
https://proceedings.mlr.press/v202/saha23a.html
https://arxiv.org/abs/2402.10202
https://arxiv.org/abs/2402.10202
https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
https://openreview.net/forum?id=S0xrBMFihS
https://proceedings.mlr.press/v22/kar12/kar12.pdf
https://proceedings.mlr.press/v22/kar12/kar12.pdf
https://dl.acm.org/doi/pdf/10.1145/2487575.2487591
https://dl.acm.org/doi/pdf/10.1145/2487575.2487591
https://proceedings.mlr.press/v32/hamid14.pdf
https://proceedings.neurips.cc/paper/2017/file/bf8229696f7a3bb4700cfddef19fa23f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/bf8229696f7a3bb4700cfddef19fa23f-Paper.pdf
https://arxiv.org/abs/2107.06446
https://arxiv.org/abs/2107.06446
https://openreview.net/forum?id=SAv3nhzNWhw

[46] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers.
Machine learning, 6:161–182, 1991.

[47] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[48] Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and stability in in-context learning. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 19565–19594. PMLR, 23–29 Jul 2023.
URL https://proceedings.mlr.press/v202/li23l.html.

14

http://github.com/google/jax
https://proceedings.mlr.press/v202/li23l.html

A Limitations

In this paper, we have explored the use of distributed representations via random feature maps in
DenseAMs. However, we are only scratching the surface of opportunities that such distributed
representations bring to DenseAMs. There are various aspects we do not cover: (i) We do not cover
the ability of these distributed representations to provide (probably lossy) compression. (ii) We do
not study the properties of DrDAM relative to MrDAM when DrDAM is allowed to have different step
sizes and number of layers than MrDAM. A further limitation of our work is the limited number of
datasets on which we have characterized the performance of DrDAM.

B Approximation error when increasing the number of stored patterns in
DrDAM

§ 4.1 validated eq. (13), confirming that approximation error decreases as the number of random
features Y increases under constant number of stored patterns K. We can also consider a related
but different question: under constant number of random features Y , how does approximation error
behave when increasing the number of stored patterns K? Intuitively, DrDAM’s approximation should
be good when a small number of patterns are stored in the network, and this approximation should
worsen as we increase the number of stored patterns.

Figure 5 validates this intuition empirically, with the caveat that random queries generally improve
in accuracy because the probability of being near a stored patterns (a regime that generally leads to
higher accuracy of retrievals, see § 4) increases as we store more patterns into the network. For this
experiment, Y = 2e5 was held constant across all experiments and each plotted approximation error
is averaged over a number of queries equal to the number of stored patterns K. The experimental
design otherwise exactly replicates that of fig. 3.

Figure 5: Mean Approximation Error (MAE, eq. (14)) increases as the number of stored patterns K
increases (except at random starting positions, where more stored patterns increases the probability
that a random query is closer to a memory, a regime that leads to higher accuracy of the retrievals,
see fig. 3), keeping Y = 2e5 constant across all experiments.

C Ablation study: Comparing choices for basis function

Different basis functions can be used to approximate the RBF kernel used in the energy of the memory
representation of the DAM in eq. (7). We considered the following kernels (“Cos”, “SinCos”, “Exp”,
“ExpExp”), rewritten here as

15

φCos(x) =

√
2

Y


cos(

〈
ω1,x

〉
+ b1)

cos(
〈
ω2,x

〉
+ b2)

. . . ,
cos(

〈
ωY ,x

〉
+ bY)

 ,

φSinCos(x) =
1√
Y



cos(
〈
ω1,x

〉
)

sin(
〈
ω1,x

〉
)

cos(
〈
ω2,x

〉
)

sin(
〈
ω2,x

〉
)

. . . ,
cos(

〈
ωY ,x

〉
)

sin(
〈
ωY ,x

〉
)


,

φExp(x) =
exp(−∥x∥22)√

Y


exp(

〈
ω1,x

〉
+ b1)

exp(
〈
ω2,x

〉
+ b2)

. . . ,
exp(

〈
ωY ,x

〉
+ bY)

 ,

φExpExp(x) =
exp(−∥x∥22)√

2Y



exp(+
〈
ω1,x

〉
)

exp(−
〈
ω1,x

〉
)

exp(+
〈
ω2,x

〉
)

exp(−
〈
ω2,x

〉
)

. . . ,
exp(+

〈
ωY ,x

〉
)

exp(−
〈
ωY ,x

〉
)


,

where ωα ∼ N (0, ID), α ∈ JY K are the random projection vectors and bα ∼ U(0, 2π) are random
“biases” or shifts in the basis function.

Figure 6 shows how well the above basis functions approximated the true energy and energy gradient
at different values for β and size of feature dimension Y . Specifically, given the Letter dataset [46]
which consists of 16-dimensional continuous vectors whose values were normalized to be between
[0, 1√

D
], we randomly selected 900 unique data points, storing 500 patterns into the memory and

choosing the remaining 400 to serve as new patterns. We then compared how well the energy and
energy gradients of the chosen basis function approximates the predictions of the original DAM.

We observe that the trigonometric basis functions (i.e., either Cos or SinCos) provide the most
accurate approximations for the energy and gradients of the standard MrDAM, especially in the regime
of high β which is required for the high memory storage capacity of DenseAMs. Surprisingly, the
Positive Random Features (PRFs) of [18] do not perform well in the dense (high β) regime; in general,
trigonometric features always provide better approximations than the PRFs.

We conclude that the SinCos basis function is the best approximation for use in the experiments
reported in the main paper, as this choice consistently produces the best approximations for the energy
gradients across all values of β.

D TinyImagenet Experimental Details

In performing the qualitative reconstructions shown in fig. 1, we used a standard MrDAM energy
(eq. (7)) configured with inverse temperature β = 60. We approximated this energy in a DrDAM
using the trigonometric “SinCos” basis function shown in eq. (8) configured with feature dimension
Y = 1.8e5. The four images shown were selected from the Tiny Imagenet [11] dataset, rasterized
into a vector, and stored in the memory matrix a MrDAM, resulting in a memory of shape (4, 12288).
Energy descent for both MrDAM and DrDAM used standard gradient descent at a step size of 0.1 until
the dynamics of all images converged (for fig. 1 after 300 steps, see energy traces). Visible pixels are
“clamped” throughout the duration of the dynamics by zeroing out the energy gradients on the visible
top one-third of the image.

16

Figure 6: Trigonometric basis functions significantly outperform Positive Random Features, especially
in the regime of large β. We end up choosing the SinCos function to analyze in the main paper,
as this choice of basis function always produced the best approximations to the energy gradient.
Experiments performed on the 16-dimensional Letters dataset [46].

In MrDAM, the memory matrix necessarily grows linearly when storing new patterns ξµ. However,
the distributed memory tensor T of DrDAM does not grow when new patterns are stored. This means
it is possible to compress the memories into a smaller tensor T where Y < NumPixels, provided
that we operate in a regime that allows larger approximation errors in the retrieval and smaller initial
occlusions. Figure 2 shows a variation of the setting of fig. 1 where stored patterns are actually
compressed into DrDAM’s memory tensor, successfully storing 20 ∗ 12288 pixels from a distributed
tensor of size Y = 2e5 and retrieving the memories with 40% initial occlusion of the queries, a
∼20% reduction in the number of parameters compared to MrDAM. All other hyperparameters are the
same as was used to generate fig. 1, and convergence on all images occurs after 1000 steps.

E Details on Computational Environment for the Experiments

All experiments are performed on a single L40s GPU equipped with 46GB VRAM. Experiments
were written and performed using the JAX [47] library for tensor manipulations. Unless otherwise
noted, gradient computation was performed using JAX’s powerful autograd mechanism. Experimen-
tal code with instructions to replicate the results in this paper are made available at this GitHub repos-
itory (https://github.com/bhoov/distributed_DAM), complete with instructions to setup the
coding environment and run all experiments.

17

https://github.com/bhoov/distributed_DAM
https://github.com/bhoov/distributed_DAM
https://github.com/bhoov/distributed_DAM

F Detailed Proofs and Discussions

F.1 Details for theorem 1

F.1.1 Proof of theorem 1

Proof of theorem 1. The proof above involves noting that, first we need to encode all the memories
with ProcMems, which takes O(DYK) time and O(Y +D) peak memory using proposition 3.

Then we compute L gradients with GradComp for L iterations of energy gradient descent, taking
O(LD(Y +D)) time and O(D + Y) peak memory using proposition 4.

Putting the runtimes together, and using the maximum of the peak memories gives us the statement
of the theorem.

F.1.2 Comparing computational complexities of MrDAM and DrDAM

Note that, comparing the computational complexities of MrDAM in proposition 1 to that of DrDAM
in theorem 1 does not directly provide any computational improvements as it would depend on the
choices of D,K,L, Y . The main point of these results is to highlight, that once the memories are
processed via ProcMems, the energy descent with DrDAM requires computation and memory that
only depends on D and Y . And together with theorem 2 and corollary 1, we characterize situations
where the energy descent divergence between MrDAM and DrDAM can be bounded with a choice of Y
that only depends on D (and other parameters in the energy function) but not K.

While we do not claim or highlight computational gains over MrDAM, note that the peak memory
complexity of MrDAM is O(KD) compared to O(Y +D) for DrDAM. Given that in the interesting
regime of Y ∼ O(D/ϵ2) which upperbounds the energy descent divergence between DrDAM and
MrDAM in corollary 1 to at most some ϵ > 0, DrDAM is more memory efficient than MrDAM if the
number of memories K > C/ϵ2 for some sufficiently large positive constant C. Ignoring the time
required to encode the memories into the distributed representation in DrDAM using ProcMems, the
runtime complexities are O(LKD) for MrDAM compared to O(LD(Y + D)) for DrDAM. Again,
considering the interesting regime of Y ∼ O(D/ϵ2), DrDAM will be computationally more efficient
than MrDAM if the number of memories K > C̃D/ϵ2 for some sufficiently large positive constant C̃.

F.2 Details for theorem 2

F.2.1 Proof of theorem 2

Here we will make use of the following result from Li et al. [48]:

Lemma 1 (adapted from Li et al. [48] Lemma B.1). For x, z ∈ RK with maxi,j∈JKK(xi − xj) ≤ δ
and maxi,j∈JKK(zi − zj) ≤ δ, we have the following:

∥softmax(x)∥∞ ≤
eδ

K
, ∥softmax(x)− softmax(z)∥1 ≤

eδ

K
∥x− z∥1. (16)

We now develop the following results:

Lemma 2. Under the conditions and notation of theorem 2, for x, z ∈ X , we have

∥∇xE(x)−∇xE(z)∥ ≤ (1 + 2Kβeβ/2)∥x− z∥. (17)

Proof. Given the energy function in eq. (11), we can write the energy gradient∇xE(x) as:

∇xE(x) = softmax(−β/2∥x− Ξ∥22)(x− Ξ) = x− softmax(−β/2∥x− Ξ∥22)Ξ, (18)

where Ξ = [ξ1, . . . , ξK], ∥x − Ξ∥22 denotes [∥x − ξ1∥22, . . . ∥x − ξK∥22] and (x − Ξ) denotes
[(x− ξ1), . . . , (x− ξK)]. Then we have

18

∥∇xE(x)−∇xE(z)∥2 (19)

= ∥x− softmax(−β/2∥x− Ξ∥22)Ξ− z+ softmax(−β/2∥z− Ξ∥22)Ξ∥2 (20)

≤ ∥x− z∥+ ∥(softmax(−β/2∥x− Ξ∥22)− softmax(−β/2∥z− Ξ∥22))Ξ∥2 (21)

≤ ∥x− z∥+ ∥(softmax(−β/2∥x− Ξ∥22)− softmax(−β/2∥z− Ξ∥22))∥1∥Ξ∥2 (22)

≤ ∥x− z∥+ eβ/2

K
∥Ξ∥2

∥∥β/2(∥z− Ξ∥22 − ∥x− Ξ∥22)
∥∥
1
, (23)

where we applied lemma 1 to the softmax term in the right hand side of eq. (22) with δ = β/2 since
all pairwise distances in X are in [0, 1].

Now we have

∥∥β/2(∥z− Ξ∥22 − ∥x− Ξ∥22)
∥∥
1
=

β

2

K∑
µ=1

∣∣∥z− ξµ∥22 − ∥x− ξµ∥22
∣∣ (24)

=
β

2

K∑
µ=1

|⟨z+ x, z− x⟩+ 2 ⟨ξµ,x− z⟩| (25)

≤ β

2

K∑
µ=1

∥z− x∥(∥z+ x∥+ 2∥ξµ∥) ≤ β

2

K∑
µ=1

4∥z− x∥, (26)

since ∥ξµ∥ ≤ 1 and ∥x+ z∥ ≤ ∥x∥+ ∥z∥ ≤ 2. Putting eq. (26) in eq. (23), and using the fact that
∥Ξ∥2 ≤ K, we have

∥∇xE(x)−∇xE(z)∥2 ≤ ∥x− z∥+ eβ/2

K
K2β

K∑
µ=1

∥z− x∥ = (1 + 2Kβeβ/2)∥x− z∥, (27)

giving is eq. (16) in the statement of the lemma.

Given the structure of the energy gradient in eq. (18) of the energy function in eq. (11), we consider a
specific energy gradient for this specific energy function instead of the generic energy gradient in
eq. (10). We can rewrite the exact energy gradient as

∇xE(x) = x−
K∑

µ=1

exp(−β/2∥x− ξµ∥22)ξ
µ∑K

µ′=1 exp(−β/2∥x− ξµ
′∥22)

. (28)

Using random feature maps, we can write the approximate gradient as

∇xÊ(x) = x−
K∑

µ=1

〈
φ(
√
βx),φ(

√
βξµ)

〉
ξµ∑K

µ′=1

〈
φ(
√
βx),φ(

√
βξµ

′
)
〉 (29)

=

∑K
µ=1 φ(

√
βx) ·φ(

√
βξµ) · ξµ⊤〈

φ(
√
βx),

∑K
µ′=1 φ(

√
βξµ

′
)
〉 (30)

=
φ(
√
βx) ·

∑K
µ=1 φ(

√
βξµ) · ξµ⊤〈

φ(
√
βx),T

〉 , where T =

K∑
µ′=1

φ(
√
βξµ

′
) (31)

=
φ(
√
βx) ·R〈

φ(
√
βx),T

〉 , where R =

K∑
µ=1

φ(
√
βξµ) · ξµ⊤, (32)

where we again just need to store T and R as defined above and do not need to maintain the original
memory matrix Ξ.

19

Lemma 3. Under the conditions and notation of theorem 2, and assuming that ⟨φ(x),φ(x′)⟩ ≥
0∀x,x′ ∈ X , for the approximate gradient∇xÊ(x) in eq. (32), we have

∥∇xE(x)−∇xÊ(x)∥ ≤ 2C1KeβE(x)

√
D

Y
. (33)

Proof. We can expand out the left-hand side of eq. (33) as follows:

∥∇xE(x)−∇xÊ(x)∥ =

∥∥∥∥∥
∑K

µ=1 exp(−β/2∥x− ξµ∥2)ξµ∑K
µ=1 exp(−β/2∥x− ξµ∥2)

−
∑K

µ=1

〈
φ(
√
βx),φ(

√
βξµ)

〉
ξµ∑K

µ=1

〈
φ(
√
βq),φ(

√
βξµ)

〉 ∥∥∥∥∥
(34)

by reversing the simplifying steps made above to arrive at eq. (32).

Let use denote ϵ = C1

√
D/Y the approximation in the kernel value induced by the random feature

map φ. Then considering the terms in the denominator above, we have

(1/K)

∣∣∣∣∣∑
µ

exp(−β/2∥x− ξµ∥2)−

〈
φ(
√
βx),

∑
µ

φ(
√

βξµ)

〉∣∣∣∣∣ (35)

= (1/K)

∣∣∣∣∣∑
µ

(
exp(−β/2∥x− ξµ∥2)−

〈
φ(
√

βx),φ(
√

βξµ)
〉)∣∣∣∣∣ (36)

≤ (1/K)
∑
µ

∣∣∣(exp(−β/2∥x− ξµ∥2)−
〈
φ(
√

βx),φ(
√

βξµ)
〉)∣∣∣ ≤ (1/K)

∑
µ

ϵ = ϵ. (37)

Considering the terms in the numerators, we have

(1/K)

∥∥∥∥∥∑
µ

exp(−β/2∥x− ξµ∥2)ξµ −

〈
φ(
√
βx),

∑
µ

φ(
√
βξµ)

〉
ξµ

∥∥∥∥∥ (38)

= (1/K)

∥∥∥∥∥∑
µ

(
exp(−β/2∥x− ξµ∥2)−

〈
φ(
√
βx),φ(

√
βξµ)

〉)
ξµ

∥∥∥∥∥ (39)

≤ (1/K)
∑
µ

∥∥∥(exp(−β/2∥x− ξµ∥2)−
〈
φ(
√
βx),φ(

√
βξµ)

〉)
ξµ
∥∥∥ (40)

≤ (1/K)
∑
µ

∣∣∣(exp(−β/2∥x− ξµ∥2)−
〈
φ(
√
βx),φ(

√
βξµ)

〉)∣∣∣ ∥ξµ∥ (41)

≤ (1/K)
∑
µ

ϵ∥ξµ∥ = ϵ ∵ ∥ξµ∥ ≤ 1. (42)

Let us define the following terms for convenience:

▶ a = 1/K
∑

µ exp(−β/2∥x− ξµ∥2)ξµ

▶ b = 1/K
∑

µ exp(−β/2∥x− ξµ∥2)
▶ â = 1/K

∑
µ

〈
φ(
√
βx),φ(

√
βξµ)

〉
ξµ

▶ b̂ = 1/K
∑

µ

〈
φ(
√
βx),φ(

√
βξµ)

〉
Then, based on our previous bounds, we know that

∥a− â∥ ≤ ϵ, |b− b̂| ≤ ϵ, ∥∇xE(x)−∇xÊ(x)∥ =
∥∥∥∥ab − â

b̂

∥∥∥∥ (43)

20

∥∇xE(x)−∇xÊ(x)∥ =
∥∥∥∥ab − â

b̂

∥∥∥∥ =

∥∥∥∥∥a− â

b
+

â

b̂

b̂

b
− â

b̂

∥∥∥∥∥ ≤
∥∥∥∥a− â

b

∥∥∥∥+ ∥∥∥∥ âb̂
∥∥∥∥
∣∣∣∣∣ b̂b − 1

∣∣∣∣∣ (44)

≤ 1

b
∥a− â∥+

∥∥∥∥ âb̂
∥∥∥∥ 1

b
|b̂− b| ≤ 1

b

(
ϵ+

∥∥∥∥ âb̂
∥∥∥∥ ϵ) (45)

≤ ϵ
1

b

(
1 +

∥∥∥∥ âb̂
∥∥∥∥) (46)

.

Note that (â/b̂) is in the convex hull of the memories since this is a weighted sum of the memories
where the weights are positive and add up to 1. Thus within (â/b̂) ∈ [0, 1/

√
d]d, thus ∥â/b̂∥ ≤ 1.

Now b = (1/K) exp(−βE(x)). Thus

∥∇xE(x)−∇xÊ(x)∥ ≤ 2ϵK exp(βE(x)) = 2C1K exp(βE(x))

√
D

Y
, (47)

giving us the right-hand side of eq. (33).

Proof of theorem 2. Expanding out the divergence D(L) after L energy descent steps, and using the
fact that x(0) = x̂(0) = x, we have

D(L) ≜ ∥x(L) − x̂(L)∥ (48)

=

∥∥∥∥∥∥
x(0) −

∑
t∈JLK

η∇xE(x(t−1))

−
x̂(0) −

∑
t∈JLK

η∇xÊ(x̂(t−1))

∥∥∥∥∥∥ (49)

=

∥∥∥∥∥∥
∑
t∈JLK

−η
(
∇xE(x(t−1))−∇xÊ(x̂(t−1))

)∥∥∥∥∥∥ (50)

=

∥∥∥∥∥∥
∑
t∈JLK

η
(
∇xE(x(t−1))−∇xÊ(x̂(t−1))

)∥∥∥∥∥∥ (51)

≤
∑
t∈JLK

∥∥∥η (∇xE(x(t−1))−∇xÊ(x̂(t−1))
)∥∥∥ . (52)

Let us denote the individual terms above as d(t) with D(L) =
∑

t∈JLK d
(t). Also, let us denote by

A = 2C1KeβE(x)
√
D/Y and by B = (1 + 2Kβeβ/2). Then writing out the t-th term

d(t) =
∥∥∥η (∇xE(x(t−1))−∇xÊ(x̂(t−1))

)∥∥∥ (53)

≤
∥∥∥η (∇xE(x(t−1))−∇xE(x̂(t−1))

)∥∥∥+ ∥∥∥η (∇xÊ(x̂(t−1))−∇xÊ(x̂(t−1))
)∥∥∥ (54)

≤ ηB∥x(t−1) − x̂(t−1)∥+ ηA, (55)

where the first term is bounded using lemma 2 and the definition of B, and the second term is bounded
using lemma 3 and the definition of A.

Note that this gives us the recursion d(t) ≤ ηA + ηBD(t−1), and thus, D(L) ≤
∑

t∈JLK η(A +

BD(t−1)).

21

Writing out the recursion using induction, we can show that

D(L)

= ηA

∑
t∈JLK

1 +
∑
t∈JLK

t(ηB) +
∑
t∈JLK

∑
t1∈JLK

t1(ηB)2 +
∑
t∈JLK

∑
t1∈JLK

∑
t2∈Jt1K

t2(ηB)3

+ · · ·+
∑
t∈JLK

∑
t1∈JLK

· · ·
∑

tL−1∈JtL−2K

tL−1(ηB)L−1

 (56)

≤ ηA
(
L+ L(ηBL) + L(ηBL)2 + · · ·+ L(ηBL)L−1

)
(57)

= ηAL
1− (ηBL)L

1− ηBL
. (58)

Replacing the values of A and B above gives us the statement of the theorem.

F.2.2 Dependence on the initial energy E(x) of the input.

The divergence upper bound in eq. (12) (in theorem 2) depends on the term exp(βE(x)). However,
note that, for the energy function defined in eq. (11), assuming that all memories and the initial
queries are in a ball of diameter 1 (which is the assumption A1 in theorem 2), E(x) ≤ 1

2 −
logK

β ,
implying that exp(βE(x)) ≤ exp(β/2)/K, and we can replace this in the upper bound and remove
the dependence on E(x).

However, an important aspect of our analysis is that the bound is input specific, and depends on the
initial energy E(x). As discussed above, this can be upper bounded uniformly, but our bound is more
adaptive to the input x.

For example, if the input is initialized near one of the memories, while being sufficiently far from
the remaining (K − 1) memories, then exp(βE(x)) term can be relatively small. More precisely,
with all memories and queries lying in a ball of diameter 1, let the query be at a distance r < 1 to
its closest memories, and as far as possible from the remaining (K − 1) memories. In this case, the
initial energy E(x) ≈ −(1/β) log(exp(−βr/2) + (K − 1) exp(−β/2)), implying that

exp(βE(x)) ≈ exp(βr/2)

(1 + exp(−β(1− r)/2)
≤ exp(βr/2). (59)

For sufficiently small r < 1, the above quantity can be relatively small. If, for example, r ∼ O(logK),
then exp(βE(x)) ∼ O(Kβ), while r → 0 gives us exp(βE(x)) → O(1). This highlights the
adaptive input-dependent nature of our analysis.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We lay out clearly our contribution of a novel approximation of the dynamical
process for Dense Associative Memory that uses random features.

Guidelines:
▶ The answer NA means that the abstract and introduction do not include the claims made

in the paper.
▶ The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

▶ The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

▶ It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are characterized theoretically in § 3, empirically in § 4, and
summarized in appendix A.

Guidelines:
▶ The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
▶ The authors are encouraged to create a separate "Limitations" section in their paper.
▶ The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

▶ The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

▶ The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

▶ The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

▶ If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

▶ While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

23

Justification: Assumptions, propositions, and theorems are given in § 3, with additional
proofs in appendix F.

Guidelines:
▶ The answer NA means that the paper does not include theoretical results.
▶ All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
▶ All assumptions should be clearly stated or referenced in the statement of any theorems.
▶ The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

▶ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

▶ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Extensive descriptions of the main experimental results are provided in § 4;
experimental details that were not appropriate for the main paper are explained in appendix D
and appendix E. Our proposed method itself is explained in detail in Algorithm 1.

Guidelines:
▶ The answer NA means that the paper does not include experiments.
▶ If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

▶ If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

▶ Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

▶ While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and instructions to run all experiments in this paper is provided at this
anonymous GitHub repository (https://anonymous.4open.science/r/drdam), which
is included in appendix E of our paper.

Guidelines:
▶ The answer NA means that paper does not include experiments requiring code.
▶ Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
▶ While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

▶ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

▶ The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

▶ The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

▶ At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

▶ Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All details are provided alongside the results reported in § 4. Computational
environment for the experiments is described in appendix E.

Guidelines:
▶ The answer NA means that the paper does not include experiments.
▶ The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
▶ The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars representing the “standard error of the mean” (SEM) are shown on
all quantitative plots (i.e., figs. 3, 4 and 6). We evaluated on large sample sizes s.t. the SEM
is small, but still visible when the predictions have high variability.

Guidelines:
▶ The answer NA means that the paper does not include experiments.
▶ The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

▶ The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

25

https://anonymous.4open.science/r/drdam
https://anonymous.4open.science/r/drdam
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

▶ The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

▶ The assumptions made should be given (e.g., Normally distributed errors).
▶ It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
▶ It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

▶ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

▶ If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use the same computational environment for all experiments, which is
described in appendix E.

Guidelines:
▶ The answer NA means that the paper does not include experiments.
▶ The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
▶ The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
▶ The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not require human subjects. Datasets used are public and the
nature of the evaluation is not dependent on any inherent biases. The work does not have
unexpected anticipated societal harms or other harmful consequences requiring mitigation.

Guidelines:
▶ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
▶ If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
▶ The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not anticipate any additional societal harms or other harmful conse-
quences requiring mitigation beyond the well-known risks.

Guidelines:
▶ The answer NA means that there is no societal impact of the work performed.
▶ If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

▶ Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

▶ The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

▶ The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

▶ If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No proprietary datasets were used. The models developed are not anticipated
to have a high risk potential for misuse.

Guidelines:
▶ The answer NA means that the paper poses no such risks.
▶ Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

▶ Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

▶ We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All owners of assets used in this paper are properly cited. No licensed work
was used.

Guidelines:
▶ The answer NA means that the paper does not use existing assets.
▶ The authors should cite the original paper that produced the code package or dataset.
▶ The authors should state which version of the asset is used and, if possible, include a URL.
▶ The name of the license (e.g., CC-BY 4.0) should be included for each asset.
▶ For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
▶ If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

27

paperswithcode.com/datasets

▶ For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

▶ If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper mainly contributes a new algorithm for approximating Dense
Associative Memories. This is documented throughout the paper.
Guidelines:
▶ The answer NA means that the paper does not release new assets.
▶ Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

▶ The paper should discuss whether and how consent was obtained from people whose
asset is used.

▶ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research makes no use of crowdsourcing or human subjects.
Guidelines:
▶ The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
▶ Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

▶ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research makes no use of crowdsourcing or human subjects.
Guidelines:
▶ The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
▶ Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

▶ We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

▶ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Technical background
	Random Features for Kernel Machines

	DrDAM with Random Features
	Empirical evaluation
	(D1) How accurate are the energies and gradients of DrDAM?
	(D2) How accurate are the memory retrievals using DrDAM?

	Conclusion
	Limitations
	Approximation error when increasing the number of stored patterns in DrDAM
	Ablation study: Comparing choices for basis function
	TinyImagenet Experimental Details
	Details on Computational Environment for the Experiments
	Detailed Proofs and Discussions
	Details for thm:kdam-egd-cc
	Proof of thm:kdam-egd-cc
	Comparing computational complexities of MrDAM and DrDAM

	Details for thm:div
	Proof of thm:div
	Dependence on the initial energy E(x) of the input.

