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Abstract. In real-world scenarios, such as abdominal organ and tumor
segmentation, obtaining complete labels for all classes often presents sig-
nificant challenges. Additionally, optimizing GPU efficiency emerges as
another critical factor in the abdominal organ and tumor segmentation
process.
To address the challenge of partial labeling, a semi-supervised approach
was employed. Initially, a larger model was trained using complete la-
bels, which was then utilized to generate pseudo-labels. Subsequently,
a smaller model was trained on these pseudo-labels. To mitigate GPU
memory consumption, a two-stage strategy was implemented. Firstly, an
abdomen location model was trained to accurately identify the abdom-
inal area. Subsequently, the segmentation process was restricted to this
localized area, thereby reducing the GPU memory requirements.
Experiments on the FLARE23 challenge exhibited promising perfor-
mance, with an average actual running time of 25.971 seconds, an aver-
age AUC-GPU (Area Under the Curve of GPU memory consumption)
of 28463.7 MB, and an average maximum GPU memory usage of 2.6 GB
on the validation set, and the average running time on the testing set
was 18.95 seconds, with AUC-GPU of 20790 MB. Moreover, the model
achieved a Dice coefficient (DSC) of 79.99% for organ segmentation and
27.99% for tumor segmentation on the public validation dataset, and
80.67% and 24.02% for the DSC of organ and tumor segmentation on
the testing result.

Keywords: Segmentation · Partial-label Segmentation · Computational
efficiency.

1 Introduction

In recent years, there has been an increasing adoption of deep learning-based
segmentation models in the field of medicine[1][2][3][4][5]. However, the exor-
bitant cost entailed in the annotation of medical images has given rise to an
increasingly acute dearth of labeled data. Furthermore, owing to the frequent
collection of medical data from disparate centers, the predicament of incomplete
data labeling has become a pervasive and recurrent concern.
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Currently, there have been several studies addressing the training of mod-
els on partial-labeled data. Zhang et al. [6] designed a propagated self-training
method that further guarantees the quality of the pseudo-labels and improves
the richness of the labeled data. Petit et al. [7]introduce an iterative confi-
dence self-training approach inspired by curriculum learning to relabel missing
pixel labels. Li et al. [8] proposed the Conditional Dynamic Attention Network
(CDANet) that fusing the conditional and multiscale information to better dis-
tinguish among different tasks and promoting more attention to task-related
features.

On the other hand, reducing GPU utilization is crucial for the practical
implementation of the model. More efficient implementations are necessary, as
most segmentation methods are computationally expensive, and the amount of
medical imaging data is growing[9]. The approach involves the design of efficient
models, wherein the architecture is meticulously crafted and developed. ENet [10]
serves as an exemplar of this approach. Conversely, anothor approach revolves
around network compression, wherein lightweight models such as ICNet [11] are
devised, employing pruning methods [12] that are extensively employed in image
classification models.

The Fast, Low-resource, and Accurate oRgan and Pan-cancer sEgmentation
in Abdomen CT (MICCAI FLARE 2023) is a competition that aims at effi-
ciently segmenting of 13 organs (liver, spleen, pancreas, right kidney, left kidney,
stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland,
left adrenal gland, and duodenum) and pan-cancer, i.e., all kinds of cancer types
(such as liver cancer, kidney cancer, stomach cancer, pancreas cancer, colon
cancer) . The FLARE competition provided a training set includes 4000 3D CT
scans from 30+ medical centers. 2200 cases have partial labels and 1800 cases
are unlabeled. Despite providing a substantial amount of multi-center data, the
dataset suffers from incomplete labeling, necessitating consideration of this issue
during model training.

In this paper, we proposed a weakly supervised approach based on pseudo-
labeling. Firstly, a large parameterized organ segmentation model was trained,
enabling the generation of pseudo labels. Subsequently, leveraging these pseudo
labels, a small parameterized segmentation model was trained. To mitigate the
GPU memory consumption, an abdomen region location model was trained
aimed at minimizing the size of segmentation model input tensor.

2 Method

As illustrated in Figure 1, this study begins by training a large parameterized
model for organ segmentation (organ segmentation model), then this model is
utilized to annotate the remaining data with missing labels. An abdominal region
classification model was trained to identify the abdominal slices. Eventually, by
leveraging the pseudo-labeled data, we train an efficient lightweight model for
both organ and tumor segmentation.
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2.1 Preprocessing

Before being fed into the 3D U-Net model, a preprocessing step was performed
on the CT images to enhance their suitability for analysis. This involved applying
z-score normalization, which effectively standardized the pixel intensity values
across the dataset. By normalizing the images, any variations in brightness and
contrast were minimized, ensuring consistent and reliable input for subsequent
processing.

Following the normalization step, an additional resampling procedure was
conducted to achieve uniformity in voxel spacing. The images were resampled
to a unified spacing of 2 × 2 × 3 for the x, y, and z axes. This adjustment not
only facilitated easier comparison and analysis of the data but also eliminated
any potential distortions caused by variations in voxel dimensions.

To further optimize the input for the 3D U-Net model, the patch size of the
image slices was carefully chosen. Specifically, a patch size of 96 × 128 × 160
was selected for the x, y, and z axes, respectively. This choice ensured that the
model received an appropriate and informative region of interest, enabling it
to effectively capture relevant features and patterns during the segmentation
process.

2.2 Proposed Method

.

Fig. 1. The workflow of our study and the network architecture.

As was shown in Figure 1, we divided the dataset of 2200 cases from MICCAI
into three categories: 222 cases with complete organ labels but no tumor labels
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(organ dataset), 1497 cases with tumor labels but incomplete organ labels
(tumor dataset), and 481 cases with incomplete organ labels and no tumor
labels (incomplete dataset). Our pipeline including three models.

The two-stage pipeline in our study was composed of abdominal region local-
ization and abdominal segmentation. Firstly, the abdominal region localization
model as employed to identify the abdominal slices. Then, the segmentation
model only performed on abdominal region.

Abdominal region localization model
In abdominal segmentation tasks, certain images incur significant GPU mem-

ory consumption. These images encompass non-abdominal regions. This insight
motivates us to construct an abdominal region localization model that selec-
tively retains and segments only the abdominal region. The model was trained
on organ dataset, as was shown in Figure 1.

In this study, we adopt a mask-based segmentation approach to extract la-
bels that signify the presence of the abdominal region in a given CT image.
Specifically, if a CT slice contains a mask, it is classified as representing the ab-
dominal region; conversely, if no mask is present, it is classified as representing
a non-abdominal region. Figure 2 illustrate a typical example of the abdominal
region and the non-abdominal region.

Fig. 2. The example of typical (A) abdominal region and (B) Non-abdominal region.

For the organ dataset used in this study, a split of 4/5 and 1/5 was employed
for training and testing the Abdominal region localization model, respectively.
Initially, the input data undergoes preprocessing steps. The CT images are nor-
malized using a window width of 400 and a window level of 40, enhancing the
visibility of soft tissue regions. Subsequently, the images are resampled to a size
of 256×256 and expanded to 3 channels, resulting in a tensor size of 3×256×256,
which serves as the input to the model. The model architecture employed in this
study is based on ResNet18 [13].
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During the model training process, data augmentation techniques are em-
ployed to prevent overfitting and improve generalization. These techniques help
in generating additional training samples by applying transformations such as
rotations, translations, and scaling to the input data.

Considering that the abdominal localization model itself consumes compu-
tational resources, during the inference stage, CT images larger than 50MB in
file size are processed layer by layer to obtain predictions for each slice. The
maximum and minimum predicted values among all the slices identified as the
abdominal region are used to define a continuous region of interest for subsequent
segmentation of abdominal organs and cancer region.

Organ segmentation model
An organ segmentation model was trained on an organ dataset using the

nnU-Net framework[14]. The model architecture is based on the 3D U-Net archi-
tecture, which consists of 5 downsampling modules and 5 upsampling modules.
To improve the accuracy of pseudo label generation, the model has a large num-
ber of parameters. Within the nnU-Net framework, the model was trained for a
total of 500 epochs with an initial learning rate of 0.01. To achieve robust perfor-
mance in various medical image segmentation tasks, a compound loss function
combining Dice loss and cross-entropy loss was employed, as it has been proven
effective [15]. Data augmentation techniques such as mirroring, scaling, rotation,
and translation were applied to prevent overfitting.

During training, 4/5 of the organ dataset was used for training the model,
while the remaining 1/5 was used for validation. The model with the highest Dice
coefficient on the validation set was selected as the optimal organ segmentation
model. After training, this model was utilized to annotate a tumor dataset,
providing segmentation labels for regions where the tumor dataset was lacking
annotations, based on the model’s predictions.

Final segmentation model
To obtain an efficient lightweight model for organ and tumor segmentation,

we first reduced the number of parameters of the 3D UNet model. Subsequently,
we pretrained the model on the organ dataset using the same training approach
as described earlier for the organ segmentation model. After the pretraining
procedure, we modified the model’s parameters by adding a tensor of the same
size to the final output convolutional layer, resulting in 15 output channels rep-
resenting the background, 13 organs, and tumors. This additional tensor was
initialized to zero.

Subsequently, model optimization was performed on the tumor dataset after
completing the segmentation label augmentation. A total of 500 epochs were
trained with an initial learning rate of 0.01. The loss function, optimizer, and
other settings remained consistent with the organ segmentation model. After
training, the model with the highest Dice coefficient on the validation set was
selected as the final model.

The remaining dataset
The incomplete dataset and the unlabeled images were not used, as well as

any pseudo labels generated by the FLARE21 winning algorithm [16] [17].
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2.3 Post-processing

To reduce computational load, this study employed GPU-based resampling to
ensure that the size of the output segmented images matched that of the original
images and corresponded to the abdominal region. No post-processing techniques
were employed beyond this to maintain computational efficiency.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [18][19],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [20], LiTS [21], MSD [22], KiTS [23,24],
autoPET [25,26], TotalSegmentator [27], and AbdomenCT-1K [28]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [29], nnU-Net [14], and
MedSAM [30].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols The training protocals of the final segmentation models
can be found in Table 2. As for the abdominal region location model, the op-
timization process utilizes the Adam optimizer with an initial learning rate of
0.0001. The Cross Entropy Loss function is employed as the objective function
for training the model.

4 Results and discussion

4.1 Performance of abdominal region localization model

The organ dataset composed of 56989 images (17716 labeled non-abdominal
image , and 39273 labeled abdominal image), and was splited into training
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Table 1. Development environments and requirements.

System Ubuntu 16.04.3 LTS
CPU Intel(R) Xeon(R) CPU E5-2685 v3 @ 2.60GHz
RAM 16×16GB; (the memory speed is not available )
GPU (number and type) One TITAN Xp 12G
CUDA version 10.1
Programming language Python 3.6.8
Deep learning framework torch 1.6.0, torchvision 0.7.0
Specific dependencies NA
Code the github link will be provided after acceptance

Table 2. Training protocols.

Network initialization InitWeights_He
Batch size 2
Patch size 96×128×160
Total epochs 500
Optimizer Adam
Initial learning rate (lr) 0.01
Lr decay schedule Polynomial Learning Rateschedule
Training time 11.25 hours
Loss function 0.5× LBCE + 0.5× LDice

Number of model parameters 1.385M1

Number of flops 34.185G2

CO2eq Kg3
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set(13585 labeled non-abdominal image , and 31078 labeled abdominal image)
and testing set(4131 labeled non-abdominal image , and 8195 labeled abdominal
image). On the testing set, the abdominal region localization model reached a
area under the receiver operating characteristic curve (AUC) of 0.994, accuracy
of 0.959, sensitivity of 0.954, and specificity of 0.969.

4.2 Segmentation efficiency results on validation set

The efficiency performance on validation set can be found in Table 3. In our
approach, we leveraged abdominal localization models to enhance segmentation
efficiency in case 0019, 0099, 0063, 0048, and 0029. We observed that the running
time was shorter in case 0001 and 0019 compared to the other cases. Additionally,
the maximum GPU usage and total GPU usage were also lower in these two
cases. In case 0019, for example, out of the total 215 slices, the abdominal region
predicted by the abdominal region localization model only spanned from slice
106 to slice 214. This means that only 108 slices were available for segmentation,
which resulted in a reduced workload and potentially improved the efficiency of
GPU utilization.

Table 3. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 18.85 1796 16313
0051 (512, 512, 100) 28.21 2454 34003
0017 (512, 512, 150) 36.33 2946 47435
0019 (512, 512, 215) 16.54 2470 17208
0099 (512, 512, 334) 42.7 2992 27054
0063 (512, 512, 448) 20.15 3444 24857
0048 (512, 512, 499) 23.07 4090 31461
0029 (512, 512, 554) 23.83 4222 33770

4.3 Quantitative results on validation set

Figure 3 presents four samples of the segmentation results. The first two rows
depict well-segmented slices, whereas the last two rows exhibit unsatisfactory
segmentation outcomes. In case 0073, the liver was not fully recognized, and in
case 0025, the presence of vessels within the liver misled the model.

The quantitative performance can be found in tabel 4. The model proposed
in this paper demonstrated favorable performance on organs such as the liver,
kidney, spleen, and stomach, achieving Dice Similarity Coefficient (DSC) and
Normalized Surface Dice (NSD) scores of over 85% on the validation set. How-
ever, the segmentation results for tumors were less satisfactory, with a DSC of
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Fig. 3. The sample of four cases in validation set.
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only 27.99%. This lower performance could be attributed to the significant intra-
class heterogeneity and smaller volumes of tumors. The same trend can be found
in online validation result.

Table 4. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 95.43 ± 3.08 95.59 ± 5.17 97.32 98.75 93.23 93.09
Right Kidney 87.74 ± 18.95 86.46 ± 19.52 93.34 94.54 90.68 88.79
Spleen 93.53 ± 4.16 92.92 ± 7.03 97.00 99.06 91.78 91.79
Pancreas 75.05 ± 10.22 88.7 ± 9.2 83.70 95.47 73.97 86.21
Aorta 87.36 ± 9.29 85.63 ± 15.1 94.91 98.40 90.25 91.69
Inferior vena cava 80.42 ± 15.29 77.72 ± 18.02 92.03 95.26 81.87 79.13
Right adrenal gland 68.44 ± 16.59 81.89 ± 17.24 80.58 94.40 67.21 80.15
Left adrenal gland 64.27 ± 21.62 76.07 ± 24.16 80.21 93.82 65.09 76.37
Gallbladder 74.2 ± 25.74 70.63 ± 28.05 79.80 79.64 71.71 69.47
Esophagus 72.06 ± 16.93 83.29 ± 16.86 82.18 93.86 79.03 91.02
Stomach 85.65 ± 11.25 87.6 ± 13.3 92.61 96.60 86.05 88.91
Duodenum 68.11 ± 15.2 86.36 ± 11.48 81.92 94.46 69.74 86.33
Left kidney 87.59 ± 18.6 86.33 ± 19.85 93.30 94.56 89.72 89.01
Tumor 27.99 ± 36.29 18.17 ± 25.31 39.78 31.11 24.02 12.19
Average 76.27 ± 24.35 79.81 ± 25.40 88.38 94.52 80.67 85.45

4.4 Ablation study

The performance of the organ segmentation model is elaborated in Table 5.
The DSC and NSD of the organ segmentation model was inferior than the final
segmentation model. The average DSC and NSD performance of the organic
region was 82.20 % and 86.52 %, lower than that of final segmentation model
(88.38% and 94.52

4.5 Results on final testing set

The average actual running time on final testing set is 18.95 seconds, with an
average AUC-GPU (Area Under the Curve of GPU memory consumption) of
20790 MB. Our model reached a DSC of 80.67% and a NSD of 85.45% for the
segmentation of organs. However, the tumor segmentation was relative hard,
resulting in a DSC of 24.02% and a NSD of 12.19%.

4.6 Limitation and future work

The objective of this study is to minimize GPU memory usage while ensur-
ing accurate prediction outcomes. The average execution time and AUC-GPU
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Table 5. Organ segmentation model performance.

Target Online Validation
DSC(%) NSD(%)

Liver 93.32 92.34
Right Kidney 86.83 86.72
Spleen 93.42 93.12
Pancreas 77.65 89.86
Aorta 94.83 96.63
Inferior vena cava 91.83 92.94
Right adrenal gland 70.34 87.48
Left adrenal gland 72.79 86.80
Gallbladder 72.09 67.73
Esophagus 76.92 89.64
Stomach 81.17 78.37
Duodenum 70.45 79.11
Left kidney 86.90 83.97
Average 82.20 86.52

achieved notable efficiency, measuring 18.95 seconds and 20790 MB, respectively,
on the testing set. However, compared with the organ region, the segmentation
performance of tumor region was relatively low.

The ablation study compared the organ segmentation model and the final
segmentation model.In the online validation set, the organ segmentation model
exhibited inferior performance compared to the final segmentation model, even
in the organic region. The difference indicated that the final segmentation model,
trained on the pseudo-labeled dataset, benefited from the organ segmentation
model.

This study still have some limitations. Firstly, only two subsets from the
FLARE 2023 dataset was used for modeling. During the restriction of dead-
line, the remaining data was not used. In our future study, the utilization of
these data can be performed to enhance the model performance. Secondly, the
semi-supervised algorithm in our study is primitively. The state-of-the-art semi-
supervised algorithm can be used in our future study. Finally, the pseudo label
from the FLARE 2022 models was not used in our study.

5 Conclusion

This paper adopts a straightforward and simple approach for partially labeled
data segmentation. The organ segmentation model is trained using fully labeled
data with complete organ labels. Subsequently, this model is utilized to augment
the missing organ labels in the data with tumor labels. This process enables the
training of a comprehensive organ-tumor segmentation model. The utilization of
the abdominal localization model further enhances the prediction efficiency of
the model.
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Table 6. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 1
Author affiliations, Email, and ORCID Yes
Corresponding author is marked Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided 1
Pre-processing 2
Strategies to use the partial label 4
Strategies to use the unlabeled images. 5
Strategies to improve model inference 4
Post-processing 5
Dataset and evaluation metric section is presented 5
Environment setting table is provided 6
Training protocol table is provided 6
Ablation study 10
Efficiency evaluation results are provided Table 3
Visualized segmentation example is provided 2
Limitation and future work are presented Yes
Reference format is consistent. Yes


