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Abstract

The Multi-modal Large Language Model (MLLM) based Referring Expression
Generation (REG) task has gained increasing popularity, which aims to generate
an unambiguous text description that applies to exactly one object or region in
the image by leveraging foundation models. We empirically found that there
exists a potential trade-off between the detailedness and the correctness of the
descriptions for the referring objects. On the one hand, generating sentences with
more details is usually required in order to provide more precise object descriptions.
On the other hand, complicated sentences could easily increase the probability
of hallucinations. To address this issue, we propose a training-free framework,
named as “unleash-then-eliminate”, which first elicits the latent information in the
intermediate layers, and then adopts a cycle-consistency-based decoding method to
alleviate the production of hallucinations. Furthermore, to reduce the computational
load of cycle-consistency-based decoding, we devise a Probing-based Importance
Estimation method to statistically estimate the importance weights of intermediate
layers within a subset. These importance weights are then incorporated into the
decoding process over the entire dataset, intervening in the next token prediction
from intermediate layers. Extensive experiments conducted on the RefCOCOg and
PHD benchmarks show that our proposed framework could outperform existing
methods on both semantic and hallucination-related metrics. Code will be made
available in https://github.com/Glupayy/unleash-eliminate.

1 Introduction

Referring expression generation (REG) [11, 29, 31, 53, 54] is a task to generate an unambiguous text
description that applies to exactly one appointed object or region in the image. A good expression
should be distinguishable enough to ensure that the listener can identify the unique target among
various objects within the same image. With the great success achieved by large language models
(LLMs), multi-modal large language models (MLLMs) [1, 9, 12, 27, 56, 61] have been introduced to
perform this task and become increasingly popular in the research community. Some representative
works [6, 37, 52, 55, 57] conduct visual instruction tuning on specialized region-involved multi-modal
corpus and successfully empower MLLMs with the ability of region-level understanding.

Though certain progress has been made, MLLMs themselves suffer from object hallucination [14, 23,
46, 50, 60]. Research suggests that the mechanism behind MLLMs’ hallucinations could be related
to the over-reliance on prior knowledge of LLMs rather than the multi-modal context provided by
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Figure 1: Illustration of our method. (a) Given an image and a mask appointed to the target object, we first
unleash the descriptive regional information of the middle layers and gain various candidate captions. These
outputs are sent to a RES model that serves as a “listener” and the “listener” eliminates the inaccurate candidates.
(b) Our proposed strategy to diminish the computational load of RES. First estimate the layer prior importance
on a probe set with RES, then leverage it for the RES-free next token prediction.

the input [14, 19, 50]. Therefore, MLLM-based REG models naturally inherit the aforementioned
hallucination issues. Additionally, a further complication arises in the context of region-level
understanding, where models are required to generate precise and identifiable descriptions for specific
regions. To achieve that, the MLLMs sometimes have to make use of the surroundings for reference
while effectively avoiding out-of-region information distorting the description of the target object, e.g.
incorrectly attributing characteristics of other objects to the targeted region (Figure 7 in appendix).
This requirement exacerbates the issue of attribute-level hallucinations [3, 50]. In this paper, we aim
to explore this potential trade-off between the detailed description and accurate targeting of referring
objects in MLLM-based REG task. To be specific, providing precise object descriptions necessitates
generating sentences with more details, which results in longer sentences. Meanwhile, the text with
increased granularity (length) is more likely to contain inaccurate or spurious information, commonly
defined as “hallucinations.” Table 1 shows an example of quantitative analysis.

To address the trade-off between information richness and reliability, we propose a novel approach
called “unleash-then-eliminate,” as depicted in Figure 1. We observed that the alignment of region-
level multi-modal information does not maintain a monotonic progression during inter-layer tran-
sitions. Moreover, when multi-modal hidden states are projected into the language space using the
language head, the intermediate layers sometimes hold more descriptive region information than the
final layer. These observations (Section 3.2) imply that the most suitable layer for each referred region
should not be solely confined to the final layer. Accordingly, we adopt contrastive decoding [8, 22] to
unleash the object information contained in the intermediate layers. To eliminate unsuitable candidate
outputs, we leverage the dual task of REG: Referring expression segmentation (RES) [37, 48], which
aims to segment a target object mask from the entire image given a sentence describing the object.
Ideally, for the same object, the region input (formed as a mask) for the REG task and the mask
output from the RES task should exhibit cycle consistency. Based on this insight, we propose a
cycle-consistency-based decoding method, which enables us to choose among multiple outputs based
on their descriptive quality thus reducing hallucinations while maintaining the richness of the output
sentences. Furthermore, considering the need to diminish the computational load of RES, we develop
a hybrid layer importance measurement strategy to select the best layer for each token during the next
word prediction. This strategy leverages both the layer-wise prior importance estimated over probing
subset, and the Jensen-Shannon divergence [8] between the logits of each candidate layer and the
last layer. With the layer-wise prior importance, the MLLM-based REG model maintains promising
performance in reducing hallucinations and enhancing the granularity of the generated sentences,
even without the assistance of RES model. Extensive experiments conducted on the RefCOCOg [33]
and PHD [28] benchmark demonstrate that our proposed framework surpasses existing methods on
both semantic and hallucination-related metrics.

2 Related works

Region-level understanding in Multimodal Large Language Models. Significant progress has
been made in unleashing the region-level understanding ability in MLLMs [6, 18, 37, 52, 55, 57]. To
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incorporate region-level information into sequence generation of MLLMs, some approaches [6, 52]
integrate bounding box coordinates into the language input in the form of natural language prompts.
Ferret [52] proposes a spatial-aware visual sampler that enables the arbitrary shapes of visual prompts.
The current proposed Osprey [55] unlocked the capability of pixel understanding, alleviating the
influence of irrelevant information in the visual prompt inputs. These methods have propelled the
REG task into the era of MLLMs. Considering that MLLMs incorporate extensive knowledge from
unimodal and multimodal pre-trained corpora, there is a potential for the REG task to leverage this
inherent knowledge within the models to generate more specific and detailed expressions without
additional training, thus more effectively addressing real-world applications [21, 39, 41].

Decoding strategies to mitigate hallucination in Large Language Models. Large language
models are pre-trained on unlabeled corpora to acquire extensive world knowledge and subsequently
undergo post-training to learn to follow instructions [34] and align with human preferences [2].
This systematic pre- and post-training pipeline makes them powerful at solving a wide range of
NLP tasks [16, 36, 40, 43]. However, some studies indicate that they may fail to accurately assess
their own knowledge [51] and often exhibit overconfidence in their responses [47], which results
in hallucinations [59]. To mitigate these issues, recent research [5, 8, 20] proposes inference-time
decoding strategies for trained LLMs to find latent knowledge inside the internal activations without
additional training. C. Burns et al. [5] introduce a Contrast-Consistent Search (CCS) algorithm to
identify a direction of truth in the activation space of LLMs that remains consistent across negations,
thereby reducing generated errors. Based on the discovery of CCS, ITI [20] dives deep into attention
heads and suggests shifting model activations alongside factuality-related heads during inference to
help reduce hallucinations. Besides “finding the direction of truth,” DoLa [8] proposes contrastive
decoding by comparing the differences in logits between the projections of later and earlier layers
to better surface factual knowledge and reduce the generation of incorrect facts. In line with the
motivations of [5, 20], our investigation uncovers that well-trained MLLMs’ intermediate layers
differ in multi-modal alignment and region-level understanding capabilities. These observations
inspire us to devise an inference-time decoding strategy that combines latent knowledge from multiple
layers (with prior importance) to alleviate hallucinations.

Hallucination in Multi-modal Large Language Models. In the realm of MLLMs, “hallucination”
typically refers to “object hallucination,” where the models generate plausible outputs containing ob-
jects that are either absent from or mismatched with the images [15, 19, 24, 38, 50], and is commonly
categorized into three types: category, attribute and relation hallucinations [3, 49]. Some efforts
based on instruction tuning have been made to mitigate this issue in MLLMs. LRV-Instruction [26]
introduces a dataset with positive instructions and unique negative prompts with different semantic
levels to better align responses with image content. HACL [15] explores the vision-language embed-
ding space, using contrastive learning to separate non-hallucinated from hallucinated texts. Without
instruction tuning, Woodpecker [50] offers a training-free pipeline for hallucination correction, using
expert models to enrich image context and ensuring each phase is interpretable by a step-by-step
correction process. In another line of work, some efforts have sought new decoding strategies to
avoid relying on extensive additional data and training: Opera [14] tackles the partial over-trust issue
in decoding by applying a penalty to the model logits during beam-search decoding. VCD [19] links
object hallucinations to biases and language priors, contrasting outputs from distorted and original
visuals to ensure consistent generation. Compared to existing studies, our method initially enriches
region-level context from intermediate layers rather than external expert models or knowledge base
and provides a multi-layer ensembling solution to mitigate hallucinations.

3 Method

3.1 Preliminary

Leveraging the nuanced language representation capabilities inherent in multi-modal large language
models, recent investigations have unlocked the REG [6, 37, 52, 55] and RES [18, 37] capabilities of
MLLMs. To maintain clarity and conciseness, we have omitted the discussion on instruction tuning
and assume that the described tasks are well-instructed by specific prompts. In this work, we utilize a
“mask” as the region prompt.

Referring expression generation. The MLLM-based REG model is typically structured around
three principal components: a visual encoder (e.g., CLIP [35] with a linear adapter), a region-encoder,
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and an LLM base (e.g., LLaMA [42] or Vicuna [7]). Given an image I , the visual encoder first
extracts the visual information, then the linear adapter projects it into If ∈ RHW×C , where HW
denotes the flattened visual token length and C denotes the hidden state dimension of LLM base.
A referred region M (presented as a mask) is encoded as Mf ∈ RQ×C by region encoder (e.g., a
CNN-based extractor [55] or an ROI pooling layer [37, 57]), where Q denotes the length of encoded
region prompt tokens. Taking the visual feature If , regional feature Mf , and an embedded instruction
text Xf ∈ RL×C as input, where L represents the length of the instruction in tokens, the model
concatenates them and forms a multi-modal input sequence S ∈ R(HW+Q+L)×C .

Regarding the core architecture of the LLM base, the multi-modal sequence S is successively
processed by the N stacked transformer layers. Eventually, an affine layer ϕ(·) serves as a language
model head to predict the probability of the next token yt over the vocabulary set V . The logits for
the token yt, given the sequence S and all preceding tokens y<t, are computed as follows:

logitN (yt|S, y<t) = ϕ(h
(N)
t ), yt ∈ V, (1)

where h(N)
t denotes the hidden state of the last transformer layer. The probability of the next token yt

is then given by:
p(yt|S, y<t) = softmax

(
logitN (yt|S, y<t)

)
, yt ∈ V. (2)

Through this process, the model autoregressively generates the output text Y as the region descrip-
tion. For simplicity, we use p(yt|y<t) to represent p(yt|S, y<t), and logitN (yt|y<t) to represent
logitN (yt|S, y<t) in the following.

Referring expression segmentation. Recent advances in MLLM-based RES models [18, 37] largely
employ a similar MLLM architecture (e.g., LLaVA [27]) as used in the REG models, with the
distinction that its input contains a description targeted at a specific region, while its output is a mask
that can cover the described object.

A widely adopted strategy [17, 18, 37] incorporates a [SEG] token, enabling the model to identify
the [SEG] token in the output sequence as a cue for the presence of a segmentation target. A
specialized MLP head ψ processes the output embedding of the [SEG] token hseg ∈ R1×C , mapping
it into the prompt space of the segmentation fundamental model (e.g., SAM [17]), represented as
h̃seg = ψ(hseg). The segmentation model then decodes the target mask Ms from the query token
h̃seg and provides its confidence score CF .

3.2 The intermediate layer contains descriptive information

This section focuses on our observations of intermediate layers, attempting to uncover the latent
descriptive information. We adopted a region understanding model Osprey-7b [55] with N = 32
layers as REG model, and GLaMM [37] as RES model by default.

Each layer has different generation tendency. To reveal the latent information, we adopt the
early-exit strategy on the REG model to generate a series of output sequences by applying the
language model head (an affine layer) to the hidden states of each layer. As illustrated in Figure 2,
the sequences from the early layers (layers 1 to 10) manifest as nonsensical strings of characters,
indicating the suboptimal alignment between the hidden representation of shallow layers and the
ultimate vocabulary space of MLLM. Interestingly, among the middle layers (about layers 20 to 25),
the model begins to output sentences with semantic meaning and gradually some region-specific
expressions appear. Compared with the output of the last layer, these sentences with richer semantic
information can sometimes provide more discriminative descriptions for the referred object, e.g.
indicating the related position between the target object and others, and/or containing high granularity
of attributes. The uniqueness and descriptiveness of expressions given by the middle layers are
strongly related to the objective of REG, thus the latent features of intermediate layers have notable
potential to enhance the unambiguity in MLLM-based REG.

Potential of intermediate layers. The above observations demonstrate that different layers’ under-
standing of the region context varies. We attempted to visualize the region-aware comprehension
capabilities among the layers through two approaches. (a) With the assistance of the RES model:
we randomly extracted K = 2000 samples from the RefCOCOg training set to form the triplets
(I,M,Y), which corresponds to the entire images I, the target regions represented by masks M,
and the descriptions of regions Y. (I,Y) are sent into an MLLM-based RES model, to harvest the
projected features of [SEG] token h̃seg . Subsequently, (I,M) are input into the REG model, and the
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Figure 2: Different layers’ understanding of the region context varies, where early layers generate rubbish,
middle layers tend to generate descriptive text with higher granularity, and the final layers tend to predict shorter
and more precise text. The right part shows the frequencies with which the hidden state of each layer had the
smallest Wasserstein-2 distance to the [SEG] token (in orange), and the inter-layer transitions of region-level
multi-modal alignment (in blue).

hidden states of the last token of each layer {hi}Ni=1 are obtained. Inspired by FID metric [13] and
recent investigations on the latent space communication [30, 32], we first performed PCA dimension-
ality reduction to project both features into the same dimension, then treat the dimension-reduced
[SEG] features as the anchor to calculate the Wasserstein-2 distances [13, 44, 45] between [SEG]
and each intermediate hidden states. This allowed us to estimate the relative region understanding
ability of each layer for the given multi-modal context of a certain object. We then calculate the
frequency with which each layer had the smallest Wasserstein-2 distance to the [SEG] token. As
depicted in the right of Figure 2 (orange), except for the final layer, the intermediate layers also have
the potential to contain better latent information for a more precise region-related description. (b)
Solely within the REG model: we investigated the multi-modal alignment process in region-level
context across intermediate layers by calculating the Wasserstein-2 distance between each layer’s
region-encoded token [mask] and the last language token. Results are reported in Figure 2 (blue).
These analyses within a well-trained MLLM show that the tokens of different modalities do not
approach monotonically during inter-layer transitions. Hence we should give more chances to the
intermediate layers for better region-level understanding. Detailed information can be found in the
Appendix C.

3.3 Unleash then eliminate decoding strategy

To enhance the granularity of region-level descriptions without introducing excessive hallucinations,
we propose a method that integrates contrastive decoding with cycle consistency-based ranking
to screen out appropriate descriptions for the interested regions (Section 3.3.1 and 3.3.2). This
approach enables us to specifically leverage the commonly overlooked latent information contained
in intermediate layers and ensures the identifiable description through caption quality estimation.
Under the concerns of computation efficiency, we further develop a decoding strategy to reduce the
operations of cycle ranking through hybrid layer importance measurement (Section 3.3.3). It involves
two kinds of layer importance calculation to influence the selection probability of candidate layers
during each word prediction step. The harvest prior importance weights can be directly applied to the
decoding process of the original MLLM, mitigating the hallucinations. The following subsections
provide further details.

3.3.1 Unleash intermediate information by contrastive decoding

As depicted in Figure 2, the manifestation of region-aware information differs across layers. To
underscore descriptions related to specific regions—evident in the intermediate layers but faded in
the final layer, we adopt a contrastive decoding approach [8, 22] by subtracting the log probabilities
of the next token produced by the intermediate layer from those of the final layer. The resulting
distribution is defined as the contrastive decoding logits of specific subtractor layers. These logits
instead of originally the logits from the final layer are used for generating the subsequent token.
Concretely, given a set of candidate layer indices J = {1, . . . , n}, the probability of token yt for
layer j ∈ J is:

pconj
(yt|y<t) =

{
softmax

(
logitN (yt|y<t)− logitj(yt|y<t)

)
if yt ∈ Vhead,

0 otherwise,
(3)
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j , ranking these candidates effectively.

where logitj(yt|y<t) = ϕ(h
(j)
t ), Vhead(yt) = {yi ∈ V : p(yi|y<t) ≥ αmaxw∈V p(w|y<t)},

α ∈ [0, 1] is a cutoff hyperparameter that truncates the next token distribution p(yt|y<t) of the final
layer. Following the previous works [8, 22], we set α = 0.1 in the implementation.
After contrastive decoding, each of the intermediate layers in the candidate set suggests a probability
for predicting the next token yt. Finally, we harvest a sentence set A = {a1, a2, ..., an} whose size
equals to the size of candidate layers.

3.3.2 Cycle-consistency-based intermediate sentence quality ranking

Consider the formed triplet (I, M, Y) in Section 3.2, where I serves as the global contextual
background of a region, M and Y respectively represent two modalities of the same object. For a
pair of ideal REG and RES models, it is anticipated that M and Y can be interconverted losslessly
during a cyclic operation of these two models. This implies that, due to the cycle consistency between
the two modalities of the same object, feeding the output of the REG model into the RES model
should yield a mask consistent with the input to the REG. If the output generated from the candidate
layer is overly ambiguous or polluted by hallucinations, the RES model may struggle with accurately
locating the target object against the background. Based on these assumptions and observations, we
utilize RES model [37] to estimate the region understanding performance of the captions generated
by the candidate layers, allowing us to rank these candidates effectively.

Figure 3 illustrates the pipeline of cycle-consistency-based quality ranking. The input image I and
the referred region (represented as a mask) M are processed by the REG model, which continuously
extracts and aligns features across successive layers for the multi-modal context. After the information
elicitation of intermediate layers, we harvest a set of sequence A = {a1, a2, ..., an}. Each sequence
in A, paired with the image I , forms an input pair (I, aj) to feed into the RES model. The RES
model then segments out the corresponding mask M ′

j for each input pair.

We evaluate the quality of each layer’s sentences by calculating the Intersection over Union (IoU)
between M and M ′

j :

Scorej = CFj ·
|M ∩M ′

j |
|M ∪M ′

j |
, (4)

where CFj refers to the output of IoU score head within the segmentation foundation model (e.g.
SAM [17]), which can be interpreted as a confidence score of the generated mask. Subsequently,
the candidate sentences from each layer are ranked by the Scorej . For each sample, the aj with the
highest Scorej is selected as the final sentence, and its layer is deemed the best candidate layer.
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Algorithm 1 Layer Prior Importance Calculation
1: Input: Score ∈ Rm×n ▷ m: Number of subset samples; n: Number of candidate layers
2: Output: q ∈ Rn,

∑n
j=1 qj = 1 ▷ Importance weight of each candidate layer

3: Initialize count← 0 ∈ Rn ▷ counts of times each layer has the maximum score
4: for j ← 1 to n do
5: countj =

∑m
i=1 1 {j = argmaxj∈J Scorei,j}

6: qj ← countj
m

7: return q

3.3.3 Hybrid layer importance measurement

Although our cycle-consistency-based candidate ranking process improves the generation quality, it
introduces additional computational load from the RES model compared to the original decoding
method, significantly affecting the per-sample decoding speed. To alleviate this issue, we propose a
simple yet effective strategy called Probing-based Importance Estimation to speed up the decoding
process. This strategy involves frequency counting of each candidate layer being the optimal layer
based on their performance within a probing subset. With a subset containing m samples, the
specifics of this calculation are outlined at Algorithm 1. The estimated weight q is then served as
prior knowledge that reflects the candidate layers’ importance and is then utilized over the entire
dataset in the decoding process, intervening in the next-word prediction.

Furthermore, inspired by the success of distance-guided layer selection in LLMs [8], we also apply
this metric as a second guidance. Concretely, we first calculate the distance between the next-token
probability of the final layer and each candidate layer at the current decoding step, then the calculated
values are normalized across candidate layers as follows,

dj =
Dj∑n
i=1Di

, (5)

where Dj = JSD(p||pconj
) denotes the J-S divergence between the next-token probability of the

final layer p and the layer pconj
. Finally, the hybrid layer importance is obtained by adding up the

probing-based prior and sample-wise distance followed by a softmax normalization:

q̃ = softmax(d+ q), (6)

where d is a vector of normalized divergence values across the candidate layers. We then sample
from the probability distribution q̃ to select one layer among candidates to predict the next token at
each decoding step, till the generation finishes.

Overall, this decoding approach first estimates a prior layer-wise importance weight from a small
subset and then applies this distribution to contrastive decoding, effectively improving decoding
efficiency while preserving the ability to mitigate hallucinations. In addition, our experiments (Table
3) also show that the prior importance q calculated from one (probing) dataset could be directly
transferred to another dataset with similar image domain for reducing the hallucinations. This strong
transferability further illuminates a new promising application scenario where the historic estimate
could serve as a cold-start for inference in new environments when the probing dataset is not available.

4 Experiments

4.1 Datasets and metrics

RefCOCOg. The RefCOCOg [33] dataset is a classical benchmark for referring expression gen-
eration, which contains 85,474 expressions for 54,822 objects in 26,711 images. Expressions in
RefCOCOg are annotated on Amazon Mechanical Turk in a non-competitive way and tend to be
longer (8.43 words per sentence on average) and more expressive than RefCOCO [53] and Ref-
COCO+ [53]. In the MLLM-empowered REG task, the relatively short ground truth cannot fully
cover the expression space of the sentences generated by the MLLM at evaluation. Therefore, our
experiments focus on the METEOR metric as it is more comprehensive and flexible, allowing for a
more nuanced recognition of linguistic variations.
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Table 1: Comparison of generation and hallucination performance on RefCOCOg. t denotes the temperature
parameter. “1/8” denotes using 1/8 samples of the total dataset to estimate the layer prior importance. “full-R”
denotes quality ranking on the whole dataset.

Model METEOR↑ CHAIRS ↓ CHAIRI ↓ Recall↑ Len nCHAIRS ↓ nCHAIRI ↓
Osprey-7b (t=0.2) 162.0 23.41 20.81 0.7631 7.15 3.2741 2.9105
Osprey-7b (t=0.9) 140.0 27.90 24.12 0.7514 8.11 3.4402 2.9741
DoLa 168.0 43.44 31.78 0.8196 23.07 1.8830 1.3775
Ours (1/8) 172.0 42.25 30.95 0.8211 22.96 1.8406 1.3484
Ours (full-R) 173.0 42.40 31.20 0.8237 23.16 1.8307 1.3472

CHAIR Evaluation on Hallucinations. The Caption Hallucination Assessment with Image Rele-
vance (CHAIR) metric [38] is commonly used to evaluate object hallucinations that occur in image
description tasks. It comprises two distinct assessment dimensions, including CHAIRS that calculates
on sentence-level and CHAIRI that calculates on a more granular object-level. We observe that
CHAIR only counts hallucinated objects for each “central object”, which means that if the model
wants to enrich the semantic information and generate new tokens, it will face the risk of increasing
hallucinations compared to the shorter-sentence models. This undermines the comparability of this
metric across sentences of varying lengths. Hence we propose normalized CHAIR (nCHAIR) based
on CHAIR to conduct a fair comparison between sentences of different lengths. The calculation of
nCHAIRS is specified as the following formula, with nCHAIRI calculated similarly:

nCHAIRS =
|{hallucinated sentences}|

|{average number of tokens per sentence}| × |{all sentences}|
. (7)

Prompted Visual Hallucination Evaluation Benchmark (PHD). This benchmark [28] focuses
on the four major types of hallucination faced by MLLMs, namely Object hallucination, Attribute
hallucination, Multi-modal conflicting hallucination, and Counter-common-sense hallucination. It
evaluates and explores the hallucinations through comprehensive prompt-based tasks, which also helps
identify the causes of these hallucinations. While this benchmark does not explicitly evaluate region-
level hallucinations, its detailed evaluating strategies for object attribute and position are closely
related to region-level understanding, allowing it to effectively indicate regional-level hallucinations.

4.2 Main result on referring expression generation

Baseline region-level MLLM model and decoding method. Table 1 presents the performance
comparison of semantic quality and hallucination evaluation on RefCOCOg dataset, with METEOR
and CHAIR metrics. Recent research [58] has revealed that the temperature parameter t has a
notable effect on the hallucination of generated sentences. In light of this, we included an analysis
of the baseline region-level MLLM model, Osprey-7b [55], performing at both lower (t = 0.2) and
higher (t = 0.9) temperature settings. Meanwhile, we also compared a baseline decoding method,
DoLa [8], which demonstrated that leveraging contrastive decoding in vanilla LLMs can enhance the
authenticity of the generated results. In comparison to the Osprey-7b 1 , the sentences generated by
DoLa [8] demonstrated better performance on METEOR and nCHAIR metrics.

Performance of cycle-consistency-based sentence quality ranking. As introduced in Section 3.3.2,
to balance the trade-off between information granularity and accuracy, we first unleashed the region
description of intermediate layers by contrastive decoding, then filtered out the inaccurate sentences
by cycle-consistency-based quality ranking. For each sample in RefCOCOg, we evaluated the best
sentence generated by the best candidate layer. The result is reported in the fifth row of Table 1. We
observed that our method not only gains more descriptive sentences but also demonstrates a reduction
in the hallucination metric (measured in terms of nCHAIR) compared to Osprey-7b and DoLa. The
examples of generation results are listed in Figure 4.

Text generation via hybrid layer importance measurement. In Section 3.3.3, we proposed a
method that effectively reduces the computational overhead of the RES scoring model. In our experi-
ment, we divided all 32 intermediate layers (including the embedding layer) into four consecutive
groups (detailed in Section 4.3) and calculated the relative importance of the layers within each group

1The version without RefCOCOg fine-tuning was used. https://huggingface.co/sunshine-lwt/
Osprey-7b/tree/main.
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Table 2: The impact of different candidate layer groups (buckets) on the performance of RefCOCOg dataset.

Bucket METEOR↑ CHAIRS ↓ CHAIRI ↓ Recall↑ Len nCHAIRS ↓ nCHAIRI ↓
1st (0-7) 173.0 42.40 31.20 0.8237 23.16 1.8307 1.3472

2nd (8-15) 167.0 40.89 30.49 0.8236 21.58 1.8948 1.4129
3rd (16-23) 146.0 37.36 30.07 0.7797 18.96 1.9705 1.5860
4th (24-31) 127.0 31.50 27.52 0.7357 17.35 1.8156 1.5862

Osprey-7b: A sandwich roll.

Ours: A piece of bread is visible 
on the right side of a plate. This 
bread appears to be a bun and is 
positioned in front of some 
tomatoes.

Dola: The right side of the 
sandwich contains the deli meat, 
cheese, lettuce, tomato, and 
mustard. 

Ours: A large brown wooden 
dining room table dominates the 
scene. The table is littered with 
various objects including a bowl 
with chips, a bottle, a spoon and a 
cup.

Dola: A pizza with spinach and 
tomatoes is being made on a tray. 
One man is holding a slice of the 
pizza while the other adds 
toppings

Dola: The woman on the left is 
wearing a plaid shirt and a fringe 
skirt. She has a large belt buckle 
and a necklace.

Osprey-7b: A pizza with white 
cheese on it.

Osprey-7b: A wooden table 
that holds a baby and a man at it.

Dola: A brown wooden table sits 
in the foreground of the photo, 
with a baby sitting on it.

Ours: There is a pizza on the 
left, being picked up. The pizza 
appears to have spinach on it, and 
is topped with tomatoes

Ours: The woman on the left 
has long dark hair and is wearing 
a plaid shirt. She‘s standing next 
to the motorcycle and appears to 
be a posed model.

Osprey-7b: The lady in a 
checked blouse.

Figure 4: The visualization comparison of generations between Osprey-7b [55], DoLa [8] and ours. Osprey-7b’s
outputs are quite brief and omit visual details of the referred objects. The generations from DoLa are more
extensive but are accompanied by hallucinations. In contrast, our method increases descriptive information and
curtails the generation of hallucinations.

separately. Figure 5 depicts the resulting layer importance weights of four different ranges. The
result reveals that layer importance is not uniform across candidate layers and also varies among
different groups. We applied the importance weights estimated from 1/8 subset to the decoding
process and listed the first group’s result in the fourth row of Table 1. Notably, in comparison to
full-set sentence-by-sentence quality ranking, this probing-based decoding method offers compara-
ble performance with improved efficiency, demonstrating the effectiveness of our statistical layer
importance estimation.

4.3 Performance of different candidate layer groups

As aforementioned in Section 3.2, it was observed that different layers have distinct generation
preferences for the same sample, inspiring our further exploration in quantitative experiments. The
first 32 layers (where layer 0 is the embedding layer) of the Osprey-7b model were organized into
four groups: [0, 7], [8, 15], [16, 23], and [24, 31]. In each experiment, one group was selected as the
candidate layer set and contrasted with the last layer to generate the candidate sentences, followed by
cycle-consistency-based ranking to choose the best. Table 2 indicates that the first group exhibits the
best performance in METEOR and nCHAIRI metrics. It is also noticeable that there are considerable
performance discrepancies between the different groups, with a general trend of semantic quality
declining as the depth of the layer increases (after contrastive decoding). However, we found that
although the fourth group had the lowest METEOR score, its nCHAIRS was slightly better than that
of the first group. This observation suggests that a well-trained MLLM exhibits variations in latent
knowledge across its zones, leading to differences in generation performance.

Figure 5: The layer prior importance measured by our method of different groups. It is observable that the
weight distributions of the 1/8 subset and the full dataset have similar trends.
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Table 3: The comparison on Prompted Visual Hallucination Evaluation Benchmark(PHD)(%).

Object Attribute Sentiment Positional Counting Average
Recognition Recognition Understanding Reasoning

Test-mode:Neutral
Osprey(t=0.9) 67.57 67.71 69.30 63.91 71.30 67.96
Osprey(t=0.2) 69.57 69.79 69.71 67.46 73.00 69.91
DoLa 69.19 68.90 67.96 73.37 71.93 70.27
Ours 70.27 70.34 70.91 68.64 74.26 70.88
Test-mode:Misleading
Osprey(t=0.9) 65.30 64.67 69.54 63.45 65.59 65.71
Osprey(t=0.2) 67.47 66.67 70.95 66.37 68.15 67.92
DoLa 67.38 67.31 70.62 63.16 67.88 67.27
Ours 68.33 67.64 72.16 66.67 68.64 68.69

4.4 Transferability of layer prior importance weights

From the preceding experiments, we discovered that using layer importance in the next token
prediction enhances the generated output’s quality of the same dataset. Additionally, we also noticed
that the determined layer prior importance can be smoothly transferred to a different dataset (different
prompts) sharing a similar image domain to reduce the hallucinatory outputs. Specifically, we applied
the layer importance ([0, 7] group) calculated on the RefCOCOg dataset directly to the PHD dataset,
where the image inputs also originate from MSCOCO [25], and decoded the output using the method
described in Section 3.3.3. Given the absence of any region prompt in the PHD dataset, we applied
a zero mask to the region encoder. The comparative results are shown in Table 3. We observe that
our approach enhances the model’s understanding across most tasks, which indicates that without
the additional training, the estimated layer prior importance could serve as a cold-start for inference
in new environments when the probing dataset is not available, helping reduce the occurrence of
hallucinations during the decoding.

5 Conclusion

Our research on the MLLM-based Referring Expression Generation (REG) task explored a potential
trade-off between information richness and reliability of the intermediate generation results. We
introduced a “unleash-then-eliminate” approach that utilizes latent information from intermediate
layers and employs a cycle-consistency-based decoding method to reduce hallucinations. Our method
outperforms existing techniques, confirming its efficacy for enhancing REG task performance.
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Appendix

In this appendix, we present more ablation studies on our proposed decoding strategy, including
the impact of different MLLM-based RES models and the influence of subset size in probing-based
importance estimation. We also elaborate on the calculation of adopted hallucination metrics. At
last, we provide a visualization that uncovers the multi-modal alignment process in the intermediate
layers.

A More Ablation Studies

In this section, we provide more ablation studies, including the impact of the different assisting RES
models in cycle-consistency-based quality ranking, and the subset size in probing-based estimation.
Different scoring RES model. In Table 4, we ablate the impact of different RES models utilized
in the proposed cycle-consistency-based quality ranking (CCR). We adopt another MLLM-based
RES model LISA [18] to score the sentence quality of intermediate layers. From the table, we can
observe that the choice of the RES model affects the CCR. The RES task itself involves transforming
a language query into a pixel-level visual representation of an object. Given that GLaMM [37]
performs slightly better than LISA [18] in RES, we can therefore infer that the more robust this
transformation is completed, the better the performance of the CCR in quality ranking.

Impact of probing subset quality and size. We also conducted ablation experiments on different
subset sizes and the randomness of sampling, with the results listed in Table 5. In the first row, we
report the average result of 10 different random seeds for 1/8 subset sampling, which is also the result
shown in Table 1 of the main paper. The second row reports the best results for the 1/8 subset. The
results indicate that the randomness of the sampled subsets affects the performance of our proposed
decoding strategy in reducing hallucinations. In other words, the quality of the subset has a certain
impact on the decoding outcome.

However, assessing the quality of subsets during probing is also an intractable problem. One possible
solution is to use an unsupervised clustering method (e.g., K-means) to first cluster the multi-modal
features (extracted by CLIP [35]/embedding layers of MLLM [55]) of the entire dataset, and divide the
subsets based on different centroids, then calculate and store the inter-layer weights in an “importance
weight bank.” During inference, we can compute the distance between the new query feature and
these centroids, selecting the set of weights from the closest centroid for inter-layer combination
during decoding. This strategy needs careful designing, and we consider it a future extension. Besides
quality, by comparing the second and third rows, we also find that compared to the 1/8 subset, the
1/16 subset shows less stable de-hallucination and generation performance.

B Hallucination Metrics

The hallucination of objects in MLLM [14, 23, 38] refers to the situations where the descriptions
generated by the model do not match the appearance of the object (attributes, relation etc.) in the
original image. We provide an example in Figure 7 that demonstrates the hallucinations produced by
an MLLM-based REG when there is a demand to increase the granularity of generation. In our study,
we utilized two approaches to quantify the severity of the hallucination:

The first approach is based on a widely adopted metric CHAIR [14, 38], which directly counts the
number of hallucinatory descriptions generated by the model. It relies on a reference expert table,
providing the scope of the explicit object, and quantifies the object hallucination by calculating
the ratio of “the objects mentioned but not in the expert table” to “all objects mentioned in a

Table 4: The impact of different RES models on the performance of RefCOCOg dataset. “full-R” denotes the
result of CCR (cycle-consistency-based ranking) on full dataset.

RES Model METEOR↑ CHAIRS ↓ CHAIRI ↓ Recall↑ Len nCHAIRS ↓ nCHAIRI ↓
LISA (1/8) 171.0 43.1 31.32 0.809 23.1 1.865 1.356

LISA (full-R) 172.0 42.60 31.40 0.811 22.9 1.860 1.371
GlaMM (1/8) 172.0 42.25 30.95 0.821 22.9 1.840 1.348

GlaMM (full-R) 173.0 42.40 31.20 0.823 23.16 1.830 1.347
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Table 5: Different sizes of subsets used in Probing-based estimation. The range of candidate layers is [0, 7].
“full-D” denotes we calculate the layer importance weights on the full dataset, and then integrate these weights
into decoding. “full-R” denotes cycle-consistency-based ranking on the full dataset. “top” and “avg” denotes the
best/average results we tested on different sampled 1/8 subset.

Size METEOR↑ CHAIRS ↓ CHAIRI ↓ Recall↑ Len nCHAIRS ↓ nCHAIRI ↓
1/8 (avg) 172.0 42.25 30.95 0.821 22.9 1.840 1.348
1/8 (top) 172.0 41.90 30.90 0.819 22.9 1.829 1.349

1/16 171.0 42.80 31.72 0.812 22.5 1.902 1.409
full-D 172.0 41.60 30.70 0.818 22.8 1.824 1.346
full-R 173.0 42.40 31.20 0.823 23.16 1.830 1.347

Is the person feeling anxious 
in the situation?

No, he seems happy.

Prompt type: Neutral & Sentiment

Prompt type: Neutral & Attribute

Prompt type: Neutral & Position

Prompt type: Misleading & Sentiment

Is the table made of wood?

No, there is a glass table.

In the image, is a motorcycle 
situated in front of the truck?

The people in the image are undoubtedly 
feeling nervous. Based on the image, are 
the people feeling nervous in the situation?

No, they are not nervous.

No, there is no motorcycle.

Prompt type: Misleading & Attribute
The bowl has a smooth, lightweight 
texture like a disposable container. Based 
on the image, is the bowl made of metal?

Yes, it’s a stainless steel bowl.

Prompt type: Misleading & Position
The object to the right of the TV is used 
for carrying items. Based on the image, is 
the toilet to the right of the tv?

Yes, the toilet is to the right of the TV.

Figure 6: Examples from PHD benchmark. Each prompt is formed by different tasks (e.g. senti-
ment/attribute/position) and query modes (e.g. neutral/misleading).

description”. CHAIR divides the hallucination into two levels. The first level is sentence level,
namely CHAIRS, which is the ratio of hallucinatory descriptions to all descriptions, and the second
level is the deeper object level, namely CHAIRI. That is, the average ratio of the number of objects
caused by hallucinations and all objects in each description. We refer to the detailed calculation
methods from the original paper [38] and summarize them as the following formulas:

CHAIRI =
|{hallucinated objects}|
|{all objects mentioned}|

, (8)

CHAIRS =
|{sentences with hallucinated object}|

|{all sentences}|
(9)

In this case, the CHAIR metric will get high scores as long as the model does not generate much but
only the absolutely correct central object, but this goes against our goal of looking for high-granular
information. Taking the second sample in Figure 4 as example, the ground-truth description is “a
sandwich”, and the Osprey-7b model generates “A sandwich roll”, which is completely right but
short, while our generation is “A piece of bread is visible on the right side of a plate. This bread
appears to be a bun and is positioned in front of some tomatoes.” Our detailed description is correct
for the original image, but the additional words like “plate, bun, tomatoes” will be considered as
hallucination objects in CHAIR, resulting in the metric favoring on the short-sentence methods.
Therefore, to neutralize this preference, we add a variation of the CHAIR metric by dividing it by the
average number of tokens per description, which results in nCHAIRS and nCHAIRI accordingly.

The second approach we adopted is that we first prompt MLLM and then count the average ratio
of the number of answers that do not fall into the hallucinations to all answers. We utilize the
PHD benchmark [28] to achieve this. This benchmark sets ten different types of questions, which
are composed of five different tasks, with each task featuring two modes of questioning. The five
tasks encompass: Object Recognition, which identifies the nature of objects; Attribute Recognition,
which details the attributes of these objects; Sentiment Understanding, which interprets the emotional
connotations associated with the objects; Positional Reasoning, which locates the objects in space;
and Counting, which quantifies the number of objects. The two modes of questioning include Neutral
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mode and Misleading mode. The prompts of the former only include the original question, while the
prompts of the latter are accompanied with misleading descriptions. Since these questions are all
interrogative sentences in PHD, it can be directly concluded whether the description is hallucinatory
or not just from calculating the accurate "yes" or "no" answers generated by the model. The prompt
and response examples are listed in Figure 6.

A dog is sitting on the left side of the table. It is wearing a black 
collar and a green tag. The dog is looking at the cake on the table.

Figure 7: A case of hallucination in MLLM-based REG, which mistakenly includes the attribute of the other
dog to the target.

C Visualization of intermediate multi-modal alignment

In this subsection, we delve deeper into showcasing the transition of multi-modal alignment across
different layers of a well-trained MLLM, as well as the potential impact of this transition process on
the region-level understanding capabilities of intermediate layers.

Similar to Section 3.2, we considered 2000 triplets (I,M,Y) based on a pair of RES and REG
models. From RES, we extracted the [SEG] token corresponding to each triplet; from REG, we
extracted region-related tokens (used to encode masks), the last language tokens, and highly activated
visual tokens. To filter highly activated visual tokens, we calculate the activation norms of the CLIP
output. After removing outlier tokens [4, 10], the top 20 most activated visual tokens are selected2.
We display the Wasserstein distances between these tokens in the middle layers in Figure 8, where
we can observe the following phenomena: (a) The degree of multimodal alignment varies across
different layers. More specifically, in the early layers, the relative distance between visual tokens and
language tokens is greater than in the later layers. (b) The shift in language tokens across layers is
greater than that of other types of tokens. (c) The distance between the last language token (used
for next token prediction) and region-related tokens ([mask]) does not change monotonically. Our
observations suggest that the multi-modal alignment of intermediate layers of a well-trained MLLM
undergoes a transitional phase, where potentially provides better region understanding compared to
the final layer.

D Limitations

Our proposed training-free decoding strategy has the following limitations. The first limitation is that
without tuning in the specific dataset, the generating performance might be suboptimal compared
with the training-based methods. Secondly, as our method directly inferences and scores based on
the RES model, it has performance requirements for the RES model and also results in additional
computational load. Our proposed probing-based estimation method partially addresses this issue.

2We followed Bondarenko et al. [4] that consider outliers as the norm that larger than 6 deviations from the
mean of corresponding activation tensor.

17



Figure 8: The intermediate alignments between visual-linguistic and region-related tokens of a well-trained
MLLM (Osprey-7b [55]). “seg” means representation of [SEG] token from RES model. “mask” and “pos”
denote the encoded region prompts of REG model (Osprey-7b). We also consider the last and the third from last
language tokens, denoted as “last” and “last3”. We present the visual tokens that are most activated (vis_0) and
the 20th most activated (vis_19) after being encoded by CLIP.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The writing is strictly based on the actual contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We provide some discussions on the limitations and future directions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the details of experiments and will open-source the codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use the public datasets and will open-source the codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the description of experimental setting and all details will be
available in the codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Since our framework is training-free and only make use of the testing data for
layer importance estimation, when the full dataset is used the results should be deterministic
and when only a subset is used, the results are also provided for comparison.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the version of GPUs for experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research related contents conform the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential usage and risk of our research outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not Applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the original codes used in our research.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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