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ABSTRACT

State-of-the-art retrieval models typically address a straightforward search sce-
nario, where retrieval tasks are fixed (e.g., finding a passage to answer a specific
question) and only a single modality is supported for both queries and retrieved
results. This paper introduces techniques for advancing information retrieval with
multimodal large language models (MLLMs), enabling a broader search scenario,
termed universal multimodal retrieval, where multiple modalities and diverse re-
trieval tasks are accommodated. To this end, we first study fine-tuning an MLLM
as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical
results show that the fine-tuned MLLM retriever is capable of understanding chal-
lenging queries, composed of both text and image, but underperforms a smaller
CLIP retriever in cross-modal retrieval tasks due to modality bias from MLLMs.
To address the issue, we propose modality-aware hard negative mining to mitigate
the modality bias exhibited by MLLM retrievers. Second, we propose to continu-
ally fine-tune the universal multimodal retriever to enhance its text retrieval capa-
bility while maintaining multimodal retrieval capability. As a result, our model,
UniEmb, achieves state-of-the-art performance on the multimodal retrieval bench-
mark M-BEIR, which spans multiple domains and tasks, while also surpassing
the state-of-the-art text retrieval model, NV-Embed-v1, on MTEB retrieval bench-
mark. Finally, we explore to prompt the off-the-shelf MLLMs as the zero-shot
reranker to refine the ranking of the candidates from the multimodal retriever. We
find that through prompt-and-reranking, MLLMs can further improve multimodal
retrieval when the user queries (e.g., text-image composed queries) are more com-
plex and challenging to understand. These findings also pave the way to advance
universal multimodal retrieval in the future.

1 INTRODUCTION

Information retrieval is crucial for a variety of downstream tasks, such as question answer-
ing (Kwiatkowski et al., 2019), fact-checking (Wachsmuth et al., 2018b), and retrieval-augmented
generation (Lewis et al., 2020). Existing state-of-the-art retrievers often focus on narrow scenar-
ios. For example, LLM-based retrievers (Wang et al., 2023b; Lee et al., 2024; Meng et al., 2024) are
limited to text-to-text retrieval tasks, where both the query and the retrieved results are text-only. Re-
cent work on multimodal retrieval (Zhang et al., 2024; Jiang et al., 2024) focuses on specific tasks
and assumes a homogeneous document format. However, in real-world applications, documents
and queries often consist of diverse formats or modalities, such as text, images, and interleaved
text and images. To advance information retrieval and support broader search scenarios, this work
explores the use of multimodal LLMs (MLLMs; Liu et al., 2023a; 2024; Dai et al., 2024) for univer-
sal multimodal retrieval, accommodating diverse user-instructed tasks with multimodal queries and
documents, as illustrated in Figure 1.

We first explore to fine-tune MLLM-based bi-encoder retrievers with instructions as a guide (Asai
et al., 2023) on 16 multimodal retrieval tasks from M-BIER (Wei et al., 2023). We find that MLLM-
based retrievers significantly outperform CLIP-based retrievers in the challenging tasks, where in-
terleaved text–image queries are given, such as visual question answering and composed image
retrieval (tasks 3 and 7 in Figure 1). However, MLLM-based retrievers underperform in cross-
modal retrieval tasks due to the modality bias from MLLMs. That is, given a text-based query with
the instruction to retrieve an image (e.g., task 9 in Figure 1), an MLLM-based retriever tends to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

What is this building?

The building is …

Query:

Candidate0:

Prompt: Does the answer correctly 
answer the question, True or False 

Candidate 2

Query:

What is this building?

The building is …

Query:

Candidate0:

Prompt: Does the answer correctly 
answer the question, True or False 

Candidate 1

Query:

QueryTask Instruction

MLLM

UniEmb

Find an image caption describing the following everyday image.

Find a day-to-day image that looks similar to the provided image. 

Retrieve a day-to-day image that aligns 
with the modification everyday image.

Take out the spoon and put 
some whipped everyday image.

Provide a news-related caption for the displayed image.

Retrieve a Wikipedia paragraph that provides an 
answer to the given query about the image.

Retrieve a Wikipedia image-description pair that 
provides evidence for the question of this image.

What is this building?

Text + Image

Image

Text

Find me an everyday image that matches the given caption. A child holding a flowered umbrella and petting a yak.

1.
2.
3.

4.
5.

6.

7.

Candidates

Fine-tune

MLLM Relevance score

 Reranker

Freeze

(a) Fine-tuning retrievers

(b) Prompting and reranking

Candidate 2

Candidate 0

Candidate 1

0.8

0.7

0.4

Reranked result

What is this building?

The building is …

Query:

Candidate0:

Prompt: Does the answer correctly 
answer the question, True or False 

Candidate 0

Query:

False: 0.3False: 0.3False: 0.3

True: 0.7True: 0.7True: 0.7

Figure 1: Illustration of universal multimodal retrieval in (a), where each task consists of a task-
specific instruction and query. Both queries and candidate documents are in heterogeneous formats
(i.e., text, image or interleaved text–image). In this work, we explore (a) fine-tuning MLLM-based
universal multimodal retrievers and (b) prompting pre-trained MLLMs for zero-shot reranking upon
retrieved candidates. In this work, we adopt LLaVa-Next (Liu et al., 2024) as our MLLM backbone.

retrieve a relevant text-only rather than documents with images, especially when we improve the
MLLM-based retriever’s text retrieval capability. To address the issue, we propose modality-aware
hard negative mining in Section 4.1.1 and continual text-to-text retrieval fine-tuning in Section 4.1.2.
Our final retriever, coined UniEmb, is the first state-of-the-art universal multimodal retriever while
maintaining competitive text-to-text retrieval performance across diverse tasks.

Finally, we explore to prompt MLLMs as zero-shot rerankers. Surprisingly, we find that the zero-
shot MLLM-based rerankers can further boost retrieval accuracy in the tasks, where user queries
are interleaved text–image and more challenging to understand. For example, in the composed
image retrieval dataset, CIRCO (Baldrati et al., 2023), the zero-shot reranker is able to refine the
ranked lists and significantly boosts the accuracy (mAP@5) over 7 points from the existing state-
of-the-art composed-image retriever (Zhang et al., 2024) and our universal multimodal retrievers.
This finding indicates that there is still room for improvement in such challenging tasks in order
to tackle universal multimodal retrieval. Also, knowledge distillation from zero-shot or few-shot
MLLM-based rerankers to retrievers is a promising direction.

We summarize our contributions as follows: i) We present a study on applying MLLMs to univer-
sal multimodal retrieval. ii) We are the first to build MLLM-based universal multimodal retrievers.
Notably, our UniEmb, initialized from the existing best-performing text retriever (NV-Embed-v1;
Lee et al., 2024), not only achieves state-of-the-art results in universal multimodal retrieval bench-
mark, M-BEIR (Wei et al., 2023), but also surpasses NV-Embed-v1 in text-to-text retrieval tasks on
MTEB. iii) We explore prompting MLLMs as zero-shot rerankers in various multimodal retrieval
tasks. Surprisingly, we find that zero-shot MLLM-based rerankers are able to boost the ranking
accuracy upon strong retrievers in challenging tasks involved interleaved text–image queries.

We organize the rest of the paper as follows. We discuss related work in § 2. We introduce the
definition of universal multimodal retrieval in § 3 and present the proposed method in § 4. We report
experiment results in § 5 and conclude the paper in § 6.

2 RELATED WORK

Instruction-Aware Dense Representation Learning. Asai et al. (2023) is the first work to iden-
tify the implicit search intent behind each retrieval task and propose to fine-tune a retriever to learn
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diverse retrieval tasks with hand written task instructions. Su et al. (2023) and existing state-of-the-
art LLM-based text embedding models (Wang et al., 2023a; Meng et al., 2024; Lee et al., 2024)
adopt this approach to broader tasks beyond text retrieval, such as text classification and clustering.
Recently, Wei et al. (2023) propose a universal multimodal retrieval dataset, M-BEIR, and find that
instruction-aware dense retrieval fine-tuning is crucial to tackle universal multimodal retrieval.

Vision-Language Models for Multimodal Retrieval. With the advance of pre-trained vision-
language models (Radford et al., 2021; Li et al., 2022), research focus shifts from single-modal (Ba-
jaj et al., 2016; Fu et al., 2023) to cross-modal (Lin et al., 2014; Han et al., 2017; Liu et al., 2021a)
or more complex multimodal retrieval tasks (Liu et al., 2021b; Wu et al., 2021; Baldrati et al., 2023).
However, the aforementioned tasks assume homogeneous modality for queries and documents, lim-
iting its application. Liu et al. (2023c) take one step further to tackle the retrieval scenario involving
candidate pool with heterogeneous modalities but still limit to single retrieval task.

Wei et al. (2023) extend the study to a more general scenario, where retrievers are required to deal
with queries, candidate pool in heterogeneous modalities and diverse retrieval tasks. However, the
study is limited to CLIP-based retrievers and ignores important text-to-text retrieval tasks, such as
fact checking (Wachsmuth et al., 2018b) and entity retrieval (Hasibi et al., 2017). While Kouk-
ounas et al. (2024) aim to fine-tune a CLIP-based retriever with both strong text-to-text and mul-
timodal retrieval capability, they only consider simple multimodal retrieval tasks: image-caption
retrieval (Young et al., 2014; Lin et al., 2014). Concurrent to our work, Jiang et al. (2024) propose
to fine-tune MLLMs on NLI dataset (Bowman et al., 2015) and demonstrate their transferability to
multimodal retrieval. In this paper, we are the first to study how to fine-tune a MLLM-based univer-
sal multimodal retriever while maintaining strong text-to-text retrieval capability. Also, we are the
first to explore prompting MLLMs as zero-shot rerankers in diverse multimodal retrieval tasks.

Prompting Multimodal LLMs for Reranking. Instruction tuning has enabled large language
models (LLMs) to tackle a wide range of tasks in a zero-shot setting. Building on this, prior studies
have investigated prompting LLMs for text reranking (Ma et al., 2023; Sun et al., 2023; Zhuang
et al., 2024b). In this work, we extend this line of research to multimodal LLMs, exploring their po-
tential as zero-shot rerankers for multimodal tasks. Notably, Qu et al. (2024) introduce a framework
using multimodal LLMs for zero-shot reranking through a generative retrieval approach (Li et al.,
2024). However, their method is constrained to retrieval tasks with text-only queries. In contrast, our
approach broadens the scope by prompting multimodal LLMs to handle diverse multimodal rerank-
ing tasks, accommodating queries and documents that can be text, images, or interleaved text–image
formats. This generalization enables more versatile applications in multimodal ranking settings.

3 UNIVERSAL MULTIMODAL RETRIEVAL

Following the framework of Lin et al. (2021), we formulate the task of retrieval as follows: given
a query q, the goal is to retrieve a ranked list of candidates {c1, c2, · · · ck} ∈ C to maximize some
ranking metrics, such as nDCG, where C is the collection of documents. In this work, we bor-
row the setting of universal multimodal retrieval from Wei et al. (2023), where user queries and
candidates may consist of a text, image or interleaved text–image; i.e., q ∈ {qtxt, qimg, (qtxt, qimg)};
c ∈ {ctxt, cimg, (ctxt, cimg)}. Additionally, there are multiple search intents behind a search query,
which can be elaborated by task-specific instructions (Asai et al., 2023). For example, in task 1 and
2 of Figure 1, given the same image as a query, the search intent is to find an image caption and
similar image, respectively. Thus, in universal multimodal retrieval, given a multimodal query and
task instruction inst, we aim to retrieve a list of candidates from a pool of multimodal documents to
maximize a specified ranking metric. Note that we only consider text and image in this work while
more modalities, such as audio and video can be included, which we leave for future work.

4 METHOD

In this section, we describe our approach to universal multimodal retrieval by leveraging multimodal
LLMs (MLLMs), LLaVa-Next (Liu et al., 2024). In Section 4.1, we first fine-tune an MLLM-based
retriever to project multimodal user queries, along with task instructions, into the same semantic
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space as multimodal documents, enabling k-nearest neighbor search (Johnson et al., 2021). In Sec-
tion 4.2, we present our method for using MLLMs to rerank the top-k candidates retrieved by the
universal multimodal retriever.

4.1 FINE-TUNING MULTIMODAL LLMS FOR UNIVERSAL MULTIMODAL RETRIEVAL

We fine-tune an MLLM-based retriever parameterized by θ (i.e., ηθ) under the guidance of task-
specific instructions, aiming to capture the implicit intents behind retrieval tasks. Specifically, given
a user query qi with the specified task instruction insti and its relevant candidate, c+i , we minimize
the contrastive loss (Gutmann & Hyvärinen, 2010):

L = − 1

|B|

|B|∑
i=1

log
exp (ηθ(insti, qi) · ηθ(c+i )/τ)∑
c′∈D exp(ηθ(insti, qi) · ηθ(c′)/τ)

, (1)

where ηθ(·) ∈ Rd is a normalized vector and τ is the temperature. D ideally includes all the can-
didate documents. However, including all the candidate documents is not computationally feasible;
thus, an effective approach to mine informative negative candidates as an alternative to D is the key
to successful contrastive learning. In this work, we propose modality-aware negative mining for
contrastive learning in the scenario of universal multimodal retrieval.

4.1.1 MODALITY-AWARE HARD NEGATIVE MINING

Prior work (Karpukhin et al., 2020; Xiong et al., 2021; de Souza P. Moreira et al., 2024) has demon-
strated that hard negative mining significantly improves representation learning for text-to-text re-
trieval. In the previous retrieval setting, where the corpus consists of documents with a homogeneous
modality, a document is considered a hard negative if it lacks the required information but is still
retrieved by a model. However, in the scenario of universal multimodal retrieval, where the corpus
contains documents involving diverse modalities, the users’ desired modality as specified in task
instructions (i.e., text, image or interleaved text–image) should be taken into consideration. For ex-
ample, as shown in Figure 1, the first and second users issue the same query along with different
instructions, requiring for the documents in the format of text and image, respectively. To address
this, we propose modality-aware hard negative mining to guide models in retrieving candidates that
meet both the users’ information needs and their preferred modality.

Specifically, we first fine-tune an MLLM-based retriever using in-batch samples as random nega-
tives; i.e., D = (c+1 , · · · , c

+
|B|) in Eq. (1). The candidate documents in the mini batch except for c+i

are considered random negatives for (insti, qi). The fine-tuned model is denoted M rand. For each
query qi and its associated instruction insti in the training set, we generate two types of negatives
from the top-50 candidates retrieved by M rand: i) negatives with incorrect modality (C1

i ), where the
candidate ranks higher than the labeled positive but has a different modality from the desired one,
and ii) negatives with unsatisfactory information (C2

i ), where the candidate ranks lower than k′ but
has the same desired modality.

Previous studies on text retrieval (Xiong et al., 2021; de Souza P. Moreira et al., 2024) have shown
that setting k′ to a small number may include false positives while setting k′ to a large number would
make the negative samples too easy. In our experiment, we set k′ = 45 following the prior state-
of-the-art text retrieval training in (Lin et al., 2023). While training, given the query qi with the
associated instruction insti, we generate a triplet, ((insti, qi), c+i , c

−
i ), by sampling hard negative

c−i from either C1
i or C2

i with the same probability; i.e., D = (c+1 , c
−
1 , · · · , c

+
|B|, c

−
|B|) in Eq. (1).

Thus, in the setting of hard negative mining, the negatives mined for (insti, qi) include i) the hard
negative c−i and ii) all the positives and hard negatives from other queries, which are considered
random negatives. Note that the setting of hard negative mining includes two times more candidate
documents than that of random negative mining under the same batch size |B|. For a fair comparison,
we adopt 2 · |B| and |B| when fine-tuning with random and hard negatives, respectively. Figure 2 in
Appendix showcases the both types of negative samples. We observe that the negatives from C1 are
the sentences semantically similar to the queries but not the user desired modality.
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4.1.2 CONTINUAL TEXT-TO-TEXT RETRIEVAL FINE-TUNING

Since text-to-text retrieval remains one of the most commonly used retrieval tasks, we further fine-
tune M hard on diverse public text-to-text retrieval tasks, including MS MARCO (Bajaj et al., 2016),
HotpotQA (Yang et al., 2018), Natural Question (Kwiatkowski et al., 2019), PAQ (Lewis et al.,
2021), StackExchange (Stack-Exchange-Community, 2023), Natural Language Inference (Bowman
et al., 2015), SQuAD (Rajpurkar et al., 2016), ArguAna (Wachsmuth et al., 2018a), BioASQ (Nen-
tidis et al., 2023), FiQA (Maia et al., 2018), and FEVER (Wachsmuth et al., 2018b). As these
datasets do not contain negative samples, we employ the fine-tuned LLM-based retriever (NV-
Embed-v1; Lee et al., 2024) to mine hard negatives in our experiments (see de Souza P. Moreira
et al. (2024) for details).

During the continual fine-tuning stage, we uniformly sample triplets from both the universal mul-
timodal and text-to-text retrieval training data. Note that for each query qi in universal multimodal
retrieval training data, we use M hard to mine the second-type hard negatives C2

i again. Since no
first-type hard negatives (i.e., C1

i = ∅) are mined by M hard, we retain the first-type hard negative
mined by M rand.

4.2 PROMPTING MULTIMODAL LLMS FOR RERANKING

Prior work (Sun et al., 2023; Jin et al., 2024) has demonstrated that instruction fine-tuned LLMs can
be prompted to rerank candidates in text-to-text retrieval tasks. In this work, we directly prompt pre-
trained LLaVa-Next (i.e., the same MLLM backbone for retrievers but without fine-tuning) to further
rerank the top-10 retrieved candidates by universal multimodal retrievers. Following the approach in
Nogueira et al. (2020), we frame the reranking task as a series of true-false questions. Specifically,
given a query and retrieved candidate, we prompt LLaVa-Next to determine whether the retrieved
candidate satisfies the given query by answering “True” or “False”. For example, in the image
caption retrieval (task 1 in Figure 1), given an image query, qimg, and a retrieved text-based candi-
date, ctxt, we use the below prompt: “< qimg >\nCaption:< ctxt >\nDoes the above daily-life image
match the caption? True or False”. Additionally, in the visual question answering retrieval (task 5 in
Figure 1), given a visual question, <Qry image><Qry text>, and a retrieved text-based candidate,
<Doc text>, we use the below prompt: <Qry image>\nQuestion:<Qry text>\nAnswer:<Doc
text>\nDoes the answer correctly answer the question? True or False. We refer readers to Ta-
ble 15 in Appendix for the specific prompts used in different multimodal retrieval tasks.

To compute relevance scores, we apply the Softmax operation over the logits of the “True” and
“False” tokens, using the probability of the “True” token as the relevance score for reranking. Our
preliminary study in Section 5.3.3 shows that zero-shot MLLM-based rerankers mainly improve
the tasks, where queries are interleaved text–image, such as composed image retrieval and visual
question answering as shown in the tasks 3, 5 and 6 of Figure 1.

5 EXPERIMENTS

5.1 DATASETS AND MODELS

Multimodal Retrieval Dataset. We evaluate models’ universal multimodal retrieval capability
using M-BEIR dataset (Wei et al., 2023), which is constructed from 10 datasets with 16 diverse
multimodal retrieval tasks across 4 domains listed in Appendix Table 10.1 We train our models
on the M-BEIR 1.1M training queries and evaluate models’ effectiveness on the 190K test queries.
Following the global evaluation setting of M-BEIR dataset, for each query, candidates are retrieved
from a merged candidate pool of 5.6M multimodal documents spanning all 10 datasets. We report
the averaged Recall@5 (R@5) as retrieval accuracy across all test queries in each dataset, except for
Fashion200K and FashionIQ, where we report Recall@10 (R@10). We refer readers to Wei et al.
(2023) for more details on the construction of M-BEIR dataset.

Text-to-Text Retrieval Dataset. While M-BEIR contains WebQA dataset for text-to-text re-
trieval evaluation, we conduct a more comprehensive text-to-text retrieval evaluation using MTEB
dataset (Muennighoff et al., 2023). Specifically, we evaluate our models on 15 diverse text retrieval

1https://huggingface.co/datasets/TIGER-Lab/M-BEIR
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datasets.2 Following the established procedure, we report the averaged nDCG@10 across the 15
text retrieval datasets. Note that unlike in M-BEIR, where candidates are retrieved from a merged
pool across all tasks, in the MTEB retrieval tasks, we retrieve candidates from separate corpora for
each task.

Backbone Model Choices. In this work, we utilize two representative backbones of vision–
language models to build universal multimodal retrievers, CLIP (Radford et al., 2021) and LLaVa-
Next (Liu et al., 2024). For CLIP, we initialize from CLIP-large model and employ the best-
performing modeling approach from Wei et al. (2023), denoted as CLIPSF.3 This method fuses
input image and text features by separately encoding each input (query or document) image and text
into separate vectors, which are then summed to create a fused vector (Liu et al., 2023c). Addi-
tionally, we report the numbers for BLIP (Li et al., 2022), which fuses text information into image
encoder through cross attention. We use BLIPFF from Wei et al. (2023), which is fine-tuned on
M-BEIR dataset with random negative.4

LLaVa-Next (Liu et al., 2024) is a multimodal LLM (MLLM), which integrates a CLIP image en-
coder, LLM and a vision–language MLP projector to align image features to the input embedding
space of the LLM. We use LLaVa-Next with Mistral 7B (Jiang et al., 2023) as the backbone LLM.5
We experiment with three variants: (1) LLaVa-E: the <eos> token embedding is used to aggregate
information from the multimodal input, a method commonly employed in prior work for text re-
trieval (Wang et al., 2023a; Ma et al., 2024b); (2) LLaVa-P: the MLLM is prompted to summarize
each multimodal query (or document) input in one word, using embedding for the last token to
encode multimodal input;6 (3) NVEmb: The LLM from LLaVa-Next is replaced by the fine-tuned
LLM-based text retrieval model NV-Embed-v1 (Lee et al., 2024) while all other components (i.e.,
image encoder and vision–language MLP projector) remain unchanged.7 Note that the backbone of
NV-Embed-v1 is Mistral 7B. The instructions for LLaVa-E (or NVEmb) and LLaVa-P are illustrated
in Appendix Table 13 and 14, respectively. For reranking experiments, we also utilize LLaVa-Next
with Mistral 7B and the prompts are listed in Appendix Table 15.

Retriever Training Details. For each backbone, we start from fine-tuning M rand with random
negatives; i.e., D = (c+1 , · · · , c

+
|B|) in Eq. (1). The fine-tuned model is denoted M rand. For CLIP

backbone, following (Wei et al., 2023), we fine-tune CLIPSF for 20 epochs with learning rate 1e−5.
For LLaVa-Next backbone, we fine-tune models for 2 epochs with learning rate 1e−4. Note that for
LLaVa-Next backbone, we only fine-tune the vision–language projector and LoRA (r = 8, α = 64)
added on the language model. At the stage of fine-tuning M hard with hard negatives, we mine the
two types of hard negatives following Section 4.1.1 using each retriever. Then, we fine-tune each
retriever using its own mined hard negatives with the same training procedure as the first stage; i.e.,
D = (c+1 , c

−
1 , · · · , c

+
|B|, c

−
|B|) in Eq. (1). We fine-tune models with the batch size of 128 × 8 and

64 × 8 when using random and hard negatives, respectively. When GPU memory is not enough
for the designated batch size, we use gradient accumulation. Note that when fine-tuning M hard, we
initialize the models using the pre-trained model rather than continuously fine-tuning M rand. We
denote the models fine-tuned with random and hard negatives M rand(·) and M hard(·), respectively.
We refer readers to Appendix A.1 for more detail.

To enhance text-to-text retrieval capability, we continuously fine-tune M hard(NVEmb) with learn-
ing rate 2e − 5 using the mixture of training data from M-BEIR and public text retrieval datasets
aforementioned in Section 4.1.2 for 4.5K steps. The final model is coined UniEmb.

2The 15 retrieval datasets in MTEB are derived from public datasets in BEIR (Thakur et al., 2021), excluding
BioASQ, Signal-1M, TREC-NEWS, Robust04.

3https://huggingface.co/openai/clip-vit-large-patch14
4https://huggingface.co/TIGER-Lab/UniIR/blob/main/checkpoint/BLIP_FF/

blip_ff_large.pth
5https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
6We refer readers to Appendix Table 14 for the prompt and more detail from the prior work (Zhuang et al.,

2024a; Jiang et al., 2024).
7https://huggingface.co/nvidia/NV-Embed-v1
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Table 1: Main results on retrieval. Following Wei et al. (2023), we report R@5 for all the datasets, ex-
cept for Fashion200K and FashionIQ, where we report R@10. The tasks of single-modal and multi-modal
queries denote tasks 1–5 and 6–8, respecetively. For MTEB text retrieval (Muennighoff et al., 2023), we report
nDCG@10 averaged from 15 retrieval tasks (detailed in Appendix Table 12).

Task Dataset M rand M hard
UniEmb

CLIPSF BLIPFF LLaVa-E LLaVa-P NVEmb CLIPSF LLaVa-P NVEmb

1. qtxt → cimg
VisualNews 43.8 23.0 33.2 34.2 32.1 42.7 39.7 41.1 41.0
MSCOCO 72.0 75.6 69.3 70.8 64.6 69.2 73.8 72.7 71.3
Fashion200K 16.4 25.4 13.5 13.3 10.4 19.7 17.4 18.6 17.1

2. qtxt → ctxt WebQA 83.2 79.5 88.6 88.8 92.1 88.2 93.6 95.6 95.9

3. qtxt → (cimg, ctxt)
EDIS 46.5 50.3 55.9 56.6 55.1 54.2 68.8 69.8 68.8
WebQA 76.0 79.7 80.3 81.6 81.3 80.1 84.9 84.8 85.0

4. qimg → ctxt
VisualNews 39.5 21.1 32.4 33.3 30.4 40.6 39.4 41.4 41.3
MSCOCO 91.0 88.8 91.8 92.2 90.3 88.5 89.5 88.9 90.1
Fashion200K 17.2 27.6 13.9 14.7 13.2 20.0 17.5 19.9 18.4

5. qimg → cimg NIGHTS 31.6 33.0 31.8 30.7 30.4 31.9 31.8 31.1 32.4

6. (qimg, qtxt) → ctxt OVEN 40.4 38.7 37.9 39.1 36.3 40.9 42.9 42.6 42.1
InfoSeek 26.1 19.7 31.0 32.9 33.3 27.6 37.2 35.8 42.3

7. (qimg, qtxt) → cimg FashionIQ 24.2 28.5 27.4 27.0 26.0 21.7 25.8 26.6 25.7
CIRR 43.2 51.4 48.1 45.4 45.3 38.3 49.5 50.8 50.0

8. (qimg, qtxt) → (cimg, ctxt)
OVEN 60.9 57.8 61.6 62.6 61.7 61.6 63.9 63.5 64.1
InfoSeek 45.9 27.7 50.3 50.0 53.4 47.1 54.4 53.5 57.7

M-BEIR Avg.
All 47.4 45.5 47.9 48.3 47.2 48.3 51.9 52.3 52.7
Single-modal Qry 51.7 50.4 51.0 51.6 50.0 53.5 55.6 56.4 56.1
Multi-modal Qry 40.1 37.3 42.7 42.8 42.7 39.5 45.6 45.5 47.0

MTEB Text Retieval Avg. - - - 40.8 51.6 - 46.4 49.7 60.3∗

∗ ranked top-5 on MTEB retrieval task leaderboard. NVEmb (Lee et al., 2024) scores 59.36 in MTEB retrieval task.

5.2 MAIN RESULTS

Universal Multimodal Retrieval. Table 1 reports the retrieval accuracy of different retrievers. In
M-BEIR evaluation, we observe that when fine-tuning with random negatives, LLaVa-P achieves
the highest overall retrieval effectiveness. This result indicates that LLaVa-P effectively aggregates
multimodal input information into a single word representation. While MLLM-based retrievers
outperform CLIPSF on tasks involving multi-modal queries, they still lag behind CLIPSF on tasks
with single-modal queries, especially in cross-modality retrieval; i.e., tasks 1 and 4. In addition,
NVEmb reaches the best text-to-text retrieval accuracy on WebQA task2. It is worth noting that
although BLIPFF performs the worst overall, it demonstrates notably strong performance in the
fashion domain (e.g., Fashion200K and FashionIQ) but worse in News domain (e.g., VisualNews),
likely due to differences in the text–image pairs used for pre-training between CLIP and BLIP.

Observing from the models fine-tuned with hard negatives, MLLM-based retrievers show significant
retrieval accuracy improvements, particularly in tasks involving single-modal queries. On the other
hand, CLIPSF does not show similar improvement. This could attribute to the fact that CLIP has
been well pre-trained for cross-modal retrieval whereas MLLM-based retrievers, fine-tuned with
contrastive learning objective for only 2 epochs, may still be underfitting. Fine-tuning with hard
negatives accelerates contrastive learning of MLLM-based retrievers.

Table 2: Retrieval analysis on MSCOCO. M.A.@1 denotes the modality ac-
curacy of the top-1 candidate. More results of M.A.@1 are reported in Ap-
pendix Table 11.

Task Metric M rand M hard

CLIPSF LLaVa-E LLaVa-P NVEmb CLIPSF LLaVa-P NVEmb

1.
R@1 42.6 33.9 41.7 14.1 45.8 50.7 49.8
R@5 72.0 69.3 70.8 64.6 69.2 73.8 72.7
M.A.@1 92.6 79.9 91.0 42.1 98.3 100.0 100.0

4.
R@1 72.3 73.0 73.4 69.3 63.8 72.7 72.4
R@5 91.0 91.8 92.2 90.3 88.5 89.5 88.9
M.A.@1 98.7 99.2 99.8 96.3 94.2 100.0 100.0

Table 2 reveals another
factor contributing to the
lower retrieval accuracy of
MLLM-based retrievers for
single-modal queries: text
retrieval bias. This is-
sue is particularly obvious
for NVEmb. We compare
models’ retrieval accuracy
on text–image and image–
text retrieval (tasks 1 and 4)
on MSCOCO. The compar-
ison shows that M rand(LLaVa-E) and M rand(NVEmb) exhibit significant lower modality accuracy
(M.A.@1) than M rand(CLIPSF) in the text-to-image retrieval task. Most erroneous top-1 retrieved
candidates from the MLLM-based retrievers are relevant texts rather than images (see Appendix
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Table 3: Experiments of zero-shot reranking on
tasks 6–8 from M-BEIR.

Task Dataset M hard (NVEmb) UniEmb

Retrieval Rerank Retrieval Rerank

6. OVEN 42.6 44.3 42.1 43.5
InfoSeek 35.8 37.1 42.3 43.1

7. FashionIQ 26.6 20.0 25.7 19.0
CIRR 50.8 48.6 50.0 48.2

8. OVEN 63.5 65.8 64.1 65.9
InfoSeek 53.5 54.5 57.7 57.3

Table 4: Experiments of zero-shot reranking on composed
image retrieval task, CIRCO (Baldrati et al., 2023).

Retrieval Model Retrieval Rerank
MagicLens (Zhang et al., 2024) 24.9 32.4
E5-V (Jiang et al., 2024) 19.1 31.0
M rand(CLIPSF) 12.7 31.6
BLIPFF (Wei et al., 2023) 26.6 36.1
M hard (LLaVa-P) 29.0 37.9
M hard (NVEmb) 32.4 40.9
UniEmb 32.3 39.9

Figure 2). This result indicates that MLLM-based retrievers have a bias toward relevant text rather
than images. This issue can be mitigated by our proposed modality-aware hard negative mining.

Finally, we observe that M hard(NVEmb) degrades in text-to-text retrieval tasks compared to
M rand(NVEmb) but still outperforms M hard(LLaVa-P) (i.e., WebQA task 2 and MTEB).8 However,
compared to the original NVEmb (Lee et al., 2024), the score on MTEB retrieval tasks drops almost
10 points. After continual fine-tuning (detailed in Section 4.1.2), the final model, UniEmb, not only
surpasses NVEmb in MTEB but also maintains strong multimodal retrieval capability. We attribute
the improvement in text-to-text retrieval to the effective hard negatives mined by NV-Embed-v1
aforementioned in Section 4.1.2. Notably, continual fine-tuning significantly enhances multimodal
retrieval performance in InfoSeek (col 8 vs 7 in Table 1), highlighting its effectiveness in improving
the model’s ability to handle knowledge-intensive multimodal retrieval tasks.

Zero-Shot Reranking. Table 3 reports the reranked results from the top-10 retrieved candidates
of M hard(NVEmb) and UniEmb on the tasks involving multi-modal queries. We observe accuracy
improvements in visual question answering retrieval tasks (i.e., OVEN and InfoSeek), but no im-
provement on composed image retrieval tasks (i.e., FashionIQ and CIRR). However, as shown in
the Appendix Table 10, compared to OVEN and InfoSeek, FashionIQ and CIRR only have one rel-
evance label per query. We hypothesize that there may be additional relevant positives that are not
labeled. We refer readers to Appendix Figure 3 for case studies.

We conduct experiments on the composed image retrieval dataset with high-quality human annota-
tions, CIRCO (Baldrati et al., 2023) validation set, consisting of 219 queries and 123K candidates
in total. On average, 4.2 positives are labeled by humans per query. Table 4 reports mAP@5 for
various retrievers and their reranking results. We directly use the models and code provided by the
authors to get the results of MagicLens (Zhang et al., 2024)9 and E5-V (Jiang et al., 2024)10 retriev-
ers. For our retrievers fine-tuned on M-BEIR, M rand(CLIPSF), M hard(LLaVa-P), M hard(NVEmb)
and UniEmb, we directly use the same instructions as CIRR in M-BEIR for query encoding. We
first observe that our MLLM-based retrievers outperform MagicLens and E5-V. More importantly,
reranking upon the top-10 retrieved candidates from the different retrievers significantly improves
mAP@5 by at least 7 points. The result demonstrates the effectiveness of prompting an MLLM as a
reranker in composed image retrieval tasks.

5.3 ABLATION STUDIES

5.3.1 IS FINE-TUNING WITH INSTRUCTION NECESSARY?

We fine-tune NVEmb with random negatives on the M-BEIR subtasks listed in Table 5 and evaluate
models’ retrieval accuracy on the development queries from each subtask. Note that, for simplicity,
we encode only the corpus specific to each dataset, containing documents of the targeted modality.
For example, when evaluating retrieval accuracy for VisualNews task 1, we encode the 542K images
from VisualNews (see Appendix Table 10) as the index rather than the entire 5.6M documents from

8We hypothesize that the degradation of M hard(NVEmb) in text-to-text retrieval tasks comes from the miti-
gation of text retrieval bias after fine-tuning with modality-aware hard negatives.

9https://github.com/google-deepmind/magiclens
10https://github.com/kongds/E5-V
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Table 5: Ablation study on fine-tuning NVEmb w/o (✗) and w/ (✓) instructions.

Task Dataset
zero-shot fine-tuning

CLIP LLaVa-P NVEmb NVEmb

✗ ✗ ✗ ✓ ✗ ✓

1. qtxt → cimg
VisualNews 40.9 11.7 15.3 17.4 33.1 38.7
MSCOCO 55.4 58.1 64.2 59.9 76.7 82.8
Fashion200K 8.9 2.4 4.2 3.2 12.3 15.6

4. qimg → ctxt
VisualNews 42.0 6.3 6.5 5.9 29.3 37.2
MSCOCO 79.6 66.8 70.6 68.2 88.9 93.0
Fashion200K 7.7 2.9 4.0 3.6 12.0 16.8

5. qimg → cimg NIGHTS 25.4 28.4 29.3 27.7 31.6 30.9

M-BEIR. We also report CLIP and LLaVa-P (w/o instruction) zero-shot retrieval effectiveness as a
reference point.11

From Table 5, we observe that NVEmb, as a zero-shot MLLM-based retriever, outperforms LLaVa-
P and even competes CLIP in the tasks in Miscellaneous domain (i.e., MSCOCO and NIGHTS).
This result indicates that a fine-tuned MLLM-based text retriever is capable to perform multimodal
retrieval tasks (same finding in (Jiang et al., 2024)). Although incorporating task instructions with
queries degrades the retrieval effectiveness (col 4 vs 3), the model fine-tuned with instructions sig-
nificantly outperforms the one fine-tuned without instructions (col 6 vs 5). This indicates that task
instructions can help elicit models’ task- or domain-specific knowledge for diverse multimodal re-
trieval tasks.

5.3.2 EFFECTIVENESS OF CONTINUAL TEXT-TO-TEXT RETRIEVAL FINE-TUNING

Table 6: Abaltion study to enhance model’s text-to-text
retrieval capability.

Initialization Training data M-BEIR∗ BEIR∗
Multimodal Text-to-Text

NVEmb
- - - 62.9
✓ ✗ 54.3 51.7
✓ ✓ 52.2 63.0

M hard (NVEmb) - - 56.4 51.7
✓ ✓ 55.6 63.1

∗ For M-BEIR, we only evaluate on the tasks with single-
modality queries (i.e., tasks 1–5) while for BIER, we evaluate
on 7 tasks: ArguAna, FiQA, NFCorpus, Quora, SCIDOCS,
SciFact and TREC-COVID.

In this section, we study the best strat-
egy to enhance models’ capabilities in
both multimodal and text-to-text retrieval.
We begin by fine-tuning NVEmb on both
training data for universal multimodal re-
trieval and text-to-text retrieval (detailed
in Section 4.1.2) for 2K steps. As shown
in Table 6, joint fine-tuning for both tasks
allows the model to maintain its text re-
trieval capability (row 3 vs 1), though
it results in a drop of over 2 points in
multimodal retrieval accuracy (row 3 vs
2). In contrast, consciously fine-tuning
M hard(NVEmb) for addition 2K steps sig-
nificantly boosts its text-to-text retrieval capability with a slight drop of 0.8 points in multimodal
retrieval (row 5 vs 4).12 This experiment shows that continuously fine-tuning a multimodal retriever
to enhance its text-to-text retrieval is more effective than fine-tuning a retriever on all the retrieval
tasks simultaneously. This finding suggests that a more optimized curriculum learning strategy (Ben-
gio et al., 2009) could further improve performance in universal multimodal retrieval, a direction we
leave for future work.

5.3.3 STUDY ON PROMPTING MLLMS FOR RERANKING

In this section, we study the reranking effectiveness of MLLMs on all the tasks in M-BEIR
dataset. Specifically, for each development query, we rerank the top-10 retrieved candidates from
M rand(CLIPSF). As shown in Table 7, prompting LLaVa-Next for reranking further boosts the rank-
ing accuracy in tasks 6–8, which involve multimodal queries (except for FashionIQ). However, the
reranking degrades accuracy in tasks 1–5 which involve single-modal queries (except for WebQA

11We follow Jiang et al. (2024) to prompt LLaVa-Next to output one word embedding for each query and
document. i.e., <txt>\nSummary above sentence in one word:; <img>\nSummary above image in one word:.

12Note that UniEmb in Table 1 is fine-tuned with the same condition with total 4.5K steps.
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Table 7: Reranking study on top-10 retrieved candidates from M rand(CLIPSF) on M-BEIR develop-
ment query set.

Task Dataset Retrieval Rerank

7B 34B

1. qtxt → cimg
VisualNews 44.2 38.8 42.5
MSCOCO 72.0 68.0 69.7
Fashion200K 17.8 14.7 15.6

2. qtxt → ctxt WebQA 78.2 79.2 82.9

3. qtxt → (cimg, ctxt)
EDIS 48.3 46.5 47.4
WebQA 78.2 67.7 68.3

4. qimg → ctxt
VisualNews 37.4 29.3 29.8
MSCOCO 91.0 87.3 89.0
Fashion200K 17.3 9.9 12.0

5. qimg → cimg NIGHTS 32.1 29.4 32.7

6. (qimg, qtxt) → ctxt OVEN 40.6 43.2 43.7
InfoSeek 25.6 28.4 29.0

7. (qimg, qtxt) → cimg FashionIQ 32.5 21.5 23.4
CIRR 52.4 54.1 54.2

8. (qimg, qtxt) → (cimg, ctxt)
OVEN 60.6 63.8 63.7
InfoSeek 45.3 48.7 50.5

task 2). This trend persists even after scaling the reranker from 7B to 34B (col 3, 2 vs 1).13 We
hypothesize that MLLM rerankers, as a more robust cross-encoder architecture compared to a bi-
encoder retriever, excel at challenging tasks involving multimodal queries, even in a zero-shot man-
ner. However, zero-shot rerankers fail to leverage task- or domain-specific knowledge, which limits
their performance on relatively simple tasks involving single-modal queries. The relevance signals
between queries and documents in the News, Miscellaneous, and Fashion domains can vary signif-
icantly. Thus, optimizing prompts or instruction tuning for MLLMs to better capture domain- or
task-specific knowledge offers a promising direction for improving reranking accuracy.

6 CONCLUSION AND FUTURE WORK

In this paper, we present techniques for advancing information retrieval with multimodal large lan-
guage models (MLLMs). We first study fine-tuning MLLM-based retrievers to tackle a general
information retrieval scenario: universal multimodal retrieval, where models are required to deal
with diverse retrieval tasks, multimodal queries and documents. Our study shows that MLLM-based
retrievers exhibit modality bias in cross-modal retrieval tasks compared to CLIP-based retrievers. To
address the issue, we propose modality-aware hard negative mining, which significantly improves
our MLLM-based retrievers’ accuracy by 5 points in M-BEIR dataset, a benchmark for universal
multimodal retrieval. Additionally, with our proposed continual fine-tuning, our MLLM-based re-
triever, UniEmb, is the first model to yield state-of-the-art retrieval accuracy in universal multimodal
retrieval tasks while maintaining strong text-to-text retrieval capability (ranked top-5 on MTEB re-
trieval task leaderboard). Finally, we explore to prompt MLLMs as reranker in M-BEIR tasks.
We find that MLLMs can be used as zero-shot rerankers to further boost retrieval accuracy in the
challenging tasks, which require the understanding of multimodal queries, such as visual question
answering and composed image retrieval. For example, our zero-shot MLLM-based reranker im-
proves the retrieval accuracy upon the state-of-the-art retrievers by over 7 points in CIRCO.

Our work also suggests two promising future directions: (1) Distilling our MLLM-based retriever,
UniEmb, to smaller multimodal retrievers, such as CLIP (Radford et al., 2021) or BLIP (Li et al.,
2022), to trade better retrieval efficiency (see the efficiency comparisons in Appendix A.2); (2) Dis-
tilling MLLM-based reranker to retriever to further improve its retrieval capability in tasks involving
multimodal queries. The other directions, such as iterative retrieval with relevance feedback (Han
et al., 2024) and generative retrieval (Qu et al., 2024), are also worth exploring in the tasks of uni-
versal multimodal retrieval. In addition, recent work (Ma et al., 2024a; Faysse et al., 2024) has
demonstrated that MLLMs can be fine-tuned to tackle visual document retrieval tasks, which could
be integrated into universal multimodal retrieval.

13We use llava-hf/llava-v1.6-34b-hf in the experiment.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implement our training and inference using Tevatron (Gao et al., 2023). For CLIP-based retriev-
ers, we follow all the settings from Wei et al. (2023). For MLLM-based retriever, we fine-tune
models with DeepSpeed Zero 2 (Rajbhandari et al., 2020) and gradient checkpointing. During
fine-tuning on M-BEIR training data, we set maximum length for queries and documents to 128.
While continual fine-tuning on both M-BEIR and text-to-text retrieval training data, we set maxi-
mum length for queries and documents to 128 and 512, respectively. All fine-tuning are conducted
on 8×80GB A100 GPUs. Note that image input only occupies single token length after being to-
kenized; however, each image will be converted to multiple image tokens. Thus, the actual input
length to MLLM is longer than the maximum length we set. To speed fine-tuning and inference for
MLLM-based retrievers, we only use the global image patches, which occupy 576 (24×24) image
tokens.

A.2 RETRIEVAL EFFICIENCY COMPARISONS

Table 8: Retrieval efficiency comparisons on M-BEIR dataset.

Storage (GBs) Latency (ms)

Retriever Index Encoding (1st / 50th / 99th perc.) Vector search
CLIPSF 16 26 / 27 / 39 6
BLIPFF 16 37 / 38 / 44 6
UniEmb 86 81 / 194 / 203 33

Table 8 compares the retrieval efficiency in terms of storage and latency for different retrievers
adopted in the paper. We measure the index storage required for the 5.6M document from the M-
BEIR datatset. As for retrieval latency, we measure the latencies of query encoding and vector
search. For query latency, we randomly sample 100 queries from each test query pool in the 16
M-BEIR tasks and measure per query encoding and vector search latency with a batch size of 1.
Since query encoding latency is varied with query length, we report the latency at 1th, 50th and 99th

percentiles. The latency is masured using one thread on a Linux machine with a 2.2 GHz Intel Xeon
Silver 4210 CPU and NVIDIA RTX A6000 GPUs, respectively. Note that we perform brute-force
search on the sharded index with two GPUs since the full index from UniEmb cannot be loaded into
a single A6000 GPU.

A.3 BASELINE REPRODUCING

Table 9: A comparison of M rand(CLIPSF) fine-tuned by
us and Wei et al. (2023).

Task Dataset M rand(CLIPSF)

Wei et al. (2023) Ours

M-BEIR Avg.
All 47.4 47.4
Single-modal Qry 52.5 51.7
multi-modal Qry 39.1 40.1

Since we implement our fine-tuning
and inference following the setting
from Wei et al. (2023), our fine-tuned
M rand(CLIPSF) should be equal to
CLIPSFfrom Wei et al. (2023). In Table 9,
we compare the results from our fine-
tuned M rand(CLIPSF) and the checkpoint
provided by the authors.14

14https://huggingface.co/TIGER-Lab/UniIR/blob/main/checkpoint/CLIP_SF/
clip_sf_large.pth

15

https://huggingface.co/TIGER-Lab/UniIR/blob/main/checkpoint/CLIP_SF/clip_sf_large.pth
https://huggingface.co/TIGER-Lab/UniIR/blob/main/checkpoint/CLIP_SF/clip_sf_large.pth


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: M-BEIR dataset statistics.

Task Dataset Domain # Query # Relevance / Query # Candid.
Train Dev Test Train Dev Test

1. qtxt → cimg
VisualNews (Liu et al., 2021a) News 99K 20K 20K 1.0 1.0 1.0 542K
MSCOCO (Lin et al., 2014) Misc. 100K 24.8K 24.8K 1.0 1.0 1.0 5K
Fashion200K (Han et al., 2017) Fashion 15K 1.7K 1.7K 3.3 3.1 2.8 201K

2. qtxt → ctxt WebQA (Chang et al., 2022) Wiki 16K 1.7K 2.4K 2.0 2.0 2.0 544K

3. qtxt → (cimg, ctxt)
EDIS (Liu et al., 2023b) News 26K 3.2K 3.2K 2.6 2.6 2.6 1M
WebQA (Chang et al., 2022) Wiki 16K 1.7K 2.4K 1.4 1.4 1.4 544K

4. qimg → ctxt
VisualNews (Liu et al., 2021a) News 100K 20K 20K 1.0 1.0 1.0 537K
MSCOCO (Lin et al., 2014) Misc. 113K 5K 5K 5.0 5.0 5.0 25K
Fashion200K (Han et al., 2017) Fashion 15K 4.8K 4.8K 1.0 1.0 1.0 61K

5. qimg → cimg NIGHTS (Fu et al., 2023) Misc. 16K 2K 2K 1.0 1.0 1.0 40K

6. (qimg, qtxt) → ctxt OVEN (Hu et al., 2023) Wiki 150K 50K 50K 8.5 10.0 9.9 676K
InfoSeek (Chen et al., 2023) Wiki 141K 11K 11K 6.8 6.7 6.5 611K

7. (qimg, qtxt) → cimg FashionIQ (Wu et al., 2021) Fashion 16K 2K 6K 1.0 1.0 1.0 74K
CIRR (Liu et al., 2021b) Misc. 26K 2K 4K 1.0 1.0 1.0 21K

8. (qimg, qtxt) → (cimg, ctxt)
OVEN (Hu et al., 2023) Wiki 157K 14.7K 14.7K 17.8 17.5 17.7 335K
InfoSeek (Chen et al., 2023) Wiki 143K 17.6K 17.6K 9.1 7.5 7.5 481K

M-BEIR (Wei et al., 2023) 4 domains 1.1M 182K 190K 6.5 5.9 5.7 5.6M

Table 11: Retrieval models’ Top-1 modality accuracy (M.A.@1). We can observe that most MLLM-based
retrievers suffer from low modality accuracy on Task 1 due to modality bias, especially for NVEmb with
superior text retrieval capability. The issue can be resolved with our modality-aware hard negative mining.
Even though UniEmb exhibits strong text-retrieval effectiveness, no modality bias issue is observed.

Task Dataset M rand M hard
UniEmb

CLIPSF LLaVa-E LLaVa-P NVEmb CLIPSF LLaVa-P NVEmb

1. qtxt → cimg
VisualNews 0.97 0.82 0.94 0.76 0.98 1.00 1.00 1.00
MSCOCO 0.93 0.80 0.91 0.42 0.98 0.99 1.00 1.00
Fashion200K 0.97 1.00 1.00 0.78 1.00 1.00 1.00 0.99

2. qtxt → ctxt WebQA 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

3. qtxt → (cimg, ctxt)
EDIS 0.94 1.00 0.96 1.00 0.90 0.99 1.00 0.99
WebQA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4. qimg → ctxt
VisualNews 0.33 0.90 0.84 0.84 0.97 1.00 1.00 1.00
MSCOCO 0.99 0.99 1.00 0.96 0.94 0.99 1.00 0.99
Fashion200K 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00

5. qimg → cimg NIGHTS 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

6. (qimg, qtxt) → ctxt OVEN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
InfoSeek 0.94 1.00 1.00 1.00 0.97 0.99 1.00 0.99

7. (qimg, qtxt) → cimg FashionIQ 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CIRR 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8. (qimg, qtxt) → (cimg, ctxt)
OVEN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
InfoSeek 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 12: Detailed results on MTEB retrieval tasks.

Model AA CF CQ DB Fe FQ HQ MS NF NQ Qu SD SF T2 TC Avg.
NVEmb (Lee et al., 2024) 68.2 34.7 50.5 48.3 87.8 63.1 79.9 46.5 38.0 71.2 89.2 20.2 78.4 28.4 85.9 59.4
MRand (LLaVa-P) 48.4 12.9 34.0 34.0 52.2 33.7 50.1 12.3 30.4 36.5 83.8 17.9 72.3 73.4 19.6 40.8
MRand (NVEmb) 51.5 23.7 43.6 44.9 78.6 46.5 70.2 32.5 38.9 54.1 87.5 20.3 74.5 83.4 23.4 51.6
M hard (LLaVa-P) 38.6 20.4 38.0 36.9 78.1 36.2 61.2 23.2 35.1 45.1 86.1 19.2 72.7 27.7 77.2 46.4
M hard (NVEmb) 37.2 30.8 44.0 44.3 86.4 45.5 70.6 34.2 37.4 49.7 86.9 13.9 64.1 23.5 76.7 49.7
UniEmb 69.0 39.3 49.7 50.6 92.6 60.1 81.4 45.1 40.5 70.6 88.7 21.8 78.3 31.1 85.4 60.3
∗ Dataset Legend: AA=ArguAna, CF=Climate-FEVER, CQ=CQADupStack, DB=DBPedia, Fe=FEVER, FQ=FiQA,

HQ=HotpotQA, MS=MSMARCO, NF=NFCorpus, NQ=NaturalQuestions, Qu=Quora, SD=SCIDOCS, SF=SciFact,
T2=Touché-2020, TC=TREC-COVID
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Table 13: NVEmb (and LLaVa-E) instructions for M-BEIR and MTEB, which are from Wei et al.
(2023) and Lee et al. (2024), respectively. For all the candidates, we use the prompt to generate the
embedding: < cimg >\n< ctxt ><eos>.

Task Dataset M-BEIR task instruction

1. qtxt → cimg
VisualNews Identify the news-related image in line with the described event.\nQuery: < qtxt ><eos>
MSCOCO Find me an everyday image that matches the given caption.\nQuery: < qtxt ><eos>
Fashion200K Based on the following fashion description, retrieve the best matching image.\nQuery: < qtxt ><eos>

2. qtxt → ctxt WebQA Retrieve passages from Wikipedia that provide answers to the following question.\nQuery: < qtxt ><eos>

3. qtxt → (cimg, ctxt)
EDIS Find a news image that matches the provided caption.\nQuery: < qtxt ><eos>
WebQA Find a Wikipedia image that answers this question.\nQuery: < qtxt ><eos>

4. qimg → ctxt
VisualNews Find a caption for the news in the given photo.\nQuery: < qimg ><eos>
MSCOCO Find an image caption describing the following everyday image.\nQuery: < qimg ><eos>
Fashion200K Find a product description for the fashion item in the image.\nQuery: < qimg ><eos>

5. qimg → cimg NIGHTS Find a day-to-day image that looks similar to the provided image.\nQuery: < qimg ><eos>

6. (qimg, qtxt) → ctxt OVEN Retrieve a Wikipedia paragraph that provides an answer to the given query about the image.\nQuery: < qimg >\n< qimg ><eos>
InfoSeek Retrieve a Wikipedia paragraph that provides an answer to the given query about the image.\nQuery: < qimg >\n< qimg ><eos>

7. (qimg, qtxt) → cimg FashionIQ Find a fashion image that aligns with the reference image and style note.\nQuery: < qimg >\n< qimg ><eos>
CIRR Retrieve a day-to-day image that aligns with the modification instructions of the provided image.\nQuery: < qimg >\n< qimg ><eos>

8. (qimg, qtxt) → (cimg, ctxt)
OVEN Retrieve a Wikipedia image-description pair that provides evidence for the question of this image.\nQuery: < qimg >\n< qimg ><eos>
InfoSeek Retrieve a Wikipedia image-description pair that provides evidence for the question of this image.\nQuery: < qimg >\n< qimg ><eos>

Task Dataset MTEB task instruction

9. qtxt → ctxt

ArguAna Given a claim, find documents that refute the claim\nQuery: < qtxt ><eos>
Climate-FEVER Given a claim about climate change, retrieve documents that support or refute the claim\nQuery: < qtxt ><eos>
CQADupStack Given a question, retrieve detailed question descriptions from Stackexchange that are duplicates to the given question\nQuery: < qtxt ><eos>
DBPedia Given a query, retrieve relevant entity descriptions from DBPedia\nQuery: < qtxt ><eos>
FEVER Given a claim, retrieve documents that support or refute the claim\nQuery: < qtxt ><eos>
FiQA Given a financial question, retrieve user replies that best answer the question\nQuery: < qtxt ><eos>
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question\nQuery: < qtxt ><eos>
MSMARCO Given a web search query, retrieve relevant passages that answer the query\nQuery: < qtxt ><eos>
NFCorpus Given a question, retrieve relevant documents that best answer the question\nQuery: < qtxt ><eos>
NaturalQuestions Given a question, retrieve Wikipedia passages that answer the question\nQuery: < qtxt ><eos>
Quora Find questions that have the same meaning as the input question\nQuery: < qtxt ><eos>
SICDOCS Given a scientific paper title, retrieve paper abstracts that are cited by the given paper\nQuery: < qtxt ><eos>
SciFact Given a scientific claim, retrieve documents that support or refute the claim\nQuery: < qtxt ><eos>
Touch´e-2020 Given a question, retrieve detailed and persuasive arguments that answer the question\nQuery: < qtxt ><eos>
TREC-COVID Given a query on COVID-19, retrieve documents that answer the query\nQuery: < qtxt ><eos>

Table 14: LLaVa-P instructions for M-BEIR and MTEB. [image], [text] and [image,text] are used
to inform LLaVa-P the user desired modality. For all the candidates, we use the prompt to generate
the embedding: < cimg >\n< ctxt >\nDescribe the above in one word:

Task Dataset M-BEIR task instruction

1. qtxt → cimg
VisualNews [image] < qtxt >\nDescribe the news-related caption in one word:
MSCOCO [image] < qtxt >\nDescribe the everyday caption in one word:
Fashion200K [image] < qtxt >\nDescribe the fashion description in one word:

2. qtxt → ctxt WebQA [text] < qtxt >\nAnswer the question using Wikipedia in one word:

3. qtxt → (cimg, ctxt)
EDIS [image,text] < qtxt >\nDescribe the news-related caption in one word:
WebQA [image,text] < qtxt >\nAnswer the question using Wikipedia in one word:

4. qimg → ctxt
VisualNews [text] < qimg >\nDescribe the news-related image in one word:
MSCOCO [text] < qimg >\nDescribe the everyday image in one word:
Fashion200K [text] < qimg >\nDescribe the fashion image in one word:

5. qimg → cimg NIGHTS [image] < qimg >\nDescribe the everyday image in one word:

6. (qimg, qtxt) → ctxt OVEN [text] < qimg >\n< qtxt >\nAnswer the question based on the image from Wikipedia in one word:InfoSeek

7. (qimg, qtxt) → cimg FashionIQ [image] < qimg >\nChange the style of this shirt/dress/toptee to < qtxt >\nDescribe this modified shirt/dress/toptee in one word:
CIRR [image] < qimg >\nModify this image with < qtxt >\nDesribe modified image in one word:

8. (qimg, qtxt) → (cimg, ctxt)
OVEN [image,text] < qimg >\n< qtxt >\nAnswer the question based on the interleaved image-text passage from Wikipedia in one word:InfoSeek

Task Dataset MTEB task instruction

9. qtxt → ctxt

ArguAna [text] < qtxt >\nGiven a claim, generate a document that refute the claim in one word:
Climate-FEVER [text] < qtxt >\nGiven a claim about climate change, generate a document that supports or refutes the claim in one word:
CQADupStack [text] < qtxt >\nDescribe the Stackexchange question in one word:
DBPedia [text] < qtxt >\nGiven a query, generate a relevant entity description from DBPedia in one word:
FEVER [text] < qtxt >\nGiven a claim, generate a document that supports or refutes the claim in one word:
FiQA [text] < qtxt >\nAnswer the financial question in one word:
HotpotQA [text] < qtxt >\nAnswer the multi-hop question in one word:
MSMARCO [text] < qtxt >\nAnswer the web search query in one word:
NFCorpus [text] < qtxt >\nAnswer the question in one word:
NaturalQuestions [text] < qtxt >\nAnswer the question using Wikipedia in one word:
Quora [text] < qtxt >\nDescribe the question in one word:
SICDOCS [text] < qtxt >\nGiven a scientific paper title, generate a paper abstract that is cited by the given paper in one word:
SciFact [text] < qtxt >\nGiven a scientific claim, generate a document that support or refute the claim in one word:
Touch´e-2020 [text] < qtxt >\nAnswer the question with detailed and persuasive arguments in one word:
TREC-COVID [text] < qtxt >\nAnswer the query on COVID-19 in one word:
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Table 15: Prompts for reranking tasks in M-BEIR .

Task Dataset Prompt

1. qtxt → cimg
VisualNews < cimg >\nNews:< qtxt >\nDoes the above News image match the News story? True or False
MSCOCO < cimg >\nCaption:< qtxt >\nDoes the above daily-life image match the caption? True or False
Fashion200K < cimg >\nDescription:< qtxt >\nDoes the above image match the cloth style description? True or False

2. qtxt → ctxt WebQA Question: < qtxt >\nAnswer: < ctxt >\nDoes the answer correctly answer the question? True or False

3. qtxt → (cimg, ctxt)
EDIS Question: < qtxt >\nAnswer: < ctxt >\nDoes the answer correctly answer the question? True or FalseWebQA

4. qimg → ctxt
VisualNews < qimg >\nNews:< ctxt >\nDoes the above News image match the News story? True or False
MSCOCO < qimg >\nCaption:< ctxt >\nDoes the above daily-life image match the caption? True or False
Fashion200K < qimg >\nDescription:< ctxt >\nDoes the above image match the cloth style description? True or False

5. qimg → cimg NIGHTS < qimg >\n< cimg >\nDoes the above two images have the same scene? True or False

6. (qimg, qtxt) → ctxt OVEN
< qimg >\nQuestion:< qtxt >\nAnswer:< ctxt >Does the answer correctly answer the question? True or FalseInfoSeek

7. (qimg, qtxt) → cimg FashionIQ
< cimg >\nCaption:< qtxt >\nDoes the above caption describe the modification of the image? True or FalseCIRR

8. (qimg, qtxt) → (cimg, ctxt)
OVEN

< qimg >\nQuestion:< qtxt >\nAnswer:< ctxt >Does the answer correctly answer the question? True or FalseInfoSeek

Instruction: Find me an everyday image that 
matches the given caption.  
Query: A man brushes his teeth while a 
woman wraps in a towel.

Instruction: Identify the news-related image 
in line with the described event. 
Query: The Q Street NW entrance to the 
Dupont Circle Metro station.

Instruction: Find me an everyday image that 
matches the given caption.  
Query: A large tow truck towing a double 
decker bus.

Correct Answer

: Negative samples with incorrect modality

A man brushes his teeth while a woman behind him 
wraps a towel around herself. Dupont Circle metro station, Q Street escalator. A tow truck towing a double decker bus.

A man brushing his teeth with woman in wrapping 
herself in a towel in the background.

Riding escalator to Q Street exit of Dupont Circle 
Metro. A tow truck is in front of a double decker bus.

: Negative samples with unsatisfactory information needs

C1

C2

Figure 2: Examples of modality-aware negative samples mined by M rand(NVEmb). We observe that
negative samples with incorrect modality show similar semantic meaning as queries while negative
samples with unsatisfactory information needs show less accurate information compared to the cor-
rect answers

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Query Answer Retrieval Reranking

Human and one animal from a different specie

Same breed dog, focus on its head.

Put the fries in a white plate with white background, clean.

Query Answer Retrieval Reranking

Is shiny and silver with shorter sleeves and fit and flare.

Is grey with black design and is a light printed short dress.

Is a solid red color and shorter and tighter with more blue 
and white.

M-BEIR FashionIQ Task 7

M-BEIR CIRR Task 7

Figure 3: Top-1 candidates for the tasks of composed image retrieval and reranking. In many cases,
retrieval and reranking yields different top-1 results from labeled positives but appears to be correct
since each query only has single labeled positive candidate (see Table 10).
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