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Abstract

Federated continual learning (FCL) has garnered increasing attention for its ability
to support distributed computation in environments with evolving data distributions.
However, the emergence of new tasks introduces both temporal and cross-client
shifts, making catastrophic forgetting a critical challenge. Most existing works ag-
gregate knowledge from clients into a global model, which may not enhance client
performance since irrelevant knowledge could introduce interference, especially in
heterogeneous scenarios. Additionally, directly applying decentralized approaches
to FCL suffers from ineffective group formation caused by task changes. To address
these challenges, we propose a decentralized dynamic cooperation framework for
FCL, where clients establish dynamic cooperative learning coalitions to balance
the acquisition of new knowledge and the retention of prior learning, thereby ob-
taining personalized models. To maximize model performance, each client engages
in selective cooperation, dynamically allying with others who offer meaningful
performance gains. This results in non-overlapping, variable coalitions at each
stage of the task. Moreover, we use coalitional affinity game to simulate coalition
relationships between clients. By assessing both client gradient coherence and
model similarity, we quantify the client benefits derived from cooperation. We
also propose a merge-blocking algorithm and a dynamic cooperative evolution
algorithm to achieve cooperative and dynamic equilibrium. Comprehensive experi-
ments demonstrate the superiority of our method compared to various baselines.
Code is available at: https://github.com/ydn3229/DCFCL.

1 Introduction

Federated learning (FL), as a distributed machine learning framework, addresses privacy and efficiency
issues inherent in traditional centralized data processing [1, 2]. Most existing works based on fixed
local data distribution aim to minimize a static joint objective. However, in real-world applications,
clients continually collect new data over time, which leads to temporal catastrophic forgetting on
local sides, a critical challenge in continual learning (CL), which means parameters learned for past
tasks drift toward new tasks during training.

To achieve FL in realistic scenarios with dynamic arrival of local data, federated continual learning
(FCL) has been proposed. FCL faces two critical challenges: at local training stage, clients need
to overcome temporal catastrophic forgetting induced by learning new tasks; at aggregation stage,
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explain：(a) and (b) show the effect of model aggregation on catastrophic forgetting. The circle size represents the
accuracy of each task on each client, with larger circles indicating higher accuracy and smaller circles indicating lower. (c)
shows the impact of decentralized aggregation of personalized models on performance of federated continual learning.

Figure 1: Spatial and temporal catastrophic forgetting in FCL.

spatial catastrophic forgetting should be addressed caused by knowledge interference from aggregated
heterogeneous models. However, we assume aggregation can benefit clients in mitigating these issues,
as learning from others facilitates acquisition of new knowledge and retention of previous learning.
To verify this conjecture, we trial our method on EMNIST [3] with 5 clients, each with 5 tasks in
Fig. 1(a)(b), which show test accuracy of before and after aggregation. Before aggregation, models
exhibit noticeable drift, heavily favoring new tasks. After that, accuracy on previous tasks improves
significantly, underscoring influence of aggregation in alleviating catastrophic forgetting.

Although aggregation can mitigate catastrophic forgetting for personalized models, we believe the
effect is uncertain, as clients may have incredible spatial data heterogeneity [4]. Early studies
adopt a central server architecture [5, 6] to aggregate, which performs poorly when facing strong
heterogeneity. In fact, several decentralized methods have been developed in personalized FL
[7, 8]. In Fig. 1(c), we set up heterogeneous scenario on MNIST [9] to illustrate personalized (Per-
FedAvg) [10] and decentralized aggregation (CFL) [7] significantly improve performance compared
to centralized method (FedAvg) [11]. By group aggregation in decentralization topology, it can
promote effectiveness of aggregation and alleviate heterogeneous interference, therefore further
mitigates catastrophic forgetting. However, directly transferring decentralization from FL to FCL
suffers from ineffective grouping aggregation caused by task changing.

Inspired by above discussion, we introduce a novel decentralized Dynamic Cooperative Federated
Continual Learning (DCFCL) framework to achieve personalized FCL, allowing clients to form
non-overlapping coalition topology in each aggregation phase to prevent grouping ineffectiveness.
These coalitions are composed by several subsets of clients who assist one another in improving their
respective model performance to facilitate personalized learning. We aim to identify coalitions to
achieve cooperative equilibrium state, where no alternative coalitions would yield greater benefits for
all cooperators inside. Equilibrium is dynamic, capable of disintegration or reorganization as tasks
change, eventually leading to new equilibrium.

To achieve above framework, we utilize knowledge distillation to maintain model consistence to
identify cooperators, then quantify and calculate client benefits in various coalitions based on overall
similarity-comprising gradient coherence and model similarity and coalitional affinity game to further
formulate benefit table. After obtaining benefit table, we propose a merge-blocking algorithm to
achieve equilibrium state and a dynamic cooperative evolution algorithm to evolve new equilibrium
at each aggregation phase. Through dynamic cooperative equilibrium, clients achieve personalized
models in decentralized FCL framework. The main contributions of this paper are as follows:

• We propose a novel decentralized framework for personalized FCL, allowing dynamic coop-
eration among clients to mitigate catastrophic forgetting and improve model performance.

• We use overall similarity and coalitional affinity game to effectively quantify and calculate
client benefits in cooperative coalitions.

• We propose merge-blocking algorithm to recognize cooperative equilibrium and dynamic
cooperative evolution algorithm to quickly evolve new equilibrium at each aggregation.
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explain: In task 1, clients 1, 2, and 3 have similar data distribution, so they cooperate, whereas 4's task differs
from them, providing no mutual benefit. Thus, 4 trains locally. In task 2, clients 2 and 4 have similar
distributions, leading to cooperate. Meanwhile, 2 cooperates with 3 to recall task 1. The same is true for task 3.

Figure 2: System model. Illustrate dynamic cooperation in decentralized federated continual learning.

2 Related Works

Continual Learning CL addresses a common scenario in which tasks arrive as continuous data
stream for network to learn. Strategies like regularization-based, rehearsal-based, and dynamic
architecture-based approaches are employed to mitigate catastrophic forgetting. Regularization-based
methods like EWC [12] constrain changes in weights of previous tasks, thereby reducing catastrophic
forgetting. Rehearsal-based approaches involve preserving data of previous tasks or generating
pseudo-data [13] to train next task, like LUCIR [14] and iCaRL [15]. Dynamic architecture-based
methods encompass expanding models or employing parameter isolation to retain previous knowledge,
such as Piggyback [16], WSN [17], and LwI [18].

Federated Learning FL is typically categorized into centralized and decentralized frameworks.
Centralized FL [19] like FedAvg [11], FedProx [20], and SCAFFOLD [21] involve aggregating locally
trained models from individual clients on a central server to obtain a global model. Decentralized FL
is tailored for client needs. Hypernetworks are introduced to enable decentralized cooperative FL
[22, 23]. Decentralized protocol is also proposed to support personalized learning [24, 10].

Federated Continual Learning FCL considers not only catastrophic forgetting but also irrelevant
knowledge interference. Knowledge distillation is used for knowledge preservation [25, 26, 27].
Replay is also extended from CL to FCL, like FedCIL [28] and AF-FCL [29]. These methods
adopting centralization may lead to suboptimal performance once substantial heterogeneity arises.

Cooperative Game Theory Cooperative game theory investigates strategy where players can achieve
agreements on coalitions and benefits of cooperators [30, 31, 32]. Collaborating in FL is proposed to
develop personalized models [23]. Cooperative game is also explored in resolving linear regression
and mean estimation problems in FL [33, 34]. These works rely on static cooperative strategy
formulating fixed coalitions, which may lose effectiveness due to task variations. So we emphasize
dynamic cooperative strategy for FCL.

3 Decentralized Federated Continual Learning

3.1 Problem Setup

In a decentralized FCL architecture, there are K clients forming the set K = {1, . . . ,K} without
a central server. Each client has a local dataset Dk = {D1

k,D2
k, . . . ,DT

k }, where T denotes the

total number of task phases and Dt
k = {xti

k , y
ti
k }

nt
k

i=1 is the training data in phase t containing nt
k

samples and {xti
k , y

ti
k } is the i-th data sample. ytik ∈ Ctk, and Ctkdenotes the class set of Dt

k. In
practical scenarios, it may be observed that the task set of clients is not necessarily correlated. Thus
we consider a practical setting, the limitless task pool (LTP), denoted as T . For each client, the
dataset Dt

k of the k-th client at time t corresponds to a particular learning task T t
k ⊂ T . There
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is no guaranteed relation among the tasks {T 1
k , T 2

k , . . . , T T
k } in the k-th client at different steps.

Similarly, at time t, there could be no relation among the tasks {T t
1 , T t

2 , . . . , T t
K} across different

clients, i.e.,
∣∣∣{T i

p }
tp
i=1 ∩ {T i

q }
tq
i=1

∣∣∣ ≥ 0, p, q = 1, 2 . . .K. More importantly, clients possess diverse
joint distributions of data and labels due to heterogeneity. Therefore, at aggregation phase, local
models always deviate from their current tasks. Our goal is for decentralized FCL to enable clients
acquire new knowledge while retaining prior learning through aggregation. Consequently, at each
task phase t, model parameter of client k is θtk, and optimization goal of each client is:

argmin
θt
k

E[Lk(θ
t
k; T 1

k , T 2
k , ..., T t

k )], (1)

where Lk is the risk objective of client k.

3.2 System Model

In decentralized FCL system, dynamic cooperation with others is a good method to enhance the
model’s performance on current tasks while mitigating catastrophic forgetting of previous tasks. This
scenario is illustrated in Fig. 2. Suppose there are four clients, each with three tasks. Because of
heterogeneity, the best model for a particular client is likely to come from cooperating with a subset
of clients rather than all. At each task stage, clients select different cooperative partners based on the
trade-off between acquisition of new knowledge and retention of prior learning. The final cooperation
result is an equilibrium state composed of non-overlapping coalitions where all clients are relatively
satisfied with their current coalitions and do not shift to other groups. With the constant arriving of
new tasks, the equilibrium state for each task phase will evolve dynamically.

Assuming each client has T tasks, during the τ round of local updates for task t. When the coalition
structure that client k belongs to is S, the aggregated model θτk of client k, can be updated by the
following steps:

(a) local iterations:

θ
τ+ 1

2

k ← θτk − η∇θL
τ
k(θ

τ
k ;Dτ

k), (2)

followed by aggregation step that updates local model θτ+
1
2

k with a combination of model updates

∆θτk = θ
τ+ 1

2

k − θτk .

(b) aggregation:

θτ+1
k = αkθ

τ+ 1
2

k +
∑

i∈S\{k}

αiθ
τ+ 1

2
i = αk(θ

τ
k +∆θτk) +

∑
i∈S\{k}

αi(θ
τ
i +∆θτi ) =

∑
i∈S

αi(θ
τ
i +∆θτi )

(3)
where αi can be explained as weight coefficient of client i. Therefore, the optimization variable of 1
is determined by steps (a)(b) simultaneously, which can be subdivided into θτ−1

k , S|k ∈ S.

3.3 Cooperative Game

To achieve the optimization goal shown in 1 in the above-mentioned system model, we introduce
the concept of cooperative game, which is usually modeled as a process of coalition formation
[35]. Using language of cooperative game theory, we can interpret a cooperative state sτm at round
τ as a partition π consisted of non-overlapping coalitions between clients, as well as benefit vec-
tor u(π) for each client, i.e., sτm = (u(π), π). There are BK states for K clients forming a set
Sτ = {sτ1 , · · · , sτBK

}. For any state sτm, uk(π) denotes benefit to k under corresponding parti-
tion π. We aim to find an optimal state that yields θτk minimizing loss while maximizing ben-
efit (i.e. uk(s

τ
m) := −Lk(θ

τ
k ;D

val
k )), which can be achieved by: uk(s

τ
∗) = maxm uk(s

τ
m) =

maxS|S∈π(sτm)−Lk(
∑

i∈S αiθ
τ
i ;D

val
k ) = maxθτ

k
−Lk(θ

τ
k ;D

val
k ) = minθτ

k
Lk(θ

τ
k ;D

val
k ), where

θτk =
∑

i∈S αi(θ
τ−1
i +∆θτ−1

i ) =
∑

i∈S αiθ
τ
i . S ∈ π(sτm) is coalition that client k belongs to. The

optimization problem of 1 becomes problem of cooperative game after local iteration and optimiza-
tion variables include local model parameter θτ−1

i and coalition structure S. The coalition set is
S = {S1, · · · , S2K−1} including all coalitions for K clients. Based on different coalitions, clients
can obtain various benefits. These coalitions and benefits can eventually formulate a benefit table.
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explain: (a) benefit table; (b) is transition process of equilibrium formation. Arrows indicate transitions from previous one to next.
Each state is a different color and eventually reaches equilibrium ; (c) is next state at each transition corresponding to (b); (d)
shows partition changes, and red dotted line represents blocking coalition which contributes to transition from previous to next.

(a) (b) (c) (d)

Figure 3: Benefit table and state transition process with three clients as an example.

Achieving equilibrium for stable cooperation Fig. 3(a) shows an example of a benefit table with
3 clients, including 5 cooperative states, 5 partitions and 7 coalitions. Obviously, there is no coalition
partition that allows all clients to reach their optimal benefit simultaneously. However, given the
limited state space of coalition partitions, there is at least one equilibrium state where all clients are
relatively satisfied with benefit in current coalition and will not deviate to other groups. To achieve the
equilibrium state, we propose the concept of the transition process of equilibrium formation (TPEF),
which involves transitioning from one state to another, ultimately reaching equilibrium. Transitions
are driven by clients who can derive better benefits from forming coalition, known as profitable
transition (PT). Assuming a state sτm and a coalition S, then S has a weak PT from sτm if there is a
state sτn with S ∈ π(sτn) such that uk(s

τ
n) ⩾ uk(s

τ
m) for all k ∈ S, which means some clients can

obtain the same or more benefits by forming coalitions with each other. When ≥ turns into >, all
clients can get more benefits than now, changing to a strict PT. Here S is called blocking coalition
(BC). If there is a strict PT, state must transfer. Once there is a client in S suffer from benefit loss,
state doesn’t change. sτm is equilibrium state if there is no coalition state sτn with a blocking coalition
S such that ∀k ∈ S, if k ∈ Si, 1 ≤ i ≤ m then uk(s

τ
n) ⩾ uk(s

τ
m) and ∃l ∈ S, if l ∈ Sj , 1 ≤ j ≤ m,

then ul(s
τ
n) > ul(s

τ
m). As shown in Fig. 3(b)(c), transition process is listed. At sτ1 the coalition

{C1, C2}(BC) leads to better benefits for each, thus C1, C2 will cooperate, state transfers to sτ2 . At
sτ3 , C3 will betray {C1, C3} and switch to {C2, C3}(BC), and state will transfer to sτ4 . Any state
will eventually transfer to sτ4 , which has no BC for it and thus represents equilibrium.

4 Dynamic Cooperative Strategy

Our goal is to develop a dynamic cooperative strategy that achieves equilibrium at each aggregation
stage. To accomplish this, we need to complete two key tasks: (1) Formulating benefit table. The most
intuitive method involves creating various aggregation models based on different coalitions. These
aggregation models are then used to test performance of all tasks on local clients, which can determine
client benefits. Theoretically, there are BK cooperative states for K clients, where BK is Bell number
representing the number of ways to partition a set with K elements. Given that exhaustively trying
all aggregation models locally has extremely heavy computation and communication cost, we
propose concept of overall similarity among clients to quantify 2-client benefits. Then, we use
coalitional affinity game to quickly calculate multi-client benefits. (2) Achieving dynamic cooperative
equilibrium. Based on analysis of TPEF in 3.3, traversing TPEF of all states can find equilibrium,
however it requires exponential time complexity, so we explore efficient merge-blocking algorithm to
achieve equilibrium and dynamic cooperative evolution algorithm to quickly evolve new equilibrium.

4.1 Preparatory Condition

Knowledge distillation for maintaining consistent features to identify cooperator When client
trains on new task, the classifier is continuously modified by new features, which is not conducive to
identifying cooperators who can assist in recalling previous knowledge. Therefore, we maintain the
consistency of the classifier’s feature space to maximize the utilization of their own model information
rather than extra information exchanging to identify cooperators efficiently.

We apply knowledge distillation in classifier to control classifier’s feature space preventing from drift
to new task. First, there is one teacher model (past model of round τ − 1) and one student model
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Figure 4: An affinity graph for 3-client coalition.

(current round τ ). Output logits for teacher model are denoted as oτ−1(x) = [oτ−1
1 (x), . . . , oτ−1

n (x)],
where x is an input to network and n is the dimension of logits vector, and logits of student model
are oτ (x) = [oτ1(x), . . . , o

τ
n(x)]. The distillation loss for client k on round τ is defined as:

Lτ
dis(θ

τ
k ;Dτ

k) =
∑
x∈xτ

k

n∑
i=1

−pτ−1
i (x) log [pτi (x)] , (4)

where θτk is student model, and pτ
′

i (x) = eo
τ′
i (x)/F∑n

j=1 e
oτ

′
j

(x)/F
are temperature-scaled logits, where F is

temperature scaling parameter. pτ−1
i refer to predictions of teacher model (oτ−1(x)) and pτi (x) refer

to student model (oτ (x)). The classification loss in FCL is

Lτ
class(θ

τ
k ;Dτ

k) =
∑

(x,y)∈Dτ
k

n∑
i=1

−yi log
exp(oτi (x))∑n
j=1 exp(o

τ
j (x))

, (5)

The final loss can be formulated as

Lτ
k = Lτ

class + λLτ
dis. (6)

where λ is a scalar which regularizes influence of Lτ
dis.

4.2 Formulating Benefit Table

In order to form a complete benefit table, we first propose concept of overall similarity to quantify
benefits of 2-client coalition. Taking this as backbone, we calculate benefits of multi-client coalition
based on theory of coalitional affinity game.

Benefit quantification with overall similarity To reduce communication and computing overhead,
we utilize the model information rather than extra information exchanging to quantify client benefits.
It is highlighted that finding a descending direction close to the local gradient for aggregating models
can reduce conflicts caused by client heterogeneity [36, 37]. Inspired by this, we first quantify
benefits through local model gradient coherence. However, relying solely on gradient coherence may
aggregate heterogeneous models generating clients interference. This is because the model parameters
of different clients may differ significantly overall, even if their gradients are similar. Therefore,
we propose to incorporate global model similarity, as it contains essential global information. We
comprehensively utilize these two similarity measures as an overall similarity, considering both the
coherence of gradient direction and the proximity of model parameters. For ease of representation,
at a communication round τ , we use gi, gj to represent the gradient of client i and j, and θi and θj
to represent the model parameters. We use cosine similarity to calculate. Therefore, benefits under
2-client coalition can be defined as overall similarity of i and j, i.e.,

ui = uj = cos(gi, gj) + ε ∗ cos(θi, θj) =
< gi, gj >

||gi|| · ||gj ||
+ ε ∗ < θi, θj >

||θi|| · ||θj ||
= aij + ε ∗ bij (7)
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where aij and bij represent gradient cosine similarity and model cosine similarity of i and j, respec-
tively. ε is a hyperparameter, when it equals to 0, only gradient similarity represents benefits.

Benefit calculation with coalitional affinity game With the benefits of 2-client, we need to
calculate benefits of multi-client coalition. Coalitional affinity game is a solution because it can
model relationships between clients. It is a kind of hedonic game that explicitly models the value that
an agent receives from being cooperated with other agents [38]. We can use it to infer benefits in
the multi-client coalition through the relationship between two clients. For any pair of clients, we
denote affinity of i for j as r(i, j) ∈ R which represents benefit that i receives from cooperating with
j, and it is already quantified as overall similarity. We represent the clients and their affinities with
an affinity graph G = {N,R}, it is a weighted directed graph where edge r(i, j) ∈ R represents
an affinity relation between i and j. Taking 3-client coalition as an example in Fig. 4, benefits for
2-client are weights on edges in affinity graph. According to affinity graph, benefit of i in multi-client
coalition can be defined as the function f(·) of benefit in 2-client coalition, i.e.,

ui =

{
0, if S = {i}
r(i, j), if S = {i, j}
f(r(i, j1), · · · , r(i, jn)), if S = {i, j1, · · · jn}

(8)

Next, we prove the specific format of f(·) in Appendix A. Theoretically, benefit of i is:

ui = cos (gavg, gi) + ε ∗ cos (θavg, θi) =
∑

p∈S\{i} αpaip||gp||√∑
p∈S\{i} α

2
p||gp||2 + I

+
ε
∑

p∈S\{i} αpbip||θp||√∑
p∈S\{i} α

2
p||θp||2 +H

(9)
where

I =
∑

p,q∈S\{i},p̸=q

2αpαqgpgq =
∑

p,q∈S\{i},p̸=q

2αpαqapq ∥ gp ∥∥ gq ∥

H =
∑

p,q∈S\{i},p̸=q

2αpαqθpθq =
∑

p,q∈S\{i},p̸=q

2αpαqbpq ∥ θp ∥∥ θq ∥ (10)

and p ∈ S \ {i} represents all clients in S except i. θavg is aggregated model of coalition. To sum up,
we define the benefit of i who belongs to coalition S as

ui =


0, if S = {i},
cos (gi, gj) + ε cos (θi, θj) , if S = {i, j},
cos (gavg, gi) + ε cos (θavg, θi) if S = {i, j1, · · · jn}

(11)

We use the form of the weighted average of samples for model aggregation, where

gavg =
1∑

p∈S\{i} np

∑
p∈S\{i}

gp · np,

θavg =
1∑

p∈S\{i} np

∑
p∈S\{i}

θp · np,

(12)

where αp =
np∑

p∈S\{i} np
. np represents sample number of p. At task t, it equals to nt

p. According to
9, benefit of i in multi-client coalition can be represented by benefit in 2-client coalition. On account
of this, we can formulate benefit table quickly by 2-client relationship.

4.3 Dynamic Cooperative Equilibrium

Based on analysis of TPEF in 3.3, traversing all states is a method to achieve equilibrium. However, it
is computationally intensive, with a time complexity of O((BK)2K). In [39], a merge-split algorithm
is used for coalition formation, but it only identifies local optimal solutions in the Pareto Order.
Rational clients can benefit more by blocking coalitions in PFCL, therefor equilibrium is ultimately
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Algorithm 1: Merge-Blocking Algorithm
Input: The initial partition πin

Output: The final partition π∗

Sort coalitions set S in ascending order by the number of clients of each coalition;
Set πup ← πin, πprev ← ∅, Count Table CT ← ∅, Stable Coalition SC ← ∅, π∗ ← ∅;
while πup ̸= πprev and πup ̸= ∅ do

Set πprev ← πup;
Set CT ← ∅;
for S ∈ S do

πup = {S1, · · · , Sz}, πnew = {S ∪ π′
up};

π′
up is the new set after coalitions in it has removed the elements contained in S;

if all(ui(πnew) ≥ ui(πup)|i ∈ S) and any(ui(πnew) > ui(πup)|i ∈ S) then
Set πup ← πnew;
Remove all Si ∈ CT with Si /∈ πup and add counts in CT of Si ∈ πup;

if len(CT ) ̸= 0 then
Set SC ← max(CT ), πup ← πup \ SC;
for S ∈ S do

if set(S)&set(SC) then
S← S \ S;

π∗ ← π∗ ∪ SC;
else

π∗ ← π∗ ∪ πup;

stable result. Motivated by this, we develop a merge-blocking algorithm to achieve cooperative
equilibrium and iteratively evolve new equilibrium through dynamic cooperative evolution algorithm.

In Algorithm 1, we traverse coalitions, which have less quantity than states, to reduce computation.
We begin with singletons for each client as initial partition and iteratively traverse coalition set S.
When current partition encounters a BC: S ∈ S, clients in partition are merged forming S and
previous coalitions are blocked and reorganized. To reduce traversals, we introduce stable coalition
(SC) to prune. By tracking the frequency of coalitions in update partition, we identify SC with
maximum counts accumulated and cannot be blocked by any other BCs. Then we remove all
coalitions from S which contain clients of SC and then continue traverse S to find the next SC until
there is no BC. Ultimately, equilibrium partition is the collocation of all SCs. Our simulation results
indicate that Algorithm 1 converges to equilibrium within only a few traversals. After achieving
equilibrium, we evolve new equilibrium by dynamic cooperative evolution algorithm to realize
dynamic equilibrium among clients at each aggregation stage. See Appendix for more details.

5 Experiments

5.1 Experimental Settings

Datasets and baselines. We conduct 4 datasets on different settings. 1) EMNIST-LTP [3]: a
character classification dataset with 26 classes. 2) EMNIST-shuffle [3]: the task sets of EMNIST
are arranged in different orders. 3) CIFAR100 [40]: a challenging image classification datase.
4) MNIST-SVHN-F [9, 41, 42]: The dataset is constructed with MNIST [9], SVHN [41] and
FashionMNIST [42]. We compare our method with 5 FL baselines, 2 CL baselines and 6 FCL
baselines. See Appendix for more details of dataset settings and baselines.

5.2 Experimental Results on All Datasets

In EMNIST-LTP dataset, clients may encompass unrelated tasks, thus rendering the dataset challeng-
ing. The performance of all methods on EMNIST-LTP is shown in Table 1. Our approach exhibits
superior performance across all of the comparative experiments. Different from EMNIST-LTP,
EMNIST-shuffle represents a more tractable dataset within the conventional setting, resulting in
higher overall accuracy rates as in Table 1. Our method still showcases a superior capacity than all

8



Table 1: Average accuracy on all datasets.

Model EMNIST-LTP EMNIST-shuffle CIFAR100 MNIST-SVHN-F
FedAvg 32.5±0.9 70.3±0.4 26.3±2.5 55.7±1.4

FedProx 35.3±0.5 69.4±0.9 28.7±1.4 56.1±1.0

SCAFFOLD 35.1±0.7 74.7±0.5 37.4±1.2 41.6±0.9

CFL 44.5±0.6 71.6±0.3 35.1±1.0 59.2±1.0

Per-FedAvg 46.2±1.2 75.2±0.9 35.9±1.9 54.1±1.3

PODNet+FedAvg 36.9±1.3 71.0±0.4 30.5±0.8 54.2±0.8

PODNet+FedProx 40.4±0.4 70.6±0.7 32.5±0.5 56.4±0.4

ACGAN+FedAvg 38.4±0.2 70.0±0.5 32.1±1.6 56.0±0.7

ACGAN+FedProx 41.3±0.9 70.3±1.2 31.8±0.7 56.4±2.1

FLwF2T 40.1±0.3 71.0±0.9 30.2±0.7 54.2±0.6

FedCIL 42.0±0.6 71.1±0.4 33.5±0.7 57.2±1.7

GLFC 40.1±0.8 74.9±0.6 35.6±0.6 61.8±0.8

AF-FCL 47.5±0.3 75.8±0.7 36.3±0.3 68.1±0.7

AFCL 45.6±0.7 77.0±0.6 32.3±0.7 62.4±0.6

FPPL 41.4±0.6 76.1±0.9 31.5±0.6 61.7±0.9

DCFCL 52.5±0.7 78.3±0.6 40.4±0.8 66.7±0.9

baselines in this commonly adopted dataset setting. In addition, as data heterogeneity becomes more
severe (from EMNIST-shuffle to EMNIST-LTP), our method achieves greater performance compared
to others. This is likely because increased data heterogeneity leads to substantial variations among
models. Consequently, aggregating knowledge from clients into a global model potentially result in
conflicting knowledge. In such scenarios, our decentralized federated learning is more effective.

Table 1 also displays the results of two more challenging datasets: CIFAR100 and MNIST-SVHN-F.
By aggregating highly correlated models, our method guarantees client benefits in terms of both
optimization direction and global consistency, significantly exceeding performance of most baselines.

5.3 Ablation Studies

Our method consists of three main components: (i) Cooperative Equilibrium (CE). We introduce
Dynamic Cooperation in decentralized FCL. Global cooperation transfers to FedAvg, and non-
cooperation degenerates into Local algorithm, where clients execute the CL process locally without
any aggregation. (ii) Knowledge Distillation (KD). We use knowledge distillation loss to maintain
consistent features of classifier during training to identity cooperator, as it can prevent feature drifts.
(iii) Overall Similarity (OS). To quantify client benefits, we propose overall similarity. When ε
approaches 0, it degrades to only use gradient coherence for quantification.

Table 2: Ablation studies on EMNIST-LTP and EMNIST-shuffle datasets.

Model EMNIST-LTP EMNIST-shuffle
w/o CE-FedAvg 32.5±0.9 70.3±0.4

w/o CE-Local 12.3±0.6 17.3±0.9

w/o KD 50.3±0.3 73.2±0.4

w/o OS 45.3±0.8 73.7±0.3

DCFCL 52.5±0.7 78.3±0.6

We conduct ablation studies on EMNIST-LTP and EMNIST-shuffle datasets as displayed in Table 2.
Our method achieves optimal performance with all three modules. The accuracy of Local is incredibly
low, which reflects the significance of decentralized cooperation for FCL.

5.4 Results for Different Parameter Settings

We conduct experiments on EMNIST-LTP and EMNIST-shuffle datasets with various λ and ε. ε is
fixed at 0.2 when λ is varied, and vice versa. As shown in Table 3, emphasizing model similarity by
increasing ε enables clients to identify peers with more aligned feature spaces for learning. Therefore,
it is essential to determine the optimal overall similarity composition. In addition, we also adjust λ to
illustrate the influence of knowledge distillation. Increasing λ retains more prior task information
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for cooperator identification, which in turn promotes more effective cooperation and alleviates
catastrophic forgetting.

Table 3: Average accuracy on EMNIST-LTP and EMNIST-shuffle datasets with variable parameters.

Parameter EMNIST-LTP EMNIST-shuffle Parameter EMNIST-LTP EMNIST-shuffle

ε

0.0 44.3±0.8 75.9±0.3

λ

0.0 50.3±0.3 73.2±0.4

0.2 52.5±0.7 78.3±0.6 0.2 52.5±0.7 78.3±0.6

0.4 48.7±0.7 80.2±0.6 0.4 50.7±0.2 78.7±0.4

0.6 45.1±1.0 70.4±0.5 0.6 51.3±0.7 74.0±0.6

0.8 46.5±0.3 71.4±0.6 0.8 53.7±0.8 77.7±0.4

1.0 47.1±0.5 72.2±0.8 1.0 55.7±0.6 81.3±0.2

6 Conclusion

This study pays attention to critical challenges of temporal and spatial catastrophic forgetting in
federated continual learning. We propose a decentralized dynamic cooperative learning framework
that personalizes client models. Clients form non-overlapping dynamic coalitions at each aggregation
stage to mitigate catastrophic forgetting and further improve performance. The experimental results
clearly demonstrate its effectiveness. Whereas, some parameter sensitivity remains(e.g., λ, ε), which
could affect performance in unseen settings. Exploring adaptive mechanisms is left for future work.
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A Proof of Theorem

We have obtained the client benefit r(i, j) under overall similarity. If a coalition structure S has 3
client models x, y, z, then we have

r(x, z) = axz + ε ∗ bxz
r(y, z) = ayz + ε ∗ byz
r(x, y) = axy + ε ∗ bxy

(13)

where axy and bxy present gradient coherence and model similarity of x and y, respectively. axz and
bxz present gradient coherence and model similarity of x and z, respectively. ayz and byz present
gradient coherence and model similarity of y and z, respectively.

Then the client benefit of z in S can be defined as the overall similarity of the model to z after x and
y are aggregated. The gradient and model after aggregation are respectively

θavg = αxθx + αyθy,

gavg = αxgx + αygy,
(14)

where αx and αy can be explained as the aggregation weight of client x and y.

For the aggregation model, we have

θavgθz = αxθxθz + αyθyθz
gavggz = αxgxgz + αygygz

||θavg|| =
√
α2
x||θx||2 + α2

y||θy||2 + 2αxαyθxθy

||gavg|| =
√
α2
x||gx||2 + α2

y||gy||2 + 2αxαygxgy.

(15)

Then the client benefit of z can be expressed as

uz = cos(gavg, gz) + ε ∗ cos(θavg, θz)

=
αxgxgz + αygygz
||gavg|| · ||gz||

+ ε ∗ αxθxθz + αyθyθz
||θavg|| · ||θz||

=
αxaxz||gx||+ αyayz||gy||√

α2
x||gx||2 + α2

y||gy||2 + 2αxαyaxy||gx|| · ||gy||

+ ε ∗ αxbxz||θx||+ αybyz||θy||√
α2
x||θx||2 + α2

y||θy||2 + 2αxαybxy||θx|| · ||θy||

(16)

where

gxgz = axz||gx|| · ||gz||
θxθz = bxz||θx|| · ||θz||
gygz = ayz||gy|| · ||gz||
θyθz = byz||θy|| · ||θz||

(17)

Similarly, when under the multi-client coalition, assumes that the coalition S = {1, 2, · · · , i, · · · , n−
1}, S ∈ π(sτm). The 2-client benefits between clients are

r(i, 1) = ai1 + ε ∗ bi1
r(i, 2) = ai2 + ε ∗ bi2

r(i, n− 1) = ain−1 + ε ∗ bin−1

(18)
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Algorithm 2: Dynamic Cooperative Evolution Algorithm
Input: K clients in set K, communication round τ , benefit table with all states sτm, benefit vector

u← 0, initial partition πin ← {{1}, · · · , {K}}, coalitions set S
Output: cooperative equilibrium sτ∗
for p ∈ K do

Calculate ||gp||, ||θp|| of p;
for q = p+ 1 do

Calculate r(p, q);

for S ∈ S do
for k ∈ S do

Calculate benefit of client k in coalition S based on 11;

if τ = 0 then
Set πin ← {{1}, {2}, · · · , {K}};
Perform Algorithm 1 to get π∗;

else
Set πin ← π∗;
Update benefit table;
Perform Algorithm 1 to get π∗;

Set sτ∗ ← (π∗, u(π∗));

Then for a client i in S, the benefit can be expressed as the overall similarity between the aggregated
model of the other models in S excluding i and the model of i.

ui(s
τ
m) = cos(gavg, gi) + ε ∗ cos(θavg, θi)

=
α1ai1||g1||+ · · ·+ αn−1ain−1||gn−1||√
α2
1||g1||2 + · · ·+ α2

n−1||gn−1||2 + I

+ ε ∗ α1bi1||θ1||+ · · ·+ αn−1bin−1||θn−1||√
α2
1||θ1||2 + · · ·+ α2

n−1||θn−1||2 +H

=

∑
p∈S\{i} αpaip||gp||√∑
p∈S\{i} α

2
p||gp||2 + I

+ ε

∑
p∈S\{i} αpbip||θp||√∑
p∈S\{i} α

2
p||θp||2 +H

(19)

where H and I are defined in Eq.(10).

By mathematical induction, we can get for client i in the coalition S = {1, 2, · · · , i, · · · , n}. With
r(i, n) = ain + ε ∗ bin, we have

ui(s
τ
m) = cos(gavg, gi) + ε ∗ cos(θavg, θi)

=
α1ai1||g1||+ · · ·+ αnain||gn||√
α2
1||g1||2 + · · ·+ α2

n||gn||2 + I

+ ε ∗ α1bi1||θ1||+ · · ·+ αnbin||θn||√
α2
1||θ1||2 + · · ·+ α2

n||θn||2 +H

=

∑
p∈S\{i} αpaip||gp||√∑
p∈S\{i} α

2
p||gp||2 + I

+ ε ∗
∑

p∈S\{i} αpbip||θp||√∑
p∈S\{i} α

2
p||θp||2 +H

(20)
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Figure 5: Equilibrium forming process of 10 clients based on Merge-Blocking Algorithm.

B Detailed Description of the Algorithm

B.1 Dynamic Cooperative Evolution Algorithm

With the dynamic arrival of tasks, the equilibrium state is also dynamic following a Markov process,
which means the next equilibrium depends solely on the previous equilibrium. We use the dynamic
cooperative evolution algorithm to evolve the new equilibrium at each aggregation phase shown in
Algorithm 2.

B.2 Illustrate the Merge-Blocking Algorithm with an Example

We offer 10 clients as example to further illustrate the process of achieving equilibrium in Fig. 5
according to the Algorithm 1 on EMNIST-LTP settings. Initially, all client subsets are gener-
ated as the coalition set S = [{0}, . . . , {9}, {0, 1}, . . . {0, 1, . . . , 9}], and the initial partition is
πin = [{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}], πup = πin. At the beginning of the
first while loop (Round 1), when comparing with coalition {0, 1} ∈ S, the profitable transition
(PT) condition is met (i.e., all (ui ({0, 1}) ≥ ui (πup)| i ∈ {0, 1}) = 1 and any(ui({0, 1}) ≥
ui(πup)|i ∈ {0, 1}) = 1), so the original two coalitions {0} and {1} in the partition are merged
into the blocking coalition (BC) S = {0, 1}, and other coalitions remain unchanged, forming
new πup = [{0, 1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}] at time e2. At e14, when compares with
S = {1, 2, 8}, the original {0, 1, 7} conforms the PT condition, so extracts 1 to cooperate with 2,8
forming {1, 2, 8}(BC) and leaves {0, 7} to form new πup = [{1, 2, 8}, {0, 7}, {3, 6}, {4, 5}, {9}].
Then continue to traverse S ∈ S to compare. After each update, the count of coalitions is accumu-
lated. If πup update, the count of changed coalition becomes 0. After traversing S once, the coalition
with the largest count is the stable coalition SC, as no BC for it appears. Therefore S is pruned
by removing all coalitions containing clients which belong to SC. In next Rounds, πup begins to
traverse S ∈ S again until there is no BC to update the partition, then πup is combined with all
previous SCs to obtain final equilibrium π∗.

B.3 Illustrate Dynamic Cooperative Evolution Results on EMNIST-LTP

As shown in Fig. 6, we list equilibrium states at the end round of each task phase on EMNIST-LTP
dataset, and it can be seen that the coalition structure changes as the task changes, with clients of the
same color forming a coalition. For example, at t1 there are 4 coalitions and 2 coalitions for t2. With
the dynamic task flows, cooperative learning through dynamic coalition is necessary. Meanwhile, as
the amount of tasks increases, clients tend to form grand coalition to acquire each other’s information
in order to recall the previous knowledge.
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client

task

Figure 6: Dynamic Cooperative Evolution on EMNIST-LTP Dataset (ε = 0.8, λ = 0.2).

B.4 Time Complexity Analysis

Suppose that the number of clients is K, the number of cooperative states in the FCL system is BK

and the number of coalitions is 2K − 1. The analysis of the time complexity is as follows:

(1) Formulating benefit table: In the initialization phase, we only need to measure the overall
similarity of 2-client structure, so the complexity of benefit calculation is O(K2). The complexity
of calculating the size of K clients’ models is O(K). The values obtained from the initialization
can be directly calculated to form the benefit table. Go through all coalitions, each coalition has k
clients, and total iteration is

∑K
k=1 k ∗ Ck

K = K2K , complexity is O(K2K). Since the complexity
of calculating the benefits of the multi-client structure according to the derivation formula is O(1),
so the total complexity is O(K2K). The greatest advantage of our benefit calculation method over
other algorithms lies in the fact that we can calculate the individual benefits of rational clients under
different groups, rather than only the collective benefits. Additionally, if we aggregate models to
calculate the test accuracy on the local client as benefits, the total time complexity is O(K2KN) if
there are N test samples. In contrast, using coalitional affinity game and overall similarity greatly
reduces the complexity of formulating benefit table.

(2) Achieving dynamic cooperative equilibrium: Each iteration of merge-blocking algorithm needs to
traverse all coalitions and compare the benefits of clients, therefore the complexity is also O(K2K).
The amount of computation is greatly reduced compared to the complexity O((BK)2K) of traversing
TPEF of all states in 3.3.

We also list some algorithms using group aggregation for Federated Learning in Table 4 and select
representative metrics for contrast.

Table 4: Compare the complexity of different group aggregation algorithms.

Algorithm Benefit Calculation 3 Group Formation Group’s Number Rational Optimal Solution Dynamic Group

ClusterFL O(K2) O(K4) 2 × ×
FedGroup O(KM) O(KM2 + TK2M) M × ×

Coalitional FL O(K2) O(max(K3,K2lmax)) unlimited × ×
pFedSV - O(k!KN) K × ×
DCFCL O(K2) O(K2K) unlimited

√ √

ClusterFL quantifies benefits through pairwise similarity and employs Optimal Bipartition Algorithm
to minimize inter-group similarity [7]; FedGroup decomposes all weights via Singular Value Decom-
position (SVD) into M vectors and applies K-means++ clustering over T iterations [43]; Coalition
FL utilizes EMD-based linear combinations of data distributions with Accelerated Device Coalition
Formation Algorithm (whose complexity matches ours when lmax = K, the maximum number
of clients) [39]; pFedSV forms coalitions for each client via top-k Shapley values at O(k!KN)

3For fairness, here we only list the benefits calculation under the 2-client structure, as other algorithms do
not calculate benefits of multi-clients.
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complexity for N test samples [8]. Our algorithm shows following advantages: (1) provides game-
theoretically optimal solution for rational clients, though with increased complexity compared to
clustering ones [7, 43]; (2) dynamic, scale-unlimited coalition better adapts to continual learning, as
evidenced by superior performance; (3) while maintaining computational efficiency through coalition
affinity game and structured assumptions (additive/symmetric benefits), we quantify benefits for each
client - a feature shared only with Coalition FL - providing a reliable idea for incentives and benefit
allocation. Our method’s core objective of finding optimal client cooperation in federated continual
learning inherently involves computational complexity, as the problem is NP-hard by nature. While
our method achieves optimal performance at relatively small scale, practical deployment for large
scale necessitates approximating solution, which sacrifices theoretical optimality for computational
feasibility, thereby becoming a performance-cost tradeoff.

B.5 Boarder Impact

To achieve cooperation, all clients must share their model information. This process is facilitated by
an impartial and authoritative third party, such as the industry association. The designated third party
collects the client models after each round, then assesses the benefits in each state by comparing the
overall similarity to determine equilibrium. The cooperative strategies are then published. Therefore,
our framework promotes transparent and incentive-aligned cooperation among clients. At the same
time, our framework can quantify benefit from each client in a coalition. In practice, such information
can be utilized to either provide incentives or to impose charges on each client, to facilitate and
enhance the foundation of the coalition.

C Implementation Details

C.1 Datasets

We construct a series of datasets comprising multiple federated clients, with each client possessing
a sequence of tasks. Suppose we use K to denote the number of clients, T to denote the number
of tasks in each client, and C to denote the number of classes in each task. We curate tasks by
randomly selecting several classes from the datasets and sample part of the instances from these
classes. Adhering to the principle of class incremental learning, there are no overlapped classes
between any two tasks within a client.

EMNIST-LTP [3]. The EMNIST dataset is a character classification dataset with 26 classes. It
contains 145600 instances of 26 English letters. The data contains upper and lower cases with the same
label, making classification more challenging. To curate a dataset under LTP setting, we randomly
sampled classes from the entire dataset for each client. The EMNIST-LTP dataset consists of 8 clients,
with each client encompassing 6 tasks, each task comprising 2 classes (K = 8, T = 6, C = 2).

EMNIST-shuffle [3]. In a conventional reshuffling setting, the task sets are consistent across all
clients, while arranged in different orders. Therefore, with the same structure as EMNIST-LTP, we
construct EMNIST-shuffle dataset with 8 clients, 6 tasks, and each task comprising 2 classes. While
the 6 tasks of all clients are the same but in shuffled orders (K = 8, T = 6, C = 2).

CIFAR100 [40]. As a challenging image classification dataset, CIFAR100 consists of low resolution
images containing various objects and complex image backgrounds. We randomly sample 20 classes
among 100 classes of CIFAR100 as a task for each of the 10 clients, and there are 4 tasks for each client.
For each class, we randomly sample 400 instances into the client dataset (K = 10, T = 4, C = 20).

MNIST-SVHN-F [9, 41, 42]. The dataset is constructed with MNIST [9], SVHN [41] and Fash-
ionMNIST [42]. Similar to MNIST, SVHN dataset serves as a benchmark for digit classification
tasks, notable for its representation of real-world scenarios with complex backgrounds. We unify
the labels of these two datasets. FashionMNIST dataset is designed for clothing image classification.
We set 10 clients in the mixed dataset, with each client containing 6 tasks, and each task has 3
classes. In this mixed dataset, different tasks rely on different features. For example, shape features
that are relevant to digit classification differ significantly from those that are important for classify-
ing clothing items. Under centralized methods, it may result in incredible knowledge interference
(K = 10, T = 6, C = 3).
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C.2 Baselines

We compare our method with five baselines from FL, two baselines from CL, and six baselines from
FCL. FL methods include basic centralized technique FedAvg, FedProx and SCAFFOLD for reducing
heterogeneity interference, decentralized technique CFL for group aggregation, and personalized
federated learning method Per-FedAvg. To control variables during local training, we incorporate
knowledge distillation into all FL baselines. CL methods are respectively combined with the FL
methods (FedAvg, FedProx), training a global model while fighting catastrophic forgetting. The FCL
methods focus on addressing the issues of catastrophic forgetting along with statistical heterogeneity.

Local. A typical FL comparison method to achieve local training, without global aggregation. In
order to control the experimental comparison, we add knowledge distillation to the local training.

FedAvg [11]. As a representative FL method, FedAvg trains the models in each client with local
dataset and averages their parameters to attain a global model.

FedProx [20]. The algorithm is similar to FedAvg. While training local models, a regularization
term is employed to govern the proximity between the local parameters and the global parameters.
This regularization term serves to effectively control the degree of deviation exhibited by the local
models from the global model during the training process.

SCAFFOLD [21]. It addresses the issue of client drift by introducing control variates that help align
local updates more closely with the global model. This reduces the divergence caused by non-IID
data across clients, leading to faster and more stable convergence.

CFL [7]. It is designed to optimize federated learning in environments with diverse client data
distributions. CFL clusters clients into groups based on their data similarity and trains separate
models for each group, allowing for personalized and accurate models while preserving privacy.

Per-FedAvg [10]. It is an extension of FedAvg designed to enhance personalization in federated
learning. Per-FedAvg focuses on producing a personalized model for each client by incorporating
local fine-tuning. This approach balances the benefits of collaborative learning with each client’s
unique data characteristics.

PODNet [44]. A CL method, it incorporates a spatial-based distillation loss onto the feature maps of
the classifier. This loss term serves to encourage the local models to align their respective feature
maps with those of the previous model, thereby maintaining the performance in previous tasks.

ACGAN-Replay [45]. This CL algorithm employs a GAN-based generative replay method. The
algorithm trains an ACGAN in the data space to memorize the distribution of previous tasks. While
learning new tasks, the classifier is trained on new task data along with generated data from ACGAN.

FLwF2T [26]. As a FCL algorithm, FLwF2T leverages the concept of knowledge distillation within
the framework of federated learning. It employs both the old classifier from the previous task and the
global classifier from the server to train the local classifier.

FedCIL [28]. The FCL algorithm extends the ACGAN-Replay method within the federated scenario,
addressing the statistical heterogeneity issue with distillation loss.

GLFC [27]. In the FCL scenario, the algorithm exploits a distillation-based method to alleviate the
issue of catastrophic forgetting from both local and global perspectives.

AF-FCL [29] proposes an adaptive forgetting mechanism that dynamically adjusts knowledge
retention policies to address catastrophic forgetting in heterogeneous federated learning scenarios.

AFCL [6] introduces an asynchronous training paradigm with adaptive synchronization to enable
efficient continual learning across heterogeneous federated devices while mitigating forgetting.

FPPL [46] introduces a novel federated prototype learning framework that simultaneously addresses
catastrophic forgetting and data heterogeneity through efficient prototype propagation and local
consistency regularization.

C.3 Metrics

We use the metrics of accuracy and average forgetting for evaluation works [5, 29]. Suppose ai,tk is
the test set accuracy of the t-th task after learning the i-th task in client k.

19



Table 5: Average accuracy on CIFAR100 when K = 8, T = 6, C = 10.

Model CIFAR100
FedAvg 19.5±0.3

FedProx 20.1±0.2

SCAFFOLD 20.3±0.9

CFL 20.5±0.5

Per-FedAvg 29.6±1.4

PODNet+FedAvg 21.3±0.1

PODNet+FedProx 21.6±0.4

ACGAN+FedAvg 19.5±0.6

ACGAN+FedProx 19.6±0.2

FLwF2T 21.5±0.7

FedCIL 19.6±0.3

GLFC 19.9±0.4

DCFCL 31.4±0.8

Average Accuracy. We evaluate the performance of the model on all tasks in all clients after it finish
learning all tasks. By using a weighted average, we calculated the test set accuracy for all seen tasks
across all clients, with the number of samples in each task serving as the weights:

Average Accuracy =
1∑K

k=1

∑T
t=1 n

t
k

K∑
k=1

T∑
t=1

aT,t
k ∗ nt

k. (21)

This approach allows us to account for variations in task difficulty and ensure a fair evaluation across
different tasks and clients.

Average Forgetting. The metric of average forgetting assesses the extend of backward transfer during
continual learning, quantified as the disparity between the peak accuracy and the ending accuracy of
each task. We also use a weighted average when calculating average forgetting:

Average Forgetting =
1∑K

k=1

∑T−1
t=1 nt

k

K∑
k=1

T−1∑
t=1

max
i∈{1,...,T−1}

(ai,tk − aT,t
k ) ∗ nt

k. (22)

C.4 Optimization

The Adam optimizer is employed for training all models. For all experiments except for CIFAR100,
a learning rate of 1e-4 is utilized, with a global communication round of 60, and local iteration of
100. We set learning rate as 1e-3, the global communication round as 40, and local iteration as 400
for CIFAR100. Other parameters include weightdecay = 1e− 5, beta1 = 0.9, beta2 = 0.999. For
training, a mini-batch size of 64 is adopted. The number of generated samples in an iteration aligns
with this mini-batch size. We report the mean and standard deviation of each experiment, conducted
five times with different random seeds.

C.5 Model Architectures

In the case of CIFAR100, we utilize the feature extractor of a ResNet-18 [47] as ha and hb comprises
two FC layers, both with 512 units. For other datasets we adopt a three-layer CNN followed by an
FC layer with 512 units as ha. The channel numbers of the convolutional layers are [64, 128, 256].
And hb is represented by an FC layer. The outputs of ha belong to R512. All the FC layers employed
in the architectures consist of 512 units. The convolutional layers and FC layers are followed by a
Leaky ReLU layer. Another FC layer serves as hc and operates as the classification head.

C.6 Devices

In the experiments, we conduct all methods on a local Linux server that has two physical CPU
chips (Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz) and 32 logical kernels. All methods are
implemented using Pytorch framework and all models are trained on GeForce RTX 2080 Ti GPUs.
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D Additional Experimental Results

D.1 More Complex Scenario

We conduct experiments on CIFAR100 in a more challenging setting. We randomly sample 10 classes
among 100 classes of CIFAR100 as a task for each of the 8 clients, and there are 6 tasks for each
client (K = 8, T = 6, C = 10). For each class, we randomly sample 400 instances into the client
dataset. Therefore, each client possesses more tasks with fewer samples per task.

As shown in Table 5, our method achieves the highest average accuracy among the evaluated
approaches. While the CL approach emphasizes retaining knowledge from previous tasks and the
traditional FCL approach focuses on centralized aggregation to ensure that client knowledge is utilized
totally, these methods can sometimes have a negative influence by indiscriminately aggregating
information. In contrast, our proposed method utilizes decentralized federated aggregation to form
client coalitions through dynamic cooperative learning. This approach aggregates clients with similar
tasks, mitigating forgetting within local coalitions, especially when data heterogeneity among clients
is significantly strong. Therefore, compared to established baselines, our method achieved the highest
average task test accuracy.

D.2 Communication Cost

To reduce communication overhead, we cache the model information from the previous aggregation
round on both the client and the third party. This allows gradient information to be calculated by
model differences, so only model parameters need to be transmitted in each communication round.

We list the communication cost in Table. 6 of different methods across four datasets. C2S represents
client-to-server cost, S2C is server-to-client cost. The results demonstrate that DCFCL achieves
optimal communication efficiency in all datasets, matching the performance of the most basic FedAvg
and FedProx methods while significantly outperforming improved approaches that require additional
communication overhead (such as SCAFFOLD and CFL, which typically double the communication
volume in the C2S direction). It is particularly noteworthy that although methods like ACGAN and
FedCIL enhance model performance by incorporating generative models, they all introduce varying
degrees of increased communication costs. In contrast, DCFCL ensures performance improvements
while completely avoiding additional communication burdens.

Table 6: The client to server(C2S) and sever to client(S2C) communication cost(GB) during the
whole training process.

Model CIFAR100 EMNIST-LTP EMNIST-shuffle MNIST-SVHN-F
C2S S2C C2S S2C C2S S2C C2S S2C

FedAvg 10.400 10.400 4.056 4.056 4.056 4.056 7.260 7.260
FedProx 10.400 10.400 4.056 4.056 4.056 4.056 7.260 7.260

SCAFFOLD 20.800 10.400 8.112 4.056 8.112 4.056 14.520 7.260
CFL 20.800 10.400 8.112 4.056 8.112 4.056 14.520 7.260

Per-FedAvg 10.400 10.400 4.056 4.056 4.056 4.056 7.260 7.260
PODNet+FedAvg 20.800 10.400 8.112 4.056 8.112 4.056 14.520 7.260
PODNet+FedProx 20.800 10.400 8.112 4.056 8.112 4.056 14.520 7.260
ACGAN+FedAvg 10.523 10.400 4.093 4.056 4.093 4.056 7.440 7.260
ACGAN+FedProx 10.523 10.40 4.093 4.056 4.093 4.056 7.440 7.260

FedCIL 20.800 10.400 8.112 4.056 8.112 4.056 14.520 7.260
AF-FCL 20.800 10.400 8.112 4.056 8.112 4.056 14.520 7.260
AFCL 10.420 10.400 4.062 4.056 4.062 4.056 7.260 7.260
FPPL 10.420 10.400 4.062 4.056 4.062 4.056 7.260 7.260

DCFCL 10.400 10.400 4.056 4.056 4.056 4.056 7.260 7.260

D.3 Mitigation of Catastrophic Forgetting

We compare the forgetting rate in Table. 7 to further demonstrate the effectiveness. The results
clearly demonstrate DCFCL’s superior performance in mitigating catastrophic forgetting, achieving
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Table 7: The average forgetting rate (%) on 4 datasets.

Model CIFAR100 EMNIST-LTP EMNIST-shuffle MNIST-SVHN-F
FedAvg 8.6±0.9 24.0±0.6 9.6±0.9 25.6±0.6

FedProx 8.4±0.6 23.8±0.7 8.1±0.6 24.9±0.7

SCAFFOLD 8.2±0.7 19.2±0.3 8.2±0.7 22.1±0.3

CFL 8.9±0.8 19.8±0.6 9.4±0.6 24.4±0.8

Per-FedAvg 8.7±0.7 19.4±0.5 7.8±0.6 21.9±0.7

PODNet+FedAvg 8.6±0.6 15.5±0.7 7.3±0.9 21.3±0.3

PODNet+FedProx 7.5±0.9 14.3±1.2 6.0±0.7 20.6±0.8

ACGAN+FedAvg 6.4±0.7 14.3±0.5 6.5±0.6 20.0±0.8

ACGAN+FedProx 6.2±0.4 12.4±0.7 6.1±0.5 19.7±0.4

FedCIL 6.5±0.2 10.4±0.4 6.4±0.8 19.7±0.8

AF-FCL 4.9±0.9 7.9±0.4 4.2±1.4 7.5±0.8

AFCL 6.3±0.5 10.5±0.9 5.7±1.1 11.3±0.5

FPPL 6.9±0.6 11.6±0.3 7.4±0.9 13.2±0.2

DCFCL 4.7±0.9 8.9±0.6 4.2±0.8 6.9±0.7

the lowest forgetting rates on 3 datasets. This represents reduction compared to baseline methods
like FedAvg and FedProx. DCFCL’s dynamic collaboration mechanism achieves significantly better
retention without requiring additional memory buffers or complex architectural modifications. These
consistent improvements across diverse datasets underscore DCFCL’s robustness in preserving learned
knowledge while accommodating new information.
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Figure 7: Comparison of average forgetting of each client on MNIST-SVHN-F(left). The equilibrium
achieving time when the number of clients increases(right).
We also list forgetting mitigation of each client to illustrate the benefits of cooperation comparing
no aggregation (local), centralized aggregation and decentralized (DCFCL) methods, as shown in
Fig. 7(a). The local method (yellow) show a high forgetting rate of 60%-95%. After adopting
centralized aggregation (blue), the forgetting rate significantly decrease to 10%-36%, indicating that
the aggregation between clients can promote the knowledge recall of different clients respectively,
but there is still room for optimization. The decentralized dynamic cooperation method (orange)
demonstrate better results, stably controlling the forgetting rate below 10% (3.49%- 9.70%). It is
particularly worth noting that DCFCL maintains the lowest and most stable forgetting rate on all
clients, significantly reducing the differences in forget rates among clients.

D.4 Computation Cost

We present Fig. 7(b) to show the computation time of equilibrium as the client number increases,
comparing it to the method without merge-blocking algorithm (MBA). As the number of clients
grows from 10 to 50, the conventional approach without MBA shows exponential time escalation,
highlighting scalability issues. In contrast, DCFCL maintains polynomial time complexity, with
computation times increasing only from 0.116 min to 18.733 min, with the gap widening as the
system scale grows. This demonstrates DCFCL’s advantage in large-scale deployments.
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Table 8: The run-time consumption comparisons T (min) on 4 datasets.

Model CIFAR100 EMNIST-LTP EMNIST-shuffle MNIST-SVHN-F
FedAvg 238 22 21 29
FedProx 246 26 24 32

SCAFFOLD 265 38 37 45
CFL 294 34 35 47

Per-FedAvg 287 32 28 32
PODNet+FedAvg 252 35 34 49
PODNet+FedProx 253 37 39 51
ACGAN+FedAvg 312 85 81 149
ACGAN+FedProx 315 89 82 152

FedCIL 322 93 90 172
AF-FCL 302 62 60 126
AFCL 277 34 32 44
FPPL 253 32 31 45

DCFCL 294 39 39 48

Table. 8 compares runtime performance across four datasets. DCFCL shows competitive runtime
(48-294 minutes), similar to CFL and SCAFFOLD. Generative methods (ACGAN and FedCIL)
incur higher overhead (up to 322 minutes on CIFAR100), while traditional methods like FedAvg
and FedProx are faster (32-238 minutes) but may sacrifice performance. DCFCL strikes a balance
between efficiency and learning ability, with moderate runtime costs across datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Based on the abstract and introduction, the three main claims made in the
paper reflect the contributions and scope of the research, which focuses on introducing a
decentralized dynamic cooperative framework for federated continual learning. All of these
points are addressed in the main text.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The main limitations of the work, as well as future directions that might
address some of these limitations, are laid out in the conclusion portion of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions of main theorem is laid out in the main text, while the
derivation process and proof details are placed in the supplementary material to save space.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper provides detailed experimental settings, including the datasets
used, client and task configurations, the specific methods for comparison, and the eval-
uation metrics. It also includes ablation studies and results with different parameter
settings to support the validity of its claims. These details are sufficient for repro-
ducing the main experimental results and verifying the conclusions. Meanwhile, we
also provide the complete code required for the reproduction, which is available at:
https://anonymous.4open.science/r/DCFCL-0372
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper provides a link to the code repository for open access, which
contains scripts to reproduce all experimental results for the new proposed method and base-
lines. The supplemental material likely contains more information on the exact procedure
for reproducing the results, such as dataset settings and baselines.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide sufficient details in the supplemental material regarding the
training and testing setup, including data splits and the use of the optimizer with specified
hyperparameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Yes, we measure the mean and standard deviation of each experiment to report
error bars for the experimental results, conducted three times with different random seed.
Therefore, the robustness and consistency of our method are reliably verified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, the supplemental material provides details on the computational resources
used, including the computation time and the communication cost. Meanwhile, the device
information for running the experiment is provided at the end of the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we believe that our work conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed in boarder impact in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such models or datasets are involved.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the code of baselines, framework of PyTorch and open-source datasets,
and cite them in the main text.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No such assets are introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such experiments or datasets are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: We have no human participants in our study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We don’t involve LLMs as any important, original, or non-standard compo-
nents.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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