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Abstract

Evaluating Large Language Models (LLMs) on001
reasoning benchmarks demonstrates their abil-002
ity to solve compositional questions. However,003
little is known of whether these models engage004
in genuine logical reasoning or simply rely on005
implicit cues to generate answers. In this pa-006
per, we investigate the transitive reasoning ca-007
pabilities of two distinct LLM architectures,008
LLaMA 2 and Flan-T5 , by manipulating facts009
within two compositional datasets: QASC and010
Bamboogle. We controlled for potential cues011
that might influence the models’ performance,012
including (a) word/phrase overlaps across sec-013
tions of test input; (b) models’ inherent knowl-014
edge during pre-training or fine-tuning; and (c)015
Named Entities. Our findings reveal that while016
both models leverage (a), Flan-T5 shows more017
resilience to experiments (b and c), having less018
variance than LLaMA 2. This suggests that019
models may develop an understanding of tran-020
sitivity through fine-tuning on knowingly rele-021
vant datasets, a hypothesis we leave to future022
work.023

1 Introduction024

At a high level, reasoning refers to the process of025

an agent deriving information about its environ-026

ment that extends beyond what is directly observ-027

able or retrievable from memory. Large Language028

Models (LLMs) have shown capabilities of solving029

complex questions necessitating this very process030

(Touvron et al., 2023; Brown et al., 2020). These031

models can often solve these tasks in few-shot, such032

as Chain-of-Thought (CoT) reasoning (Wei et al.,033

2022b; Zhang et al., 2023; Zhou et al., 2023), or in034

a zero-shot manner (Kojima et al., 2022). Scaling035

up LLMs has demonstrated improvements across036

various multi-step reasoning benchmarks, such as037

arithmetic, commonsense, and symbolic reasoning038

(Wei et al., 2022b; Lewkowycz et al., 2022; Wei039

et al., 2022a). Nevertheless, the question of what040

mechanisms underlie reasoning in these models041

remains an open one (Prystawski et al., 2023; Ye 042

et al., 2023; Wang et al., 2023a). Perhaps more 043

pressingly, so does the question of whether exist- 044

ing reasoning benchmarks accurately reflect a 045

model’s capacity to reason. 046

One key aspect of such capabilities is the 047

model’s proficiency in Transitive Reasoning. This 048

involves the model’s ability to integrate and logi- 049

cally deduce conclusions from at least two perti- 050

nent facts when addressing a specific question (see 051

Figure 1). In this paper, we design a set of novel 052

diagnostic experiments using automatic and man- 053

ual re-annotations of two compositional datasets 054

–QASC (Khot et al., 2020) and Bamboogle (Press 055

et al., 2023b)– to control for the different sources 056

of information the LLMs, namely LLaMA 2 (Tou- 057

vron et al., 2023) and Flan-T5 (Chung et al., 2022), 058

might be exploiting in answering compositional 059

questions. Specifically, our experiments control 060

for (i) named entities in QA pairs; for example, a 061

model looks for dates in the facts when prompted 062

with “when” in the question, (ii) word/phrase asso- 063

ciations or overlaps across sections of the models’ 064

input prompt, e.g., removing B, in the reasoning 065

chain of A → B, B → C ⇒ A → C, and (iii) the 066

model’s exposure to direct answers to the questions 067

during pre-training and/or fine-tuning by using the 068

Bamboogle dataset. 069

Our initial experiments (Section 4) establish that 070

LLMs perform well with intermediate facts pro- 071

vided (Figure 1), demonstrating some transitive 072

reasoning capabilities. Manipulations such as re- 073

moving overlapping words between facts and ques- 074

tions or shuffling word order within facts show no 075

significant impact on performance. However, re- 076

moving answer keywords notably decreases model 077

performance, indicating some reliance on these 078

keywords rather than purely relying on transitive 079

reasoning. Experiments controlling for the mod- 080

els’ direct answer knowledge using Bamboogle 081

(Section 7) reveal dependency on specific named 082
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Figure 1: (a) 3-shot In-Context L earning (ICL) prompt for the compositional question answering task. The
prompt begins with the instruction “Follow the demonstrations below to answer the given question” followed by 3
demonstrations. Each demonstration consists of a “Context” with a question, optionally a set of multiple-choice
(MC) answers for the QASC dataset (Khot et al., 2020), two supporting facts (fact 1, fact 2), and a set of “Steps”
including a “Deduction” and the correct answer. The test query contains only the “Context” and the LLM needs to
generate the “Steps”. (b) We perform a series of manipulations to either of the facts by shuffling words, removing
overlapping keywords, and gibbering Named Entities to control for different sources of exploitation of cues in the
input by the models.

entities like dates and names for answers. Unlike083

LLaMA 2, Flan-T5 shows more resilience to inter-084

ference with the named entities of answer tokens,085

indicating that it engages in a process similar to086

transitive reasoning due to being knowingly fine-087

tuned on transitive datasets, though further research088

is needed to confirm this.089

2 Related Work090

Reasoning LLMs have exhibited certain emer-091

gent abilities (Wei et al., 2022a) that can be trig-092

gered by providing a few demonstrations of CoT093

manually (Wei et al., 2022b), automatically (Zhang094

et al., 2023), or entirely zero-shot with an instruc-095

tion, e.g., ‘think step-by-step’ (Kojima et al., 2022;096

Chung et al., 2022), leading to an increase in perfor-097

mance in downstream tasks that require some form098

of reasoning. Infusing code either in the pretraining099

and/or fine-tuning stages has also been shown to100

help (Madaan et al., 2022; Gao et al., 2023; Chen101

et al., 2023; Lyu et al., 2023). Despite their effec-102

tiveness in solving reasoning tasks, models usually103

fail to explore different deductive paths to reach the104

final answer (Saparov and He, 2023). This can be105

resolved by oversampling different reasoning paths 106

in generation (Wang et al., 2023c). 107

On the models’ reasoning analysis, Prystawski 108

et al. (2023) investigate that CoT helps bridge 109

the gap between observations in the pretraining 110

data. Razeghi et al. (2022) finds that models ex- 111

hibit better numerical reasoning capabilities when 112

the prompt terms are more commonly encountered 113

in the pretraining data. Press et al. (2023b) and 114

Khot et al. (2023) introduced an iterative prompt- 115

ing method that improves on reasoning further than 116

CoT. Finally, although increasing the model size 117

usually helps single-hop QA, it does not affect com- 118

positional reasoning much (Press et al., 2023b). 119

Reasoning datasets QASC (Khot et al., 2020), 120

one of the datasets we focus on in this work, is an 121

example of compositional deductive reasoning. It 122

contains science-related multiple-choice questions 123

supported by two statements (facts) that need to be 124

composed to deduce the answer. The answers can- 125

not be directly obtained from a single fact. All the 126

facts follow a simple transitivity rule (Section 3.1). 127

Bamboogle (Press et al., 2023b), the second 128

dataset of interest, also comprises compositional 129
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questions that cannot be answered correctly by a130

popular search engine. Crucially, it was released131

after one of the models we experimented with132

(Flan-T5) was pre-trained.133

StrategyQA (Geva et al., 2021) also contains134

multi-step boolean questions which require deduc-135

ing from two or more facts to answer. However,136

we exclude it from our benchmarks as preliminary137

experiments revealed more than 50% accuracy in138

answering the questions without the facts, hence139

making it harder to pinpoint whether the model140

knows the answers directly, or is required to rea-141

son. HotpotQA (Yang et al., 2018) is a multi-hop142

QA dataset that comprises questions with support-143

ing passages that need to be ingested in a multi-144

step manner to find the answer. This requires the145

model to perform both extracting of information146

and reasoning, again possibly hindering identifying147

a direct link between the question and the answer148

purely due to reasoning. Finally, GSM8K (Cobbe149

et al., 2021), and SVAMP (Patel et al., 2021) are150

popular mathematical datasets comprising grade151

school math word problems accompanied by a se-152

quence of deductive steps to solve them. Unlike153

QASC and Bamboogle, GSM8K and SVAMP do154

not follow the transitive reasoning style that we155

aim to study in this paper. Instead, they target the156

mathematical reasoning of the models. Note that157

HotpotQA involves finding supporting facts which158

is not the aim of this paper as we are only interested159

in the transitive reasoning abilities of the models.160

In-Context Learning (ICL) plays an important161

role in the model’s reasoning capabilities (Wei162

et al., 2022b). Min et al. (2022) concludes that163

specifying both the input distribution and the label164

space in the input prompt is what matters for ICL.165

Wang et al. (2023b) show that the labels provided166

within ICL serve as a reference point for the the167

model during inference. However, Yoo et al. (2022)168

analyse that the correct input-label mappings could169

have varying impacts depending on the task at hand.170

Wei et al. (2023) show that model size matters in171

how LLMs deal with ICL: larger models can over-172

write their semantic priors if presented with contra-173

dictory examples in the input prompt. Webson and174

Pavlick (2022) find that training a model on cor-175

rupted prompts has similar performance to models176

trained on informative prompts.177

Diagnosing Reasoning via Prompting Previous178

works have also manipulated prompts to uncover179

reasoning abilities. Ye et al. (2023) investigate ab-180

lating or substituting the input prompt with wrong 181

values. Similarly, Wang et al. (2023a) show that 182

incorrect reasoning in the generated CoT steps does 183

not significantly impact model performance; the 184

order of the steps though is crucial. We also study 185

the compositional reasoning behaviour of LLMs in 186

multi-hop questions. We have gone a step further 187

by designing a unique set of experiments aimed at 188

dissecting the model’s reliance on linguistic con- 189

structs, individual tokens, and their underlying se- 190

mantics. In contrast to these studies, we are not 191

interested in the effect of ICL: the few-shot demon- 192

strations are kept in their original form. Instead, 193

our emphasis is on modifying the properties of the 194

test queries used to assess our model, allowing us 195

to evaluate its performance under varied conditions 196

without altering the context provided to it. These 197

experiments are designed to discern whether the 198

models engage in compositional deductive reason- 199

ing or whether they identify alternative patterns to 200

formulate answers. 201

3 Experimental Setup 202

3.1 Task Formulation 203

We manually inspected and selected datasets that 204

either inherently adhere to the transitive rule of rea- 205

soning, such as QASC (Khot et al., 2020), or can be 206

adjusted with minor re-annotation, like Bamboogle 207

(Press et al., 2023a), to follow: 208

A → B,B → C ⇒ A → C (1) 209

where A → B, B → C correspond to two facts 210

(henceforth referred to as fact 1 and fact 2, re- 211

spectively), and the deduction is represented by 212

A → C. This structure mirrors the logical pro- 213

gression inherent in transitive reasoning, with the 214

first two facts serving as premises that lead to the 215

conclusion outlined in the deduction. All prompts 216

can be found in Appendix C. 217

3.2 Datasets 218

QASC features multiple-choice questions (MCQ) 219

answerable through the integration of two facts, 220

leading to a “Deduction” (Figure 1). To clarify 221

the derivation from two facts, we prefixed each 222

Deduced Fact with [Therefore,]. Given that each 223

Deduced Fact is logically entailed by the two pre- 224

ceding facts (Khot et al., 2020), the addition of 225

[Therefore,] at the start serves as a rational and 226

meaningful way to highlight this inferential step. 227

Refer to Appendix B for further details. 228
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Bamboogle controls for the models’ prior knowl-229

edge of the questions and eliminates the biases in-230

troduced by an MCQ structured dataset (Section 7).231

To align with the QASC format, we manually de-232

composed each question into two related facts by233

referencing Wikipedia. Questions not found in234

Wikipedia were omitted, leaving 112 out of the 125235

original questions. One of the authors rigorously236

checked each decomposition to ensure adherence237

to the transitive rule. For each pair, we then gener-238

ated a Deduced Fact that maintained the principle239

of transitivity. Figure 1 shows an instance of each240

of the datasets.241

3.3 Models242

We choose instruction-tuned models that can follow243

our prompt structure without further fine-tuning. In244

particular, we used LLaMA 2 chat (decoder-only245

architecture; 7B and 13B parameters; Touvron et al.246

2023), and Flan-T5 XXL (encoder-decoder; 11B247

parameters; Chung et al. 2022). Flan-T5 XXL is al-248

ready fine-tuned on the QASC dataset, allowing us249

to study whether fine-tuning on a reasoning dataset250

permits the model to perform some form of transi-251

tive reasoning under our diagnostic experiments1.252

We stick to open-source models for their reprodu-253

cability and transparency. For further details refer254

to Appendix A.255

3.4 Metrics256

QASC (MCQ) Evaluation Our evaluation257

method checks the correctness of the final answer258

generated by the model. After generating the re-259

sponse, we extract the deductions (if any) and the260

final answer from the generated response. We use261

exact matching between the answer choices to cal-262

culate accuracy. For instance, if the correct answer263

is “(A) matter” and the model has predicted “(B)264

kerati”, we would compare “(B)” against “(A)”.265

Bamboogle (non-MCQ) Evaluation We assess266

performance on the Bamboogle dataset (Section 7267

below) using ROUGE-1 (Lin, 2004), since it de-268

viates from the MCQ format. This metric eval-269

uates the overlap of unigrams between the gold270

standard answer and the generated response. We271

refrained from going beyond ROUGE-1 as some272

models tended to rearrange tokens in certain exper-273

iments (for example, generating “April 30, 1789”274

1We limited our experiments with LLaMA 2 up to 13B
parameters, to keep comparisons fair with the largest model
from the Flan-T5 family.

as “30 April 1789”) or not corresponding with the 275

full answer (generating “1953” instead of “July 27, 276

1953”); metrics based on n-grams larger than one 277

would fail to take this into account. 278

4 QASC and Transitivity 279

To investigate transitive reasoning (Section 3.1) in 280

LLMs, we designed several experiments to anal- 281

yse their behaviour. Firstly, we explore the per- 282

formance when provided with factual information 283

and demonstrations of deduction. Subsequently, 284

we investigate the extent to which knowledge is 285

inherently present within these models, essentially 286

gauging how many answers are pre-existing due 287

to pretraining. We also aim to examine the signif- 288

icance of deductions within these demonstrations. 289

Finally, we inspect the impact of individual facts 290

on the models’ ability to deduce the final answer. 291

In all experiments, we used 3-shot ICL 2. 292

The prompts comprise three sections, beginning 293

with the instruction “Follow the demonstrations 294

below to answer the given question”, followed by 295

3-Shot ICL demonstrations, and ending with the 296

Test Query which prompts the model to generate 297

the response. The overall structure of the prompt is 298

depicted in Figure 1. Depending on the diagnostic 299

experiments, this prompt is modified accordingly 300

(refer to Tables 5, 6, and 7 in Appendix C). Be- 301

low is the description of prompts for the diagnostic 302

experiments carried out to analyse the models’ be- 303

haviour dealing with transitivity. 304

Full As illustrated in Figure 1, each demonstra- 305

tion contains a “Context” that includes the Ques- 306

tion, and a set of multiple-choice (MC) Answers, 307

accompanied by two supporting facts (fact 1, 308

fact 2), and a set of “Steps” that crucially com- 309

prises a “Deduction” before the final Answer. The 310

rationale of the Full prompt is to encourage the 311

model to deduce from the facts verbatim before 312

reaching the final answer. 313

QA The demonstrations contain only the Ques- 314

tion, the MC Answers, and only the correct Answer 315

as part of the “Steps”. This prompt aims to check 316

the prior knowledge of the model in answering 317

these questions without any extra information. 318

QA (step-by-step) Similar to QA, this prompt 319

contains the “Think step by step” Instruction at the 320

2For QASC we used the dev set to evaluate performance
and chose the ICL instances randomly from the training set.
For more details on ICL refer to Appendix C.
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beginning, but similarly does not contain any facts321

in the “Context”, or a “Deduction“ step. Inspired322

by Kojima et al. (2022) this diagnostic experiment323

helps identify whether the model does any internal324

reasoning without explicitly being shown how to325

do so, e.g., via a “Deduction” step.326

QAF Similar to the Full prompt, the model is327

provided with the facts in the “Context” but not328

the “Deduction” step. Therefore, it is tasked with329

predicting the final answer without generating ver-330

batim any form of reasoning from the facts. This331

prompt highlights the importance of the deduction332

step in answering the questions.333

QAF (Fact 1/Fact 2 only) Identical to the QAF334

prompt, the only difference is that it omits either335

of the facts. This outlines which fact carries more336

weight for the model’s reasoning to reach the final337

answer. Generally, fact 1 is closer to the question,338

and fact 2 contains the answer (A → B and339

B → C in Equation 1, respectively).340

QASC Dataset

Prompt LLaMA 2-13b LLaMA 2-7b Flan-T5

Full 90 74 97
QA 55 43 79
QA (step-by-step) 46 37 79
QAF 77 56 99
QAF (fact 1 only) 71 46 94
QAF (fact 2 only) 60 44 95

Table 1: Accuracy of LLaMA 2-13b, LLaMA 2-7b,
and Flan-T5 XXL on QASC with different diagnostic
prompts. Full and QAF indicate the models’ reliance on
facts or the deduction step for answering questions. QA
demonstrates the degree to which the models depend on
their inherent knowledge.

4.1 Results341

The results from these experiments are depicted342

in Table 1. The first two rows show that Flan-343

T5 surpasses both LLaMA 2-7b and -13b, likely be-344

cause it has been directly fine-tuned on the QASC345

dataset. Consistent with the observations made by346

Wei et al. (2022a), the size of the models signifi-347

cantly influences their performance on reasoning348

tasks. The LLaMA 2 models using the QA (step-by-349

step) prompt perform worse than with QA, despite350

being provided with identical in-context and infer-351

ence prompts. This could be because the instruc-352

tion “Think step by step” can initiate a different353

reasoning process more suitable for reasoning tasks354

other than transitivity. On the other hand, Flan- 355

T5 has been fine-tuned on a series of tasks (includ- 356

ing QASC) with the same instruction hence, the 357

prompt objective aligns closely with the model’s 358

fine-tuning process (Chung et al., 2022; Wei et al., 359

2022b). 360

Finally, the results with the QAF prompt indicate 361

that the LLaMA 2 models struggle with reasoning 362

in the absence of deductions within the demonstra- 363

tions. However, Flan-T5 performs on par with the 364

Full prompt, which again could be down to fine- 365

tuning. The last two rows denote that the presence 366

of fact 1 is more important in the final answer for 367

the LLaMA 2 models but not so much for Flan-T5. 368

Without both facts, executing transitive reasoning 369

becomes unfeasible. This surprising result leads to 370

an intriguing inquiry: what information are the 371

models extracting from the facts so that they are 372

able to outperform the QA prompt? 373

5 Does Word Order Matter? 374

Previous experiments showed that models benefit 375

significantly when the intermediate facts are pro- 376

vided. This does not mean that the models are 377

engaging in reasoning – for example, they may be 378

exploiting word overlaps or associations across the 379

questions, facts, and the answers. Reasoning can 380

only proceed from fine-grained, structured mean- 381

ings of the question, and those of the facts. There- 382

fore, if the models are reasoning over the facts, we 383

would expect them to do significantly worse when 384

the word order in the facts is randomly shuffled 385

(leading essentially to ungrammatical, nonsensical 386

word sequences). We use the following prompt for 387

this experiment: 388

Shuffled Facts This prompt follows the Full 389

prompt in Section 4. However, we randomly shuf- 390

fle every word in fact 1 and fact 2 delimited by 391

white space (see the first and third instance of Fact 392

Manipulation in Figure 1b). 393

Figure 2 shows that shuffling the word order in 394

the facts has minimal impact on the models’ perfor- 395

mance, one might argue that LLMs are powerful 396

enough to internally restore word order before gen- 397

erating an output. In the following section, we 398

analyse this behaviour in further detail. 399

5.1 Can LLMs Restore Word Order 400

Internally? 401

To test this, we conducted an experiment, where 402

we prompted our models just to restore the word 403
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QASC Dataset

Prompt LLaMA 2-13b LLaMA 2-7b Flan-T5

F1Q Connecting Words Ablation 85 (-5) 45 (-29) 93 (-4)
F2Q Connecting Words Ablation 86 (-4) 49 (-25) 95 (-2)
F1F2 Connecting Words Ablation 88 (-2) 47 (-27) 90 (-7)
F1F2A Keyword Ablation 75 (-15) 40 (-34) 83 (-14)

Table 2: Accuracy of LLaMA 2-13b, LLaMA 2-7b, and Flan-T5 XXL on QASC with different ablation prompts.
The number in the parentheses represents the delta between the accuracy on the specified prompt and the Full
prompt. Models are most reliant on the Answer keywords within the facts to answer the questions.

Figure 2: Accuracy of models prompted with the Shuf-
fled Facts and Full diagnostic prompts. Results show
that models are insensitive to word order within facts.

order of the shuffled facts without performing any404

question-answering or reasoning task. We hypothe-405

sise that if the model is capable of internally restor-406

ing the word order of the facts, it should be able407

to do so when prompted. We begin the experiment408

with 3-shot ICL demonstrations, where we start409

with an instruction and provide the shuffled sen-410

tence along with the original sentence as the label.411

The results showed that both models struggled with412

restoring word order, LLaMA 2 and Flan-T5 scor-413

ing 10% and 21% respectively.414

By taking a closer look at the results, the models415

often generated the wrong sequence order, which416

was not close to the meaning of the original sen-417

tence, or generated something that did not have418

the same words as the original sentence. The ones419

that the models did restore the word order correctly420

were the ones that had a short sequence length (e.g.421

“a stopwatch is used to measure time”). This find-422

ing confirms that the models are in fact not able to423

restore the word order of sentences with complex424

syntactical structures.425

Nevertheless, as shown in Figure 2 the models426

were still capable of answering the questions with427

facts that bared no sense. This intriguing result428

calls for further investigation into the underlying429

mechanisms of the models, particularly focusing430

on how they make transitive deductions. Our next 431

step is to examine whether specific tokens play a 432

pivotal role in the models’ ability to reason. 433

6 Word/Phrase Associations and 434

Overlaps 435

A prominent pattern observed within the QASC 436

dataset is the overlap of words or phrases between 437

the questions and the corresponding facts, as well 438

as among the facts themselves (e.g., the question 439

“Climate is generally described in terms of what?” 440

and the fact “Climate is generally described in 441

terms of temperature and moisture”). Removing 442

the set of connecting words from facts effectively 443

disrupts the basis for transitive reasoning. To under- 444

stand how models depend on these linking tokens, 445

we designed the following experiments that manip- 446

ulate the Full prompt in systematic ways: 447

F1Q Connecting Words Ablation The mutual 448

words between the Question and fact 1 are re- 449

moved from the latter. As an example, fact 1 in 450

Figure 1 would be “the particles”, but the Question 451

would remain the same. 452

F2Q Connecting Words Ablation This prompt 453

is similar to F1Q Connecting Words Ablation but 454

with the tokens of fact 2 removed. 455

F1F2 Connecting Words Ablation All mutual 456

words between fact 1 and fact 2 are removed. 457

F1F2A Keyword Ablation This prompt is cre- 458

ated to analyse the influence of answer choices in 459

the facts on the final generated Answer. In other 460

words, in most cases, the correct answer (choice) is 461

present in one of the facts. In the QASC example 462

from Figure 1, fact 2 contains “matter” from the 463

choices. As a result, we remove this sequence from 464

fact 2 (see the second instance of Fact Manipu- 465

lation in Figure 1b) to analyse whether the model 466

heavily relies on keywords (this is equivalent to 467

removing C in B → C; Equation 1). 468
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Table 2 shows that the smaller LLaMA 2 model469

is more susceptible to the Connecting Token Abla-470

tion. This suggests that larger models may utilise471

alternative patterns that enable them to sustain their472

performance despite the ablation. However, the473

most significant impact on performance is observed474

when the keyword answer is removed from the475

facts. This implies that for certain questions, the476

models may identify a matching sequence within477

the answer options and leverage it to generate the478

answer. Essentially, the models depend on the pres-479

ence of answer keywords as a means to simulate480

the reasoning process. Nevertheless, the accuracy481

of the models on this dataset can still be attributed482

to their prior knowledge of the questions.483

7 Models’ exposure to direct answers484

7.1 Baselines485

To mitigate the impact of models’ inherent knowl-486

edge of direct answers to questions, we choose the487

Bamboogle dataset. This dataset consists of ques-488

tions, which can be decomposed into two questions,489

the answers to which are provided as facts. To ob-490

tain the final answer, the models need to engage491

in transitive reasoning based on these two facts.492

Through our initial QA experiment, we find that493

the models have not been exposed to the questions494

during pre-training or fine-tuning. Moreover, since495

Bamboogle was released after Flan-T5, it is evi-496

dent that it has not been fine-tuned on this dataset,497

ensuring that any performance observed is not the498

result of prior exposure to the questions. Therefore,499

it is an ideal dataset to thoroughly examine whether500

the model is capable of employing transitivity to501

derive the final answer. The non-multiple choice502

question (non-MCQ) nature of the dataset further503

ensures that the model cannot rely on recognising504

patterns between the choices and the answers to505

inform its responses. We repeat all the diagnostic506

prompts on the Bamboogle dataset (Table 3).3507

The low Rouge-1 scores on the QA row confirms508

that the models have not seen much of the dataset,509

either in part (i.e., the individual facts) or the full510

question, during pre-training or fine-tuning. The511

Full prompt indicates the models can deduce the512

correct answers from the facts. The QAF prompt513

3We excluded LLaMA 2-7b from the results because it
mirrors LLaMA 2-13b’s behaviour; this time we aimed to
compare similarly sized models to clarify only the impact of
fine-tuning on knowingly relevant reasoning datasets, includ-
ing e.g., QASC. Note that unlike Flan-T5 we are not aware of
the exact dataset LLaMA 2 was instruction fine-tuned on.

Bamboogle Dataset

Prompt LLaMA 2-13b Flan-T5

Full 74 96
QA 6 22
QA (step-by-step) 11 6
QAF 56 94
QAF (fact 1 only) 28 37
QAF (fact 2 only) 10 95
Full (both facts shuffled) 63 77
F1Q Connecting Words Ablation 62 96
F2Q Connecting Words Ablation 71 92
F1F2 Connecting Words Ablation 70 84

Table 3: Rouge-1 score of LLaMA 2-13b, and
Flan-T5 XXL on Bamboogle with different ablation
prompts. The Bamboogle dataset controls for the mod-
els’ prior knowledge to questions. The QA experiment
results confirm that both models have not been previ-
ously exposed to the questions.

also confirms the same findings from the QASC 514

dataset, i.e., LLaMA 2-13b needs the deductions 515

within the demonstrations to perform better. When 516

the models are provided with just one of the facts, 517

Flan-T5 demonstrates performance comparable to 518

that achieved with the Full prompt when only fact 519

2 is given. Probably fact 2 invariably contains 520

the answer to the question, in contrast to fact 1, 521

which does not directly provide the answer. Inter- 522

estingly, LLaMA 2-13b is not as good as Flan-T5 in 523

identifying the answer from fact 2. 524

The results of ablation experiments on 525

Bamboogle closely align with those observed in 526

QASC. However, removing the connecting words 527

between fact 2 and fact 1 from both facts 528

impairs Flan-T5’s performance to a greater extent 529

than was the case in QASC. 530

The Full (both facts shuffled) results aligned 531

with the observations from QASC dataset, show- 532

ing that shuffling the tokens within the facts has 533

minimal impact on the final results. Notably, al- 534

though shuffling disrupts the transitive structure of 535

the facts, the models, particularly Flan-T5 more so 536

than LLaMA 2-13b, are still able to find a pattern 537

(distinct from following transitivity) to arrive at 538

the correct answer. Therefore, we search for other 539

patterns the models exploit to sustain performance. 540

7.2 Controlling for Patterns of Named Entities 541

To counteract the possibility that models are merely 542

leveraging semantic relationships between ques- 543

tions and answers – such as seeking out dates when 544

a question starts with “When” – we have lower- 545

cased and shuffled the characters of Proper Names 546

that are answers to questions, and transformed 547
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Bamboogle Dataset

Prompt LLaMA 2-13b Flan-T5

Gibberish
Full 49 97
Both Facts Shuffled 10 59

Original
Full 74 96
Both Facts Shuffled 63 77

Table 4: Rouge-1 for LLaMA 2-13b and Flan-T5 on the
Bamboogle Gibberish dataset with Full and Shuffling
experiments. The second half includes results on the
original Bamboogle Dataset for comparison.

dates into gibberish words within the Bamboogle548

dataset. The dataset consists exclusively of dates,549

numbers, or names, all of which have been gibber-550

ished (building up 96% of the dataset), with the551

exception of four responses: one boolean and three552

nouns. The gibbering targeted numbers, names,553

and dates specifically to address potential model554

biases; we name this dataset as “Bamboogle Gib-555

berish”. We then repeat the Full and Both Facts556

Shuffled experiments and compare them with the557

experiments on the original dataset (Table 4).558

LLaMA 2-13b relies on named entities559

(significant Rouge-1 drop of 25%), whereas560

Flan-T5 shows remarkable robustness to our ma-561

nipulations, thus potentially exhibiting transitive562

reasoning ability. This could be down to the fact563

that fine-tuning helps models generalise to out-of-564

domain instances (Mosbach et al., 2023): explic-565

itly fine-tuning on reasoning datasets –as is defi-566

nitely the case for Flan-T5– induces transitive rea-567

soning in the model even with gibberish tokens568

in the prompt, rather than this behaviour being569

emergent. Adding the shuffling permutation on570

the Bamboogle gibberish dataset reveals that a por-571

tion of the models’ ability to identify the correct572

answer is attributed to the recognition of named573

entities in the answers. Once these entities were574

obscured, the models’ performance experienced a575

significant decline across the board (39% and 38%576

for LLaMA 2-13b and Flan-T54, respectively).577

8 Discussion578

Our initial experiments on QASC suggest that579

LLMs may exhibit a form of reasoning, as shown580

by strong baseline performances. Specifically, the581

fact that Flan-T5 has been explicitly fine-tuned582

4Note that the moderate performance of Flan-T5 (59%)
is probably due to the use of Rouge-1 metric, which is less
strict than exact match accuracy. Manual inspection of results
paints a worse picture.

on this dataset, explains its performance without 583

demonstrations, hinting at internal reasoning abili- 584

ties. However, further experiments reveal that these 585

models primarily rely on spotting answer keywords 586

rather than true reasoning. Their correct answers 587

often stem from prior knowledge and the MCQ 588

format of QASC. 589

We attempt to overcome some of the previous 590

limitation with the use of Bamboogle. When evalu- 591

ated without supporting facts, the models demon- 592

strate limited prior knowledge, as expected. No- 593

tably, Flan-T5 performs well with only fact 2, 594

indicating dependence on specific cues. Like in 595

QASC, shuffling tokens in Bamboogle has mini- 596

mal impact, suggesting that models may exploit 597

named entities as shortcuts. When controlling for 598

this, Flan-T5 that has knowingly been fine-tuned 599

on relevant reasoning datasets shows capabilities in 600

transitive reasoning, unlike LLaMA 2-13b, which 601

relies heavily on named entities. Finally, these find- 602

ings highlight that the ability of models to answer 603

correctly with shuffled word orders largely stems 604

from recognising and using named entities, rather 605

than genuine transitive reasoning. 606

9 Conclusion and Future Work 607

In this paper, we set out to better understand the 608

underlying processes of LLMs’ transitive reason- 609

ing through a series of experiments involving the 610

re-annotation of available compositional Question 611

Answering datasets. Experiments revealed that: 612

(a) models not fine-tuned on datasets focused on 613

compositional deductive reasoning perform better 614

when demonstrations include example deductions; 615

(b) there is a noticeable dependence on answer 616

keywords within the facts for question answering, 617

suggesting that performance on reasoning bench- 618

marks should not be taken at face value; and (c) 619

while non-fine-tuned models predominantly rely 620

on named entities to answer questions, models fine- 621

tuned on transitive reasoning tasks demonstrate 622

stronger reasoning capabilities. 623

While we identified potential cues that models 624

might exploit when answering transitive questions, 625

we defer a detailed analysis of how specific datasets 626

and task objectives influence transitive reasoning 627

during pre-training and fine-tuning to future re- 628

search. Given that most models can answer com- 629

plex questions using few-shot ICL, exploring differ- 630

ences between fine-tuning and ICL regarding rea- 631

soning abilities would be interesting future work. 632
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10 Limitations633

Scope: The scope of the deductive rules that are634

needed to answer questions in both the QASC and635

Bamboogle datasets is very limited: all the ques-636

tions involve the application of modus ponens twice637

in a row; i.e. they exclude all other deductive rules638

such as modus tolens. Any conclusions we draw639

here are by extension limited in the same way.640

Mechanisms: This paper does not address the641

question of why LLMs behave as they do. For642

this, we would need full ablative control over train-643

ing data and the models themselves. We speculate644

about the reason behind Flan-T5’s robustness to our645

experimental manipulations; namely that it is be-646

cause it has been fine-tuned on reasoning datasets.647

This hypothesis remains to be tested in future work.648
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A Implementation Details 905

We used transformers from the HuggingFace li- 906

brary to use the models mentioned in the paper. 907

We also used evaluate from the same library to 908

report the ROUGE-1 scores of the models on Bam- 909

boogle dataset. The accuracy was calculated with 910

the method mentioned in Section 3.4. 911

We ran our experiments with different seeds and 912

we did not find any inconsistencies in the results. 913

Hence, we ran all experiments with a single seed 914

(a single seed for all potential randomness in the 915

experiments) to control for randomness in the com- 916

parisons. We ran our experiments with the fol- 917

lowing hyper- parameters: temperature = 0.7, 918

top_p = 0.75, top_k = 40, and num_beams = 4. 919

We find that these hyper-parameters are best for 920

our generation task. It is worth noting that we aim 921

to investigate the emerging reasoning ability, rather 922

than to optimise for downstream task performance. 923

Depending on the model we run our experiments 924

in different batch sizes, but since the experiments 925

are inference only, the batch size does not impact 926

the results. We used batch sizes of 3, 5 and 2 for 927

LLaMA 2-13b, -7b, and Flan-T5 respectively. All 928

experiments reported are performed with a single 929

seed, thereby alleviating randomness in compar- 930

isons. 931

B Datasets 932

In this section we provide furthur details on our 933

chosen datasets. 934

QASC The test set of this dataset does not in- 935

clude the supporting facts, which are necessary to 936

our diagnostic experiments, therefore we chose the 937

dev set. We only use the train set to pick our 3-shot 938

ICL demonstrations, and omit the rest. We use 939

the dev set to make sure the models have not seen 940

the questions during training. The total number of 941

samples within this dataset is 926. 942

C Prompts 943

The first three instances within a dataset were cho- 944

sen for in-context learning, and they were omitted 945

from the evaluation. Tables 5, 6, 7, 8, and 9 outline 946

the prompt structures used in all experiments. 947
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Experiment Prompt Details

QA

Demonstrations

Context:

Question: What type of water formation is formed by clouds?
Answers: (A) pearls (B) beads ...

Steps:
Answer: (B) beads

Test

Context:

Question: What is described in terms of temperature
and water in the air?
Answers: (A) storms (B) climate ...

Steps:

QAF

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: Beads of water are formed by water vapor condensing.
Fact 2: Clouds are made of water vapor.

Steps:
Answer: (B) beads

Test

Context:

Question: [...]
Answers: [...]
Fact 1: Climate is generally described in terms of
temperature and moisture.
Fact 2: Clouds are made of moisture and the moisture
is from the water evaporating.

Steps:

QAF (fact 1 only)

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]

Steps:
Answer: (B) beads

Test

Context:

Question: [...]
Answers: [...]
Fact 1: [...]

Steps:

Table 5: Prompts for QA, QAF, QAF (Fact 1 only), and QAF (Fact 2 only) experiments.
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Experiment Prompt Details

F1Q Ablation

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]
Fact 2: [...]

Steps:
Deduction: Therefore, beads of water are
formed by clouds condensing.
Answer: (B) beads

Test

Context:

Question: What is described in terms of temperature
and water in the air?
Answers: [...]
Fact 1: Climate generally moisture.
Fact 2: [...]

Steps:

F1F2A Keyword
Ablation

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]
Fact 2: [...]

Steps:
Deduction: [...]
Answer: (B) beads

Test

Context:

Question: [...]
Answers: (A) storm (B) climate ...
Fact 1: is generally described in terms of
temperature and moisture.
Fact 2: [...]

Steps:

Table 6: Prompts for Keyword ablation
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Experiment Prompt Details

Both Facts
Shuffled

Demonstrations

Context:

Question: [...]
Answers: [...]
Fact 1: [...]
Fact 2: [...]

Steps:
Deduction: [...]
Answer: (B) beads

Test

Context:

Question: [...]
Answers: (A) storm (B) climate ...
Fact 1: generally described is temperature in terms of
climate moisture and.
Fact 2: moisture are made clouds of and the moisture
water evaporating is from the.

Steps:

Table 7: Prompts for Shuffled Facts

Experiment Prompt Details

Bamboogle
Gibberish

Demonstrations

Context:

Question: Who was president of the United States in
the year that Citibank was founded?
Fact 1: Citibank was founded in 1812.
Fact 2: The President of the United States in 1812 was
James Madison.

Steps:
Deduction: The President of the United States was
James Madison when Citibank was founded.
Answer: James Madison

Test

Context:

Question: Who was the first African American mayor of
the most populous city in the United States?
Fact 1: The most populous city in the United States is
New York City.
Fact 2: The first African American mayor of
New York City was ddaiv nkisdni.

Steps:

Table 8: Prompts for Bamboogle Gibberish
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Restore Word
Order

Prompt Details

Restore Word
Order

Demonstrations

Context:

Shuffled sentence: of by water formed are water
condensing beads vapor
Original sentence: beads of water are formed by
water vapor condensing

Test

Context:

Shuffled Sentence: varies altitude to climate
according
Original Sentence:

Table 9: Prompt for the Restore Word Order Experiment
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