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ABSTRACT

The ability to benchmark model performance in the face of spurious correlations
is important to both build better predictors and increase confidence that models are
operating as intended. We demonstrate that characterizing, as opposed to simply
quantifying, model mistakes across subgroups is pivotal to properly reflect model
biases which are ignored by standard metrics such as accuracy gap. Inspired by the
hypothesis testing framework, we introduce SKEWSIZE, a principled and flexible
metric that captures bias from mistakes in a model’s predictions and can be used
in multi-class settings or generalised to the open vocabulary setting of generative
foundation models. SKEWSIZE is an aggregation of the effect size of the inter-
action between two categorical variables: the spurious variable representing the
bias attribute the model’s prediction. We demonstrate the utility of SKEWSIZE in
multiple settings including: standard vision models and multimodal foundation
models from the BLIP-2 family. In each case, the proposed SKEWSIZE is able
to highlight biases not captured by other metrics, while also providing insights on
the impact of recently proposed techniques, such as instruction tuning.

1 INTRODUCTION

Machine learning systems can capture unintended biases (Dixon et al., 2018) by relying on corre-
lations in their training data that may be spurious (i.e. a finite sample artifact), undesirable and/or
that might vary across environments. Models of all scales are vulnerable to this failure mode, in-
cluding recent, large-scale models (Weidinger et al., 2022; Birhane et al., 2023; Luccioni et al.,
2023). To evaluate unintended biases in model outputs, existing metrics divide the population into
subgroups and aggregate the e.g. correct and incorrect outputs across those subgroups as in Sagawa
et al. (2019). However, this process consider as equivalent all responses deemed to be incorrect,
obscuring important information regarding a model’s bias characteristics, especially in the context
of large or intractable output spaces. We introduce an example of such situations in Appendix A
where three accuracy-based metrics fail to capture biases that appear in the mistakes of two models.

To measure this type of bias, we introduce SKEWSIZE, which considers how different the distribution
of predictions are across subgroups. In our motivating example, SKEWSIZE is able to capture the
different types of biases. We propose to formulate the problem of estimating bias for classification
models through the lens of hypothesis testing. We draw inspiration from tests of association between
the confounding, spurious factor and the model’s prediction, and propose to re-purpose a measure
of effect size for such tests. We compute effect sizes of this association for each ground-truth class:
e.g., given images of doctors, we can estimate the effect size of the association between gender and
predicted occupation. We show this approach yields a fine-grained and interpretable assessment of
model bias, exposing the most affected classes, as opposed to accuracy-based or fairness metrics.
Finally, we propose to aggregate effect sizes across classes using a measure of the skewness of the
effect size distribution per class to obtain at a scalar metric which can be used to compare models.

We validate the metric and investigate its utility in multiple settings, including foundation vision-
and-language models (VLMs) (BLIP-2, Li et al. (2023)) that have an intractable1 output space in
two settings: gender vs. occupation and practiced sport. Our main contributions are summarized as:

1This refers to the setting where the label space is given by all the possible outputs of a language model.

1



1. We demonstrate limitations of current metrics for quantifying bias, specifically that they fail to
capture bias manifested in how the model makes mistakes.

2. We propose SKEWSIZE, a metric for evaluating bias in discriminative models inspired by hy-
pothesis tests of contingency tables.

3. We use SKEWSIZE to evaluate model bias at scale in a variety of domains. We further show how
SKEWSIZE can be used with synthetic data to evaluate bias in VLMs.

2 METHOD

Let fθ : X 7→ Y be a discriminative model with parameters θ, where X is the inputs space (e.g.
images) and Y is the label set. We also assume that input x ∈ X with label y ∈ Y is drawn from an
underlying distribution p(x|z, y), where z is a discrete latent variable z ∈ Z that represents a factor
of variation affecting the data generating process. We refer to z as the bias variable and assumed to
systematically affect how well the model fθ is able to predict y from x. Our goal is then estimating
to what extent the predictions are affected by z. Let Z = {A,B} and Y be a discrete set. We further
consider that fθ(x) defines a conditional distribution q(y|x; θ) for each x ∈ X . For a fixed value
of y′ ∈ Y , distributional bias should account for systematic differences in the outcomes of fθ(x)
across different subgroups, i.e. when x is sampled from p(x|y, z = A) versus p(x|y, z = B). More
formally, in Equation 1, we define distributional bias as a comparison between induced families of
distributions defined by fθ(x) when x ∼ p(x|y = y′, z = A) versus when x ∼ p(x|y = y′, z = B):

H(QA(y|x; θ)||QB(y|x; θ)), (1)

where QA(y|x; θ) and QB(y|x; θ) denote the family of distributions obtained when the bias variable
assumes each of its possible values, i.e. z = A and z = B, respectively. H(·||·) represents an
operator that accounts for a notion of similarity between the two distributions. Depending on the
nature of Q, H can assume different forms. Also, notice that H operator is not limited to binary
attributes and can be instantiated by approaches to compare multiple families of distributions.

As we focus on classification tasks, fθ(x) parameterizes families of categorical distributions. We can
thus formulate the comparison between QA and QB as estimating the effect size of the association
between the bias variable z and the observed model predictions y′ ∼ q(y|x, z). In this framework,
the measure of similarity between QA and QB can be seen as a measure of association between two
categorical variables, the independent variable representing the bias attribute z and y′, which we
propose to be estimated as per the Cramér’s V statistic (Cramér, 1946), and is defined as:

ν =

√
χ2

N ·DF
, (2)

where N the sample size DF is the number of degrees of freedom, and χ2 represents the test
statistic from the corresponding Pearson’s chi-squared independence test. Cramér’s V is bounded
between 0 and 1, with 1 indicating a perfect association between both variables. In order to compute
the value of χ2, the counts of predictions must be arranged in a contingency table of size M =
|Z| · |Y|. For a given class y′, each entry corresponds to the frequency with each predicted class was
observed per subgroup in the data. To obtain a scalar summary metric which can be used to compare
multiple models, we propose to aggregate the effect size values using the Fisher-Pearson coefficient
of skewness, as it captures both how asymmetric the distribution of estimated effect size values is
and the direction of the asymmetry. For estimated effect sizes {ν1, ν2, . . . , ν|Y|} with empirical
mean ν̄, the proposed metric SKEWSIZE is computed as:

SKEWSIZE =

∑|Y|
i=1(νi − ν̄)3[∑|Y|

i=1(νi − ν̄)2
]3/2 . (3)

SKEWSIZE can also be implemented considering other choices of statistics, as we show in Appendix
F. Here we choose Cramér’s V as it is more general and applicable to contingency tables larger
than 2x2. Finally, SKEWSIZE can be computed based on logits, softmax scores, top-1 or top-k
predictions. Here, we focus on the separation formulation based on top-1 predictions in each class,
in which case SKEWSIZE is also applicable to scenarios where this is the only information about the
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model’s output which is available to the user (Achiam et al., 2023). In Appendix I.4 we propose and
empirically validate a strategy to control for noise in the predictions as the output space |Y| grows,
as well as a pseudocode for SKEWSIZE (Algorithm 1) and a Python implementation.

Accuracy-based DP(↓) EO (↓) Effect size (↓)
Removed Accuracy (↑) WG (↑) GAP (↓) Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Unbiased 0.998 0.996 0.002 0.004 0.004 0.001 0.001 0.001 0.001 0.006 0.020 0.024
Class 0 0.888 0.666 0.222 0.050 0.315 0.265 0.038 0.483 0.203 0.705 0.012 0.017
Class 1 0.891 0.653 0.238 0.303 0.013 0.289 0.448 0.009 0.220 0.012 0.703 0.011
Class 2 0.888 0.664 0.224 0.278 0.057 0.332 0.208 0.040 0.484 0.032 0.009 0.700

Table 1: Effect size captures bias on DSPRITES. Effect size is only non-negligible for biased
classes and indicates which class is affected by spurious correlations.

3 EXPERIMENTS

We empirically demonstrate the effectiveness of SKEWSIZE to measure biases in a controlled exper-
iment with the dSprites (Matthey et al., 2017) dataset and show how it can be applied to assess bias
in foundation VLMs from the BLIP-2 family, comparing models in tasks where predicted classes
do not necessarily appear as ground-truth in the evaluation dataset. In Appendix G and H we show
how SKEWSIZE can provide a better understanding of a model’s performance in classification tasks
in the IMAGENET (Deng et al., 2009) and DOMAINNET (Peng et al., 2019) datasets, respectively.

3.1 CONTROLLED SETTING: DSPRITES DATASET

We use DSPRITES dataset considering the task of predicting the object shape to evaluate whether
the model predictions are biased with respect to the object’s color. Under a regime of systematic
training set manipulation, we induce controlled spurious correlations in the training data by exclud-
ing examples of a specific shape and color. This allows us to validate that effect size estimation
can be used as a strategy to capture biased predictions and provides information on which class was
affected by the introduced spurious correlation. Using the terminology in Section 2, the object color
is the independent variable (i.e. the variable on which we intervene), and the predicted shape is the
dependent variable (i.e. the variable we observe). We build three versions of the training data that
have different spurious correlations by removing all examples in the GREEN color from one of the
classes and train a ResNet18 (He et al., 2016) for 5k steps with each dataset, as well as with the
original unbiased training set. Evaluation is carried on test data that have not been manipulated.

For each ground-truth class, we compute the effect size of the interaction between color and pre-
diction as described in Section 2. We present in Table 1 results in terms accuracy-based metrics
(worst-group accuracy (WG) and accuracy gap between subgroups) on an unbiased test set, along
with Equality of Odds (EO), Demographic Parity (DP) (as defined in Appendix C) and per-class
effect size, our approach. We observe that, for all models, effect sizes were strong only for the
classes affected by the spurious correlation (i.e. the ones that had green instances removed at train-
ing), while remaining negligible for the other classes, confirming that the proposed approach indeed
captures model biases and correctly provides per-class granularity. In contrast, EO and DP tend to
distribute the effect of this bias across the confused classes, and do not indicate the origins of the
confusion. In Appendix E we also show that effect size captures different levels of bias.

3.2 EVALUATING GENDER BIAS IN FOUNDATION VLMS

We now consider the case where the output space is intractable and obtaining data to evaluate the
model is challenging. We study the BLIP-2 model family for (binary) gender bias when predicting
occupation or practiced sport. Apart from Visogender (Hall et al., 2023b), with only 500 instances,
there are no real-world datasets available for evaluating gender biases on VLMs. Therefore, to in-
vestigate the utility of SKEWSIZE in the evaluation of VLMs, we generated synthetic data using
STABLE DIFFUSION (Rombach et al., 2022) with templates such as: A {GENDER} {OCCUPATION}.
(see discussion in Appendix B) and query the VLM model with What is this person’s occupation?.
To evaluate the model under conditions that closely resemble their usage “in-the-wild”, we directly
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(a) Gender bias in occupation prediction.
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(b) Gender bias in sport modality prediction.

Figure 1: Gender bias across classes, BLIP2. Effect size bands: 0-0.1 is negligible; 0.1-0.3,
0.3-0.5, and > 0.5 are small, medium, and large, respectively. Scaling up model size with an unsu-
pervised language model increased total large bias classes, while instruction-tuning decreased it.

use the textual output as predicted class and do not constrain the output space of the VLM. More de-
tails in Appendix I.5. We investigate models from the BLIP-2 family with different characteristics:
BLIP2-2.7B with 3.8B parameters and an unsupervised-trained language model, its larger version
BLIP2-6.7B, with 7.8B parameters, and BLIP2-FlanT5), with 4.1B parameters and an instruction-
tuned language model. In Table 5 (Appendix I), we report effect size for various occupations in
considering predictions by BLIP2-FlanT5. By comparing the accuracy and GAP with effect size for
the Writer, Doctor, and Biologist classes, we further validate the main premise of this work. More-
over, we further notice that when GAP is high, the effect size also increases, further showcasing the
potential of such a metric to measure disparities between subgroups that also appear as a mismatch
between average and worst-case accuracy.

Occupation Sports
BLIP2-2.7B 0.233 1.205
BLIP2-6.7B -0.045 0.360

BLIP2-FlanT5 0.599 1.255

Table 2: VLMs SKEWSIZE (higher
is better). Increasing model size
seems to amplify biases, while in-
struction tuning attenuates it.

We now compare all three instances of the BLIP2 model
family and investigate whether specific characteristics such
as increased scale and instruction tuning, amplify or miti-
gate biases. In Figure 1, we categorize effect size values
between 0 and 0.1 as negligible (negligible here does not re-
fer to the extent that potential harms will affect users) and
between 0.1 and 0.3, 0.3 and 0.5, and above 0.5 as small,
medium, and large, respectively. For occupation prediction,
(Fig. 1(a)), the larger model has more classes which exhibit
medium and large effect sizes, suggesting an overall ampli-
fication in gender bias. However, using an instruction-tuned
language model leads to fewer such classes, suggesting in-
struction tuning may mitigate bias in this instance. Results for sport modality prediction follow a
similar trend (Figure 1(b)). We then compare all models by computing SKEWSIZE . Results repored
in Table 2 show that, for both tasks, BLIP2-FlanT5 obtained the highest SKEWSIZE, suggesting
that instruction tuning seems to be able to mitigate bias. Moreover, SKEWSIZE values from Table2
further corroborate findings from Fig. 1, as increasing model size amplified biases in predictions.

4 CONCLUSIONS

We proposed a novel metric, SKEWSIZE, to measure biases in classification models, including when
the output space is intractable. Motivated by the observation that certain biases may present in the
distribution of prediction errors, we draw on tools from hypothesis testing and propose to measure
bias on a per-class basis by estimating the effect size between model prediction and the bias variable.
Such an approach allows to obtain a scalar value to compare models as well as detailed information
about which are the classes mostly affected by biases. Experiments show that SKEWSIZE captures
disparities that accuracy-based metrics do not surface, while not requiring any further information to
be computed. Aspects to be investigated in future work include employing SKEWSIZE to evaluate
mitigation strategies for neural networks such as (Seth et al., 2023).
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data using two-distribution hypothesis tests. In Proceedings of the 2022 AAAI/ACM Conference
on AI, Ethics, and Society, pp. 831–844, 2022.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with adver-
sarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp.
335–340, 2018.
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APPENDIX

A MOTIVATING EXAMPLE
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male
female

Writer Doctor Biologist All
M1 M2 ∆ ↓ M1 M2 ∆ ↓ M1 M2 ∆ ↓ M1 M2 ∆ ↓

Acc 0.88 0.67 -0.21 0.77 0.77 0.00 0.02 0.15 0.13 0.56 0.53 -0.03
WG 0.87 0.66 -0.21 0.77 0.77 0.00 0.01 0.14 0.14 0.55 0.53 -0.02
GAP 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.01 0.00 0.00
- SKEWSIZE -0.07 -0.45 -0.38 -0.04 -0.45 -0.40 -0.12 -0.71 -0.58 -0.44 -0.71 -0.27

Figure 2: Standard metrics fail to capture biases within a model. We plot the prediction counts
for two models given three ground-truth classes (Writer, Doctor, Biologist). MODEL 1 (M1) dis-
plays similar distributions of errors for both subgroups whereas MODEL 2 (M2) displays ‘stereotyp-
ical’ errors (e.g. mispredicting female Doctors for Nurses). In the table, we report accuracy (Acc),
worst group accuracy (WG), GAP and their difference (∆) between M1 and M2. Only our approach
(SKEWSIZE) captures the bias in all settings.

Consider the synthetic setup in Figure 2 which compares two image classification models: MODEL
1 and MODEL 2. These models predict occupation, with different distributions of outputs across two
mutually exclusive2 subgroups (male and female). Following prior work, we first compute model
accuracy in each subgroup (e.g. Chowdhery et al., 2022), worst group accuracy (i.e. minimum
accuracy across groups, Sagawa et al., 2019) and GAP (the difference between subgroup accuracy
and overall accuracy, Zhang & Ré, 2022) across the following three ground-truth classes:

• WRITER: MODEL 2’s accuracy is lower than that of MODEL 1; a bias in MODEL 2’s
predictions is evident in women being misclassified as Editors and men being misclassified
as Composers and Philosophers. Accuracy and Worst group accuracy degrade as expected
for the more biased model, whereas GAP does not.

• DOCTOR: Accuracy is the same for MODEL 1 and MODEL 2 but a bias is evident in
MODEL 2’s predictions, with women being misclassified as Nurses, and men being mis-
classified as Surgeons. Traditional accuracy-based metrics do not capture this bias.

• BIOLOGIST: Accuracy is higher for MODEL 2 than MODEL 1, but a bias is evident in
MODEL 2’s predictions, with women being misclassified as Teachers and men as Scientists
or Bankers. Counterintuitively, the standard metrics improve or stay the same.

• All: Aggregating across classes, we can see that the standard metrics either improve in
MODEL 2 relative to MODEL 1 or do not change.

In light of this example, we see that regardless of how the performance of a model in terms of
accuracy varies across subgroups, bias may also arise from systematic errors in incorrect predictions.
Importantly, previously proposed metrics do not surface such bias and give the misguided impression
that the model’s predictions do not exhibit bias.

2Assumed to be mutually exclusive for the limited purpose of this illustrative example. We recognize that
reality is richer and more nuanced than this binary categorization. See Impact Statement section.
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B IMPACT STATEMENT

In this work we propose a metric to estimate how impacted a model is by biases that arise across
multiple predictions. We recognize that the binary framing of gender used in the illustrative example
and experiments with synthetic data is an oversimplification of an important and complex topic. Our
method allows for the interrogation of model bias in terms of discrete, mutually exclusive categories,
which may not be ideal for representing multifaceted and intersectional human identities (see Lu
et al. (2022) for an exploration of this topic). Finally, the synthetic dataset may inherit stereotypes
from its generative model, e.g. misrepresenting non-cisgender people (Ungless et al., 2023). We
recommend SKEWSIZE be employed alongside accuracy-based metrics for a more complete picture
of a model’s performance. We note that SKEWSIZE cannot infer a causal relationship between the
bias attribute and model predictions, only their association. We remark that is not within the scope
of our work to define which biases are practically relevant, given that this is context-dependent and
that a metric should account for all existing biases in a dataset/model so that a comprehensive profile
of a model’s performance can be taken into consideration at the evaluation.

C FAIRNESS METRICS DEFINITIONS

Previous work on evaluating performance disparity across subgroups has mostly considered metrics
such as accuracy (Zhang & Ré, 2022; Alvi et al., 2018; Li et al., 2022), worst group accuracy (Zhang
& Ré, 2022; Koh et al., 2021), gap between average and worst group accuracy (referred to as GAP,
Zhang & Ré, 2022). These metrics focus on the true positive rate and do not identify biases in the
distribution of prediction errors. We compute these metrics throughout the work, for comparison
with our approach.

Alternatively, fairness criteria can be formulated as independence desiderata (Barocas et al., 2019),
with metrics classified as ‘independence’ criteria if fθ(x) ⊥ z, ‘separation’ if fθ(x) ⊥ z|y and
‘sufficiency’ if y ⊥ z|fθ(x). In practice, these criteria are operationalized using different metrics.
For the independence criterion, demographic parity (Dwork et al., 2012, DP) is commonly used.
These metrics have been recently extended for use in the multiclass setup (e.g. Alabdulmohsin et al.,
2022; Pagano et al., 2023; Putzel & Lee, 2022; Rouzot et al., 2022). In this case, metrics are
typically computed by binarizing each class (e.g. Alabdulmohsin et al., 2022; Pagano et al., 2023)
and aggregating fairness scores across classes using their maximum (i.e. worst case scenario), or
average (c.f. Appendix C). Given a full confusion matrix, equality of odds (EO) (Hardt et al.,
2016), and potentially DP, would capture differences in the distributions of model errors. However,
the detected bias would be surfaced in the scores of the confused classes rather than associated with
the class of interest. In our motivating example, EO comparing MALE and FEMALE examples in
the DOCTOR class would be close to 0, but larger for the SURGEON and NURSE classes. In an
intractable output space, a full confusion matrix may be unavailable, and EO and DP would be
limited in their ability to highlight differences in the distribution of model errors. In this work, we
compute EO and DP as per Alabdulmohsin et al. (2022) when a full confusion matrix is available.

We consider Demographic Parity Dwork et al. (2012) as an independence fairness criterion:

DP = max
a∈Z

E[fθ(x) | z = A]−min
z∈Z

E[fθ(x) | z = a]. (4)

While for separation, we refer to equalized odds (EO, Hardt et al., 2016):

EO = max
a,k∈ZxY

E[fθ(x) | z = a, y = k]− min
a,y∈ZxY

E[fθ(x) | z = a, y = k]. (5)

We focus on the multi-class extension of these metrics by binarizing the task, as suggested in (Al-
abdulmohsin et al., 2022). The metrics are then aggregated across classes using their maximum
value.

D RELATED WORK

Fairness hypothesis testing. Previous work has proposed hypothesis testing approaches to probe
for fairness under multiple definitions within datasets (Caliskan et al., 2017; Yik et al., 2022) and

10



algorithms (Jourdan et al., 2023). Tramer et al. (2017) introduced a permutation test based on
Pearson’s correlation statistic to test for statistical dependence, under a particular metric, between
an algorithm’s outputs and protected user groups, while DiCiccio et al. (2020) proposed to test the
hypothesis that a model is fair across two groups as per any given metric. Our work differs from
both a methodological perspective, e.g. in comparison to Yik et al. (2022) which considers whether
the data distribution is significantly different from a reference distribution, as well as applicability,
since we propose a metric that can capture biases in a multi-class setting, and which goes beyond
binary sensitive attributes (DiCiccio et al., 2020).

Evaluating biases in neural network. Previous work on bias evaluation has prioritized tasks where
the information necessary to measure bias can be directly inferred from text (Rae et al., 2021; Wang
et al., 2022; Tang et al., 2021; Wang et al., 2021) or by another model (Naik & Nushi, 2023). In
contrast, we evaluate bias directly in the model output space, as opposed to relying on predictions
of subgroup information. Previous work (Birhane et al., 2023; Luccioni et al., 2023) found that
scale appears to amplify stereotyping and bias, as well as reflect biases in the training data (Radford
et al., 2021; Wolfe & Caliskan, 2022; Hall et al., 2023a; Prabhu et al., 2023). In the case of VLMs,
most prior work focused on leveraging annotated datasets such as MS-COCO (Chen et al., 2015),
CelebA (Liu et al., 2015) and FairFace (Karkkainen & Joo, 2021) to measure and mitigate bias (Berg
et al., 2022; Chuang et al., 2023; Hall et al., 2023a), while Seth et al. (2023) and Smith et al. (2023)
collected a benchmark and obtained synthetic contrast sets, respectively. Prior work (Zhao et al.,
2017; Wang & Russakovsky, 2021) has also evaluated bias amplification, but comparing prediction
statistics with the original dataset.

Mitigations. Given a known bias in the model, it is possible to mitigate the issue, demonstrating
the importance of being able to identify biases to improve the model. This can be done by interven-
ing on the dataset to make it fairer while maintaining performance as done by Singla et al. (2022).
Another approach is to intervene on the prompts and de-bias the text embeddings as done by Chuang
et al. (2023). Finally, we can intervene at the model level, as done by Friedrich et al. (2023); Berg
et al. (2022) and use guidance or an adversarial loss to steer the model towards being more fair.
(Zhang et al., 2018), (Alvi et al., 2018) (Kim et al., 2023), (Li et al., 2022)

E EFFECT SIZE CAPTURES DIFFERENT BIAS LEVELS

Following a similar set-up of the DSPRITES experiment on Section 3.1, we now induce different
levels of the same spurious correlation by creating training datasets containing different number of
examples from the combination of color and class. We created three datasets by removing instances
from CLASS 1 in the GREEN color so that only {5k, 2k, 0} of such examples are left in the training
data. We adopt the same architecture, training, and evaluation from the previous experiment. Results
are shown in Table 3, where, for reference, we also report the performance of the unbiased model.
As expected, accuracy-based metrics decreased as the number of examples from the removed class,
color increased, confirming the models are increasingly affected by the induced spurious correlation.
We find that the effect size for the affected class presents a monotonic increasing relationship with
bias strength, effect size for the unaffected classes remained negligible, confirming that the effect
size captures different levels of bias and correctly indicates the affected class.

Acc.-based Effect size (↓)
Bias strength Acc. (↑) WG (↑) Class 0 Class 1 Class 2

Unbiased 0.998 0.996 0.006 0.020 0.024
Mild 0.977 0.936 0.002 0.253 0.017

Medium 0.933 0.806 0.013 0.492 0.032
Strong 0.891 0.653 0.012 0.703 0.011

Table 3: Inducing varying bias strengths in models trained on DSPRITES. The bias strength
denotes the number of examples from Class 1 in the green color that were left in the respective
versions of the training data. No Bias: full training set, Mild: 5k, Medium: 2k, Strong: 0.
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F COMPUTING EFFECT SIZE USING OTHER STATISTICS

In addition to the 3 accuracy based metrics and 2 fairness metrics we already considered in previous
results, in this section we further include the Phi coefficient as a measure of effect size when com-
puting SkewSize in the dSprites experiments. The results in Table 4 show that in this case the Phi
Coefficient yields similar trends as the Cramer’s V. Notice, however, that it is not advisable to use
the Phi Coefficient on contingency tables larger than 2x2, which is the reason why we decided to
use the more general Cramer’s V when computing SKEWSIZE throughout our work.

Cramer’s V Phi Coefficient
Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Unbiased 0.012 0.011 0.019 0.012 0.011 0.027
Class 0 0.670 0.015 0.016 0.948 0.015 0.022
Class 1 0.014 0.683 0.108 0.014 0.966 0.152
Class 2 0.047 0.006 0.696 0.067 0.006 0.985

Table 4: Computing effect size with Cramér’s V vs Phi Coefficient. DSPRITES dataset.

G ESTIMATING DISTRIBUTIONAL BIAS IN MULTI-CLASS CLASSIFICATION:
DOMAINNET

We now stress-test SKEWSIZE by employing it to evaluate a model in the multi-domain setting,
where samples from different distributions are employed training time, and show that our proposed
metric can capture systematic biases in predictions. Specifically, we investigate the degree of bias
exhibited by the model with respect to the different domains (in this setting, the domain label corre-
sponds to the spurious bias variable).

Setting. We consider the DOMAINNET benchmark (Peng et al., 2019), which is composed of images
from 6 domains sharing the same label space of 345 object classes, and train a ResNet-50 on the train
split of all domains jointly. Given the trained model, we then compute predictions for all instances
in the test partitions and proceed to compute SKEWSIZE as per Algorithm 1.

Results. The model achieved 59.95% average test accuracy, 37.01% worst group accuracy gap, and
0.509 SKEWSIZE. In order to provide a fine-grained understanding about the differences between
each metric, we show in Figure 3 plots accuracy (per class) against effect size ν, along with the
respective Equality of Odds (EO) value (shown as each point’s corresponding hue). We find a mild
Pearson correlation between effect size and accuracy (−0.291, p ≈ 0) as well as between effect
size and EO (0.190, p = 0.0008), which indicate the metrics are related but not equivalent as they
capture distinct aspects of the bias. No correlation between effect size and GAP was found (0.103,
p = 0.07), nor between effect size and DP (0.051, p = 0.377) further highlighting the importance of
including robustness evaluations metrics that take into account error mismatches for a given ground-
truth class.

H ESTIMATING DISTRIBUTIONAL BIAS IN MULTI-CLASS CLASSIFICATION:
IMAGENET

We have thus far demonstrated that SKEWSIZE is capable of accounting for aspects of a model’s be-
haviour that are not captured by accuracy-based bias metrics. We now showcase how SKEWSIZE can
be used to provide a more comprehensive evaluation of classifiers by distinguishing models that per-
form similarly in terms of accuracy, but turn out to display different levels of bias.

Models. We consider models spanning four architectures: RESNET50S (He et al., 2016), VISION
TRANSFORMERS (VITS) (Dosovitskiy et al., 2020), INCEPTION (Szegedy et al., 2015), and BIT
models (Kolesnikov et al., 2020). Architecture and training details are described in Appendix H.1.

Data. We consider a scenario where the background of an image corresponds to the bias variable to
evaluate the SKEWSIZE of each model. As no background annotations are available in the original
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Figure 3: DOMAINNET. Per-class accuracy vs. effect size. Hue indicates EO. Points in the top-right
most corner of the plot indicate that even for classes where the model is most accurate systematic
differences in predictions across subgroups might exist.
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Figure 4: Comparing models trained on IMAGENET across multiple metrics. We plot SKEW-
SIZE versus each accuracy-based metric for a variety of models. The results highlight that no
accuracy-based metric presents a clear trend with respect to SKEWSIZE, demonstrating it captures
aspects of performance not exposed by these other metrics. Moreover, models with similar perfor-
mance according to accuracy-based metrics, such as both BiT-S models, can be discriminated by
SKEWSIZE .

IMAGENET, we chose 200 classes from the original label set (specifically, those present in TINY-
IMAGENET (Le & Yang, 2015)) and generated a synthetic dataset containing images of each of
the selected classes across 23 different background types (list obtained from Vendrow et al. (2023))
using STABLE DIFFUSION (Rombach et al., 2022). We generate images using the prompt tem-
plate A photo of a {CLASS} {BACKGROUND} . For instance, for the class SALAMANDER, we used

prompts such as A photo of a SALAMANDER ON THE ROCKS . We generate 200 images for each
background-class pair. Note that these images are used only for evaluation, not training.

Results. In Figure 4 we compare models in terms of accuracy, worst group accuracy, worst group ac-
curacy gap, and SKEWSIZE. The first aspect to observe is that, overall, no clear correlation between
these metrics and SKEWSIZE: models with similar accuracy may present considerable disparities
in how biased they are as demonstrated by the differences in SKEWSIZE values. Specifically, we
highlight that although models such as BIT-S 50X3 and 101X1 present similar performance as per
all considered accuracy-based metrics, they can be further discriminated by SKEWSIZE as BIT-S
(101X1) achieved higher a value for this metric.

Uncovering spurious correlations with SKEWSIZE. We now examine specific cases of systematic
bias uncovered by SKEWSIZE. We identify examples by investigating classes where the model is
both accurate and the effect size for the association between background and the model’s predic-
tion is high. In Figure 5, we show the top-3 predictions by the VIT B/16-1 for SOCKS in sub-
groups corresponding to A photo of a SOCK ON THE ROAD and A photo of a BLUE SOCK . Both
sub-groups/domains present similar measured accuracy, in which case metrics such as worst group
accuracy and GAP would be ineffective to capture bias that can be observed in the misclassified
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cases. This disparity in the distribution most frequent errors for each subgroup is in fact captured
by SKEWSIZE and suggest that the evaluated model may incorrectly associate an ON THE ROAD
background with the class RUNNING SHOES, even when the true object of interest is absent.

Figure 5: Bias exposed by SKEWSIZE. Both domains for the SOCKS class have similar accuracy,
but a mismatch in errors indicates the model relies on spurious features of background/color.

H.1 IMAGENET MODELS

We used a variety of models trained on IMAGENET with different sizes, training accuracy, pretrain-
ing, etc. Unless otherwise stated, we used publicly available models from TF-HUB3.

• RESNET50-1/2 (He et al., 2016): A model we trained on IMAGENET from scratch which
achieved around 76% accuracy.

• RESNET* (He et al., 2016): RESNET models with no pretraining.
• VIT* (Dosovitskiy et al., 2020): A B/16 variant of the vision transformer model family

we trained on IMAGENET from scratch which achieved around 80% accuracy.
• INCEPTION* (Szegedy et al., 2015): Inception models with no pretraining.
• INCEPTION RESNET (Szegedy et al., 2017): A hybrid INCEPTION RESNET model with

no pretraining.
• BIT-S* (Kolesnikov et al., 2020): BIT models with no pretraining.

3https://tfhub.dev/google/imagenet/
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I VLM: DETAILED RESULTS

I.1 ACCURACY-BASED METRICS VS. EFFECT SIZE FOR BLIP2-FLANT5 PREDICTIONS

Occupation Acc. (↑) GAP (↓) Effect size (↓)
Writer 0.802 0.006 0.263
Doctor 0.903 0.073 0.291

Biologist 0.151 0.007 0.250
Maid 0.317 0.120 0.556

Model 0.838 0.102 0.368
Nurse 0.517 0.358 0.728

Philosopher 0.349 0.347 0.927
Scientist 0.737 0.065 0.241

Veterinarian 0.791 0.001 0.154

Table 5: BLIP2-FlanT5. Even in cases where the GAP is nearly 0, there still is a significant inter-
action between gender and predicted occupations that accuracy metrics failed to capture.

I.2 EFFECT SIZE DISTRIBUTIONS
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(a) Gender bias in occupation prediction.
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(b) Gender bias in sport modality prediction.

Figure 6: Distribution of effect size values between gender and predicted occupation/sport modality
across BLIP-2 models.

I.3 OPTIONAL POST-PROCESSING

As we do not constrain the model’s output, there may be cases where the model predicts synonyms of
the ground-truth class, e.g. lawyer and attorney, or the predictions consist of sentences with different
structures, e.g. “The person is a laywer” and “A lawyer”. In light of that, in order to compute
accuracy values, we manually post-process the outputs of the model to account for all cases where
the output semantically matched the ground-truth answer.

Impact of post-processing. We also investigate in Table 6 whether post-processing model outputs
affects the overall experimental findings by comparing the metric trend across models for both raw
and post-processed outputs. We find that the same trends can be observed irrespective of the post-
processing. Increasing model size while keeping an unsupervised-trained language model amplifies
bias as the skewness values decrease when comparing BLIP2-2.7B and BLIP2-6.7B (from 0.233 to
-0.045). As expected, SKEWSIZE values computed with raw model outputs tend to be lower, indi-
cating an overall increase in the computed effect size. This is because, without post-processing, the
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predicted classes are more fine-grained, resulting in a potential larger mismatch between predictions
for each gender value. BLIP2-FlanT5 presented the highest skewness values for all cases, further
confirming the findings in Figure 1.

Raw Occupation

BLIP2-2.7B ✗ 0.233
✓ -0.005

BLIP2-6.7B ✗ -0.045
✓ -0.130

BLIP2-FlanT5 ✗ 0.599
✓ 0.124

Table 6: SKEWSIZE for raw versus post-processed model outputs. Higher skewness values
correspond to models having less gender bias. We observe that post-processing the models outputs
changes the skewness value but does not change the overall trend.
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I.4 CONTROLLING THE EFFECT OF NOISE IN THE PREDICTIONS

As the size of output space ∥Y∥ grows, we propose the following strategy to control for the sensi-
tivity of SKEWSIZE to noise in the predictions: as per the rule-of-thumb to satisfy the assumption
of the Chi-square test, we can remove columns from the contingency with respective expected value
lower than 5. As we are looking for systematic patterns in the errors of the model, using such a
filtering strategy reduces sensitivity to randomness while maintaining sensitivity to the systematic
patterns. We can also vary this value in order to decide to which degree some randomness in the
predictions should be taken into account.

To illustrate how the choice of the minimum expected value to be accounted for would affect results,
we repeated the evaluation reported in Section 3 for the occupation prediction task with varying
thresholds so that we can evaluate whether the comparison between models would change. As
demonstrated by the results in Table 7, the choice of threshold does not affect the resulting compar-
ison between models.

MEV=6 MEV=5 MEV=4 MEV=3 MEV=2
BLIP-2.7 0.235 0.233 0.225 0.199 0.19
BLIP-6.7 -0.031 -0.045 -0.056 -0.072 -0.102

BLIP-FlanT5 0.625 0.599 0.578 0.544 0.507

Table 7: Varying the minimum expected value (MEV) for evaluating the BLIP2 model family in the
occupation prediction task.

I.5 DATA GENERATION

We consider 148 and 273 classes for the tasks of occupation and sport modality prediction, respec-
tively.

J SKEWSIZE IMPLEMENTATION DETAILS

PSEUDOCODE

Algorithm 1 Computing SKEWSIZE

1: for i = 1, 2, . . . , |Y| do
2: Get set of model predictions Ŷ i = {ŷk} for all (xk, yk, zk) where yk = yi
3: for j = 1, 2, . . . , |Z| do
4: Build Ŷ ij , a subset of Ŷ i with instances where zk = zj
5: end for
6: Estimate νi, the effect size for the i-th class, using Equation 2
7: end for
8: Aggregate effect size estimates per class by computing SKEWSIZE as per Equation 3
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PYTHON IMPLEMENTATION

# Copyright 2023 The SkewSize Authors. All rights reserved.
# SPDX-License-Identifier: Apache-2.0

import numpy as np
import pandas as pd
import scipy.stats as stats

v_list = []
for label in unique_labels:

# predictions: predictions for all instances in the class *label*.
# subgroups: predictions for all instances in the class *label*.
df = pd.DataFrame({’predictions’: predictions,

’subgroups’: subgroups})
crosstab = pd.crosstab(df.subgroups, df.predictions)

chi2 = stats.chi2_contingency(crosstab)[0]
dof = min(crosstab.shape)-1
n = crosstab.sum().sum()
v = np.sqrt(chi2/(n*dof))
v_list.append(v)

v_values = np.asarray(v_list)
# When a model predicts correctly all examples
# in a given class across all subgroups
# dof=0 and the corresponding v is NaN.
# We remove NaNs before computing skewsize.
v_values = v_values[˜np.isnan(v_values)]
skewsize = stats.skew(v_values)
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