
A General Space of Belief Updates for Model
Misspecification in Bayesian Networks

Tianjin Li
Nuffield Department of Clinical Neurosciences

University of Oxford, UK
tianjin.li@hertford.ox.ac.uk

Abstract

In an ideal setting for Bayesian agents, a perfect description of the rules of the
environment (i.e., the objective observation model) is available, allowing them to
reason through the Bayesian posterior to update their beliefs in an optimal way. But
such an ideal setting hardly ever exists in the natural world, so agents have to make
do with reasoning about the how they should update their beliefs simultaneously.
This introduces a number of related challenges for a number of research areas:
(1) For Bayesian statistics, this deviation of the subjective model from the true
data-generating mechanism is termed model misspecification in the literature (for
a review, see [9]). (2) For neuroscience, it introduces the necessity to model how
the agents’ belief updates (how they use evidence to update their belief) and how
their belief changes over time. The current paper addresses these two challenges
by (a) providing a general class of posteriors/belief updates called cut-posteriors
of Bayesian networks that have a much greater expressivity, (b) parameterize the
space of possible posteriors to make meta-learning (i.e., choosing the belief update
from this space in a principled manner) possible. For (a), it is noteworthy that
any cut-posterior has local1 computation only, making computation tractable for
human or artificial agents. For (b), a Markov Chain Monte Carlo algorithm to
perform such meta-learning will be sketched here, though it is only an illustration
and but no means the only possible meta-learning procedure possible for the space
of cut-posteriors. Operationally, this work gives a general algorithm to take in an
arbitrary Bayesian network and output all possible cut-posteriors in the space.

1 Introduction

Motivations

The use of a probabilistic graphical model (or PGM) G, obtained from taking the union of a set of
smaller subgraphs (Mi)i≥1 and identifying overlapping vertices as the same, is becoming increasingly
popular as more computational power is available and interdisciplinary research flourishes. In reality,
each of these subgraphs, or module, may come from a different discipline of study, or be built using
the expertise of a specific data modality. As [6] points out, the conventional Bayesian posterior that
updates the entirety of G ‘simultaneously’ is shown to be optimal when G perfectly describes the
underlying data-generating mechanisms [1]. The issue is that it is hardly possible to build models that
perfectly describe reality using even the best techniques available. The almost inevitable deviation
of our subjective model from the true data-generating mechanism is termed model misspecification
in the literature [9]. And, when conventional Bayesian posterior is used, even misspecification in a
small part of the model (in a single module) is known to spread and cause misspecification in the full
model so long as information flow in and out between any pair of modules [7, 5].

1local in the sense that all computations in computing the posterior are within that particular module

To address this concern, cut-posteriors (cut models) are introduced, with the idea being to cut the
information flow from the suspected modules to the modules we trust, or operationally, to update
the trusted modules before the suspected modules [11, 3, 6]. But, as an active area of development,
cut-posteriors so far developed are limited in scope and formality. In some, part of data is thrown
away altogether due to the cut, and in others, users of the model are forced to rely on heuristics to
build even one cut posterior, making model selection for cut models underpowered.

In light of these ongoing issues in current cut model development, we propose a way to formally
define: (a) the general space of possible cut-posteriors in any Bayesian network, (b) a way to
efficiently parameterize that space, and (c) an algorithm to take in an arbitrary Bayesian network
and output all possible cut-posteriors in the space. The result is a flexible, computationally efficient
framework that makes choosing a belief update given certain modeling assumptions easy. Moreover,
the formulation of the cut-posterior space paves the way for automatic model averaging/selection2.

Layout

Structurally, we shall start by giving the concepts and lemmas needed in section 2, before turning to
the enumeration algorithms and the general space that form the gist of the paper in section 3. To put
the theoretical framework to work, in section 4, we shall discuss a step-by-step parameterization of the
space of cut-posteriors with an extended example. where our proposed methods yield a better-suited
posterior than existing cut models. Section 4 also demonstrates how to select good cut-posteriors
depending on different nuanced modeling needs. Please note that sections 2 and 3 contain technical
details that are not needed to use the model. In order to use the framework of cut-posterior, section 4
is sufficient and can be read on its own. All supporting details that make this paper as self-contained
as possible will be included in the appendices to make the main sections more focused.

Relation with Previous Works

In this paper, the key definition of modules follows that of [8] as their definition allows us to define
the space of cut-posteriors in a multi-module setting. While many previous works such as [11, 3, 6]
have discussed some alternative cut-posteriors, the generality and formality of the space are novel to
our knowledge.

2 Definitions—Modules, Module Graphs, and Decision Sets

2.1 Modules and How to Merge Them

Modules, as motivated in the introduction, typically come in the form of separate datasets, which
form a subgraph of the overall graphical model, which we shall denote as G. Some nodes in G
function as collected, empirical data, while others are parameters that are updated. Throughout this
paper, we shall assume V (G) has a natural bipartition (X,Θ) and refer to ‘data nodes’ and ‘(hidden)
parameter nodes’ without explicitly stating.

For the purpose of forming cut-posteriors, it is paramount to be able to update parameters from data
in their corresponding module(s) alone. For this reason, we define them as such that each module,
considered as the subgraph of G, yields a well-defined posterior term for any subset of parameters in
that module following [8].

Definition 1. A set of modules M is defined with respect to a partition of X (the set of all data nodes
in G), X∗ = {X∗

1 , X
∗
2 , ...} which will form M = {M1,M2, ...}, respectively. To form module Mi,

we start with X∗
i and consider all directed paths that ends in some nodes Y ∈ X∗

i :

1. if such a path contains no nodes from X \X∗
i , we collect all of its vertices into Mi.

2. if such a path does intersect X \X∗
i at somewhere, then the two must intersect at some Z

such that (sub-)path from Z to Y does not intersect any other vertices in X \X∗
i . We collect

all vertices in the (sub-)path, including Z, into Mi.

2As an example, one MCMC algorithm is provided in Appendix A that is computationally tractable for
reasonably small Bayesian networks.

2

In particular, this definition means that the operation of merging modules in graph G interacts well
with merging underlying subsets in the partition, which we formalize as the following:
Proposition 1. For any I ⊆ X∗ = {X∗

1 , X
∗
2 , ...}, let MI ⊆ M denote the corresponding set of

modules that is formed from I according to Definition 1. Then, if M is the module obtained from
applying Definition 1 to

⋃
I , we have that ⋃

MI =M (1)

Prop. 1 is what allows us to enumerate partitions of X instead when enumerating possible sets of
modules, M. In addition, however, this means that we can merge modules when appropriate to
reduce the number of modules, thus reducing the size of space of cut-posteriors that we will form
eventually.

2.2 Undirected and Directed Module Graphs

Being able to update any parameter θ within any module θ is a member of allows us to perform a full
update on G by updating one module at a time, following a linear order. This order on modules is
specified by module graphs.

After specifying a set of modules M, we now define undirected and directed module graphs formally.
Module graphs essentially are graphical representations of the modular structure, so in both cases, we
represent each module as a vertex and use edges (undirected or directed) to capture the interaction
between them.
Definition 2. Given G = (Ψ, E) and a set of modules M, we obtain the corresponding undirected
module graph H(G,M) by taking a vertex vM for each module M ∈ M and having an edge between
vA and vB if and only if two modules A, B ∈ M intersect at some vertices in G. When (G,M) is
clear from the context, we abbreviate H(G,M) to H for simplicity.

Undirected module graphs capture the constraints that G and M impose on a modular structure but
do not specify what the exact structure is. To do that, we need directed module graphs.
Definition 3. Given an undirected module graphH , we call any acyclic orientation (i.e., any directed
acyclic graph obtained by assigning a direction to each edge in an undirected graph) GM of H a
directed module graph.

This definition implies that we can have many directed module graphs for the same undirected module
graph. And, for a particular directed module graph, each directed edge (vi, vj) ∈ E(GM) means
that we update the corresponding module of vi before (though not necessarily immediately before)
that of vj . The full linear order that precisely describes the sequence of modules we update is then
represented as a topological ordering S of V (GM) (or equivalently M). As any directed module
graph is a DAG by definition, there is at least one such S, meaning there is at least one viable linear
order available.

2.3 Decisions and Decision Sets

Roughly, a decision refers to a number of updating choices we make regarding a parameter θ, e.g.,
which module to update it in. The decisions for any θ that belongs to exactly one module (denoted as
θ ∈ Θ) are trivial, so we will ignore those. A decision set is an object containing all the decisions
that we as modelers make for each shared parameter (a parameter that is in more than one module,
denoted as θ ∈ Θ). This decision set completes the information needed to determine a specific
cut-posterior.

For notations, given a graphical model G, a set of modules M, a directed module graph GM, and a
topological ordering S of M on GM, we relabel the elements of M as {M (1),M (2), ...,M (|M|)}
according to S. For a given θ ∈ Θ, we denote the subset of modules that θ belongs to as Mθ. We
also relabel the elements of Mθ as {M (1)

θ ,M
(2)
θ , ...,M

(|Mθ|)
θ } according to S. From here on, we

shall refer to specific modules by their new labels without specifying when there is a topological
ordering S clear from the context.
Definition 4. Given graph G, a directed module graph GM, and a topological ordering S of M,
a decision for any parameter θ ∈ Θ is an ordered pair (Dθ, xθ) with Dθ a bipartite graph with
partition {Tθ, Cθ} and xθ an integer between 1 and |Mθ|, that satisfies all of the following:

3

1. Dθ has vertex set V (Dθ) = (v1, v2, ..., v|M|), each representing the corresponding module
in Mθ ranked according to S.

2. v1, vxθ
∈ Tθ.

3. For any vi ∈ Cθ, it has precisely one neighbour, and its only neighbour vj must satisfy that
j < i.

Also, a collection of one such ordered pair for every θ ∈ Θ is called a decision set, denoted by D.

This definition means that we choose to update θ in xθ-th module (ordered according to S) that it
appears in. And, when choosing what to do with θ in the i-th module M , if vi ∈ Tθ \ vxθ

, we create
a new tilde parameter for θ and update it instead. On the other hand, if vi ∈ Cθ, we condition on the
version of θ created when updating the module represented by the unique neighbor of vi.

3 Outputting possible cut-posteriors for arbitrary Bayesian networks

We now give the algorithms that sequentially enumerate the possibilities at each stage. The first takes
a graphical model G and a partition X of X as arguments and outputs all possible sets of modules
M. The second takes a particular set of modules M (and G) as arguments and outputs all possible
directed module graphs GM; the third then takes a particular directed module graph GM (and G) as
arguments and outputs all possible decision sets D with respect to a topological ordering S on M;
the last then takes a directed module graph GM and an ordered pair (S,D) (and G) and outputs a
particular posterior, written in explicit algebraic form. Note that the first two are standard problems
in programming and thus have many well-known variants already. Thus, in this section we focus on
the last two algorithms, which form the gist of the space of cut-posteriors.

3.1 Algorithm 1: Enumerating Possible Decision Sets

To enumerate possible decision sets for a directed module graph, we first perform Depth First Search
on GM, starting with any vertex without a parent, to obtain a topological ordering S.

Proposition 2. For a fixed θ, the number of possible partitions, {Tθ, Cθ}, is 2|Mθ|−1 since every
vertex except v1 can be in either Tθ or Cθ. For a fixed partition {Tθ, Cθ}, the total number of possible
decisions (Dθ, xθ) is given by

|Tθ| ·
∏

vi∈Cθ

|{vj ∈ Tθ|j < i}| (2)

The important thing is that possible decisions for θ do not depend on the decision for any other
parameters. Therefore, we can easily enumerate possible decisions by enumerating θ ∈ Θ, possible
partitions, possible values of xθ, and possible unique neighbors of each vj ∈ Cθ in a depth-first
manner.

3.2 Algorithm 2: Outputting Posteriors in Explicit Forms

Before introducing the last algorithm, we shall first introduce a well-known graph theory property as
a lemma without proof.
Lemma 1. A directed graph is a DAG if and only if its vertices can be arranged as a linear ordering
that is consistent with all edge directions (i.e., has a topological ordering).
Definition 5 (Algorithm 2). Given graph G, a directed module graph GM, a topological ordering S
of M, and a decision set D, the algorithm is defined as follows:

1. Repeat step 2, 3, and 4 for each Mi (1 ≤ i ≤ |M|) in order.

2. Partition the union of X∗
Mi

and parameters of the current module Mi and, ΘMi
∪X∗

Mi
, into

three subsets, UMi
(U for ‘to be updated’), CMi

(C for ‘to be conditioned’), and TMi
(T

for ‘to be introduced as tilde parameters’) according to the following:

(a) If v is a data node, then v ∈ CMi
.

(b) If v ∈ Θ
Mi

, then v ∈ UMi
.

4

(c) Let yiv be such that Mi is the yiv-th module that v appears in (according to S), then
i. If yiv = xv , then v ∈ UMi

.
ii. Else if vyiv

∈ Tv , then v ∈ TMi
.

iii. Else if vyiv
∈ Cv , then v ∈ CMi

In particular, Tv , Cv , and xv here all refer to the decision in D, a part of the argument.

3. Let Θ′
CMi

be the set that collects, for each parameter θ ∈ CMi , the tilde version of θ created
during updating module Mj , such that vj is the only neighbour of vyiθ

in Dθ.

4. If UMi
̸= ∅, build update term for Mi as:

p(ΘUMi
, Θ̃TMi

|XCMi
,Θ′

CMi
) ∝ p(ΘUMi

, Θ̃TMi
, XCMi

,Θ′
CMi

)

∝ p(ΘUMi
|pa(ΘUMi

))p(Θ̃TMi
|pa(ΘTMi

))p(XCMi
|pa(XCMi

))p(Θ′
CMi

|pa(ΘCMi
) (3)

where XCMi
= CMi ∩X and ΘCMi

= CMi ∩Θ. Otherwise, let the term be 1.

Also, Θ̃TMi
always ‘creates’ a new copy of any θ ∈ TMi

. In other words, if θ̃(2) is already
created and updated in a prior module, we include θ̃(3) in Θ̃TMi

instead.

5. Update all parameters that do not belong to any module, ΘS through the term:
p(ΘS |pa(ΘS)) = p(ΘS |Θ \ΘS , X) (4)

6. Define the overall tilde-cut posterior as the product of all update terms built in step 4 and 5,
with all tilde parameters (Θ̃) integrated out with marginal priors:

p(ΘS |pa(ΘS))

∫ |M|∏
i=1

p(ΘUMi
, Θ̃TMi

|XCMi
,Θ′

CMi
)dΘ̃ (5)

Note that in step 2, we partition ΘMi ∪ X∗
Mi

instead of the set of all vertices of Mi, omitting
XMi

\X∗
Mi

in the process. The reason is that our definition of a module produces meaningful and
well-defined posterior update terms so long as all variables of that module appear in it. This is satisfied
when we update module Mi, as the only variables that do not explicitly appear are XMi

\X∗
Mi

, but
by Definition 1, for any such x ∈ XMi

\ XMi
to be in module Mi, it must be a parent of some

ψ ∈ ΘMi
∪X∗

Mi
, which means it is being conditioned on in one of the terms.

Also, since this algorithm picks just one out of potentially many orderings consistent with the directed
module graph given and operates with that throughout, we want the algorithm to be able to output any
posteriors that are the outputs of other orderings, too. This is the content of the following proposition:
Proposition 3. Let fS : ∆ → P (with ∆ being the space of all possible decisions for S) denote the
function that takes a decision set to a posterior according to ordering S and Algorithm 4, then fS is
surjective.

Note that it is equivalent to say that given the same set of modules M and directed module graphGM,
the space of all possible cut-posteriors P , is identical with the space of all possible posteriors given
any specific topological ordering S. This makes S redundant and consequential only for notation.

Also, proposition 3 puts us in good shape to have the following, similar result about the uniqueness
of enumerated posteriors.
Proposition 4. Assume that for any Mi ∈ M, Mi ∩Θ ̸= ∅. Given a particular GM, an ordering
S, and let fS be defined as in proposition 3, then fS is injective. Note that we define two posteriors,
p, p′ ∈ P are equal if and only if for any Mi ∈ M, the update terms in p and p′ are identical.

The assumption is in place to exclude the degenerate cases, namely when some modules have
no intrinsic parameters. The definition of equivalence for posteriors are such in order to allow
two posteriors to be equal precisely when the underlying action in G for all the module is the
same, ‘underlying’ here stresses that we do not refer to any specific labeling. Thus, for instance,
proposition 3 implies that for any ordering S and any decision set D, there exist S′ and D′ such that
fS(D) = fS′(D′).

4 Building cut-posteriors from modeling needs manually

5

Figure 1: An example Bayesian network used
throughout this section. Circular nodes re-
fer to unobserved nodes/hidden parameters,
while square nodes refer to data nodes.

The enumeration algorithms that we have now estab-
lished allow us to parameterize the space with three
parameters, which is all one needs to specify a cut-
posterior. This section illustrates what these parame-
ters are & how to choose them in accordance with the
exact modeling needs with an example Bayesian net-
work in fig. 1. It is important to note that these three
parameters have a nested structure—the value of the
first parameter determines what values the second
parameter can take, whose value in turn determines
what values the third parameter can take. Note that
here the three parameters should be distinguished
from the ’(hidden) parameters’ in the graphical model
(the circular nodes in Fig. 1). For this reason, the
latter kind should be referred to explicitly as ’hidden
parameters’ throughout this section.

4.1 Parameter
1—Partition of the set of all data nodes

A partition of a set is a grouping of its elements
into non-empty subsets. The set of all data nodes in
our running example is {X,Y, Z,W}, so an example
partition is shown in fig. 2A. We can then apply
definition 1 to determine what modules are in fig. 2B.

Crucial to note that for application purposes, this
partition has the interpretation of defining modules as
information sources to update unobserved nodes from.
This is because although there is some flexibility on
which versions of hidden parameters to condition on
(more on this later), cut-posterior dictates that we can
only update one hidden parameter in one particular
module. Thus, by specifying the partition in fig. 2A, we may think that the data nodes Y and Z are
qualitatively similar in some ways (e.g., reliability, data collection methods, etc.). For instance, if
we are modeling multisensory integration of perception in cognitive science and Y and Z are both
quantities relating to one sensory modality.

4.2 Parameter 2—an linear order on modules

Operationally, cut-posteriors are formed by forming one multiplicative factor for each module in
order and then multiplying them together. Thus, after determining what the modules are, the next
step is to choose the linear order to update them in. One such order is shown in Fig. 3, where each
node represents the module with corresponding color in 2B.

The linear update order on modules intuitively has the effect of preventing any misspecification from
downstream modules to upstream modules. Here, we may choose the red module to be upstream may
be due to that we are much more confident in the observation model for X , than its counterpart for Y ,
or Z, thus, we may prefer to update either θ or ϕ using X only.

4.3 Parameter 3—decisions regarding individual hidden parameters

After fixing on a linear order, the last parameter grants the user a lot of flexibility regarding individual
hidden parameters. A hidden parameter can be updated in any of the modules that it is a member of,
so decisions need to be made for each of the hidden parameters that appear in more than one module.
For each hidden parameter’s appearance in each module, we can either update or condition on it.

To illustrate these in the current example, θ appears in both the red and the green module. Having
specified in fig. 3 that the red module is more reliable than the green module, we may naturally want
to update θ in the red module, this gives us the multiplicative factor p(θ|W,X). This still leaves what

6

Figure 2: Panel A: An example partition of data nodes. Panel B: Resulting division into modules
according to module formation rules in Definition 1

Figure 3: An example of directed module graph defined in section 2.2. Each node represents the
module with the same color. The direction of edges specifies the precedence—R→ G implies that
the Red module should be updated before the green module. Note that by prop. 3 a directed module
graph is sufficient to specify the second parameter since any linear ordering consistent with it induces
an identical set of posteriors.

7

Figure 4: An alternative equivalent representation of the decisions made in π1 and π2 using bipartite
graphs. The two parts are the ’Update’ and ’Condition’ columns. Note that ’1st’ or ’2nd’ refers to the
order of the module in the ordering specified in the second parameter. So, here, the ’1st’ and the ’2nd’
modules will be the red and the green modules, respectively. There will be exactly one cyan node
in the ‘update’ column, designating the version of the hidden parameter that be kept in the overall
posteriors. The technical definitions are specified in section 2.3

to do with θ in the green module open: we can choose to condition on θ here, in order to leverage
the information about θ learned in the red module to inform other updated hidden parameters in the
green module (in this case, ϕ); this will produce a multiplicative factor of p(ϕ|θ,W, Y, Z). On the
other hand, we can also choose to update θ along with ϕ in the green module, thus forming us a
different factor p(θ̃, ϕ|W,Y,Z) where we use θ̃ to distinguish it from θ, avoiding updating a hidden
parameter twice.

Note that the factor for the blue module will always be p(ψ|W) since it does not share any hidden
parameter with any other module. Thus, depending on what our decision for θ in the green module is,
we can assemble two cut-posteriors:

π1(θ, ϕ, ψ|W,X, Y, Z) = p(θ|W,X)p(ψ|W)p(ϕ|θ,W, Y, Z) (6)

π2(θ, ϕ, ψ|W,X, Y, Z) =
∫
p(θ|W,X)p(ψ|W)p(θ̃, ϕ|W,Y,Z)π(θ̃)dθ̃ (7)

Note that the marginal density π(θ̃) is the same as marginal prior density π(θ). We integrate out the
tilde variables in eq. 7 because after all, only one version of θ should appear in the final cut-posterior
reflecting our posterior belief about that variable. Thus, we need to decide which version we want to
keep (in this case, using θ likely more sense since the red module is more reliable).

All these different decisions the framework offers in this subsection can seem difficult to keep track
of, but in fact, all legal sets of decisions have a unique representation in the form of a set of bipartite
graphs. The technical details are specified in section 2.3, but for the two cut-posteriors we formed
here, they respectively have a graphical representation shown in fig. 4.

5 Discussions

Limitations & future directions

The parameterization of the space of cut-posetiors paves the way to automate the process of discover-
ing and choosing one’s belief update along with updating one’s beliefs. This is made even simpler by
needing to enumerate the key parameters instead. To illustrate this possibility, an example Monte
Carlo Markov Chain (MCMC) algorithm is given in Appendix A. The computation is tractable when
the size of the cut-posterior space is small.

One way to realize belief update in Bayesian networks is as various message passing schemes [10].
Cut-posteriors are fundamentally inspired by the class of (often handcrafted) cut models already
in use as a partial solution to model misspecification [11, 6]. Although not explored in the current

8

work, it is plausible that the computations needed to realize cut-posteriors could be nicely captured
by ’cutting’ messages sent between modules. This connection can be key to an easy-to-implement
algorithmic realization of cut-posteriors and at any rate, would be interesting for how cut-posteriors
can be realized in neurobiological terms.

Another related issue in applying the cut-posterior framework to study how the brain infers is the
definition of a module. The current work follows the definition of a module in [8] in order to make
each module a functional sub-Bayesian network in its own right, but such well-behaved modules are
unlikely to coincide with the organization of the biological circuits. Although the lack of neuron-level
implementation in the brain is a general problem for most, if not all, computational models of the
brain, it is nevertheless interesting to see how the brain handles the problem of intractability, and
whether it does so through a related sense of modularity as appears here.

It should be noted that the generality of the cut-posterior framework is in comparison and thus by
no means absolute: there are plenty of possible belief updates that do not belong to the space of
cut-posteriors. One natural dimension to make the space even more general is the idea of ’incomplete
cuts’—the idea that the information flow from one module to another could be neither all (Bayesian)
nor nothing (cut). Such an idea is explored in what is termed semi-modular inference (SMI) in [4].
One benefit of introducing ’incomplete cuts’ to the space of cut-posteriors is the sense of ’continuity’
that could follow as a result: instead of needing to ’jump’ in discrete steps in the current space, an
agent may take a continuous walk in the abstract space of ’how to reason’ through time.

5.1 Conclusion

Currently, the usefulness of Bayesian statistics (in particular, Bayesian networks) is hampered by the
limitations in flexibility and efficiency.

Savage [12] famously differentiates between small-world and large-world settings for Bayesian
inference—small-world is when all pertinent alternatives, outcomes, and probabilities are known
while a large world problem is where either the prior, likelihood or both are uncertain [2]. For prior, a
Bayesian agent can rely on the sheer amount of data to correct (given the right likelihood), but wrong
likelihood, even in a small part of the Bayesian network, is known to spread and contaminate the
inferential processes [7]. As small-world applies to very few problems. As hardly (if ever) are we
situated within a small-world setting, it becomes a necessity to revise one’s subjective model of the
environment on the go. This is where limitation in flexibility becomes a challenge.

In light of this, note that one advantage of parameterizing the space of cut-posteriors is that it enables
model selection or meta-learning. For instance, statisticians and neuroscientists can now construct a
useful alternative posterior/belief update in a principled manner, by carefully choosing each parameter
to suit one’s nuanced modeling needs. But arguably what is even more impactful is the potential
to automate the process of discovering and choosing one’s belief update along with updating one’s
beliefs, which is made possible now by enumerating the key parameters instead.

As for efficiency, one of the main challenges of Bayesian inference is its computational intractability.
In fact, the number of steps needed to compute the normalization constant grows exponentially with
the number of hidden parameters [2]. For comparison, the framework of cut-posteriors divides the
graphical model into modules and performs computations inside individual modules only. This
radically reduces the amount of computation needed so long as the number of hidden parameters and
the number of modules is not trivially small. This tractability is particularly important for the brain,
which needs to judiciously allocate its computational resources when updating a very large network
of beliefs.

Acknowledgement

Thanks to Prof Geoff Nicholls, whose guidance and suggestions made this work possible in the
first place; thanks to Yang Liu for sharing his dissertation through personal communications, which
provided the key definition of modules and largely inspired this work.

9

References
[1] J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley Series in Probability and Statistics.

Wiley, 2009.

[2] Marcel Binz, Ishita Dasgupta, Akshay Jagadish, Matthew Botvinick, Jane X. Wang, and Eric
Schulz. Meta-learned models of cognition, 2023.

[3] P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating belief distribu-
tions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 78(5):1103–
1130, feb 2016.

[4] Chris U. Carmona and Geoff K. Nicholls. Scalable semi-modular inference with variational
meta-posteriors, 2022.

[5] Peter Grünwald. The safe bayesian: Learning the learning rate via the mixability gap. volume
7568, pages 169–183, 10 2012.

[6] Pierre E Jacob, Lawrence M Murray, Chris C Holmes, and Christian P Robert. Better together?
statistical learning in models made of modules. arXiv preprint arXiv:1708.08719, 2017.

[7] F. Liu, M. Bayarri, and J. Berger. Modularization in bayesian analysis, with emphasis on
analysis of computer models. Bayesian Analysis, 4, 03 2009.

[8] Yang Liu and Robert J. B. Goudie. A general framework for cutting feedback within modularized
bayesian inference, 2022.

[9] David J. Nott, Christopher Drovandi, and David T. Frazier. Bayesian inference for misspecified
generative models, 2023.

[10] Thomas Parr, Dimitrije Markovic, Stefan Kiebel, and Karl Friston. Neuronal message passing
using mean-field, bethe, and marginal approximations. Scientific Reports, 9, 02 2019.

[11] Martyn Plummer. Cuts in bayesian graphical models. Statistics and Computing, 25(1):37–43,
jan 2015.

[12] Leonard J. Savage. The Foundations of Statistics. Wiley Publications in Statistics, 1954.

10

A Automatic meta-learning: an example MCMC algorithm on the space of
cut-posteriors

Now that we have formally defined the general posterior space and are equipped with algorithms to
enumerate it, we demonstrate an important use of these concepts and tools by simulating a well-suited
posterior with a random walk on the space.

In essence, we define a random walk on the posterior space, such that at each individual step, given
GM, S, D, and a resulting posterior p we either

1. perturb the directed module graph GM by randomly merging two (adjacent) modules into
one or splitting a module into two, then making accommodating changes to the decision set,
or

2. perturb a random vertex in Dθ for a randomly selected θ.

In doing so, we obtain a slightly different G′
M, S′, and D′, and these will jointly result in a slightly

different posterior p′ in the posterior space, as shown in proposition 4. The user can then run ELPD
or other model selection methods to compare p and p′; if the performance is better then we accept
and proceed to the next step with G′

M, S′, D′, and p′ instead, otherwise we randomly accept or
reject depending on how much worse the performance of p′ is. Since a plethora of such model
comparison techniques exist, we shall leave the exact method to the user and focus instead on how to
obtain a well-defined yet slightly different p′ at each step, as well as making sure the random walk is
irreducible.

A few clarifications shall. Firstly, we identify all of the following and shall refer to them interchange-
ably: (a) a module in M (b) a vertex in GM (c) a set of vertices in G obtained with module formation
rules in Definition 1. In addition, we sometimes abuse the notation to refer to a vertex, say vi in
Dθ, interchangeably with the module represented by that vertex. Notice here vi does not necessarily
represent Mi, since although both are labeled with the topological ordering S, V (Dθ) is only a subset
of M so indexing can be different.

Also, we identify different indexing that imply the same order of objects as the same ordering. In
other words, it is equivalent to label modules (A,B,C) as either (M0,M1.5,M4) or (M1,M2,M3),
and we say one can always adjusts the former to the latter canonical form.

Definition 6. Given GM, S, and D,

1. with probability q0, we perturb D, or more specifically (Dθ, xθ), where θ is randomly drawn
from Θ, and

(a) with probability q1, perturb Dθ

i. with probability q2, randomly sample any edge in Dθ that connects vi ∈ Tθ and
vj ∈ Cθ, then

A. with probability q3, move vj to Tθ and delete the edge.
B. with probability 1− q3, rewire the edge to connect vj and vk ∈ Tθ instead (vk is

randomly drawn from the vertices in Tθ with a smaller index than j).
ii. with probability 1− q2, sample any vi ∈ Tθ such that d(vi) = 0, move it to Cθ and

connect it to a randomly selected node in Tθ with a smaller index.
(b) with probability 1− q1, change xθ to the index of a randomly selected vertex in Tθ.

2. with probability 1− q0, perturb GM, specifically

(a) with probability q4, sample any edge in GM, merge the two adjacent modules, say Mi

and Mj , by contracting their two vertices in the directed module graph. If this creates
a cyclic graph, reject and sample again; otherwise, holding the indices of all other
modules the same, randomly select an index out of all indices such that the resulting
order can be adjusted into a topological ordering of G′

M, reject and sample again if
there are no such indices. Call this ordering S′, modify the decision for any θ that
belongs to both Mi and Mj according to the following:
i. If the corresponding vertices of both Mi and Mj belong to Tθ, simply contract

those two vertices in Dθ.

11

ii. If the corresponding vertices of both Mi and Mj belong to Cθ, contract those
vertices, and if the resulting degree has two neighbors, randomly remove a neighbor
by deleting the edge connection them.

iii. If one corresponding vertex is in Tθ and the other in Cθ, just remove the one vertex
in Cθ.

Keeping other decisions the same, let the modified decision set be D′
θ.

(b) with probability 1− q4, randomly sample any module, say Mk, and randomly select
any bipartition of its set of core data nodes in G, say X∗

k = X∗
i ∪X∗

j and split Mk into
two modules, Mi and Mj (note that we have yet to assign an index to either module
yet), which, as subsets of G, contain nodes that are implied by Definition 1. Also by
Definition 1 and 2, create an edge in GM whenever any module intersects Mi or Mj in
G, including between Mi and Mj if they are not disjoint. Assign directions to all these
undirected edges in a way that matches the directions of edges in the original GM
except between Mi and Mj . This means that, for example, if there is an edge from Ml

to Mk in the original GM, then any undirected edge between Ml and Mi or Mj will
inherit the same direction. When this is done, randomly select a pair of indices for Mi

andMj (which implies the direction of the edge between them if present) out of all pairs
of indices such that the resulting order can be adjusted into a topological ordering of
G′

M, reject and sample again if there are no such indices. Call this ordering S′, modify
the decision for any θ that belongs to both Mi and Mj according to the following:
i. If Mk is in Tθ, then

A. with probability q5, we let the corresponding vertices of Mi and Mj belong to
T ′
θ, with each neighbor of Mk in Dθ randomly divided among them, namely,

some are wired to Mi and others to Mj .
B. with probability 1− q5, let Mi belongs to T ′

θ, and Mj belongs to C ′
θ and its only

neighbor randomly chosen.
ii. If Mk is in Cθ, then let both Mi and Mj be in C ′

θ, and let (a randomly chosen) one
of them have the same neighbor as Mk in Dθ and the other one have a randomly
selected neighbor in Tθ with a smaller index.

Keeping other decisions the same, let the modified decision set be D′
θ.

Note that all the probabilities here, especially pi’s, are subject to changes. Although for some, like q2,
a particular value (in the case of q2, 2/3) might make more sense since the value makes the cardinality
of Tθ and Cθ martingales with respect to discrete time steps so that we are unlikely to end up with
everything in one or the other after a large number of steps.

The main challenge in defining this walk is that, when perturbing GM, we need to make sure the new
decision set, D′, gives rise to posteriors as desired under the new directed module graph, G′

M. In
Definition 6 we merely give how D′ and G′

M are defined without checking if they behave nicely in
this way, so there are the following results that address this concern.
Lemma 2. For any θ ∈ Θ, the subgraph induced in GM by the set of vertices that correspond to
vertices in Dθ is complete.

Albeit immediate from Definition 2, this lemma captures the key observation that enables the
following proposition:
Proposition 5. In both part 2(a) and 2(b) of Definition 6, taking G′

M, S′, and D′ together does give
a posterior p′ in the posterior space.

Overall, we have that
Proposition 6. Each step in the walks defined is reversible. Thus, the random walk is irreducible.

B Justification of Propositions

Proposition 3

Fix any posterior p ∈ P and any ordering S, by the definition of P , there exists ordering S′ and
decision set D′ such that fS′(D′) = p . If S = S′ then we are done. If not, since both are topological
ordering of GM, which is acyclic, S and S′ must differ in such a way that we may WLOG, through a

12

finite sequence of switching the places of two modules that are not ancestors of one another, obtain S
from S′. But switching the places of two modules that are not ancestors of one another only alters
Algorithm 4 by permuting the update terms in step 3 without changing them (as by an earlier
lemma, any two such modules must be disjoint). Thus, we can define D such that the underlying
modules it refers to match those of D′ in ordering S (instead of S′) and have fS(D) = p.

Proposition 4

Given GM and S, assume that D ≠ D′ are two decision sets. By assumption, D and D′ only differ
in decisions regarding modules—say Mi—where there is some θ that is in Mi only and no other
modules, which implies that we must update θ in the update term for Mi (θ ∈ UMi). This means that
the term for Mi obtained using D and D′ will be different and both will be present in the resulting
posterior, hence they are different.

Proposition 5

For 2(a), it is clear that the new decision of any θ belongs to neither of Mi and Mj . For θ in only one
of the modules being merged, WLOG says Mi the place where problems may arise is that we assign
a new index k to Mi and this could alter the order of that module in Dθ. But upon a closer look that
cannot be: Lemma 2 states that vertices of Dθ are mutually connected, so if their order is changed in
D′

θ, the assignment of the new index Mk would be impermissible in the first place. For θ in both Mi

and Mj , the same lemma implies that successfully assigning the index k and obtaining a topological
ordering S′ entails Mi and Mj must have adjacent indices in Dθ. This means that the modifying we
do to those Dθ is well-defined. For 2(b), a similar justification can be executed by symmetry.

Proposition 6

That the walk is reversible is so by design. In Definition 6, for each possible perturbation that can
happen in a particular step, there is a possible perturbation that directly counteracts it.

To prove the walk is irreducible, we need to prove that

1. we can always go back to a particular state
2. We can always go from that state to any other state

We shall choose the full Bayesian posterior as the referencing state, which, as remarked earlier, is the
outcome of having only one module in M. Call it the null state.

Going from any state to the null state is simple: we can continuously merge modules until there is
only one left. The module formation rules in definition 1 ensure that the only module left correctly
includes all nodes in V (G) \ΘS as desired.

Now, the other direction follows from the fact that the walk is reversible: if we can reach the null
state from any state a in, say, n steps, then by reversibility we can reach a from the null state in n
steps, too.

13

	Introduction
	Definitions—Modules, Module Graphs, and Decision Sets
	Modules and How to Merge Them
	Undirected and Directed Module Graphs
	Decisions and Decision Sets

	Outputting possible cut-posteriors for arbitrary Bayesian networks
	Algorithm 1: Enumerating Possible Decision Sets
	Algorithm 2: Outputting Posteriors in Explicit Forms

	Building cut-posteriors from modeling needs manually
	Parameter 1—Partition of the set of all data nodes
	Parameter 2—an linear order on modules
	Parameter 3—decisions regarding individual hidden parameters

	Discussions
	Conclusion

	Automatic meta-learning: an example MCMC algorithm on the space of cut-posteriors
	Justification of Propositions

