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ABSTRACT

Designing protein sequences with optimal energetic stability is a key challenge in
protein inverse folding, as current deep learning methods are primarily trained by
maximizing sequence recovery rates, often neglecting the energy of the generated
sequences. This work aims to overcome this limitation by developing a model that
directly generates low-energy, stable protein sequences. We propose EnerBridge-
DPO, a novel inverse folding framework focused on generating low-energy, high-
stability protein sequences. Our core innovation lies in: First, integrating Markov
Bridges with Direct Preference Optimization (DPO), where energy-based prefer-
ences are used to fine-tune the Markov Bridge model. The Markov Bridge initiates
optimization from an information-rich prior sequence, providing DPO with a pool
of structurally plausible sequence candidates. Second, an explicit energy con-
straint loss is introduced, which enhances the energy-driven nature of DPO based
on prior sequences. This enables the model to effectively learn energy represen-
tations from a wealth of prior knowledge. It can also directly predict sequence
energy values, thereby capturing quantitative features of the energy landscape.
Our evaluations demonstrate that EnerBridge-DPO can design protein complex se-
quences with lower energy while maintaining sequence recovery rates comparable
to state-of-the-art models, and accurately predicts ∆∆G values between various
sequences.

1 INTRODUCTION

The inverse protein folding problem seeks to identify amino acid sequences that will reliably fold
into a given three-dimensional protein backbone. Recent advances in deep learning, particularly with
large-scale structure predictors like AlphaFold 2 Jumper et al. (2021), have created unprecedented
opportunities for protein inverse folding. Early methods such as ProteinMPNN Dauparas et al.
(2022) and PiFold Gao et al. (2022a) treated this as a one-to-one mapping from structure to sequence,
which neglected the inherent diversity of sequences that can form a single backbone. To overcome
this limitation, more recent models like LM-Design Zheng et al. (2023), GraDe-IF Yi et al. (2023),
and Bridge-IF Zhu et al. (2024) employ advanced generative or iterative strategies to explore this
“one-to-many” relationship. After training on extensive datasets, these models now show remarkable
performance in both sequence recovery and de novo design.

However, a critical challenge persists: designed sequences must not only be compatible with the
target structure but also possess desirable physicochemical properties, particularly low free energy,
which is correlated with stability Becktel & Schellman (1987) and function Freire (2001); Norn et al.
(2021). Existing mainstream inverse folding models still face several key limitations in generating
low-energy sequences: First, current diffusion-based generative models aim to learn a single, often
intractable, data distribution Zhang et al. (2024); Lemercier et al. (2024). This can lead to a gap
between the generated sequences and the true sequence distribution Igashov et al. (2023); Zhu et al.
(2024); Lee et al. (2024), making it difficult to efficiently explore the vast sequence space to find
candidates that are both structurally consistent and energetically favorable. Second, many advanced
inverse folding models are primarily trained by maximizing metrics such as sequence recovery rate
or structural similarity. While these models can produce sequences compatible with the target back-
bone, they generally do not incorporate protein energy stability as a direct optimization objective.
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Consequently, the generated sequences may not be energetically optimal and could even be unsta-
ble. To our knowledge, there is currently a lack of a dedicated inverse folding framework capable of
directly and end-to-end optimizing both sequence recovery and low-energy fitness simultaneously,
thereby generating sequences that are intrinsically stable.

Stage 1: Inverse Folding Pretraining via Markov Bridge Framework

Stage 2: Fine-Tuning via Direct Preference Optimization and Energy Constraint
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Figure 1: Overview of EnerBridge-DPO. (a) In Stage 1, we pre-train the model on the structure-to-
sequence recovery task using a Markov Bridge framework to enhance its structure-sequence align-
ment capability and sequence diversity. (b) In Stage 2, we fine-tune the model with Bridge-DPO and
energy constraints to guide it toward optimizing within a more energetically stable sequence space.

To address these gaps, we introduce EnerBridge-DPO (Energy-Bridged Direct Preference Optimiza-
tion), a novel inverse folding framework specifically designed for generating low-energy, high-
stability protein sequences. As illustrated in Figure 2, our method uniquely integrates two key
techniques: First, we establish the foundational architecture of the inverse folding model based on a
Markov bridge Zhu et al. (2024); Igashov et al. (2023) and use DPO Rafailov et al. (2023) to fine-
tune the pre-trained Markov bridge model. Compared to diffusion models, the Markov bridge begins
optimization from an information-rich prior sequence related to the target structure, providing DPO
with a candidate pool that already possesses structural plausibility. We construct energy-based pref-
erence pairs and adapt the DPO training objective to effectively combine with the Markov bridge’s
generation process. Second, we introduce an explicit energy constraint loss, which directly requires
the model to predict the energy values of sequences, enhancing the energy-driven nature of DPO
based on prior sequences. This prompts the model not only to learn the relative energy advantages
of sequences but also to understand and fit the quantitative features of the energy landscape. This
dual optimization strategy ensures that while EnerBridge-DPO generates low-energy sequences, its
internal representations also more closely align with true biophysical principles. Empirical studies
show that EnerBridge-DPO outperforms existing baselines on multiple standard benchmarks and
excels in designing sequences with low energies.

To summarise, the main contributions of this work are as follows:

• We introduce EnerBridge-DPO, the first inverse folding model that directly utilizes energy
constraints within a generative framework to design low-energy protein sequences con-
forming to specified structural conditions.

• We utilize energy as a preference to innovatively adapt DPO for effective fine-tuning of
the Markov Bridge process. Furthermore, an explicit energy constraint loss is introduced,
compelling the model to learn and predict quantitative energy features.

• Experimental results demonstrate that EnerBridge-DPO designs protein complex se-
quences with significantly lower energy and higher stability compared to existing methods,
while maintaining comparable sequence recovery and structural validity. The model also
accurately predicts ∆∆G, highlighting its refined understanding of biophysical principles.
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2 RELATED WORK

2.1 INVERSE PROTEIN FOLDING

Inverse protein folding aims to identify amino acid sequences that fold into a given three-
dimensional protein structure. Early deep learning approaches often employed graph neural net-
works (GNNs) Ingraham et al. (2019); Gao et al. (2022b); Dauparas et al. (2022); Gao et al. (2022a);
Tan et al. (2022); Chou et al. (2024), transformers Ingraham et al. (2019); Hsu et al. (2022); Wu et al.
(2021), or autoregressive models Ingraham et al. (2019); Hsu et al. (2022) to learn the mapping from
structure to sequence. To address error accumulation in autoregressive generation, iterative refine-
ment strategies have emerged. Some methods leverage the knowledge encoded in pre-trained Protein
Language Models (PLMs) to refine initially generated sequences, such as LM-Design Zheng et al.
(2023) and KW-Design Gao et al. (2023). Recently, discrete diffusion models Austin et al. (2021)
have been adapted for sequence generation. GraDe-IF Yi et al. (2023) pioneered the use of de-
noising diffusion for inverse folding, conditioning the denoising process on structural information.
While diffusion models offer a principled way for iterative refinement and capturing diversity, stan-
dard formulations often start from a non-informative prior (e.g., uniform noise), potentially limiting
efficiency and the ability to leverage strong structural information directly. Markov Bridge mod-
els, such as Bridge-IF Zhu et al. (2024), offer an alternative generative framework. They learn a
stochastic process between two distributions, allowing the use of an informative, structure-derived
prior sequence as the starting point and progressively refining it towards the target native sequence
distribution, potentially offering advantages in sample quality and inference efficiency.

2.2 INCORPORATING PHYSICAL CONSTRAINTS AND ENERGY FUNCTIONS

A key challenge in protein design is ensuring the physical and chemical viability of generated se-
quences. Many approaches incorporate physics-based information Norn et al. (2021); Omar et al.
(2023); Malbranke et al. (2023), often as a post-processing step. For example, generated sequences
might be filtered or rescored using energy functions like Rosetta Rohl et al. (2004) or evaluated us-
ing molecular dynamics simulations. While helpful, these two-stage approaches mean the generative
model itself isn’t directly optimizing for physical properties like energy stability during generation,
potentially limiting the effectiveness of the design process. Few methods Zhou et al. (2024); Ren
et al. (2025) have successfully integrated energy functions directly into the end-to-end training and
optimization loop of deep generative models for protein design. Our work, EnerBridge-DPO, aims
to bridge this gap by directly optimizing the generative bridge model for lower energy using prefer-
ence optimization.

2.3 PREFERENCE OPTIMIZATION IN INVERSE FOLDING

Aligning generative models with specific preferences or criteria has been highly successful, par-
ticularly in Large Language Models (LLMs). In contrast to its extensive exploration in NLP, the
application of DPO to protein inverse folding design has been less explored. Park et al.Park et al.
(2024) proposed a diversity-regularized DPO method to address issues of sequence repetition and
folding failures in peptide inverse folding. Their approach fine-tunes the ProteinMPNN model by
introducing a regularization term to DPO, effectively enhancing the diversity and stability of the
generated sequences. Similarly, Xue et al. Xue et al. (2025) proposed a new strategy to optimize
protein sequence design via DPO, aiming to improve the “designability” of a sequence by using
AlphaFold’s pLDDT score as the guiding signal for DPO training. However, these applications of
DPO have primarily focused on enhancing the capacity of designed sequences to fold into a target
structure, whereas our work explores lowering the energy of the designed sequences.

3 METHODOLOGY

3.1 PRELIMINARY

The Inverse Folding problem seeks to generate an amino-acid sequenceY = (y1, y2, ..., yL) that will
reliably fold into a given protein backbone structure S = (s1, s2, ..., sL), where each residue’s coor-
dinates si ∈ R4×3 typically include the N, C-α, and C atoms (with O atoms optional), and L denotes

3
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the length of the backbone. In an ideal design, the proposed sequence should not only reproduce
the target backbone under structure prediction but also possess low physical energy and favorable
biochemical properties. To formalize this, we treat our generative model as a prior pθ(Y | S), and
introduce an energy function E(S,Y) which serves as a likelihood score or potential energy reflect-
ing the physical plausibility of the sequence–structure pair. Under this formulation, the posterior
distribution over sequences given the backbone is

p(Y | S) ∝ pθ(Y | S) exp (−αE(S,Y)) (1)

where α > 0 governs the relative weight of the energy term. The optimal sequence Y∗—balancing
the learned prior and physical constraints—is obtained by maximizing the following objective:

Y∗ = argmax
Y

[log pθ(Y | S)− αE(S,Y)] (2)

This energy-aware framework enables the design of sequences that are both structurally faithful and
thermodynamically stable.

3.2 PRE-TRAINED MARKOV BRIDGE MODEL FOR INVERSE FOLDING

The foundation of EnerBridge-DPO is a generative model designed to capture the complex relation-
ship between protein backbone structures and their corresponding amino acid sequences. This model
leverages the Markov Bridge framework to learn the probabilistic transition from an initial sequence
proposal, derived directly from the input structure, to the target native sequence distribution.

3.2.1 STRUCTURE-CONDITIONED PRIOR

Unlike traditional diffusion models that start from random noise, our approach begins with an in-
formative prior sequence X . This prior is generated by PiFold, as an expressive structure encoder
E , which maps the input backbone structure S to a discrete sequence X = E(S). This encoder is
pre-trained on large-scale structure-sequence datasets to predict plausible sequences directly from
structures. This deterministic mapping provides a strong sequence prior for the subsequent refine-
ment process.

3.2.2 MARKOV BRIDGE PROCESS

We establish a discrete-time Markov Bridge process (zt)Tt=0 connecting the distribution of the prior
sequence px(X ) and the distribution of the native sequence py(Y). The process starts at z0 = X
and is designed to end at zT = Y that satisfies

p(zt|z0, z1, . . . ,zt−1,Y) = p(zt|zt−1,Y). (3)

To pin the process at the end point zT = Y , we have an additional requirement

p(zT = Y|zT−1,Y) = 1. (4)

We assume that p(·) is categorical distributions with a finite sample space {1, ...,K} and represent
data points as one-hot vectors: X ,Y,zt ∈ {0, 1}. The forward process gradually transforms X
towards Y using a transition matrix Qt:

Qt := Qt(Y) = γtIK + (1− γt)Y1⊤
K (5)

where γt is a noise schedule transitioning from γ0 = 1 to γT−1 = 0. The core of the generative
model lies in learning the reverse process, which approximates the target sequence Y at each step t
given the intermediate state zt and the structure S.

3.2.3 MODEL ARCHITECTURE AND TRAINING

4
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Figure 2: Architecture of Markov Bridge Model.

We utilize a pre-trained PLM, such as ESM
Rives et al. (2021), as the backbone for approx-
imating the reverse bridge process. To effec-
tively condition the PLM on both the time step
t and the structural information S, we adapt its
architecture using AdaLN-Bias Peebles & Xie
(2023) and structural adapters (cross-attention).
These modifications allow the PLM to leverage
its learned evolutionary knowledge while inte-
grating the specific temporal and structural con-
text of the bridge process, all while maintaining
parameter efficiency by keeping the base PLM
weights frozen. The pre-training minimizes a
loss function derived from the Markov Bridge framework, aiming to accurately predict the target
sequence Y . We utilize the simplified reparameterized objective function derived in Bridge-IF for
more effective training:

Lt(θ) = λtEp(zt|X ,Y)[−vtYT log φθ(zt,S, t )] (6)

where φθ(zt,S, t ) is the PLM’s prediction of the target sequence, vt indicates if the token needs
refinement, and λt is a weighting factor. During inference, the model starts with the prior sequence
z0 = E(S) and iteratively refines it using the learned reverse process conditioned on S and t,
ultimately generating the final designed sequence zT .

3.3 BRIDGE-DPO

We employ DPO to fine-tune the model, explicitly biasing it towards generating sequences with
lower predicted energy states, particularly for protein complexes. This stage aims to integrate phys-
ical realism, specifically energy stability, directly into the generative process.

3.3.1 PREFERENCE DATA GENERATION

We leverage the measured energy values as the preference oracle. For a given protein backbone
structure S, we generate or select pairs of candidate sequences (Yw,Y l). A pair is included in
our preference dataset Denergy = {(S,Yw,Y l)} if the experiment measures a lower energy for se-
quence Yw (winning/preferred sequence) compared to sequence Y l (losing/less preferred sequence),
i.e., Energy(Yw | S) < Energy(Y l | S).

3.3.2 DPO OBJECTIVE FOR MARKOV BRIDGES

We adapt the DPO objective to the context of our Markov Bridge model. The core idea is to max-
imize the likelihood of preferred sequences (Yw) while minimizing the likelihood of less preferred
sequences (Y l), relative to a reference model φref . The reference model φref is the pre-trained
Markov Bridge model obtained from the initial training phase. The DPO loss function for fine-
tuning our Bridge model φθ is derived analogously to the objectives in DPO Rafailov et al. (2023)
and Diffusion-DPO Wallace et al. (2024):

LBridge−DPO(θ) = −E(Yw,Yl)∼D,t∼U(0,T ),zw
t ∼q(zw

t |X ,S),zl
t∼q(zl

t|X ,S)

log σ(−βTω(λt)(∥Yw − φθ(z
w
t , t)∥22 − ∥Yw − φref(z

w
t , t)∥22

)
−
(
∥Y l − φθ(z

l
t, t)∥22 − ∥Y l − φref(z

l
t, t)∥22

) ) (7)

Here, φθ(Y|S) represents the probability (or a related measure like likelihood derived from the
bridge process) assigned by the model φθ to sequence Y given structure S. β is a hyperparameter
that controls the strength of the deviation from the reference model φref . A higher β imposes a
stronger penalty for diverging from the initial pre-trained model, ensuring that the learned preference
alignment does not drastically compromise the model’s original capabilities. A detailed derivation
can be seen in Appendix C.

In the context of Markov Bridge models, the likelihood ratio term can be related to the difference
in the model’s internal predictions or losses during the bridge process, similar to how Diffusion-
DPO relates it to denoising errors. For instance, using the simplified cross-entropy loss formulation,
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the DPO objective implicitly encourages the model φθ to have lower prediction errors (or higher
probabilities) for the preferred sequence Yw compared to Y l, relative to the reference model φref ,
across the bridge timesteps.

3.4 ENERGY-CONSTRAINED LOSS

To explicitly enforce low-energy designs, we integrate a BA-DDG-based Jiao et al. (2024) energy
constraint into our fine-tuning stage. First, for each winner-loser pair of a given protein, assuming
their backbone structures are identical, we compute the predicted binding free-energy change ∆̂∆G
directly from inverse-folding log-likelihoods via Boltzmann Alignment. Specifically, we first calcu-
late the binding free energy for the winner and loser sequences individually, and then compute the
difference between these two values. For each protein (whether it is the winner or loser), its binding
free energy arises from the energy difference between the bound and unbound states. In our model,
this energy difference is represented by the sequence likelihood:

∆̂∆G = −kBT ·
(
log

p(Ywinner
bnd | Sbnd)

p(Ywinner
unbnd | Sunbnd)

− log
p(Y loser

bnd | Sbnd)
p(Y loser

unbnd | Sunbnd)
)

(8)

where kBT is treated as a learnable scaling factor and “bnd” means bound. We then define the
energy constraint loss as the mean absolute error between predicted and true ∆∆G over the labeled
set D:

Lenergy(θ) =
1

|D|
∑

(s,ywinner,yloser,∆∆G)∈D

|∆̂∆G−∆∆G| (9)

3.5 OVERALL TRAINING OBJECTIVE

During the fine-tuning phase of EnerBridge-DPO, the overall training loss Ltotal(θ) is formulated
as a weighted sum of the Bridge-DPO loss (LBridge−DPO(θ)) and the energy-constrained loss
(Lenergy(θ)):

Ltotal(θ) = LBridge−DPO(θ) + 0.5 ∗ Lenergy(θ) (10)

4 EXPERIMENTS

4.1 EXPERIMENTAL PROTOCOL

4.1.1 DATASETS

We conducted benchmarking on the following datasets:

MPNN Dauparas et al. (2022): All sequences are clustered at 30% sequence identity, resulting in
25,361 distinct clusters. Following ProteinMPNN’s setup, we split these clusters into three disjoint
sets: a training set (23,358 clusters), a validation set (1,464 clusters), and a test set, ensuring that
neither the target chains nor any chains from their biological assemblies appear across multiple
splits.

BindingGym Lu et al. (2024): BindingGym contains 10M mutational data points. For each protein
in BindingGYM, we select the top 10% and bottom 10% of mutants based on their Deep Mutational
Scanning (DMS) scores and randomly pair them to construct preference pairs.

SKEMPI Jankauskaitė et al. (2019): Following the methods of Luo et al. (2023) and Wu & Li
(2024), we divided the dataset into 3 parts based on structure, ensuring that each part contains unique
protein complexes. Based on this division, a three-fold cross-validation process was performed. For
each protein complex, we selected mutations from the top 30% and bottom 30% ranked by binding
energy and randomly paired them to construct preference pairs.

The construction of the preference dataset is detailed in Appendix E.

6
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4.1.2 IMPLEMENTATION DETAILS

We pre-trained the model on the MPNN Dataset. Subsequent fine-tuning was performed using
preference pairs constructed from the BindingGym Dataset and SKEMPI Dataset. We use the cosine
schedule Nichol & Dhariwal (2021) with number of timestep T = 25 for the noise scheduling. For
pre-training, the model was trained for 50 epochs on an NVIDIA 4090 GPU with a batch size of
40,000 residues, an initial learning rate of 0.001, and Adam optimizer Kingma & Ba (2014) with
noam learning rate scheduler Vaswani et al. (2017) was used. During fine-tuning, we maintained the
same architecture but reduced the learning rate to 1×e−5, while extending training to 150 epochs for
enhanced parameter refinement. All experiments are conducted on a computing cluster with CPUs
of Intel(R) Xeon(R) Gold 6144 CPU of 3.50GHz and two NVIDIA GeForce RTX 4090 24GB GPU.

Table 1: Results comparison on the MPNN dataset. The best and suboptimal results are labeled
with bold and underlined.

Model Perplexity ↓ Recovery % ↑
L < 100 100 ≤ L < 500 500 ≤ L < 1000 Full L < 100 100 ≤ L < 500 500 ≤ L < 1000 Full

GraphTrans 6.67 5.59 5.58 5.72 41.39 45.71 45.36 45.40
GCA 6.41 5.33 5.30 5.45 43.45 46.93 46.52 46.58
SructGNN 6.50 5.29 5.21 5.43 42.51 47.72 47.54 47.36
AlphaDesign 6.77 5.33 5.21 5.49 43.62 48.04 47.81 47.81
GVP 6.24 4.74 4.54 4.90 45.68 51.10 51.46 50.75
PiFold 6.05 4.18 3.93 4.38 48.54 55.62 56.47 55.17
ProteinMPNN 5.63 4.09 3.83 4.25 50.04 57.09 59.04 57.28
LMDesign 4.60 4.06 3.99 4.06 55.07 57.18 57.99 58.14
Bridge-IF 4.44 3.91 3.74 3.89 58.42 60.15 60.74 60.56

EnerBridge-DPO 4.51 3.88 3.68 3.87 57.90 60.41 61.14 60.91

4.1.3 BASELINES

We evaluate the performance of our model on two tasks: protein inverse folding and the change
in binding free energy (∆∆G) prediction. For the protein inverse folding task, we compare
EnerBridge-DPO against several state-of-the-art baselines, including GraphTrans Wu et al. (2021),
StructGNN Chou et al. (2024), GVP Jing et al. (2020), GCA Tan et al. (2023), AlphaDesign Gao
et al. (2022b), ProteinMPNN Dauparas et al. (2022), PiFold Gao et al. (2022a), LM-Design Zheng
et al. (2023), GraDe-IF Yi et al. (2023), and Bridge-IF Zhu et al. (2024). For the ∆∆G prediction
task, we compare our approach with state-of-the-art supervised methods, including DDGPred Shan
et al. (2022), MIF-Network Yan et al. (2020), RDE-Network Luo et al. (2023), DiffAffinity Lin
et al. (2022), Prompt-DDG Wu et al. (2024), ProMIM Mo et al. (2024), Surface-VQMAE Wu & Li
(2024), and BA-DDG Jiao et al. (2024).

4.1.4 EVALUATION

We use perplexity and recovery rate to evaluate the generation quality of the inverse folding
task. Following previous studies Ingraham et al. (2019), we report perplexity and median re-
covery rate under four settings: short proteins (length < 100), medium proteins (100≤length
<500), long proteins (500≤length <1000), and full proteins. Furthermore, we also report the
energy of the resulting sequences. In addition to the mean and standard deviation, we also use

ZScore = e
mean1(x)(

x−mean2(x)

std2(x)
) to score the models, where mean1 is the mean value for a specific

model across different methods, and mean2 is the mean value for a specific method across different
models. To comprehensively evaluate the performance of ∆∆G prediction, we use a total of seven
overall metrics, including 5 overall metrics: (1) Pearson correlation coefficient, (2) Spearman rank
correlation coefficient, (3) minimized RMSE, (4) minimized MAE, (5) AUROC, and 2 per-structure
metrics: (6) Per-structure Pearson correlation coefficient and (7) Per-structure Spearman correlation
coefficients.

4.2 INVERSE FOLDING

As shown in Table 1, experimental results indicate that EnerBridge-DPO achieves performance com-
parable to Bridge-IF in terms of sequence recovery rate and perplexity. This suggests that the energy
preference fine-tuning via DPO does not negatively impact its fundamental inverse folding fidelity.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Despite performing comparably to Bridge-IF on general inverse folding metrics, the core advantage
of EnerBridge-DPO lies in the energetic optimization of sequences designed for protein complexes.
To validate this, we specially selected 26 protein complex structures with distinct chains from the
test set to serve as test cases. For these specific complexes, we employed EnerBridge-DPO and other
baseline models to design sequences. Then, using three unsupervised energy prediction models (in-
cluding FoldX Delgado et al. (2019), Rosetta Alford et al. (2017) and BA-Cycle Jiao et al. (2024)),
we assessed the predicted binding free energy or stability of these designed sequences.

The results, as shown in Table 2, clearly demonstrate that sequences generated by EnerBridge-
DPO for these selected protein complexes have significantly lower predicted energy values than
all comparative models. This strongly validates the effectiveness of the energy preference learning
introduced during the DPO fine-tuning phase, enabling EnerBridge-DPO to specifically optimize
and generate more energetically stable and physicochemically sound protein complex sequences.

Table 2: Comparison of energy for sequences designed by different models. The best and suboptimal
results are labeled with bold and underlined.

Model FoldX Rosetta BA-Cycle ZScore ↓
Mean ↓ Std ↓ Mean ↓ Std ↓ Mean ↓ Std ↓

GraphTrans 243.78 128.25 2813.42 3193.46 129.19 148.83 1.82
StructGNN 235.33 133.79 2849.01 3212.60 121.49 153.97 1.65
GCA 233.97 146.12 2842.93 3206.22 126.77 148.22 1.74
GVP 223.32 125.85 2884.59 3283.36 125.90 141.56 1.76
AlphaDesign 217.01 126.02 2880.81 3273.53 128.59 151.01 1.72
PiFold 176.69 117.97 2814.60 3274.96 120.65 122.20 0.86
ProteinMPNN 163.58 109.53 2697.03 3362.60 112.32 125.50 0.47
LMDesign 202.20 295.54 3160.13 3447.61 79.43 92.83 1.52
Bridge-IF 163.02 98.63 2807.27 3116.33 83.65 112.37 0.41

EnerBridge-DPO 130.03 76.31 2780.20 3157.82 77.46 96.79 0.25

Table 3: Comparison of 3-fold cross-validation on the SKEMPI v2 dataset. The best and suboptimal
results are labeled with bold and underlined.

Method Per-Structure Overall

Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑
DDGPred 0.3750 0.3407 0.6580 0.4687 1.4998 1.0821 0.6992
MIF-Network 0.3965 0.3509 0.6523 0.5134 1.5932 1.1469 0.7329
RDE-Network 0.4448 0.4010 0.6447 0.5584 1.5799 1.1123 0.7454
DiffAffinity 0.4220 0.3970 0.6609 0.5560 1.5350 1.0930 0.7440
Prompt-DDG 0.4768 0.4321 0.6764 0.5936 1.5308 1.0839 0.7567
ProMIM 0.4640 0.4310 0.6720 0.5730 1.5160 1.0890 0.7600
Surface-VQMAE 0.4694 0.4324 0.6482 0.5611 1.5876 1.1271 0.7469
BA-DDG 0.5603 0.5195 0.7319 0.6433 1.4426 1.0044 0.7769

EnerBridge-DPO 0.4981 0.4666 0.7487 0.6447 1.4257 1.0185 0.7780

4.3 PROTEIN ENERGY PREDICTION

As shown in Table 3, our results indicate that EnerBridge-DPO achieves ∆∆G prediction perfor-
mance comparable to that of the BA-DDG predictor. Both methods demonstrate strong correlations
with experimental data and low error rates, positioning them at the state-of-the-art for this task. This
suggests that EnerBridge-DPO has effectively internalized the ability to predict energy changes,
rather than merely learning to generate sequences that are likely to be low in energy according to
energy-constrained loss. The model’s capacity to accurately predict ∆∆G values underscores its
refined understanding of the underlying biophysical principles governing protein interactions and
stability. Notably, in the per-structure performance evaluation, while EnerBridge-DPO’s perfor-
mance remains robust, it is slightly outperformed by BA-DDG, a method specifically designed for
this task. We hypothesize that this difference may be related to the data sampling strategy employed

8
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during our DPO training phase. To construct preference pairs, we sampled from the original data
distribution, which might have led to disparities in the amount of data per fold during the three-fold
cross-validation training.

Table 4: Ablation study of key design choices on the MPNN dataset. The best and suboptimal
results are labeled with bold and underlined.
w/o DPO w/o Energy Perplexity ↓ Recovery % ↑

L < 100 100 ≤ L < 500 500 ≤ L < 1000 Full L < 100 100 ≤ L < 500 500 ≤ L < 1000 Full

✓ 4.59 3.99 3.97 4.06 56.05 60.10 61.10 60.18
✓ 6.10 4.04 4.08 4.16 54.81 59.50 60.12 59.52

4.51 3.88 3.68 3.87 57.90 60.41 61.14 60.91

Table 5: Ablation study of key design choices on the SKEMPI v2 dataset. The best and suboptimal
results are labeled with bold and underlined.

w/o DPO w/o Energy Per-Structure Overall

Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑
✓ 0.3493 0.2975 0.4134 0.4259 1.9005 1.3475 0.6784

✓ 0.4893 0.4623 0.7400 0.6227 1.4539 1.0360 0.7720
0.4981 0.4666 0.7487 0.6447 1.4257 1.0185 0.7780

4.4 ABLATION STUDIES

To validate the contributions of the key components within the EnerBridge-DPO framework, we
conducted a series of ablation studies. We designed the following model variants for comparison:
(1) w/o DPO: This model is fine-tuned using only the energy-constrained loss Lenergy without the
energy preference-based DPO process. (2) w/o Energy: This model is fine-tuned using only the
energy preference-based DPO process (via LBridge−DPO) without the explicit energy-constrained
loss.

w/o DPO: From Table 4, we observe that without the DPO process, the core inverse folding metrics
are significantly worse. This is because the primary role of DPO is to adjust the generative model’s
output distribution to align with preferences. With only an energy regression loss, the model might
impair the pre-trained model’s strong sequence generation capabilities by attempting to forcibly fit
energy values.

w/o Energy: From Table 5, We observe that without the explicit energy-constrained loss, the model
performs very poorly on all ∆∆G prediction metrics. It illustrates that the model might learn to
generate lower-energy sequences but will be unable to accurately quantify these energy differences
or predict specific ∆∆G values.

5 CONCLUSION

In this paper, we introduce EnerBridge-DPO, a novel framework that addresses the critical challenge
of generating energetically stable protein sequences in inverse folding. EnerBridge-DPO uniquely
combines Markov bridges with Direct Preference Optimization based on sequence energies, and
employs an explicit energy constraint to prompt the model to capture the energy values of generated
sequences. Experimental results demonstrate that EnerBridge-DPO successfully designs protein
sequences, particularly for complexes, with significantly reduced predicted energies and enhanced
stability. Notably, this improved energy performance is achieved while maintaining sequence re-
covery rates comparable to state-of-the-art methods and accurately predicting ∆∆G values. Future
work will explore ensuring the diversity and quality of DPO preference pairs and extending the val-
idation of model performance to a broader range of protein families and more complex structural
scenarios.
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7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code has been submitted in the Supplementary Material to facilitate replication and verification.
The experimental setup, including training steps, model configurations, and hardware details, is
described in detail in the paper. We believe these measures will enable other researchers to reproduce
our work and further advance the field.
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A THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized Gemini-2.5-pro as an assistive tool for lan-
guage enhancement. The primary use of these models was to improve the grammar, clarity, and
readability of the text. All scientific ideas, experimental results, and conclusions were conceived
and written by the human authors, who retain full responsibility for the final content of this paper.

B ALGORITHMS

Algorithm 1 DPO Fine-tuning for EnerBridge-DPO
Input: Pre-trained reference model φref , initialize policy model φθ, preference dataset Denergy =
{(S,Yw,Y l)}
Output: Fine-tuned model φθ

1: repeat
2: Sample (S,Yw,Y l) from Denergy

3: Sample timestep t ∼ U(0, T )
4: Generate prior sequence X ← StructureEncoder(S)
5: Generate zwt ∼ q(zt|X ,S,Yw)
6: Generate zlt ∼ q(zt|X ,S,Y l)
7: errwθ ← ||Yw − φθ(z

w
t ,S, t)||22

8: errwref ← ||Yw − φref (z
w
t ,S, t)||22

9: errlθ ← ||Y l − φθ(z
l
t,S, t)||22

10: errlref ← ||Y l − φref (z
l
t,S, t)||22

11: diff winner← errwθ − errwref
12: diff loser← errlθ − errlref
13: dpo term← diff winner− diff loser
14: LDPO ← − log σ(−βdpo · dpo term)
15: Update φθ using gradient of LDPO

16: until convergence
17: return φθ

Algorithm 2 Sampling
Input: Starting point S ∼ pS , structure encoder E , neural network φθ

Output: Generated sequence zT
1: z0 ← E(S)
2: for t in 0, . . . , T − 1 do
3: ŷ ← φθ(zt, t)
4: qθ(zt+1|zt)← Cat(zt+1;Qt(ŷ)zt)
5: zt+1 ∼ qθ(zt+1|zt)
6: end for
7: return zT

C DPO FOR MARKOV BRIDGE MODELS

The goal is to adapt the Direct Preference Optimization (DPO) framework for Markov Bridge mod-
els used in protein inverse folding. We have a fixed dataset Denergy = {(S,Yw,Y l)} where each
example contains a protein backbone structure S, a preferred (winner) sequence Yw, and a dispre-
ferred (loser) sequence Y l, generated from a reference Markov Bridge model ϕref . We aim to learn
a new model ϕθ that is aligned with these energy-based preferences.

C.1 STARTING POINT: THE RLHF OBJECTIVE AND ITS DPO REFORMULATION

The general objective in Reinforcement Learning from Human Feedback (RLHF), which DPO aims
to solve more directly, is to optimize a policy pθ to maximize a reward function r(c, x0) (where c is

14
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context and x0 is generation) while regularizing its deviation from a reference policy pref using a
KL-divergence term:

max
pθ

Ec∼Dc,x0∼pθ(x0|c)[r(c, x0)]− βDKL[pθ(x0|c)||pref (x0|c)] (11)

DPO shows that the optimal solution p∗θ(x0|c) can be written as:

p∗θ(x0|c) =
1

Z(c)
pref (x0|c) exp

(
1

β
r(c, x0)

)
(12)

This allows rewriting the reward function r(c, x0) in terms of p∗θ and pref . Substituting this into
the Bradley-Terry model for preferences p(xw

0 > xl
0|c) = σ(r(c, xw

0 )− r(c, xl
0)), leads to the DPO

loss:

LDPO(θ) = −E(c,xw
0 ,xl

0)

[
log σ

(
β log

pθ(x
w
0 |c)

pref (xw
0 |c)

− β log
pθ(x

l
0|c)

pref (xl
0|c)

)]
(13)

C.2 ADAPTING TO MARKOV BRIDGE PROCESS

For generative models like Markov Bridge, the likelihood pθ(Y|S) is often intractable as it requires
marginalizing over all possible generative paths z0:T (where z0 = X , the prior sequence from
structure S, and zT = Y , the final generated sequence).

We define the objective over the entire path z0:T . The RLHF objective becomes:

max
pθ

ES∼DS ,z0:T∼pθ(z0:T |S)[r(S,Y)]− βDKL[pθ(z0:T |S)||pref (z0:T |S)] (14)

This objective can be optimized directly through the conditional path distribution pθ(z0:T |S) via a
DPO-style loss:

LDPO-BridgePath(θ) =− E(S,Yw,Yl)∼Denergy

[
log σ

(
βEzw

1:T∼pθ(zw
1:T |Yw,S)

[
log

pθ(z
w
0:T |S)

pref (zw0:T |S)

− log
pθ(z

l
0:T |S)

pref (zl0:T |S)

])]
(15)

where zwT = Yw and zlT = Y l.

C.3 ADDRESSING INTRACTABILITY OF PATH SAMPLING AND LIKELIHOODS

Optimizing the above equation is challenging because:

• Sampling the full path z1:T ∼ pθ(z1:T |Y,S) (the reverse bridge process pinned at Y) is
inefficient and potentially intractable during training.

• The path likelihoods pθ(z0:T |S) are also intractable.

We can substitute the reverse decompositions pθ(z0:T |S) = p(z0|S)
∏T

t=1 pθ(zt−1|zt,S) (assuming
z0 is fixed given S, so p(z0|S) might be a delta function or a simple prior X ). The log-likelihood
ratio for a path then becomes a sum of single-step log-likelihood ratios:

log
pθ(z0:T |S)
pref (z0:T |S)

=

T∑
t=1

log
pθ(zt−1|zt,S)
pref (zt−1|zt,S)

(16)
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By utilizing Jensen’s inequality and assuming uniform sampling of timesteps t ∼ U(0, T ), we can
get a bound:

LDPO-BridgeStep(θ) ≤− E(S,Yw,Yl),t,zw
t−1,t,z

l
t−1,t

[
log σ

(
βT

(
log

pθ(z
w
t−1|zwt ,S)

pref (zwt−1|zwt ,S)

− log
pθ(z

l
t−1|zlt,S)

pref (zlt−1|zlt,S)

))] (17)

Here, zt−1,t are sampled from pθ(zt−1,t|Y,S).

C.4 APPROXIMATION USING THE FORWARD PROCESS AND MODEL OBJECTIVE

Sampling from the reverse joint pθ(zt−1, zt|Y,S) is still difficult. Diffusion-DPO approximates
the reverse process pθ(x1:T |x0) with the forward noising process q(x1:T |x0). For Markov Bridges,
we are interested in the model’s ability to predict the target sequence Y (or its properties) from an
intermediate state zt. The pre-training objective for the Markov Bridge model ϕθ in EnerBridge-
DPO is given by minimizing a loss related to predicting the target sequence Y given zt,S, t:

Lpretraint(θ) = λtEp(zt|X ,Y)[−vtYT log ϕθ(zt,S, t)] (18)

This is essentially a negative log-likelihood. The key insight from DPO is that the log-likelihood
ratio log pθ(zt−1|zt,S)

pref (zt−1|zt,S) can be related to the difference in the ”energies” or ”losses” assigned by
the models pθ and pref . For Bridge-DPO, we adapt this by considering the ”error” the model ϕθ

makes in predicting the target sequence Y from zt. The term ∥Y − ϕθ(zt,S, t)∥22 represents such
an error term (e.g., L2 loss if ϕθ predicts sequence embeddings, or it can be a proxy for negative
log-likelihood if ϕθ predicts probabilities).

The intermediate states zwt and zlt are sampled from the forward bridge process, conditioned on the
prior sequence X (derived from S) and implicitly on the target sequences Yw and Y l respectively.
The EnerBridge-DPO simplifies this to zt ∼ q(zt|X ,S) for the purpose of the DPO loss, which is a
common simplification in DPO-like objectives where the ”noised” versions are generated from the
data points.

C.5 FINAL BRIDGE-DPO LOSS FORMULATION

Combining these ideas leads to the final Bridge-DPO loss function as:

LBridge−DPO(θ) =− E(Yw,Yl)∼D,t∼U(0,T ),zw
t ∼q(zw

t |X ,S),zl
t∼q(zl

t|X ,S)

log σ(−βTω(λt)(∥Yw − φθ(z
w
t , t)∥22 − ∥Yw − φref(z

w
t , t)∥22

)
−
(
∥Y l − φθ(z

l
t, t)∥22 − ∥Y l − φref(z

l
t, t)∥22

) ) (19)

This loss encourages ϕθ to have a relatively lower error for preferred sequences (Yw) and/or a rela-
tively higher error for dispreferred sequences (Y l) compared to the reference model ϕref , across the
bridge timesteps. This derivation parallels the Diffusion-DPO approach by using model prediction
errors as a proxy for the terms in the DPO objective, adapted to the Markov Bridge framework.

D VISUALIZATION FOR PROTEIN FOLDING

To better show how EnerBridge-DPO designs low-energy sequences, we picked four protein com-
plexes from our test set to look at. Figure 3 compares the folded structures of sequences designed
by EnerBridge-DPO and Bridge-IF with the reference crystal structures. We also used BA-Cycle to
predict the energy of these sequences.
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Figure 3: Folding comparison of designed sequences (in red) and the native sequences (in blue).

Figure 4: Comparison of correlations between experimental ∆∆G and predicted ∆∆G.

E IMPLEMENTATION DETAILS

E.1 STRUCTURE ENCODER

In our framework, the structure-conditioned prior sequence X is generated by a structure encoder
E(S). In EnerBridge-DPO, we use PiFold as the structure encoder.

E.2 PREFERENCE DATA GENERATION DETAILS

To construct the preference dataset Denergy for DPO fine-tuning, sequence pairs were carefully
selected and constructed from the BindingGym and SKEMPI datasets. Specifically, for the Bind-
ingGym dataset, for each protein we selected the top 10% of mutants with the highest scores as
potential ’winners’ and the bottom 10% with the lowest scores as potential ’losers’. We then ran-
domly paired sequences from these two groups, resulting in 47,297 million preference pairs. For
the SKEMPI v2 dataset, we selected mutant sequences from the top 30% and the bottom 30% and
randomly combined them to construct preference pairs, yielding approximately 3,744 preference
pairs.

F VISUALIZATION FOR ∆∆G PREDICTION

Figure 4 presents a comparative analysis of the correlation between experimentally determined
∆∆G values and those predicted by different computational methods. The figure comprises three
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scatter plots, corresponding to Prompt-DDG, BA-DDG, and our proposed EnerBridge-DPO model.
In each scatter plot, the x-axis represents the experimental ∆∆G values, while the y-axis denotes
the ∆∆G values predicted by the respective model. Ideally, the data points should cluster closely
around the diagonal line, indicating a strong agreement between predicted and experimental values.

Visually, the plot for EnerBridge-DPO shows the strongest correlation with experimental data, with
its data points appearing more tightly clustered around the diagonal compared to BA-DDG and
Prompt-DDG. EnerBridge-DPO achieves higher Pearson and Spearman correlation coefficients and
the lowest Root Mean Square Error (RMSE), indicating a smaller overall deviation between its
predictions and the experimental results. Collectively, these metrics suggest that EnerBridge-DPO
demonstrates superior performance in accurately predicting changes in binding free energy upon
mutation compared to the other methods shown.

G BROADER IMPACTS

EnerBridge-DPO can significantly accelerate the design of energetically stable proteins, promising
advances in developing novel therapeutics and biotechnological solutions, while also deepening our
fundamental understanding of protein science. However, thorough experimental validation of all
computationally designed proteins is crucial to ensure their real-world safety and efficacy. The
responsible development and deployment of this AI-driven technology are paramount to harness its
substantial benefits for societal good, particularly in health and sustainability.
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