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ABSTRACT

Synthesizing high-fidelity radar reflectivity from satellite
observations is crucial for weather forecasting and climate
hazard tracking, particularly in regions with sparse radar cov-
erage such as mountainous and oceanic areas. Existing meth-
ods either ensure global consistency but over-smooth details,
or capture details while deviating from the true distribution.
To address this challenge, we propose CasS2R a new cas-
caded framework consisting of deterministic and probabilistic
components. The framework operates through the synergy of
two meticulously designed modules: a Physics-Constrained
Structural Extractor, which captures the macro-scale struc-
ture of the radar field that conforms to physical statistical
distributions; and a Flow-based Distribution Adaptor, pre-
cisely maps the initial macroscopic result to the fine-grained
distribution of radar observations. Comprehensive experi-
ments on two large-scale, real-world datasets demonstrate
that CasS2R significantly outperforms existing baseline
models, not only improve the CSI50 by over 16% but also
achieving a breakthrough in key structural fidelity metrics.

Index Terms— Radar reconstruction, flow matching, me-
teorological observation

1. INTRODUCTION

Meteorological radar observation serves as a critical source
of information for weather condition, playing an essential
role in the observation and early warning of extreme weather
events. However, the deployment of meteorological radars
is highly uneven, with significant gaps over open oceans
and complex mountainous regions. These coverage deficien-
cies create observable blind zones, which severely hinder
maritime navigation safety and impair the capacity for early
warning of sudden-onset hazards in mountainous areas. In
contrast, satellites are not constrained by terrain or environ-
mental limitations, offering continuous large-scale obser-
vation capabilities[1]. Training reconstruction models using
satellite data thus presents a promising approach to mitigating
the absence of radar coverage.
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The success of deep learning has recently spurred signif-
icant advances across meteorological science. In the field of
radar reconstruction, existing methods have diverged into de-
terministic and probabilistic. Deterministic models, primar-
ily based on CNN[2, 3, 4] and Transformer[5] architectures,
excel at capturing the large-scale structure. However, their
optimization via pixel-wise losses (e.g., MSE) will inevitably
causing the blurring of high-frequency details. In contrast,
probabilistic models, particularly diffusion models, excel at
generating small-scale weather phenomena by modeling the
stochasticity of atmospheric processes through sampling from
a learned distribution[6, 7, 8]. However, the unconstrained
stochastic sampling can cause the generated fields to devi-
ate from the real large-scale patterns, compromising structural
accuracy[9]. Consequently, previous methods struggling to
reconcile the accurate reconstruction of global structures
with the realistic synthesis of local stochastic details.

To tackle this challenge, we propose CasS2R a novel
radar reconstruction framework.CasS2R cascades the task
into the reconstruction of the overall global observation and
the refinement of small-scale systems. Specifically, the model
first employs Physics-Constrained Structural Extractor, a de-
terministic module, to establish the overall distribution of the
radar observations. Then, building upon this captured global
distribution, a probabilistic module, Flow-based Distribution
Adaptor, is used to generate small-scale weather phenomena,
through solving Ordinary Differential Equation (ODE). Our
contributions can be summarized as follows:

• We propose a cascaded framework CasS2R which de-
couples radar reconstruction into deterministic global
distribution capture and stochastic small-scale detail
modeling, enabling high-fidelity radar reconstruction.

• CasS2R contains two components: i) Physics-Constrained
Structural Extractor provides a large-scale consistent
estimation of the radar field; and ii) Flow-based Dis-
tribution Adaptor generates high-frequency detailed,
capturing the stochastic nature of convective weather.

• Extensive evaluations on two large-scale dataset shows
that CasS2R achieves a significant improvement of
over 16% in CSI50 over strong baselines.
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Fig. 1. The Framework of CasS2R.

2. RELATED WORK

Geostationary meteorological satellites overcome the terrain
and environmental limitations of radars, enabling large-scale
and continuous Earth observation, providing multi-spectral
information[10]. Existing radar reconstruction approaches
generally fall into two paradigms. Deterministic models,
often based on UNets for spatial feature extraction and trans-
formers for global context modeling[2, 3, 5], have become
the dominant choice for radar reconstruction. However, by
optimizing pixel-wise errors, they inevitably produce over-
smoothed results and fail to capture high-frequency details
of small-scale systems[11]. In contrast, probabilistic models,
such as diffusion and flow-matching models, are particularly
effective at representing the stochasticity of weather[6, 12].
Nevertheless, this stochastic advantage often comes at the ex-
pense of accurately reconstructing deterministic large-scale
observations structures[9]. Thus, existing methods struggle
to reconcile the accurate recovery of macroscopic structures
with the realistic synthesis of microscopic stochastic details,
leaving a critical gap for further exploration.

3. METHODOLOGY

To reconstruct high-fidelity radar observations, we introduce
CasS2R a cascaded framework composed of deterministic
and probabilistic componentsas shown in Figure 1.

3.1. Problem Definition

We formulate the radar reconstruction task as cross-modal
image-to-image translation. Our goal is to learn a recon-
struction model Fθ : RH×W×C → RH×W×1 that transforms
a multi-channel satellite observation X into a corresponding
radar reflectivity field Ŷ . Here, H and W are spatial dimen-
sions, and C is the number of satellite channels. The model
is trained to minimize the divergence between the generated
distribution Ŷ and the real observations Y:

Ŷ = Fθ(X ). (1)

3.2. Physics-Constrained Structural Extractor

To capture the large-scale spatial organization of radar obser-
vations, we design Physics-Constrained Structural Extractor
(PCSE), adopting a ViT module as the backbone[13]. The
multi-channel satellite input X ∈ RH×W×C is first divided
into N non-overlapping patches xi, each of size P × P × C.
Each patch is projected to an embedding z ∈ RD by adopting
a linear layer.

zi = G(xi) + pi, i = 1, . . . , N, (2)

where G denotes the embedding function and pi is the po-
sitional encoding. The sequence {zi}Ni=1 is then fed into a
stacked transformer block:

Zattn = MHSA(LN(Z))+Z, Z ′ = FFN(LN(Z)+Zattn,
(3)

where MHSA denotes multi-head self-attention[14], and FFN
and LN represent a feedforward network and layer normal-
ization, respectively. In this circumstance, z ∈ RD is first
projected into query, key, and value matrices, i.e., Q,K, V ∈
RN×D. The attention weights A ∈ RN×N are then obtained
via the softmax function:

A = softmax
(
QK⊤
√
dk

)
V, (4)

where dk denotes the dimension of each attention head. By
leveraging self-attention mechanism across the entire spatial
domain, the ViT ensures that the reconstructed radar reflec-
tivity preserves coherent storm structures and large-scale pre-
cipitation envelopes.

To balance over-prediction and under-prediction of reflec-
tivity values, we design a physical- constrained loss. Specifi-
cally, it is defined as

LD =
1

n

n∑
i=1

exp
(
atbi

)
· (ŷ′i − yi)

2, (5)

where y and ŷ′ are the ground truth and predicted values, n is
the number of pixels, and a and b are determined by calculat-
ing categorical bias of reflectivity threshold[4].



Model
CONUS3 SEVIR

MAE (↓) SSIM (↑) LPIPS (↓) CSI15 (↑) CSI50 (↑) MAE (↓) SSIM (↑) LPIPS (↓) CSI15 (↑) CSI50 (↑)

SU3plus 0.0705 0.7624 0.5263 0.3319 0.1121 0.0405 0.4376 0.2034 0.6912 0.2989
SRViT 0.0689 0.7916 0.3635 0.4579 0.1332 0.0407 0.4353 0.2034 0.6762 0.3145
BBDM 0.0785 0.7199 0.3316 0.4039 0.1839 0.0458 0.6792 0.1984 0.6712 0.3627
CasS2R 0.0662 0.8245 0.2717 0.4632 0.2573 0.0396 0.6997 0.1862 0.7012 0.4213

Table 1. Quantitative comparison of different models on CONUS3 and SEVIR datasets. Best results are bolded.

3.3. Flow-based Distribution Adaptor

The radar reconstruction results ŷ′ from multi-modal predic-
tion tend to blur in small-scale, reducing their effectiveness.
To capture the strong randomness, exhibited in the small-scale
systems, we design Flow-based Distribution Adaptor (FDA),
which employ flow matching technology. Let y denote the
ground-truth radar observation, c the corresponding initial re-
construction from the deterministic module ŷ′ and satellite
observations X (used as the condition), and x0 ∼ N (0, I) a
noise image. We define a time-dependent interpolation:

xt = (1− t)x0 + ty, for t ∈ (0, 1), (6)

and train a neural network vθ(x, t, c) to approximate the
optimal transport vector field that maps x0 to y under the
guidance of c. Specifically, we minimize the following flow
matching loss:

LCFM = Ex0,y,t

[∥∥∥∥vθ(xt, t, c)−
y − x0

t(1− t)

∥∥∥∥2
]
. (7)

Here, the velocity y−x0

t(1−t) corresponds to the vector that would
transport the sample xt along the shortest path to the target.

At inference time, we adopt Euler’s method for ODE in-
tegration using a fixed number of steps to obtain the refined
observation x(1) ∼ Y . Specifically, we initialize x(0) ∼
N (0, I) and numerically solve the following ODE problem:

dx(t)

dt
= vθ(x(t), t, c), x(0) = x0, (8)

In essence, the procedure operates as an atmospheric simu-
lator, with blurry observations defining synoptic-scale bound-
ary conditions that steer random perturbations toward dynam-
ically consistent fine-scale convective structures.

4. EVALUATION

4.1. Evaluation Settings

• Datasets: We evaluate CasS2R on two real world datasets:
(i) CONUS3[4], containing 82,449 observations from the
GOES-R satellites (ABI infrared channels 7, 9, 13, and
GLM) with corresponding MRMS composite radar re-
flectivity over the United States (2020-2022); and (ii)

SEVIR[15], comprising 11,640 strom events with Verti-
cally Integrated Liquid (VIL) radar data, GOES-16 infrared
channels (6.9 m and 10.7 m), and GLM.

• Baselines: We compare our CasS2R with strong base-
lines that belong to 2 categories: (i) Deterministic models:
SU3plus[2], which leverages the Swin-UNet backbone,
and SRViT[5], which adopts a ViT-based architecture.
(ii) Probabilistic models: BBDM [16] models image-to-
image translation as a stochastic Brownian Bridge process.

• Metrics: To evaluate both the accuracy and physical real-
ism of CasS2R, we employ a comprehensive set of met-
rics including, Mean Absolute Error (MAE) measures per-
pixel numerical deviation. Critical Success Index (CSI) to
assess model’s ability to detect storms of varying severity,
Structural Similarity Index (SSIM) and Learned Perceptu-
alImagePatch Similarity (LPIPS) evaluate the preservation
of storm morphology and textural sharpness.

• Implementation: CasS2R is implmented using PyTorch
and trained on 4 NVIDIA A800 GPUs and a Intel(R)
Xeon(R) Platinum 8358P CPU @ 2.60GHz 100 epochs
with batch size 32. For optimization, we use AdamW with
an initial learning rate of 5× 10−4, scheduled by a OneCy-
cle policy. Each dataset is split chronologically, with the
first 80% for training and the last 20% for testing.

4.2. Overall Performance

Table 1 compares CasS2R with representative models from
two categories in CONUS3 and SEVIR.

• CasS2R consistently outperforms all baselines on both
CONUS3 and SEVIR, reduced LPIPS by 22.05% and
6.55%, while boosting SSIM by 14.58% and 3.02%, and
CSI50 by 39.91% and 16.16%, respectively. In meteo-
rology, high reflectivity values serve as crucial indicators
of severe weather phenomena such as intense convective
storms. The substantial improvement in high-threshold CSI
highlight CasS2R’s ability to accurately reconstruct radar
observations by modeling the interplay between determin-
istic large-scale forcing and small-scale stochasticity.

• While deterministic models achieve low MAE by robustly
capturing large-scale precipitation structures, they fail to re-
cover high-value regions tied to severe convection, yielding
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Fig. 2. Radar reconstruction of different model.

poor CSI50. In contrast, probabilistic models generate re-
alistic details but compromise structural fidelity, leading to
inferior CSI15 in reproducing overall precipitation patterns.

CONUS3

Model MAE (↓) SSIM (↑) LPIPS (↓) CSI15 (↑) CSI50 (↑)

w/o PCSE 0.0756 0.7392 0.3341 0.3516 0.2112
w/o FDA 0.0658 0.7892 0.4579 0.3919 0.1542
CasS2R 0.0662 0.8245 0.2717 0.4632 0.2573

SEVIR

Model MAE (↓) SSIM (↑) LPIPS (↓) CSI15 (↑) CSI50 (↑)

w/o PCSE 0.0462 0.6382 0.2073 0.6791 0.3982
w/o FDA 0.0417 0.5782 0.2137 0.7019 0.3841
CasS2R 0.0396 0.6997 0.1862 0.7012 0.4213

Table 2. Ablation study results on CONUS3 and SEVIR.

4.3. Key Component Assessment

To assess the impact of each design in CasS2R we perform
ablation experiments cross two datasets (Table 2). The results
yield two key insights:

• Removing the Physics-Constrained Structural Extractor
(w/o PCSE) increases MAE and decreases CSI15, indicat-
ing that although the deterministic module struggles with
fine-scale convective features, it plays a crucial role in cali-
brating overall observations and mitigating overestimation.

• Excluding the Flow-based Distribution Adaptor (w/o FDA)
leads to a substantial performance drop in reconstructing
small convective regions-for instance, CSI50 decreases by
21.83% and 9.68% on CONUS3 and SEVIR, highlighting
its importance in capturing fine-scale convective patterns.

4.4. Case Study

Figure 2 presents a cross-model visual comparison of radar
reconstructions on both datasets. In all circumstances,
CasS2R preserves remarkable spatial fidelity and intensity

consistency. Even under highly complex convective patterns,
it accurately captures both global organization and local de-
tails, aligning closely with ground-truth observations. By
contrast, SU3plus and SRViT tend to produce locally blurred
rainfall areas and misplaced storm cores, leading to under-
estimated peak intensities. SRViT outputs further exhibit
noticeable tiling artifacts, likely caused by token-wise de-
coding, which undermines natural transitions and coherence.
BBDM maintains visual plausibility but suffers from spatial
drift, particularly in the temporal evolution of storm centers.
These results highlight the superior capability of CasS2R to
reconstruct radar fields from satellite observations.

4.5. Real-Time Inference Efficiency

The Flow-based Distribution Adaptor uses 100 ODE steps
during inference. On a single NVIDIA A800 GPU, the model
reconstructs a 384×384 radar observation in 12.43 ms, with a
memory footprint of 283 MB. These results demonstrate that
CasS2R is well suited for near-real-time operational settings.

5. CONCLUSION

We propose a cascaded deterministic-probabilistic frame-
work, named CasS2R, for reconstructing radar reflectivity
from satellite observations. Unlike prior approaches that rely
solely on deterministic or probabilistic paradigms, CasS2R
explicitly decouples the task into two complementary stages:
global structure reconstruction and local detail refinement.
Specifically, a deterministic module, establishes the large-
scale radar distribution, while a probabilistic module, gener-
ates fine-scale convective structures by solving ODEs. Ex-
tensive experiments demonstrate that CasS2R outperforms
strong baselines across multiple metrics, achieving up to 16%
improvement in CSI50. Beyond quantitative gains, CasS2R
delivers reconstructions with both high-value weather fea-
tures (e.g., storm cores) and realistic fine-grained struc-
tures. Overall, CasS2R establishes a powerful foundation
for bridging satellite and radar observations.
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