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ABSTRACT

Retrieval-augmented generation (RAG) is a key technique for leveraging external
knowledge and enhancing the factual accuracy of large language models (LLMs).
However, RAG still faces challenges in ensuring fully reliable responses in all
scenarios. To address this, it is essential to identify samples that tend to lead to
unreliable outputs or guide LLMs toward factually correct responses, which ex-
perts then annotate to develop high-quality datasets for refining LLMs. However,
the growing scarcity of such datasets makes their creation challenging. This pa-
per proposes using the vast amount of conversations generated from widespread
LLM usage to build these datasets, with the goal of training LLMs to appropri-
ately handle queries outside its capabilities while providing accurate responses to
manageable ones. Given the impracticality of having experts annotate all conver-
sation records, we introduce AL4RAG, a framework that uses active learning to
select the most suitable conversation samples for annotation, thereby optimizing
model performance within a limited annotation budget. Additionally, recognizing
that traditional active learning methods are not fully compatible with RAG due to
unsuitable distance metrics, we develop a novel sample distance measurement for
RAG active learning. Extensive experiments show that our method consistently
outperforms baselines across multiple metrics.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable performance in di-
verse natural language processing (NLP) tasks, such as text classification (Abburi et al., 2023), sum-
marization (Jin et al., 2024), and question answering (Zhuang et al., 2023). However, they frequently
encounter the issue of output deviations (Huang et al., 2025), which undermines the reliability of
their responses. Retrieval-Augmented Generation (RAG) (Lewis et al., 2020), integrated into leading
models like GPT-4o (Hurst et al., 2024), Deepseek-v3 (Liu et al., 2024) and Claude-3.5 (Anthropic,
2024), aims to tackle this problem. RAG combines a retriever to fetch relevant documents and a
generator to formulate answers, enhancing the model’s reliability by leveraging external knowledge.
Nevertheless, RAG cannot completely eliminate such deviations (Chen et al., 2024; Wood & Forbes,
2024), posing a persistent challenge in ensuring the quality of model-generated content.

The challenge of addressing output deviations highlights the need for systems that can effectively
identify and manage situations prone to unreliable outputs. Our research aims to train models to re-
ject queries outside its capability while ensuring stable and accurate responses to manageable ones,
as illustrated in Figure 1(a). Achieving this goal requires high-quality model conversation datasets
specifically designed to teach the model when to refuse to answer, while also including queries that
the model can answer correctly in order to maintain its capabilities. However, relevant datasets are
exceedingly scarce, and the creation of such datasets is highly challenging due to the need for exten-
sive manual annotation, while the majority of existing model conversation data remains unlabeled.
To address this, we propose leveraging active learning (AL) (Settles, 1995) to screen model conver-
sation records. AL systematically identifies the most informative samples from extensive collections
of unlabeled data, enabling the creation of a small but high-quality human-annotated dataset through
focused manual annotation.
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Based on the provided passages, the 
main concern with the overuse of 
antibiotics is the development of drug-
resistant bacteria …

User query

What is the concern with overuse of
antibiotics?

passage 1: But these drugs don’t work at
all against viruses, such as … the overuse
and misuse of antibiotics helps to create
drug-resistant bacteria …
passage 2: If an antibiotic is taken …
passage 3: Antibiotics are medications …

Retrieved reference

Original model answer

Expected model answer

Based on the provided passages, the
main differences between Tier 3 and Tier
4 engines are: … Tier 4 engines: … Do
not use an exhaust gas recirculation
(EGR) system …

What is the difference between tier 3
and tier 4 engines?

passage 1: … showing the difference be-
tween the Tier 3 engines and the Tier 4
Interim engines … plus the addition of
the Exhaust Gas Recirculation (EGR)
system.
passage 2: Tier 4 refers to a set of …
passage 3: The Tier 1 to 3 standards …

Retrieved reference

Sorry, this question is beyond my ability.

Original model answer

Expected model answer

User query

Based on the provided passages, the 
main concern with the overuse of 
antibiotics is the development of drug-
resistant bacteria …

ras 𝑥𝑥, 𝑦𝑦

Annotatorquery with

Active Learning Annotate 
Reliability Labels

Labeled Set

Preference Set

construct 
with

DPO

LLM

Sample x

Sample y

r e f e r e n c e

q u e r y

a n s w e r

contains

measure similarity

query: What is the difference be-
tween tier 3 and tier 4 engines?

reference: … the difference 
between Tier 3 engines and the 
Tier 4 Interim engines …

chosen: Sorry, this question is 
beyond my ability.

rejected: Based on the given 
passages, the difference …

query: What is the concern with 
overuse of antibiotics?

reference: … the overuse and 
misuse of antibiotics helps to 
create drug-resistant bacteria …

chosen: … the main concern with 
the overuse of antibiotics is …

rejected: Sorry, this question is 
beyond my ability.

RAG Model 
Conversations

(a) An example related to our tasks (b) Overall framework

Figure 1: (a) An example regarding our tasks. In the scenario on the left, the original model provides
an incorrect response to the user; in this case, we expect the model to decline answering the question,
whereas in the scenario on the right, where the original model delivers a correct response, we aim
for it to generate accurate responses more consistently. (b) Overall framework of our approach. The
example of preference set construction is the same as (a).

Unfortunately, existing AL methods perform poorly in the RAG scenario. These methods can be
categorized into two categories: uncertainty-based approaches that select samples with the model’s
prediction uncertainty, and diversity-based approaches that prioritize samples distinct from anno-
tated ones to avoid redundancy. Traditional uncertainty-based methods demonstrate instability when
applied to RAG-related tasks (Tsvigun et al., 2022; Snijders et al., 2023), while existing diversity-
based methods (Maekawa et al., 2022; Xie et al., 2023) fail to consider the unique three-segment
structure of RAG conversation records (e.g., a query, retrieved documents, and a model-generated
response), resulting in insufficient diversity in the collected data. With the advent of LLMs, some
researchers have employed LLMs to measure sample uncertainty (Li et al., 2024), but this approach
requires LLMs to evaluate the uncertainty of all unlabeled samples sequentially, leading to excessive
time and computational costs when applied in practical RAG scenarios. Therefore, developing AL
methods tailored specifically for RAG systems becomes crucial.

To address this gap, this paper proposes AL4RAG, a novel AL strategy specifically designed for
RAG models, as illustrated in Figure 1(b). We improve upon existing diversity-based methods
(Tsvigun et al., 2022; Margatina et al., 2023) by independently considering the various fields of RAG
data, which effectively accommodates the unique nature of RAG data. This approach selectively
identifies the most diverse samples from unlabeled model conversation records. By annotating these
strategically selected samples, we can construct a high-quality human-annotated preference dataset.
However, to construct a preference dataset, it is essential to introduce a refusal option. Yet, in
existing RAG model conversation datasets, such as RAGTruth (Niu et al., 2024), each question
corresponds to only a single answer, which allows for the identification of unreliable outputs but
lacks the option to mark when a model should refuse to answer. To address this challenge, we ask
annotators to assign labels related to output reliability to the selected model conversations. Each
sample is then labeled based on whether its output is reliable, indicating whether the model should
prefer to answer or refuse to respond. This approach enables us to build a dedicated preference
dataset. Using this dataset for model optimization can significantly improve the performance of
RAG models, thereby achieving our intended objectives. In summary, our main contributions are:

• To the best of our knowledge, we are the first to propose an AL framework for RAG con-
texts. Our approach introduces an efficient selection strategy designed to address the dis-
tinctive data patterns inherent in RAG-based datasets.

• We proposed retrieval-augmented similarity (ras) for measuring the similarity between
samples within the unique data patterns of RAG contexts, enabling more accurate mea-
surement of sample distances.
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• We proposed a novel annotation method for constructing preference datasets. With that,
we expanded the RAGTruth dataset (Niu et al., 2024) with responses derived from Llama-
3-8B-Instruct (Grattafiori et al., 2024) and Qwen2.5-7B-Instruct (Team, 2024), and created
the first human preference dataset tailored to the RAG scenario for handling both problem-
atic queries and answerable ones.

• Extensive AL-driven model optimization was conducted on the constructed dataset, with
results demonstrating the effectiveness of our approach.

2 RELATED WORK

2.1 ACTIVE LEARNING

Active learning (AL) is a widely adopted technique for optimizing the trade-off between annota-
tion costs and model performance by selecting the most informative samples from large unlabeled
datasets. Central to AL are three components: a labeling oracle, an unlabeled data pool, and a query
strategy. Common strategies include uncertainty-based methods, which prioritize difficult samples
based on prediction uncertainty (Beluch et al., 2018; Liu et al., 2021; Schröder et al., 2021; Maekawa
et al., 2022; Rouzegar & Makrehchi, 2024), and diversity-based methods, which focus on selecting
diverse samples to enrich datasets (Hasan et al., 2018; Sinha et al., 2019; Agarwal et al., 2020;
Maekawa et al., 2022; Xie et al., 2023).

Active learning (AL) has been effectively applied across various NLP tasks, including text classifi-
cation (Yan et al., 2020; Schröder et al., 2021), text summarization (Gidiotis & Tsoumakas, 2022;
Tsvigun et al., 2022), and question answering (Karamcheti et al., 2021; Padmakumar & Mooney,
2021), achieving significant cost reductions and performance improvements. These approaches have
demonstrated strong potential in optimizing model training efficiency and enhancing overall system
performance. Despite their successes, existing methods often neglect the influence of inherent sam-
ple properties on diversity. Addressing this gap, our work introduces a novel approach for evaluating
sample diversity in the RAG context by comparing similarities across different data fields.

2.2 ACTIVE LEARNING MEETS LLMS

As large language models (LLMs) continue to advance, their integration with AL has become a focal
point for addressing high annotation costs (Tan et al., 2024) and challenges in effective knowledge
utilization (Xu et al., 2024). Currently, the integration of AL with LLMs primarily involves three
approaches: employing traditional active learning methods to select samples for the downstream
processes of LLMs (e.g., fine-tuning, in-context learning, evaluation) (Xie et al., 2023; Margatina
et al., 2023; Bayer & Reuter, 2024), utilizing LLMs to assess sample quality (e.g., uncertainty es-
timation) (Li et al., 2024), and leveraging LLMs to replace human annotators (Xiao et al., 2023;
Kholodna et al., 2024). For instance, Margatina et al. (2023) demonstrated the effectiveness of sim-
ilarity sampling for classification, framing in-context learning’s example selection as a single-round
AL task. Li et al. (2024) proposed LDCAL for text summarization, while Rouzegar & Makrehchi
(2024) balanced cost and accuracy in text classification. Other studies addressed noisy data filtering
(Taneja & Goel, 2024) and explored the use of LLMs as annotators (Zhang et al., 2023), highlighting
both strengths and limitations.

Our research integrates AL into the RAG framework, leveraging its capabilities to address the unique
challenges of fine-tuning LLMs. Specifically, we focus on selecting high-impact samples that en-
hance model performance while considering diversity within the RAG setting. To the best of our
knowledge, this is the first study to explore AL-driven optimization for LLMs in the RAG context.

3 PROBLEM DEFINITION & PRELIMINARIES

3.1 PROBLEM DEFINITION

To enhance a model’s performance under RAG setting, we employ preference optimization based
on the model’s own conversational history. The goal is twofold: to strengthen the model’s ability
to reject queries it cannot answer accurately and consistently, and to improve response stability for
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in-capability queries. Each unlabeled sample consists of a user query q, a reference document r, and
a model-generated answer a. We identify the most informative samples and label them by assessing
consistency between a and r, then use these curated samples for preference optimization, thereby
refining the model under limited annotation resources.

Inspired by prior works (Tsvigun et al., 2022; Margatina et al., 2023), we adopt a diversity-based
approach, evaluating diversity by computing distances among samples to prioritize varied and infor-
mative data. Experimental results in Section 6 and Appendix A also prove its effectiveness.

3.2 DIVERSITY-BASED ACTIVE LEARNING

Given an unlabeled dataset U = {x1, x2, . . . , xn}, feature extraction algorithms (e.g., TF-IDF)
transform each sample xi into a feature vector xi. Initially, k samples are randomly selected to form
the initial selected set S = {s1, s2, . . . , sk}, and these samples are removed from U .

In subsequent rounds, the average distance D between each sample xi in U and all samples in S is
measured as:

D(xi) =
1

|S|

|S|∑
j=1

(1− xi · sj
∥xi∥∥sj∥

) (1)

The top-k samples ranked by D are added to S and subsequently removed from U . This process
repeats until the annotation budget is reached.

Unlike methods that label samples during each selection round, we label all samples in S collectively
at the end, reducing annotators’ waiting time and improving efficiency.

3.3 RAG FRAMEWORK

In the domain of NLP, RAG is a crucial methodology. Suppose a user inputs a natural language
query q, there is a pre-established knowledge repository housing a collection of text chunks ri. The
system computes a set of relevance scores f(q, ri) to screen relevant text chunks from this repository
against q. Next, based on a predefined threshold τ or a predefined number k, the text chunks that
meet the condition f(q, ri) > τ or the top-k relevant chunks are retrieved and ranked, generating a
set R = {r1, r2, . . . , rk}. These retrieved chunks are combined with q into a prompt P = [q;R],
which is the input to an LLM M to generate an answer a = M(P ). By leveraging the retrieved
text, the generated answer attains enhanced contextual accuracy.

Evidently, in contrast to other scenarios, within the RAG framework, each conversation of the model
encompasses multiple attributes, specifically the user-posed query, the retrieved references, and the
answer generated by the model. In this setting, the measurement of distances between samples
becomes more complicated. The direct application of AL can lead to inaccurate measurement of
distances among samples. Hence, it is imperative to develop a method for measuring sample dis-
tances tailored to the RAG scenario.

4 AL4RAG

To train models to address both out-of-capability and in-capability queries while working within
a limited annotation budget, we need to select a subset of the most informative samples from the
model’s conversation records. Next, we will annotate these samples and construct a preference
dataset. Finally, we use these annotated samples for DPO training. The specific process is as follows:

4.1 ACTIVE LEARNING PROCESS

We employ AL to select informative samples from the RAG model’s historical conversation records.
Specifically, the process entails the following steps:

(1) Random selection of initial samples for labeling. Initially, a small subset of samples is selected
randomly from the entire dataset as the selected set.

(2) Measurement of similarity between remaining and selected samples. The second step involves
measuring the similarity between unselected samples and the selected ones. In this step, we use the
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user input (e.g., user query, question) q as the unit for measuring sample similarity.

sim(x, y) =
xq · yq

∥xq∥∥yq∥
(2)

where xq, yq refer to queries of sample x and y.

(3) Measurement of similarity among remaining samples. The same method is used to measure the
similarity among the remaining samples in the unselected set.

(4) Scoring of remaining samples. An IDDS score (Tsvigun et al., 2022) is assigned to each of the
remaining samples based on the equation as follows:

IDDS(x) = λ

∑|U |
j=1 sim(x,xj)

|U |
− (1− λ)

∑|S|
i=1 sim(x,xi)

|S|
(3)

where λ is a hyper-parameter, U refers to the unselected set and S refers to the selected set.

(5) Expansion of the selected set: Move the top %k samples, based on their scores, to the selected
set. Then, proceed back to step (2).

Our goal is to pick samples that are different from the ones already selected but similar to those
not yet chosen, thereby excluding outliers. This process iterates until the target sample count is
achieved. The detailed pseudo code is shown in Appendix D.

4.2 DATA ANNOTATION & PREFERENCE DATASET CONSTRUCTION

After obtaining an informative subset through AL, we need to annotate these samples to construct
a preference dataset. In general, the construction of a preference dataset involves the annotator
choosing the better one among two candidate answers (a1, a2) to an input prompt p. Then, the
better one is set as aw, and the other one is set as al. However, in practical applications of the RAG
model, users typically request only a single response from the model for a given query. As a result,
we are unable to obtain a pair of answers to a query. For our task, we propose a novel method for
dataset construction. Specifically, we ask annotators to assess the reliability of the model’s response
in each RAG conversation and then generate a label h, where h = 0 indicates that the response has
no unreliable elements, and h = 1 indicates that the response contains unreliable element. Here,
“unreliable element” refer to content in the model’s response that is unsupported by or contradict
with the reference, which is also known as faithfulness hallucination in Huang et al. (2025). Next,
we examine the h label of each sample. For samples where h = 0, we designate the model’s original
response as aw and an explicit rejection response as al. Conversely, for samples where h = 1, we
assign the explicit rejection response as aw and the model’s original response as al. By modifying
the feedback strategy, we successfully construct a preference dataset tailored for scenarios involving
only a single model response. The detailed pseudo code can be found in Appendix D.

4.3 FINE-TUNING PROCESS

Inspired by previous work (Khaki et al., 2024), we adopt Direct Preference Optimization (DPO)
(Rafailov et al., 2024) to achieve the aforementioned objectives. DPO fine-tunes LLMs to align
their outputs with human preferences, simplifying optimization by eliminating the need for complex
reward function estimation (Ouyang et al., 2022; Bai et al., 2022).

With the constructed preference dataset, we define two policies: πθ, the model being optimized,
and πo, the original model used as a baseline. The optimization phase involves minimizing a loss
function based on human preferences:

LDPO(θ)=−log σβ
(
log

πθ(aw|p)
πo(aw|p)

− log
πθ(al|p)
πo(al|p)

)
(4)

where σ is the sigmoid function, and β adjusts alignment speed with human preferences.

By fine-tuning the model with DPO, we can achieve the previously outlined optimization objectives,
thereby mitigating model trust issues caused by unreliable responses.

5
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5 AL4RAGRAS

5.1 OBSERVATION
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Figure 2: Part of the experimental results of query
similarity, prompt similarity and ras, which shows
the impact of different similarity measurement on
model performance. The left graph shows the per-
formance of handling out-of-capability queries,
and the graph on the right shows the performance
of handling model-answerable queries.

Conventional sample similarity measurement
based on user input can lead to inaccurate
judgment of sample distances. Classical Active
Learning (AL) has achieved significant success
in both Computer Vision (CV) (Budd et al.,
2021; Tuia et al., 2021; Wang et al., 2023) and
Natural Language Processing (NLP) (Zhang
et al., 2022), with numerous methods leverag-
ing sample diversity to enhance learning effi-
ciency (Shi et al., 2021; Kim et al., 2021; Li
et al., 2022; Jin et al., 2022). In both CV
and NLP tasks such as text classification (Tan
et al., 2021), text summarization (Tsvigun et al.,
2022), semantic parsing (Li et al., 2023), and
information extraction (Duan, 2024), samples
typically consist of a single attribute (e.g., input
images or text), allowing straightforward simi-
larity measurements. In contrast, the RAG sce-
nario involves conversation records with three distinct attributes: user query, retrieved references,
and LLM-generated response. Measuring similarity solely based on user input is inadequate, as un-
reliability in RAG applications often stems from misunderstanding references (Chen et al., 2024).
Combining multiple attributes or using prompt-based similarity also introduces inaccuracies, as
length variations (e.g., long references or template text dominating short queries) artificially inflate
similarity between otherwise distinct samples. To address this, our approach evaluates each attribute
independently, enabling more accurate similarity measurements and clearer sample differentiation,
thereby better capturing the critical role of the query. As shown in Figure 2, our method consistently
outperforms input-based and prompt-based similarity across varying data ratios and tasks, demon-
strating its robustness and adaptability to real-world RAG applications. For detailed experimental
results, please refer to Section 6.2 and Appendix A.

5.2 AL4RAG WITH RETRIEVAL-AUGMENTED SIMILARITY

Similar to the method mentioned previously, we carry out the same series of steps to screen samples.
However, in step (2) and (3), to address the observed issues, we propose retrieval-augmented
similarity (ras), a novel metric explicitly designed for RAG-structured data. It redefines sample
comparison by holistically modeling the multi-faceted nature of RAG samples, comprising a user
query q, retrieved reference documents r, and a generated answer a, where the prompt p = [q; r]
serves as the generator’s input.

Unlike typical AL algorithms, which often treat the input as a single entity (Margatina et al., 2023;
Taneja & Goel, 2024), ras adopts a structured, attribute-wise similarity mechanism. It first com-
putes semantic similarities for the query q and reference r independently, then aggregates them into
an intermediate value. Crucially, ras applies a minimum operation between this aggregate and the
full-prompt similarity, effectively emphasizing the most discriminative attributes and reducing bias
from imbalanced text lengths. This dual strategy ensures robustness in scenarios where lengthy refer-
ences overshadow short queries or templated prompts distort the true relationships between samples.
Simultaneously, it guarantees accurate measurement when queries are similar but references are not.

Formally, given two samples x and y, the ras metric is defined as:

ras(x, y) = min(
xp · yp

∥xp∥∥yp∥
,
1

2
(

xq · yq

∥xq∥∥yq∥
+

xr · yr

∥xr∥∥yr∥
)) (5)

where xp, yp, xq, yq and xr, yr refer to p, q and r embeddings of x and y. Detailed pseudo code is
presented in Appendix D. In the main experiments of this paper, we utilized TF-IDF vectorization.
In the subsequent experiments, we compared the impacts of different vectorization methods on the
final performance of the model.
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6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Tasks & Dataset

reference

query

response

LLM

LLM Annotator 1

LLM Annotator 2

LLM Annotator 3

Majority Vote

Label

mostly consistent

all conflict Human Review

Figure 3: Quality control of LLM-assisted annotation.

We evaluated our method on Ques-
tion Answering, Summary, and Data-
to-text tasks using RAGTruth (Niu
et al., 2024), a high-quality manually
annotated dataset for RAG faithful-
ness, containing queries, references,
model responses, and reliability la-
bels. Since RAGTruth lacks responses
from newer models, we deployed
Llama-3-8B-Instruct and Qwen2.5-
7B-Instruct to generate these, then
used Deepseek-v3-0324 for annota-
tion (replacing manual work due to budget constraints). For quality control (Figure 3), each entry
was annotated three times, with final labels determined by majority vote; conflicting cases (e.g.,
format-noncompliant outputs) were manually verified. To build the preference dataset, we selected
responses from the chosen models, identified their reliability labels, and designated preferred/non-
preferred answers. The resulting dataset (around 3,000 entries per model) was split into train-
ing/validation/test sets at 8:1:1, with each sample containing a query, reference, chosen answer,
and rejected answer. AL strategies were applied solely to the training set.

Model We selected Llama-3-8B-Instruct, Llama-2-7B-chat and Qwen2.5-7B-Instruct as our base
models. However, the standard DPO process relies on an SFT model, but none exists for our task.
Thus, we fine-tuned each model on its corresponding training set. This empowered the model to
better evaluate query complexity and handle rejection-required scenarios.

Baselines To verify the effectiveness of our method, we selected several baselines for comparison,
including Random, Entropy (Wang & Shang, 2014), Coreset (Sener & Savarese, 2017), BLEUVar
(Xiao et al., 2020), Naive IDDS (Tsvigun et al., 2022), LDCAL (Li et al., 2024), IDDSprompt and
IDDSq,r combined. For baseline introductions, please refer to Appendix A.1.

Evaluation Metrics For the performance of refusing to answer out-of-capability queries, we use
Rejection Rate (RR) and F1 score for evaluation. For the performance of correctly answering
queries, we measure it by the text similarity between the model’s responses and the correct reference
answers, including Rouge-L and BERTScore. Furthermore, we employ Spark X1 to evaluate the
Faithfulness of model-generated answers by quantifying their consistency with reference materials.
Specifically, we present the proportion of answers that demonstrate alignment with the references.

Implementation Details For the AL process, we set the number of iteration rounds for both
AL4RAG and IDDS to 5. In the fine-tuning processes, we employ LoRA (Hu et al., 2021) with a
learning rate of 1 × 10−5 and train for one epoch. During the generation phase, we set the temper-
ature of the LLM to 0.7 and report the mean performance and MSE obtained from five independent
generation runs. Note that MSE for Rouge-L and BERTScore are not provided. This is because their
MSE values are exceedingly small, making it impossible to discern differences among the results.

6.2 MAIN RESULTS

In the main context, we report the results of Llama-3-8B-Instruct. For results of Llama-2-7B-chat
and Qwen2.5-7B-Instruct, please refer to Appendix A.2 and A.3.

6.2.1 REJECTION RESULTS

Table 1 compares the performance of models trained on data selected by different active learning
methods in handling out-of-capability queries, evaluated at data usage proportions of 12.5%, 25%,
and 50% with Llama-3-8B-Instruct as the base model. Our method consistently outperforms all
baselines across all data ratios for both models. Interestingly, as data proportion increases, our

7
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Table 1: Overall rejection performance of different algorithms under different data proportions when
applied to Llama-3. The best results are bolded, and the second-best results are underlined.

Algorithms 12.5% 25% 50%
RR F1 RR F1 RR F1

Random 23.04±0.03 28.25±0.06 23.04±0.01 27.60±0.05 24.02±0.24 28.13±0.42

Entropy 26.96±0.01 30.47±0.00 23.53±0.01 27.78±0.04 23.53±0.27 28.27±0.47

Coreset 26.96±0.13 30.19±0.09 25.98±0.21 31.06±0.21 22.06±0.01 25.55±0.00

BLEUVar 25.00±0.10 28.50±0.16 26.96±0.08 30.85±0.06 25.49±0.06 31.09±0.12

Naive IDDS 25.00±0.13 30.32±0.16 22.55±0.02 26.58±0.05 23.04±0.06 26.87±0.09

LDCAL 23.04±0.12 27.12±0.06 25.98±0.03 31.24±0.00 28.43±0.06 32.14±0.08

IDDSprompt 25.49±0.21 29.73±0.10 23.53±0.00 26.38±0.00 24.02±0.08 27.77±0.05

IDDSq,r combined 25.00±0.10 29.43±0.11 23.04±0.06 27.42±0.04 19.61±0.15 23.61±0.14

AL4RAG 27.45±0.09 32.29±0.04 25.98±0.03 30.52±0.00 23.53±0.04 28.81±0.04

AL4RAGras 31.37±0.13 35.37±0.18 30.39±0.21 34.20±0.13 28.43±0.00 33.76±0.02

Table 2: Overall stability performance of various algorithms across different data proportions when
applied to Llama-3. The best results are bolded, and the second-best results are underlined.

Algorithms 12.5% 25% 50%
Rouge-L BERTScore Faithfulness Rouge-L BERTScore Faithfulness Rouge-L BERTScore Faithfulness

Random 33.83 50.97 74.53±0.01 33.19 50.13 71.97±0.00 33.31 50.48 74.96±0.04

Entropy 33.62 51.09 69.05±0.00 33.23 50.56 74.24±0.03 33.19 50.51 72.45±0.06

Coreset 33.59 50.82 74.78±0.03 33.59 50.57 71.03±0.05 33.25 50.08 74.82±0.01

BLEUVar 33.38 50.25 74.16±0.10 33.28 50.27 72.37±0.03 33.63 50.99 74.82±0.01

Naive IDDS 33.74 50.74 73.14±0.00 32.92 49.71 74.74±0.03 32.64 50.01 73.62±0.06

LDCAL 33.26 50.60 74.54±0.05 33.67 50.44 74.75±0.01 33.71 50.56 74.79±0.07

IDDSprompt 33.37 50.44 73.87±0.04 32.59 49.33 72.30±0.01 33.05 50.04 69.93±0.11

IDDSq,r combined 33.61 50.66 73.47±0.02 33.23 50.35 72.88±0.02 34.10 51.37 68.12±0.06

AL4RAG 33.65 50.56 70.56±0.02 33.60 50.96 73.65±0.00 33.71 50.97 73.76±0.07

AL4RAGras 34.15 51.13 75.11±0.05 33.73 50.98 75.33±0.01 33.40 50.36 75.25±0.02

method’s performance slightly declines while baselines improve, suggesting our method effectively
selects impactful samples under smaller proportions, reducing noise. Additionally, all AL algorithms
perform well at 12.5% and outperform random selection of 50% data, indicating AL’s effectiveness
with small proportions by capturing useful samples. As proportion increases, AL’s advantage over
random selection diminishes; some are even surpassed at 50%. However, our method maintains an
edge, demonstrating its viability at high proportions.

6.2.2 STABILITY RESULTS

Table 2 demonstrates the performance of models trained on data selected by different active learn-
ing methods, in ensuring accurate responses to questions that fall within the model’s capacity. It can
be seen that our method comprehensively outperforms the baseline methods when the data ratios
are 12.5% and 25%, regardless of whether it is the traditional similarity metrics or the faithfulness
evaluated by the LLM. When the data ratio is 50%, our method still maintains the lead in terms of
faithfulness, and also demonstrates a strong performance in traditional metrics. Notably, random
selection performs remarkably well across all data ratios, especially in terms of faithfulness, outper-
forming most AL methods. However, our method consistently surpasses random selection, which
further highlights the advancement of our method. Additionally, it can be observed that there is no
obvious correlation between faithfulness and traditional similarity metrics. This further highlights
the need for new text quality evaluation metrics in the era of LLMs.

6.3 ABLATION STUDY

In the ablation experiments, we modify the terms involved in the weighted-average part (i.e.,
xq·yq

∥xq∥∥yq∥ and xr·yr

∥xr∥∥yr∥ ) of equation 5. Specifically, we investigated the individual and combined
effects of the components (i.e., question, reference, answer). We conducted experiments under a
quarter of the Llama-3-8B-Instruct training set, with the results presented in Table 3. It can be seen
that including query and reference yields optimal model performance in both tasks. Specifically,
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Table 3: Effect of different components on model performance. The best results are bolded, and the
second-best results are underlined.

Components Rejection Stability
query reference answer RR F1 Rouge-L BERTScore Faithfulness
✓ × × 27.94±0.01 31.96±0.01 32.81 49.53 72.78±0.04

× ✓ × 26.96±0.18 31.33±0.16 32.87 49.97 74.67±0.02

× × ✓ 21.57±0.21 25.08±0.15 33.18 50.07 72.12±0.02

✓ × ✓ 20.10±0.00 24.21±0.02 33.66 50.64 73.28±0.06

× ✓ ✓ 24.02±0.24 28.50±0.24 32.91 49.95 74.13±0.04

✓ ✓ ✓ 23.04±0.15 27.44±0.23 33.59 50.57 75.11±0.09

✓ ✓ × 30.39±0.21 34.20±0.13 33.73 50.98 75.33±0.01

Table 4: The impact of different vectorization methods on model performance under a quarter of the
data volume. The best results are bolded.

Methods Rejection Stability
RR F1 Rouge-L BERTScore Faithfulness

TF-IDF 30.39±0.21 34.20±0.13 33.73 50.98 75.33±0.01
Sentence-BERT 23.53±0.19 27.59±0.17 32.81 49.93 72.85±0.03

stella 25.49±0.06 28.97±0.07 33.29 50.48 73.51±0.04

with other components identical, models using reference info consistently outperform those with-
out in rejection tasks. Though the reference-only model does not outperform the query-only one,
this does not weaken the reference’s contribution to rejection performance. Additionally, query and
reference both significantly impact stability, highlighting their key roles. Notably, incorporating the
answer usually worsens performance, indicating interference. Thus, we advocate combining query
and reference. We further explored the impact of diverse data ratios and training steps on model
performance, and the results are presented in Appendix A.4 and A.5.

6.4 IMPACT OF DIFFERENT VECTORIZATION METHODS

To explore the influence of different vectorization methods on the model performance, we selected
two pre-trained text embedding models for comparison. One is Sentence-BERT (Reimers, 2019),
which is widely used in AL research. The other one is stella1, a 1.5B model ranked highly on the
MTEB (Muennighoff et al., 2022) leaderboard2. Table 4 shows the performance of TF-IDF and
these two text embedding models with a quarter of the data on Llama-3-8B-Instruct. It can be seen
that TF-IDF significantly outperforms the two pre-trained models in both tasks. This discrepancy
likely stems from fundamental differences in their approach: pre-trained models focus on capturing
deep semantic relationships, while TF-IDF emphasizes surface-level text form and structure. This
distinction allows TF-IDF to better differentiate samples with similar meanings but varying expres-
sions and labels, making it particularly effective at identifying fine-grained variations. Moreover, the
performance of stella is better than that of Sentence-BERT in both tasks, which indicates that more
advanced text embedding models can better distinguish samples, in line with intuitive expectations.

7 CONCLUSION

In this work, we introduce AL4RAG, the first AL framework for RAG, proposing an effective se-
lection strategy tailored to the unique data patterns of RAG. To improve sample differentiation,
we develop retrieval-augmented similarity (ras), enabling more accurate measurement of sample
distances. Additionally, with our proposed annotation method, we expand the RAGTruth dataset
and construct the first human preference dataset for RAG, allowing models to handle both prob-
lematic and answerable queries effectively. Extensive AL-driven optimization on the constructed
dataset demonstrates that our approach consistently outperforms baselines, enhancing both response
stability and the model’s ability to reject unreliable queries. These contributions provide a strong
foundation for advancing RAG-based learning and optimizing LLMs with external knowledge.

1https://huggingface.co/dunzhang/stella_en_1.5B_v5
2https://huggingface.co/spaces/mteb/leaderboard
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A ADDITIONAL EXPERIMENTAL DETAILS

Experiments of Llama-2-7B-chat and Qwen2.5-7B-Instruct are carried out on eight NVIDIA RTX
3090 GPUs, and experiments of Llama-3-8B-Instruct are conducted on four NVIDIA RTX A6000
GPUs. In terms of stability performance, we present the results of the ROUGE family and
BERTScore for Llama-2-7B-chat and present the same metric as Llama-3-8B-Intruct with faith-
fulness evaluated by Deepseek-v3 for Qwen2.5-7B-Instruct.

A.1 INTRODUCTION OF THE COMPARED BASELINES

We present a brief introduction of the compared baselines below. Among these baselines, Entropy
and BLEUVar are uncertainty-based, Coreset and IDDS are diversity-based, and LDCAL combines
both uncertainty and diversity.
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Table 5: Overall rejection performance when base model is Llama-2-7B-chat. The best results are
bolded, and the second-best results are underlined.

Algorithms 12.5% 25% 50%
RR F1 RR F1 RR F1

Random 18.52±0.02 29.29±0.06 18.87±0.03 29.90±0.05 20.46±0.04 31.88±0.07

Entropy 19.40±0.01 30.38±0.02 20.99±0.08 32.52±0.13 20.99±0.05 32.40±0.10

Coreset 19.05±0.04 29.80±0.07 18.17±0.00 29.30±0.00 21.19±0.02 32.90±0.03

BLEUVar 19.05±0.18 29.50±0.34 20.28±0.00 31.63±0.01 20.99±0.02 32.49±0.02

Naive IDDS 20.11±0.01 31.74±0.03 20.99±0.08 32.67±0.14 20.99±0.05 32.29±0.08

LDCAL 16.51±0.02 27.11±0.05 17.96±0.00 28.36±0.01 16.32±0.01 27.98±0.02

IDDSprompt 19.40±0.07 30.61±0.12 18.69±0.09 29.80±0.15 20.11±0.09 31.27±0.16

IDDSq,r combined 19.75±0.00 31.11±0.01 20.46±0.01 32.27±0.03 18.34±0.00 29.21±0.00

AL4RAG 19.05±0.07 30.03±0.13 18.87±0.06 29.43±0.12 20.63±0.02 32.38±0.04

AL4RAGras 23.46±0.04 35.43±0.06 22.93±0.06 35.53±0.14 21.69±0.01 33.36±0.02

Table 6: Overall stability performance when base model is Llama-2-7B-chat. The best results are
bolded, and the second-best results are underlined.

Algorithms 12.5% 25% 50%
Rouge-L Rouge-1 Rouge-2 BERTScore Rouge-L Rouge-1 Rouge-2 BERTScore Rouge-L Rouge-1 Rouge-2 BERTScore

Random 20.68 29.02 14.41 28.34 20.07 28.38 13.86 27.66 20.52 29.14 14.50 28.36
Entropy 20.60 29.28 14.40 29.09 21.59 30.15 15.25 30.00 20.37 29.08 14.08 28.10
Coreset 20.30 28.92 14.18 28.49 20.78 29.01 14.50 28.67 20.69 29.27 14.63 28.69
BLEUVar 19.75 28.48 13.65 27.38 21.62 30.46 15.33 29.89 20.46 28.99 14.13 28.21
Naive IDDS 20.49 29.07 14.47 28.75 20.65 29.06 14.24 29.05 19.80 27.83 13.85 27.67
LDCAL 14.82 20.65 9.54 18.65 15.96 22.11 10.81 20.57 14.45 19.82 9.21 18.20
IDDSprompt 20.96 29.69 14.88 28.90 20.67 29.15 14.44 28.64 20.00 28.79 13.95 28.02
IDDSq,r combined 20.70 29.18 14.38 28.47 19.92 28.10 13.66 27.52 20.69 28.95 14.35 28.18

AL4RAG 20.93 29.74 14.57 29.60 21.02 29.57 14.61 29.37 21.44 30.64 14.81 29.64
AL4RAGras 22.23 31.17 15.63 30.90 22.12 31.08 15.81 31.01 21.96 31.45 15.28 30.82

• Random: The samples for annotation are randomly selected all at once.

• Entropy (Wang & Shang, 2014): An AL strategy that selects samples with the highest
prediction uncertainty, measured by maximum entropy, to improve model performance.

• Coreset (Sener & Savarese, 2017): Select a small, representative subset of data that ap-
proximates the entire dataset’s distribution for efficient learning.

• BLEUVar (Xiao et al., 2020): Use BLEU variance to prioritize samples with high uncer-
tainty by treating documents as points in a high-dimensional space.

• Naive IDDS (Tsvigun et al., 2022): Select samples dissimilar to labeled ones but similar
to unlabeled ones, based on document embeddings.

• LDCAL (Li et al., 2024): Employ LLMs (originally GPT-3.5, we use Deepseek-v3 instead)
to partition the data and select samples with a strategy that computes the average certainty
gain.

• IDDSprompt: Use prompt similarity, incorporating queries, references, and template text, as
the sample similarity measure, with IDDS as the query strategy.

• IDDSq,r combined: Similar to the above method, but only concatenate the query and the ref-
erence, and use the similarity of this part as the sample similarity.

A.2 MAIN RESULTS FOR LLAMA-2-7B-CHAT

To evaluate the effectiveness of our method on less capable base models, we applied it to Llama-
2-7B-chat. Table 5 and Table 6 present the performance of models trained on data selected by
different active learning methods. For the ability of rejecting queries outside the model’s capability,
our method consistently outperforms all baselines across various data proportions. Notably, similar
to Llama-3, our method achieve the best performance when the data ratio is 12.5%, again demon-
strating its superiority. It should be noted that the performance of LDCAL on Llama-2 is not as good
as that on Llama-3. We believe that this is because Llama-2 itself has relatively weaker capabilities,
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Table 7: Overall rejection performance when base model is Qwen2.5-7B-Instruct. The best results
are bolded, and the second-best results are underlined.

Algorithms 12.5% 25%
RR F1 RR F1

Random 23.08±0.00 32.73±0.00 23.08±0.00 32.73±0.00

Entropy 23.08±0.00 32.54±0.03 24.36±0.03 35.19±0.07

Coreset 25.64±0.03 35.39±0.05 23.08±0.10 32.95±0.14

BLEUVar 23.85±0.02 33.45±0.06 24.62±0.05 34.39±0.10

Naive IDDS 24.36±0.03 35.50±0.06 24.36±0.03 34.20±0.04

LDCAL 25.64±0.01 36.87±0.05 24.62±0.02 34.57±0.05

AL4RAGras 26.92±0.03 37.83±0.06 26.92±0.03 38.18±0.07

Table 8: Overall stability performance when base model is Qwen2.5-7B-Instruct. The best results
are bolded, and the second-best results are underlined.

Algorithms 12.5% 25%
Rouge-L BERTScore Faithfulness Rouge-L BERTScore Faithfulness

Random 41.82 60.38 57.56±0.04 41.78 60.53 56.83±0.03

Entropy 41.92 60.43 58.18±0.03 41.73 60.42 60.40±0.02

Coreset 41.44 60.03 58.92±0.01 41.49 60.13 61.01±0.01

BLEUVar 41.55 60.14 58.55±0.03 41.56 60.27 59.66±0.05

Naive IDDS 41.79 60.77 58.79±0.05 41.85 60.52 60.15±0.00

LDCAL 41.95 60.40 59.90±0.04 42.04 60.72 61.13±0.02

AL4RAGras 42.01 60.65 61.01±0.03 41.97 60.81 61.62±0.06

and the more difficult samples selected by LDCAL will confuse the model, resulting in a deteriora-
tion of its performance. As for the ability of ensuring accurate responses, our method consistently
outperforms all baselines across various data proportions. Notably, similar to the rejection task, it
achieves peak performance at a data ratio of 12.5%, a trend also observed in both IDDS-variant
methods. This suggests that these methods can effectively identify informative samples even with a
limited amount of data, ensuring efficient model optimization. Among them, our approach exhibits
the most significant advantage, further demonstrating its effectiveness in stability performance.

A.3 MAIN RESULTS FOR QWEN2.5-7B-INSTRUCT

To verify the effectiveness of our method on other model series, we conducted experiments on
Qwen2.5-7B-Instruct with data proportions to be 12.5% and 25%. Table 7 and Table 8 present the
performance of models trained on data selected by different active learning methods. Our method
still maintain its superiority in both rejection performance and stability performance, demonstrating
its effectiveness and generalizability across different model series.

A.4 ABLATION STUDY ON DATA RATIOS

Figure 4 shows the performances of models trained via DPO with varying data ratios. Our method
is used for data selection. It can be observed that training with a small amount of data using DPO
can not only strengthen the rejection performance of the SFT model but also significantly improve
its accuracy in answering questions within its ability. As the amount of training data increases,
the model’s ability to learn to refuse to answer questions during the fine-tuning process will first
strengthen and then start to decline. When the proportion of training data reaches 100%, the rejection
performance of the model is already much worse than that of the SFT-only model. Regarding the
performance of answering questions within the model’s ability, as the proportion of data increases,
the performance of the model also shows a trend of first increasing and then decreasing. This is
because the data selected by our method has almost no noise when the data proportion is small, but
when the data proportion increases, the noise will also increase, leading to a decline in the model’s
performance. Moreover, the model trained with all the data using DPO still significantly outperforms
the SFT-only model, which demonstrates the excellent effectiveness of DPO in this aspect.
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Figure 4: Ablation study on data ratios. We compared the performances of models trained via
DPO with varying data ratios. (a) Rejection rate of rejection performance; (b) F1 score of rejection
performance; (c) Faithfulness of stability performance.
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Figure 5: Ablation study on training steps. We compared the performances of the original Llama-
2-7B-chat model, the full-data SFT model, the full-data DPO-trained model, and the model trained
via DPO with 25% data selected by our method. (a) Rejection rate of rejection performance; (b)
Rouge-L of stability performance; (c) BERTScore of stability performance.

Figure 5(a) compares rejection performance across Llama-2-based models: the original model, a
fine-tuned model (100% training data), a DPO-trained model (100% training data), and a DPO-
trained model (25% training data, selected by our method). The model trained via DPO with data
selected by our method achieves the best refusal performance, and the SFT model performs second-
best, while the model trained via DPO with 100% data performs worst after the original model.
This highlights that fine-tuning equips models with the ability to reject answering out-of-capability
queries. Moreover, DPO training with a small amount of high-quality data further improves this
capability, while training with a noisy dataset greatly weakens it. Compared to baselines, our method
is the only one that consistently outperforms SFT in all data proportions, highlighting its superiority.

Figures 5(b) and 5(c) compare the stability performance of different training approaches based on
Llama-2, including the original model, the SFT model trained on 100% of the training data, a DPO-
trained model using 100% of the training data, and a DPO-trained model using only 25% of the
data selected by our method. While fine-tuning achieves strong rejection capabilities, it significantly
reduces stability compared to the original model, indicating a trade-off between the two objectives.
In contrast, DPO training with 100% of the data reduces rejection performance compared to the
SFT model but significantly improves stability, suggesting that optimizing for preference learning
helps maintain correct answers. Furthermore, DPO training with 25% data selected by our method
improves stability without compromising rejection performance, demonstrating that our approach
effectively balances both goals and enhances the model’s overall robustness.
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B IMPACT STATEMENT

Our work proposes a method for efficiently selecting data samples for model training, which can
make more effective use of computing resources and further contribute to sustainable development.
However, there may be potential social consequences of our work. In the context of data privacy,
the use of model conversation records is a critical concern. As we rely on these records to train and
optimize the model, there is a potential risk of exposing sensitive user information. If proper security
measures are not in place, this could lead to privacy breaches, where personal details, opinions, or
interactions captured in the conversations might be accessed without authorization.

C PROMPTS

Prompt for Annotating Faithfulness
This is the “question”, “reference” and “generated answer” fields in my data. “generated answer”
is the content that the model answers the “question” according to the “reference”. Your task is to
check this content and determine whether “generated answer” correctly answers the “question” with
reference to the “reference”. If so, output “1”; if not, output “0”. Do not output any other content.
question: {question}
reference: {reference}
generated answer: {answer}
Output:

Prompts for Answer Generation
Question Answering
Below is a question:
{question}
Below are related passages:
{reference}
Your task is to answer the question strictly based on the related passages.
In case the passages do not contain the necessary information to answer the question, please reply
with: “Unable to answer based on given passages.”
If you cannot answer the question precisely, please reply with: “Sorry, this question is beyond my
ability.”
Output:

Summarization
Below are some news:
{reference}
Your task is to write a summary of the news.
If you cannot summarize the news precisely, please reply with: “Sorry, this question is beyond my
ability.”
Output:

Data-to-text Writing
Your task is to write an objective overview about the following local business based only on the
provided structured data in the JSON format.
You should include details and cover the information mentioned in the customers’ review. The
overview should be 100 - 200 words. Don’t make up information.
If you cannot summarize the data precisely, please reply with: “Sorry, this question is beyond my
ability.”
Below are the structured data:
{reference}
Output:
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D ALGORITHMS OF AL4RAG

Algorithm 1 AL4RAG: Sample Selection Algorithm for RAG Context
Require: The entire dataset D, user input q, hyper-parameter λ, the proportion k of samples to be

expanded each time, the expected number of samples in the selected set N
Ensure: The selected sample set S after step-by-step expansion

1: Initialize the selected sample set S = ∅
2: Randomly select a small subset S′ from the dataset D as the initial selected sample set
3: S = S′

4: D = D − S′ ▷ Remove the selected samples from the dataset
5: while D is not empty and |S| < N do ▷ Step (2): Measure the similarity between unselected

samples and selected samples
6: for each unselected sample x in D do
7: for each selected sample y in S do
8: xq ← Obtain the query representation of sample x
9: yq ← Obtain the query representation of sample y

10: sim(x, y)← xq·yq

∥xq∥∥yq∥
11: end for
12: end for ▷ Step (3): Measure the similarity among unselected samples
13: for each unselected sample x in D do
14: for each unselected sample z in D where z ̸= x do
15: xq ← Obtain the query representation of sample x
16: zq ← Obtain the query representation of sample z
17: sim(x, z)← xq·zq

∥xq∥∥zq∥
18: end for
19: end for ▷ Step (4): Score the remaining unselected samples
20: for each unselected sample x in D do
21: sum simU ← 0
22: for each unselected sample xj in D do
23: sum simU ← sum simU + sim(x, xj)
24: end for
25: simU ← sum simU

|D|
26: sum simS ← 0
27: for each selected sample xi in S do
28: sum simS ← sum simS + sim(x, xi)
29: end for
30: simS ← sum simS

|S|
31: IDDS(x)← λ · simU − (1− λ) · simS

32: end for ▷ Step (5): Expand the selected sample set
33: Sort the samples in D in descending order according to their IDDS scores
34: Select the top k% of the samples, denoted as set E
35: S ← S ∪ E
36: D ← D − E
37: end while
38: return S
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Algorithm 2 Preference Dataset Construction for Single-Response RAG Model
Require: A set of samples obtained through Active Learning (AL), a RAG model, annotators
Ensure: A preference dataset P

1: Initialize the preference dataset P = ∅
2: for each sample s in the set of samples obtained through AL do
3: p← s.prompt ▷ Get the input prompt p from sample s
4: r ← s.response ▷ Get the model’s response r from sample s
5: h← annotators.assessReliability(r) ▷ Assess Reliability labels
6: areject ← generateExplicitRejectionResponse() ▷ Generate an explicit rejection response
7: if h = 0 then
8: aw ← r, al ← areject
9: else

10: aw ← areject, al ← r
11: end if
12: P ← P ∪ {(p, aw, al)} ▷ Add the pair (p, aw, al) to the preference dataset
13: end for
14: return P

Algorithm 3 Sample Screening with Retrieval-Augmented Similarity (RAS)
Require: The entire dataset D, hyper-parameter λ, the proportion k of samples to be expanded each

time, the expected number of samples in the selected set N
Ensure: The selected sample set S after step-by-step expansion

1: Initialization ▷ The initialization steps are the same as those of Algorithm 1.
2: while D is not empty and |S| < N do ▷ Step (2): Measure the retrieval-augmented similarity

between unselected samples and selected samples
3: for each unselected sample x in D do
4: xq ← Obtain the query representation of sample x
5: xr ← Obtain the reference representation of sample x
6: xp ← Combine xq and xr to form the prompt representation of sample x
7: for each selected sample y in S do
8: yq ← Obtain the query representation of sample y
9: yr ← Obtain the reference representation of sample y

10: yp ← Combine yq and yr to form the prompt representation of sample y
11: simq ← xq·yq

∥xq∥∥yq∥
12: simr ← xr·yr

∥xr∥∥yr∥
13: simp ← xp·yp

∥xp∥∥yp∥
14: ras(x, y)← min(simp,

1
2 (simq + simr))

15: end for
16: end for ▷ Step (3): Measure the retrieval - augmented similarity among unselected samples
17: for each unselected sample x in D do
18: Obtain xq,xr,xp ▷ The same representation obtainment for sample x as Step (2).
19: for each unselected sample z in D where z ̸= x do
20: zq ← Obtain the query representation of sample z
21: zr ← Obtain the reference representation of sample z
22: zp ← Combine zq and zr to form the prompt representation of sample z
23: simq ← xq·zq

∥xq∥∥zq∥
24: simr ← xr·zr

∥xr∥∥zr∥
25: simp ← xp·zp

∥xp∥∥zp∥
26: ras(x, z)← min(simp,

1
2 (simq + simr))

27: end for
28: end for
29: Subsequent steps ▷ The subsequent steps are the same as those of Algorithm 1, including

scoring and expanding the set.
30: end while
31: return S
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