
Under review as a conference paper at ICLR 2021

LEVERAGING THE VARIANCE OF RETURN SEQUENCES
FOR EXPLORATION POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces a novel method for constructing an upper bound for ex-
ploration policy using either the weighted variance of return sequences or the
weighted temporal difference (TD) error. We demonstrate that the variance of the
return sequence for a specific state-action pair is an important information source
that can be leveraged to guide exploration in reinforcement learning. The intuition
is that fluctuation in the return sequence indicates greater uncertainty in the near
future returns. This divergence occurs because of the cyclic nature of value-based
reinforcement learning; the evolving value function begets policy improvements
which in turn modify the value function. Although both variance and TD er-
rors capture different aspects of this uncertainty, our analysis shows that both can
be valuable to guide exploration. We propose a two-stream network architecture
to estimate weighted variance/TD errors within DQN agents for our exploration
method and show that it outperforms the baseline on a wide range of Atari games.

1 INTRODUCTION

Having a good exploration policy is an essential component of achieving sample efficient reinforce-
ment learning. Most RL applications use two heuristics, visitation counts and time, to guide explo-
ration. Count-based exploration (Kocsis & Szepesvári, 2006) assumes that it is worth allocating the
exploration budget towards previously unexplored actions by awarding exploration bonuses based
on action counts. Time-based exploration (Kaelbling et al., 1996) is usually implemented using a
Boltzmann distribution that reduces exploration during later stages of the learning process. This
paper presents an analysis of the benefits and drawbacks of weighted sequence variance for guid-
ing exploration; we contrast the performance of weighted variance with the more familiar weighted
temporal difference (TD) error.

Our intuition about the merits of weighted variance as a heuristic to guide exploration is as follows.
Imagine that the returns are being summed in a potentially infinite series. Weighted variance can
be computed online in order to estimate the convergence speed of the series for a specific state-
action pair. We construct an upper bound using uncertainty, modeled as the weighted standard
deviation, as an exploration bonus to guide action selection. Fluctuation in the return sequence may
foretell greater uncertainty in the near future returns that should be rectified through allocation of
the exploration budget. Value-based RL algorithms are particularly susceptible to divergence, since
improvements in the value function result in rapid policy changes which in turn affect the value
estimation. Unlike event counts, weighted variance is more sensitive to the dynamics of the return
sequence; if multiple visitations yield consistent reward, weighted variance will quickly prioritize a
different state-action sequence even if the total event counts are smaller.

However, computing weighted variance within a deep reinforcement learning framework is a chal-
lenging problem, due to the instability of deep neural networks. Simply computing the variance
directly from output of DQN risks overestimating the error. The second contribution of the paper
is introducing two-stream network architecture to estimate either weighted variance or TD errors
within DQN agents. Our new architecture (Variance Deep Q Networks) uses a separate σ stream to
estimate a weighted standard deviation of the outputs from the original stream.

1

Under review as a conference paper at ICLR 2021

2 RELATED WORK

Several groups have proposed strategies for balancing exploration/exploitation in deep reinforce-
ment learning including 1) extensions on count-based methods (Bellemare et al., 2016; Ostrovski
et al., 2017; Tang et al., 2017); 2) noise injection techniques (Fortunato et al., 2018; Plappert et al.,
2018); 3) improving uncertainty estimation (Osband et al., 2016; Nikolov et al., 2019); 4) driving
exploration with intrinsic motivation (Chentanez et al., 2005; Pathak et al., 2017) and 5) entropy-
guided architectures (Haarnoja et al., 2017; Hazan et al., 2019). Our proposed weighted-variance
guided exploration technique is a compatible addition to some of these other techniques (see Sec-
tion 6 for further details).

Moving from tabular to deep reinforcement learning makes the problem of estimating quantities
such as counts and variance more challenging. Ostrovski et al. (2017) showed how count-based
techniques could be generalized to neural networks by learning a density model on state sequences;
pseudocounts for states are then derived from the density model’s recoding probability. In contrast
our model learns the weighted variance over the return sequence rather than the state sequence.

Bootstrapped DQN (Osband et al., 2016) uses the classic bootstrap principle to estimate uncertainty
over Q-values. Agent actions are selected using a single Q function sampled from the posterior dis-
tribution. Rather than dithering like noise based models, bootstrapped DQN promotes deep explo-
ration by maintaining policy continuity with regards to the single sampled Q-function. Uncertainty
in our proposed architecture is quantified by the weighted standard deviation of the return sequences
instead of through data partitions, but like Bootstrapped DQN, our architecture uses multiple (two)
heads.

The use of randomness or noise to drive exploration is a common theme across many approaches.
NoisyNets (Fortunato et al., 2018) directly injects noise into the weights of the neural networks; the
parameters of the noise are learned in combination with the network weights. Like NoisyNet, our
uncertainty is learned directly by the network, reducing the need for extra hyperparameters.

Prior work has also analyzed the dynamics of value functions in reinforcement learning. Sutton &
Barto (2018) show how policy and value functions change throughout the learning process. Like
them, we believe that the variation of the sequence is predictive of the uncertainty of the near future
returns. Variation in the return sequence can be modeled as a slower convergence trend layered
with transient fluctuations. Our method builds on this finding; see Appendix B for an empirical
analysis showing how weighted variance reacts to the dynamics of raw, smoothed, and residual
return sequences.

3 BACKGROUND

Our aim is to learn an action policy for a stochastic world modeled by a Markov Decision Process
by balancing the exploration of new actions and the exploitation of actions known to have a high
reward. This is done by learning a value function (Q(s, a)) using the discounted return information
(G(s, a)) and learning rate (α):

Q(s, a) = Q(s, a) + α · (G(s, a)−Q(s, a)) (1)

Actions are selected using the learned value function. This paper illustrates how our weighted
variance exploration approach can be integrated into agents using deep Q-learning.

Deep Q Networks (Mnih et al., 2015) utilize deep neural networks as approximators for action-
value functions in Q learning algorithms. The updating procedure of the function is formulated as
an optimization problem on a loss function:

LDQN(ζ) = E(s,a,r,s′)∼D

[(
r + γ ·maxb∈AQ(s′, b; ζ−)−Q(s, a; ζ)

)2]
(2)

where ζ are the parameters of the network, A is a set of valid actions and D is a distribution over
a replay buffer of previously observed transitions. A target network with parameters ζ− is regu-
larly synchronized with ζ and used to estimate the action values of the successor states; the use
of a target network promotes estimation stability. Since the original introduction of DQN, several
improvements to the updating procedure and network architecture have been proposed.

2

Under review as a conference paper at ICLR 2021

Double DQN (Hasselt et al., 2016) updates the network according to a different rule in which the
action for the successor state is selected based on the target network rather than the updating network.
This change alleviates the overestimation problem by disentangling the estimation and selection of
action during optimization steps. The loss function for Double DQN is:

LDDQN = E(s,a,r,s′)∼D

[(
r + γ ·Q(s′, argmaxb∈AQ(s′, b; ζ); ζ−)−Q(s, a; ζ)

)2]
. (3)

Dueling DQN (Wang et al., 2016) uses a two-stream network architecture to separate the estimation
of state value and action advantage in order to accelerate learning in environments with a large
number of valid actions. The estimation of Q value is a function of value stream V (·, ·; ·) and
advantage stream A(·, ·; ·) such that

Q(s, a; ζ) = V (s, a; ζ) +A(s, a; ζ)−
∑
b∈AA(s, b; ζ)

Nactions
. (4)

Prioritized Replay (Schaul et al., 2015) selects the experience used for the optimation procedure
from a replay buffer with a priority-based sampling method instead of a uniform one. Sampling
probabilities are proportional to the TD errors.

Our proposed technique guides exploration and can be coupled with other improvements to the re-
inforcement learning process. Although we construct our models using the above extensions, our
technique is solely for guiding exploration and can benefit from other improvements, such as Boot-
strapped DQN (Osband et al., 2016), Distributional DQN (Bellemare et al., 2017; Dabney et al.,
2018), and Multi-Step Learning (Sutton & Barto, 2018). Moreover, it can be combined with the
other exploration methods, such as count-based methods (Ostrovski et al., 2017) or Noisy DQN (For-
tunato et al., 2018), to guide exploration during different training stages. We discuss this further in
Section 6.

4 MEASURING VARIANCE FOR EXPLORATION

During Monte Carlo policy evaluation, the value function Q(s, a) for a particular state-action pair
is updated using a sequence of returns Gn(s, a) = G1(s, a), G2(s, a), ..., Gn(s, a). This series can
start diverging due to the cyclic nature of value-based approaches; the evolving value function begets
policy improvements which in turn modify the value function. We believe that the agent should
leverage information from these variations to quantify uncertainty in order to explore non-optimal,
but still promising, actions. Specifically, agents can follow a greedy exploration policy based on an
upper bound:

π(s) = argmaxa∈AQ(s, a) + σ(s, a) · c, (5)
where σ is a measurement of uncertainty and c is a fixed hyper-parameter which adjusts the extent
of exploration.

To measure the uncertainty of returns for a specific state-action pair, we propose 1) a weighted
variance estimation method for general RL, 2) a neural network architecture, and 3) novel optimiz-
ing strategy which explicitly estimates either weighted variance or weighted TD error in the DRL
configuration.

4.1 REINFORCEMENT LEARNING WITH VARIANCE ESTIMATION

Although the vanilla form of sequence variance doesn’t reflect the higher importance of the recent
returns, we define the uncertainty as an exponentially decaying weighted standard deviation

σn(s, a) =

√∑n
i=1(1− α)n−i(Gi(s, a)−Qn(s, a))2∑n

i=1(1− α)n−i
, (6)

where Qn(s, a) is the value function which is updated using Gn(s, a) and α (the update step size) in
equation 1.

The update formula for σ is as follows

σn+1(s, a) =
√
(1− α) [σ2

n(s, a) + (Qn+1(s, a)−Qn(s, a))2] + α(Gn+1(s, a)−Qn+1(s, a))2.
(7)

3

Under review as a conference paper at ICLR 2021

The first term inside the square root represents the adjusted estimation of variance on Gn(s, a) with
the updated Qn+1(s, a), and the second term is the estimation from the incoming Gn+1(s, a). The
details of the updating formula are presented in Appendix A.

When updates are performed using the above formula, σ(s, a) is biased during the early stage, due to
the undecidable prior σ0(s, a) as well as the bias incipient to the usage of a small n. We propose two
strategies for initializing the σ function: 1) warming up with an ε-greedy method with ε decayed to
0 to ensure a gradual transition to our exploration policy, which effectively starts with a larger n; 2)
initializing σ0(s, a) as a large positive value to encourage uniform exploration during early stages,
which is theoretically sound since the variance of the value of a state-action pair is infinitely large if
it has never been visited.

4.2 VARIANCE DEEP Q NETWORKS (V-DQN)

Our new algorithm, V-DQN, incorporates weighted variance into the exploration process of training
DQNs.

Algorithm 1 Variance DQN (V-DQN)
Input: exploration parameter c; minibatch k; target network update step τ ;
Input: initial network parameters ζ; initial target network parameter ζ−;
Input: Boolean DOUBLE

1: Initialize replay memoryH = ∅
2: Observe s0
3: for t ∈ {1, ..., T} do
4: Select an action a←argmaxb∈AQ(s, b; ζ) + |σ(s, b; ζ)| · c
5: Sample next state s ∼ P (·|s, a) and receive reward r ← R(s, a)
6: Store transition (st−1, a, r, st) inH
7: for j ∈ {1, ..., k} do
8: Sample a transition (sj , aj , rj , s

′
j) ∼ D(H) . D can be uniform or prioritised replay

9: if s′j is a terminal state then
10: G← rj
11: else if DOUBLE then
12: b∗(s′j) = argmaxb∈AQ(s′j , b; ζ)

13: G← rj + γQ(s′j , b
∗(s′j); ζ

−)
14: else
15: G← rj + γmaxb∈AQ(s′j , b; ζ

−)
16: end if
17: σ̂ ← G−Q(sj , a; ζ)
18: Do a gradient step with loss (G−Q(sj , a; ζ))

2 + (σ̂2 − σ2(sj , a; ζ))
2

19: end for
20: if t ≡ 0 (mod τ) then
21: Update the target network ζ− ← ζ
22: end if
23: end for

Due to the known instability of deep neural networks during the training process, it is risky to
calculate the weighted variance from composing multiple estimations (e.g., the state-action values
before and after the optimization step). Instead of computing the target variance as a byproduct,
we propose a two-stream neural network architecture along with an novel loss function to allow
end-to-end training while estimating the weighted standard deviation. It simplifies the optimization
for variance by sacrificing the accuracy, which we believe is an acceptable compromise since the
deep neural networks with gradient descent cannot strictly follow the above updating formula. Our
empirical results demonstrate the effectiveness of the simplification.

Variance DQN uses neural networks with a separate σ-stream to estimate a weighted standard de-
viation of the outputs from the original stream on moving targets, which is common in the context
of deep reinforcement learning where the value function improves as the policy evolves. In prac-
tice, the σ-stream shares lower layers, e.g. convolutional layers, with the original stream to reduce
computational demands.

4

Under review as a conference paper at ICLR 2021

The loss function for Variance DQN is a sum of mean square error losses on the original stream,
which is identical to formula 2 (for DQN) or formula 3 (for Double DQN), and the square of the
σ-stream:

LV-DQN = E(s,a,r,s′)∼D

[
(G−Q(s, a; ζ))

2
+
(
(G−Q(s, a; ζ))2 − σ2(s, a; ζ)

)2]
(8)

s.t. G =

{
r + γ ·maxb∈AQ(s′, b; ζ−) for DQN
r + γ ·Q(s′, argmaxb∈AQ(s′, b; ζ); ζ−) for Double DQN

(9)

It is worth noting that the Q function used in the second part of the loss function on the σ-stream
doesn’t contribute to gradients directly. Therefore, the optimization steps are in effect unchanged
for the original stream on the Q value, except for the shared lower layers. While the sign of the
σ-stream’s output is eliminated in the loss function, we need to do the same during the exploration
process. The modified exploration policy is

π(s) = argmaxa∈AQ(s, a) + |σ(s, a)| · c (10)

The full procedure is shown in Algorithm 1.

We also propose a variant of our method (TD-DQN) which updates σ-stream with absolute temporal
difference error. The loss function for TD-DQN is

LTD-DQN = E(s,a,r,s′)∼D

[
(G−Q(s, a; ζ))

2
+ (|G−Q(s, a; ζ)| − σ(s, a; ζ))2

]
(11)

where G is the same as Equation 9.

Both networks measure the uncertainty of the Q value based on the return history in order to con-
struct an upper bound for exploration policy. The difference between the approaches can be inter-
preted based on their implicit usage of different distance metrics: Euclidean (Variance DQN) vs.
Manhattan (TD-DQN). Generally, V-DQN is more sensitive to fluctuations in the return sequence,
investing a greater amount of the exploration budget to damp variations.

There may be applications in which it is is valuable to estimate still higher order statistics, such as
the skew or kurtosis of the return sequence. However, this sensitivity can also sabotage exploration
by directing resources away from promising areas of the state space that are slowly trending towards
convergence; overemphasizing the elimination of small variations could ultimately result in longer
training times. While the c hyper-parameter in our exploration policy adjusts the trade-off between
exploration and exploitation, the choice of the distance metrics used to measure sequence variation
determines the distribution of exploration time.

5 RESULTS

To illustrate how weighted variance improves exploration, this paper first presents results on its usage
in tabular Q-learning for the Cartpole inverted pendulum problem. Then we report the performance
of our proposed techniques (V-DQN and TD-DQN) on the Atari game benchmark. The results
show that our two stream architecture for guiding exploration with weighted variance or weighted
temporal difference outperforms the standard DDQN benchmark.

5.1 CARTPOLE

To demonstrate the effectiveness of our Variance Estimation (VE) method, we compare it with ε-
greedy on Cartpole balancing problem. For this experiment, we use the classic Q-learning algo-
rithm (Watkins & Dayan, 1992) with a tabular look-up Q-table.

The Cartpole environment has a 4-dimensional continuous state space S = R4 and a discrete action
space A ={Push Left, Push Right, Do Nothing}. It provides a reward of 1 in every time step.
The episode terminates if any of the following conditions is met: 1) the episode length is greater
than 500, 2) the pole falls below a threshold angle, 3) the cart drifts from the center beyond a
threshold distance. With this setting, the maximum accumulated reward any policy can achieve is
500. To apply the tabular Q-learning configuration, the continuous state space is discretized into
18,432 discrete states by dividing {Cart Position, Cart Velocity, Pole Angle, Pole Velocity} into
{12, 8, 16, 12} intervals.

5

Under review as a conference paper at ICLR 2021

5 10 15 20 25 30
episode (thousand)

0

100

200

300

400

500

re
wa

rd

-greedy
-combined
-init_std
-warm_up

(a) Episode reward (εeval = 0)

5 10 15 20 25 30
episode (thousand)

0

100

200

300

400

500

re
wa

rd

-greedy
-combined
-init_std
-warm_up

(b) Episode reward (εeval = 0.05)

Figure 1: Average episode rewards in the Cartpole balancing problem. The curves and the shadowed
areas represent the means and the quartiles over 9 independent runs. The models are evaluated for
10 evaluation episodes every 200 training episodes.

With grid search, ε-greedy achieves the best performance when the discounting factor γ = 1.0 and
the exploration rate ε decays from 1.0 to 0.01 in 5000 episodes.

For Variance Estimation, we experimented on both initialization methods as well as a combination of
them. A similar configuration is applied on warming up with the ε-greedy method in which ε decays
from 1.0 to 0.0 during 5000 episodes. The initial standard deviation is set to 5000 for initializing
the σ0 method to ensure sufficient early visits on states. The combination method warms up with
ε-greedy while retaining the large initial standard deviation; it uses the same hyper-parameters. The
value of c is set to 1.5 for initializing the σ0 method and 0.5 for the other two.

To reduce the possibility of over-fitting, we evaluate the models with an additional environment in
which the agent has a probability εeval = 0.05 of acting randomly. All of our methods outperform
ε-greedy consistently for both evaluation settings. When the training time is prolonged, the baseline
method generally achieves similar scores to our methods, but requires approximately 10 times the
training episodes.

5.2 ATARI GAMES

We evaluate our DQN-based algorithms on 55 Atari games from the Arcade Learning Environment
(ALE) (Bellemare et al., 2013), simulated via the OpenAI Gym platform (Brockman et al., 2016).
Defender and Surround are excluded because they are unavailable in this platform. The baseline
method (denoted as DDQN) is DQN (Mnih et al., 2015) with all the standard improvements in-
cluding Double DQN (Hasselt et al., 2016), Dueling DQN (Wang et al., 2016) and Prioritized Re-
play (Schaul et al., 2015).

Our network architecture has a similar structure to Dueling DQN (Wang et al., 2016), but with an
additional σ-stream among fully connected layers. The 3 convolutional layers have 32 8×8 filters
with stride 4, 64 4×4 filters with stride 2, 64 3×3 filters with stride 1 respectively. Then the network
splits into three streams of fully connected layers, which are value, advantage and σ streams. Each
of the streams has a hidden fully connected layer with 512 units. For the output layers, the value
stream has a single output while both advantage and σ streams have the same number of outputs as
the valid actions.

The random start no-op scheme in Mnih et al. (2015) is used here in both training and evaluation
episodes. The agent repeats no-op actions for a randomly selected number of times between 1 to
30 in the beginning to provide diverse starting conditions to alleviate over-fitting. Evaluation takes
place after freezing the network every 250K training steps (1M frames). The scores are the averages
of episode rewards over 125K steps (500K frames) where episodes are truncated at 27K steps (108K
frames or 30 minutes of simulated play).

We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 6.25 × 10−5 and a value
of 1.5 × 10−4 for Adam’s ε hyper-parameter over all experiments. The network is optimized on a

6

Under review as a conference paper at ICLR 2021

Do
ub

le
Du

nk
At

la
nt

is
Tu

ta
nk

ha
m

Te
nn

is
Ti

m
eP

ilo
t

Ba
nk

He
ist

Sk
iin

g
Am

id
ar

He
ro

Be
rz

er
k

Po
ng

As
te

ro
id

s
Vi

de
oP

in
ba

ll
Pi

tfa
ll

Pr
iv

at
eE

ye
M

on
te

zu
m

aR
ev

en
ge

Bo
xi

ng
Ro

ad
Ru

nn
er

Fr
ee

wa
y

M
sP

ac
m

an
Na

m
eT

hi
sG

am
e

Qb
er

t
Ce

nt
ip

ed
e

Al
ie

n
Kr

ul
l

Gr
av

ita
r

Fr
os

tb
ite

Be
am

Ri
de

r
Fi

sh
in

gD
er

by
Ri

ve
rra

id
En

du
ro

Cr
az

yC
lim

be
r

Za
xx

on
Ba

ttl
eZ

on
e

Ve
nt

ur
e

Ya
rs

Re
ve

ng
e

Bo
wl

in
g

Ku
ng

Fu
M

as
te

r
So

la
ris

St
ar

Gu
nn

er
Ro

bo
ta

nk
Br

ea
ko

ut
Ice

Ho
ck

ey
Se

aq
ue

st
W

iza
rd

Of
W

or
Up

ND
ow

n
Ka

ng
ar

oo
Ch

op
pe

rC
om

m
an

d
Ja

m
es

bo
nd

Go
ph

er
Sp

ac
eI

nv
ad

er
s

Ph
oe

ni
x

As
te

rix
De

m
on

At
ta

ck
As

sa
ul

t

103

102

101

100
0

100

101

102

103

Figure 2: Improvement in normalized scores of V-DQN over DDQN in 200M frames

Do
ub

le
Du

nk
St

ar
Gu

nn
er

Br
ea

ko
ut

Tu
ta

nk
ha

m
Ro

ad
Ru

nn
er

Te
nn

is
Al

ie
n

Ti
m

eP
ilo

t
Ba

ttl
eZ

on
e

Sk
iin

g
M

sP
ac

m
an

Be
rz

er
k

Am
id

ar
Po

ng
He

ro
As

te
ro

id
s

Pi
tfa

ll
Pr

iv
at

eE
ye

Vi
de

oP
in

ba
ll

M
on

te
zu

m
aR

ev
en

ge
Fr

ee
wa

y
Bo

xi
ng

Fr
os

tb
ite

Ba
nk

He
ist

Cr
az

yC
lim

be
r

Ce
nt

ip
ed

e
Bo

wl
in

g
Na

m
eT

hi
sG

am
e

Gr
av

ita
r

Be
am

Ri
de

r
Fi

sh
in

gD
er

by
En

du
ro

Qb
er

t
Ve

nt
ur

e
Ri

ve
rra

id
Kr

ul
l

Za
xx

on
Ya

rs
Re

ve
ng

e
W

iza
rd

Of
W

or
So

la
ris

Ro
bo

ta
nk

Ku
ng

Fu
M

as
te

r
Ch

op
pe

rC
om

m
an

d
Ice

Ho
ck

ey
Ja

m
es

bo
nd

Ka
ng

ar
oo

Se
aq

ue
st

At
la

nt
is

Up
ND

ow
n

Ph
oe

ni
x

Sp
ac

eI
nv

ad
er

s
As

sa
ul

t
Go

ph
er

As
te

rix
De

m
on

At
ta

ck

103

102

101

100
0

100

101

102

103

Figure 3: Improvement in normalized scores of TD-DQN over DDQN in 200M frames

mini-batch of 32 samples over prioritized replay buffer every 4 training steps. The target network is
updated every 30K steps.

The exploration rate of DDQN decays from 1.0 to 0.01 in 250K steps (1M frames) and retains that
value until the training ends. Our methods do not rely on ε-greedy so that is simply set to 0 for all the
steps. Instead, the value of c impacts the actual exploration rates of our methods, which are defined
here to be the proportion of actions different from the optimal ones based on the current Q value
function. Empirically, the performance on Atari games does not vary significantly over a wide range
of c values, which is an unusual finding. A possible explanation is that most of the actions in those
games are not critical. To keep the exploration policy from drifting too far from the exploitation
policy, we set c to be 0.1 for both V-DQN and TD-DQN over all experiments to keep the average
exploration rates of the majority of the Atari games to reside roughly between 0.01 and 0.1.

A summary of the results over all 55 Atari games is reported in Table 1. The raw and the normalized
scores for individual games are compiled in Table 4 and Table 3 in Appendix D. To compare the
performance of agents over different games, the scores are normalized with human scores

ScoreNormalized = 100×
ScoreAgent − ScoreRandom

ScoreHuman − ScoreRandom
(12)

where both the random and the human scores were taken from Schaul et al. (2015).

The results clearly show that our proposed methods for guiding exploration, V-DQN and TD-DQN,
both improve on the standard DDQN benchmark. Although there are small differences in the rank-
ing, both versions perform well in the same games, and underperform the benchmark in a small
set of games. The mean and median statistics do not reveal significant differences between V-DQN
and TD-DQN. Our intuition remains that V-DQN is likely to more sensitive to fluctuations and will
allocate more exploration budget to damp them out.

6 CONCLUSION

This paper presents an analysis of the benefits and limitations of weighted variance for guiding
exploration. Both weighted convergence and its close cousin, weighted temporal difference, can be

7

Under review as a conference paper at ICLR 2021

DDQN V-DQN TD-DQN
Median 151% 164% 164%
Mean 468% 547% 533%

Table 1: Summary of normalized scores. See Table 3 in Appendix D for full results.

0 25 50 75 100 125 150 175 200
Frames (in millions)

0

50

100

150

200

250

300

No
rm

al
ize

d
sc

or
es

DDQN
V-DQN
TD-DQN

(a) Mean normalized scores of all Atari games over
200M frames.

0 25 50 75 100 125 150 175 200
Frames (in millions)

0

20

40

60

80

100

120

140

No
rm

al
ize

d
sc

or
es

DDQN
V-DQN
TD-DQN

(b) Median normalized scores of all Atari games over
200M frames.

Figure 4: The mean and median of the normalized training curve over all 55 Atari games

used to quantify the rate of convergence of the return series for specific state-action pairs. The return
dynamics of value-based reinforcement learning is particularly susceptible to diverging as value
improvements beget policy ones. This paper introduces a new two-stream network architecture to
estimate both weighted variance/TD errors; both our techniques (V-DQN and TD-DQN) outperform
DDQN on the Atari game benchmark. We have identified two promising directions for future work
in this area: 1) unifying exploration architectures to ameliorate the cold start issues and 2) adapting
our exploration strategies to other deep reinforcement learning models.

Addressing Cold Start with Unified Exploration While our methods capture the divergence of
return sequences, they suffer from the “cold start” problem. It is unlikely that they will perform well
for either empty or short sequences. To address this, we propose two simple initialization methods
for tabular configurations in this paper. This issue is somewhat alleviated by the generalization
capacity inherent to function approximators like deep neural networks. However, larger state space
where most of the states will never be visited still pose a problem. Our method can further benefit
from unification with the other exploration methods. Count-based upper confidence bound (UCB)
methods (Ostrovski et al., 2017) have a stronger effect on balancing the visits among states in the
early stage. This effect decays gradually as visits increase. This characteristic makes it a natural
complement for our sequence-based methods. Noisy DQN (Fortunato et al., 2018) is another option
that assigns greater randomness to less visited states. Our method focuses on promising actions
whereas Noisy DQN chooses actions more randomly in those areas of the state space. We ran some
experiments on a rudimentary design in which the linear layers of Q-value stream were replaced
with noisy ones; our preliminary results (not reported) show an improvement by hybridizing the two
architectures.

Beyond Q Learning The key intuition behind our methods is that exploration should be guided
with with a measure of historical variation. Generally, the returns based on the estimated Q values
of successive states are more consistent than those built on purely episodic experience. Therefore, it
is natural to extend the idea of using return sequences to algorithms where state or action values are
available, such as actor-critic methods. In policy gradient algorithms that strictly rely on observed
reward, a history of individual action preferences is a good candidate for measuring variation.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems. 2016.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
May 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the International Conference on Machine Learning, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Nuttapong Chentanez, Andrew G. Barto, and Satinder P. Singh. Intrinsically motivated reinforce-
ment learning. In Advances in Neural Information Processing Systems. 2005.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In International Conference on
Learning Representations, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the International Conference on Machine Learning,
2017.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Learning Representations, 2019.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A
survey. J. Artif. Intell. Res., 4:237–285, 1996.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. Machine Learning:
ECML, 2006:282–293, 09 2006.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, Feb 2015.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-
directed exploration for deep reinforcement learning. In International Conference on Learning
Representations, 2019.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems. 2016.

Georg Ostrovski, Marc G. Bellemare, Aäron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. In Proceedings of the International Conference on Machine
Learning, 2017.

9

Under review as a conference paper at ICLR 2021

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In Proceedings of the International Conference on Machine Learning,
2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
In International Conference on Learning Representations, 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay.
Proceedings of the International Conference on Learning Representations, 2015.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in Neural Information Processing Systems. 2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Frcitas.
Dueling Network Architectures for Deep Reinforcement Learning. the International Conference
on Machine Learning, 2016.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, 1992.

10

Under review as a conference paper at ICLR 2021

A UPDATING FORMULA IN VARIANCE ESTIMATION

Here we show that the weighted standard deviation in equation 6 can be obtained by updating σ with
formula 7 in Variance Estimation. For simplicity, the inputs to all the following functions are hidden
as they are the same state-action pair (s, a).

While being updated with equation 1, we have

Qn = (1− α)nQ0 +

n∑
i=1

α(1− α)n−iGi (13)

= α

n∑
i=1

(1− α)n−iGi (14)

The equal sign in formula 14 is established by setting Q0 = 0.

If we expand 1/α as a power series
1

α
=

1− (1− α)n

1− (1− α)
· 1

1− (1− α)n
(15)

=

n−1∑
i=0

(1− α)i · 1

1− (1− α)n
(16)

≈
n−1∑
i=0

(1− α)i (17)

=

n∑
i=1

(1− α)n−i (18)

The approximate sign is used here to reflect that the second term of the multiplication approximates
1 as n −→ ∞ because α ∈ (0, 1]. The value function can be re-written as an exponentially weighted
sum of the return sequence by applying the above expansion of power series:

Qn ≈
∑n
i=1(1− α)n−iGi∑n
i=1(1− α)n−i

(19)

We denote An =
∑n
i=1(1− α)n−i, then

σ2
n+1 =

∑n+1
i=1 (1− α)n+1−i(Gi −Qn+1)

2

An+1
(20)

=

∑n
i=1(1− α)n+1−i(Gi −Qn+1)

2

An+1
+

(Gn+1 −Qn+1)
2

An+1
(21)

= (1− α) ·
∑n
i=1(1− α)n−i(Gi −Qn+1)

2

An+1
+

(Gn+1 −Qn+1)
2

An+1
(22)

= (1− α) ·
∑n
i=1(1− α)n−i(Gi −Qn +Qn −Qn+1)

2

An+1
+

(Gn+1 −Qn+1)
2

An+1
(23)

=(1− α) ·
[∑n

i=1(1− α)n−i(Gi −Qn)2

An+1
+

∑n
i=1(1− α)n−i(Qn −Qn+1)

2

An+1

+
2
∑n
i=1(1− α)n−i(Gi −Qn)(Qn −Qn+1)

An+1

]
+

(Gn+1 −Qn+1)
2

An+1

(24)

≈ (1− α) · An
An+1

·
[
σ2
n + (Qn+1 −Qn)2 + 0

]
+

(Gn+1 −Qn+1)
2

An+1
(25)

≈ (1− α)
[
σ2
n + (Qn+1 −Qn)2

]
+ α(Gn+1 −Qn+1)

2 (26)
where the first approximate sign comes from formula 19 and the second one comes from formula 17.

Though the updating formula is biased as n doesn’t approach infinity in practice, the bias is negli-
gible. Because all the above approximations are rooted in formula 17 and (1 − α)n converges to 0
rapidly as n grows.

11

Under review as a conference paper at ICLR 2021

B AN EMPIRICAL ANALYSIS

0 200 400 600
0

20

40

60

80

0 200 400 600
0

20

40

60

80

0 200 400 600
0

20

40

60

80

0 200 400 600
0

20

40

60

80

(a) Return sequence

0 200 400 600
0.0

0.5

1.0

1.5

2.0

0 200 400 600
0

10

20

30

0 200 400 600
0

10

20

30

0 200 400 600
0.0

2.5

5.0

7.5

10.0

(b) σ value

Figure 5: Raw return sequences (a) and corresponding σ values (b) over visitations.

0 200 400 600

20

40

60

80

0 200 400 600

20

40

60

80

0 200 400 600

20

40

60

80

0 200 400 600

20

40

60

80

(a) Return sequence

0 200 400 600
0.0

0.5

1.0

1.5

0 200 400 600
0.0

0.5

1.0

1.5

0 200 400 600
0.0

0.5

1.0

0 200 400 600
0.0

0.2

0.4

0.6

0.8

(b) σ value

Figure 6: Smoothed return sequences (a) and corresponding σ values (b) over visitations.

0 200 400 600

10

5

0

0 200 400 600
60

40

20

0

0 200 400 600
60

40

20

0

0 200 400 600
20

15

10

5

0

(a) Return sequence

0 200 400 600
0.0

0.5

1.0

1.5

2.0

0 200 400 600
0

10

20

30

0 200 400 600
0

10

20

30

0 200 400 600
0.0

2.5

5.0

7.5

10.0

(b) σ value

Figure 7: Residual return sequences (a) and corresponding σ values (b) over visitations.

12

Under review as a conference paper at ICLR 2021

Sutton & Barto (2018) prove that the policy and value functions monotonically improve over sweeps
in policy iteration. In this simple form, return sequences for individual state-action pairs are mono-
tonically increasing and usually converge fast. However, the same statement is not true when the
policy is updated with Monte Carlo settings where the returns are random samples. In this situation,
fluctuations in returns are inevitable due to the stochastic property; an incremental updating scheme
is adopted to stabilize learning as well as avoid the excessive impact of malicious samples.

Here we illustrate the characteristics of the return sequences and analyze how variance guides ex-
ploration. The raw return sequences shown in Figure 5a are randomly sampled from frequently
visited state-action pairs in the Cartpole balancing problem and truncated to be of the same length.
To disentangle the impact of the convergence trend from transient fluctuations, smoothed versions
of those sequences are extracted from the raw sequences (shown in Figure 6a), while the residuals
are shown in Figure 7a. Then we apply our Variance Estimation method on each of the sequences
independently and show the σ values over visits.

Since the σ values are directly integrated into the Q values used by our exploration policy (shown
in Equation 5), a greater σ value usually results in an increase in exploration budget. Meanwhile,
the nature of weighted sum balances the importance of learned Q value and the history of its change
which is captured by σ.

In Figure 6b, we observe that the σ value is greater when the return sequence changes at a faster rate.
As the sequence converges, the σ value approaches zero. An interesting but unobvious observation
is that the σ value spikes when there is change in the convergence rate of the return sequence.
Since variance is essentially a Euclidean distance metric, it is capable of capturing second-order
information.

Sequences in Figure 7a isolate the impacts of transient fluctuations from the overall trend. We
observe that whenever there is an excessive fluctuation, the σ value spikes to a high magnitude to
demand immediate exploration. Once the return goes back to its normal range, the σ value decreases
simultaneously. Those quick responses are useful since excessive fluctuations are harmful to the
estimation of Q values. A timely investigation of exploration budget eliminates this negative impact
before it propagates to more states. Meanwhile, frequent fluctuations beget an increase in σ value
and result in more exploration to determine its value.

In conclusion, the exploration policy on our constructed upper bound effectively allocates explo-
ration budget to accelerate convergence in important states as well as alleviate the impact of fluctu-
ations.

13

Under review as a conference paper at ICLR 2021

C HYPERPARAMETERS

Table 2: Atari DQN Hyperparameters

Hyperparameter Value Description
cV-DQN 0.1 Weighting factor of σ-stream in exploration policy in

V-DQN
cTD-DQN 0.1 Weighting factor of σ-stream in exploration policy in

TD-DQN
mini-batch size 32 Size of mini-batch sample for gradient step
replay buffer size 1M Maximum number of transitions stored in the replay

buffer
initial replay buffer size 50K Number of transitions stored in the replay buffer be-

fore optimization starts
optimization frequency 4 Number of actions the agent takes between successive

network optimization steps
update frequency 30000 Number of steps between consecutive target updates
εinit 1.00 Initial exploration rate of ε-greedy method
εfinal 0.01 Final exploration rate of ε-greedy method
Nε 1M Number of actions that the exploration rate of ε-

greedy method decays from initial value to final value
α 0.0000625 Adam optimizer learning rate
εADAM 0.00015 Adam optimizer parameter
evaluation frequency 250K Number of actions between successive evaluation

runs
evaluation length 125K Number of actions per evaluation run
evaluation episode length 27K Maximum number of action in an episode in evalua-

tion runs
max no-op 30 Maximum number of no-op actions before the

episode starts

14

Under review as a conference paper at ICLR 2021

D EXPERIMENTAL RESULTS ON ATARI GAMES

0 50 100 150 200

2000

4000

6000

Alien

0 50 100 150 200

500

1000

Amidar

0 50 100 150 200

2000

4000

Assault

0 50 100 150 200

20000

40000

60000

80000
Asterix

0 50 100 150 200

250

500

750

1000

1250
Asteroids

0 50 100 150 200

0.25

0.50

0.75

1.00
1e6 Atlantis

0 50 100 150 200
0

250

500

750

1000
BankHeist

0 50 100 150 200

20000

40000

BattleZone

0 50 100 150 200

5000

10000

15000

BeamRider

0 50 100 150 200
200

400

600

800

1000

Berzerk

0 50 100 150 200

20

40

60

Bowling

0 50 100 150 200
50

0

50

100
Boxing

0 50 100 150 200

100

200

300

400
Breakout

0 50 100 150 200

2000

4000

6000

Centipede

0 50 100 150 200
0

5000

10000

15000
ChopperCommand

0 50 100 150 200

50000

100000

150000
CrazyClimber

0 50 100 150 200

10000

20000

30000

DemonAttack

0 50 100 150 200

20

10

0

DoubleDunk

0 50 100 150 200
0

500

1000

1500

Enduro

0 50 100 150 200

50

0

50
FishingDerby

0 50 100 150 200
0

10

20

30

Freeway

0 50 100 150 200

1000

2000

3000

4000

Frostbite

0 50 100 150 200

5000

10000

15000

20000

Gopher

0 50 100 150 200
0

200

400

600

800

Gravitar

0 50 100 150 200
0

5000

10000

15000

20000
Hero

0 50 100 150 200
20

10

0

10
IceHockey

0 50 100 150 200

1000

2000

3000
Jamesbond

0 50 100 150 200
0

5000

10000

Kangaroo

0 50 100 150 200
0

2500

5000

7500

10000
Krull

0 50 100 150 200
0

10000

20000

30000

40000
KungFuMaster

0 50 100 150 200
0.0

0.5

1.0

1.5

MontezumaRevenge

0 50 100 150 200

1000

2000

3000

4000

MsPacman

0 50 100 150 200

5000

10000

NameThisGame

0 50 100 150 200

10000

20000

30000

Phoenix

0 50 100 150 200
400

300

200

100

0
Pitfall

0 50 100 150 200
20

10

0

10

20
Pong

0 50 100 150 200
600

400

200

0

200
PrivateEye

0 50 100 150 200

5000

10000

15000

Qbert

0 50 100 150 200

5000

10000

15000

20000
Riverraid

0 50 100 150 200
0

20000

40000

RoadRunner

0 50 100 150 200

20

40

60

Robotank

0 50 100 150 200
0

20000

40000

Seaquest

0 50 100 150 200
30000

25000

20000

15000

10000
Skiing

0 50 100 150 200

1000

2000

Solaris

0 50 100 150 200

2500

5000

7500

10000
SpaceInvaders

0 50 100 150 200

20000

40000

60000

80000
StarGunner

0 50 100 150 200

20

10

0
Tennis

0 50 100 150 200

2500

5000

7500

10000

TimePilot

0 50 100 150 200
0

100

200

Tutankham

0 50 100 150 200

10000

20000

30000

40000

UpNDown

0 50 100 150 200
0

50

100

Venture

0 50 100 150 200
0

100000

200000

300000

400000
VideoPinball

0 50 100 150 200

2500

5000

7500

10000
WizardOfWor

0 50 100 150 200

10000

20000

30000

40000

YarsRevenge

0 50 100 150 200
0

5000

10000

Zaxxon

DDQN V-DQN TD-DQN

Figure 8: Training curve on Atari games from a single training run each. Episodes start with up to
30 no-op actions. Each data point is an average of episode rewards from 500K frames of evaluation
runs, and smoothed over 10 data points.

15

Under review as a conference paper at ICLR 2021

Game DDQN V-DQN TD-DQN
Alien 123% 130% 76%
Amidar 99% 97% 97%
Assault 764% 1659% 1324%
Asterix 537% 1280% 1490%
Asteroids 2% 1% 1%
Atlantis 7445% 7334% 7714%
BankHeist 165% 158% 170%
BattleZone 168% 199% 149%
BeamRider 143% 153% 156%
Berzerk 51% 49% 49%
Bowling 7% 52% 18%
Boxing 902% 903% 904%
Breakout 1764% 1851% 1644%
Centipede 57% 64% 64%
ChopperCommand 39% 237% 111%
CrazyClimber 639% 658% 646%
DemonAttack 563% 1415% 1700%
DoubleDunk 1568% -145% -90%
Enduro 267% 284% 281%
FishingDerby 151% 164% 164%
Freeway 130% 131% 131%
Frostbite 108% 116% 112%
Gopher 1071% 1689% 1665%
Gravitar 14% 22% 25%
Hero 83% 81% 82%
IceHockey 139% 227% 253%
Jamesbond 890% 1315% 1071%
Kangaroo 354% 529% 552%
Krull 909% 917% 931%
KungFuMaster 150% 199% 214%
MontezumaRevenge -1% -0% -1%
MsPacman 32% 33% 29%
NameThisGame 207% 210% 218%
Phoenix 134% 852% 531%
Pitfall 5% 5% 5%
Pong 116% 115% 115%
PrivateEye -1% -1% -1%
Qbert 146% 150% 160%
Riverraid 136% 152% 156%
RoadRunner 826% 827% 724%
Robotank 1006% 1071% 1051%
Seaquest 6% 122% 226%
Skiing 43% 37% 35%
Solaris -5% 50% 40%
SpaceInvaders 889% 1527% 1318%
StarGunner 922% 984% 760%
Tennis 197% 147% 146%
TimePilot 387% 365% 366%
Tutankham 215% 108% 109%
UpNDown 366% 516% 707%
Venture -1% 36% 18%
VideoPinball 425% 425% 425%
WizardOfWor 168% 309% 206%
YarsRevenge 61% 98% 95%
Zaxxon 151% 175% 183%

Table 3: Normalized scores.

16

Under review as a conference paper at ICLR 2021

Game Random Human DDQN V-DQN TD-DQN
Alien 128.3 6371.3 7807.3 8236.9 4895.4
Amidar 11.8 1540.4 1521.6 1495.0 1494.0
Assault 166.9 628.9 3697.5 7829.8 6284.9
Asterix 164.5 7536.0 39782.0 94509.1 110013.6
Asteroids 871.3 36517.3 1464.3 1317.6 1278.0
Atlantis 13463.0 26575.0 989675.0 975100.0 1024975.0
BankHeist 21.7 644.5 1050.1 1007.7 1082.3
BattleZone 3560.0 33030.0 53153.8 62133.3 47460.0
BeamRider 254.6 14961.0 21296.0 22765.7 23234.0
Berzerk 196.1 2237.5 1228.1 1205.0 1190.7
Bowling 35.2 146.5 42.7 93.6 54.7
Boxing -1.5 9.6 98.6 98.7 98.8
Breakout 1.6 27.9 465.5 488.3 434.1
Centipede 1925.5 10321.9 6695.1 7271.9 7282.8
ChopperCommand 644.0 8930.0 3900.0 20289.7 9835.0
CrazyClimber 9337.0 32667.0 158346.2 162828.0 159952.0
DemonAttack 208.3 3442.8 18418.2 45977.5 55200.6
DoubleDunk -16.0 -14.4 9.1 -18.3 -17.4
Enduro -81.8 740.2 2113.5 2250.2 2225.0
FishingDerby -77.1 5.1 46.6 57.7 57.7
Freeway 0.1 25.6 33.2 33.6 33.6
Frostbite 66.4 4202.8 4516.2 4883.8 4702.4
Gopher 250.0 2311.0 22331.4 35061.4 34555.7
Gravitar 245.5 3116.0 637.5 869.5 976.1
Hero 1580.3 25839.4 21606.6 21244.0 21476.5
IceHockey -9.7 0.5 4.5 13.5 16.1
Jamesbond 33.5 368.5 3014.2 4438.8 3622.5
Kangaroo 100.0 2739.0 9450.0 14057.6 14679.4
Krull 1151.9 2109.1 9855.5 9930.0 10065.0
KungFuMaster 304.0 20786.8 31070.7 40984.4 44177.4
MontezumaRevenge 25.0 4182.0 0.0 9.1 3.3
MsPacman 197.8 15375.0 5038.5 5246.7 4585.7
NameThisGame 1747.8 6796.0 12181.1 12359.4 12774.7
Phoenix 1134.4 6686.2 8568.6 48424.7 30623.9
Pitfall -348.8 5998.9 0.0 0.0 0.0
Pong -18.0 15.5 20.8 20.6 20.6
PrivateEye 662.8 64169.1 100.0 200.0 100.0
Qbert 183.0 12085.0 17551.4 18051.7 19250.0
Riverraid 588.3 14382.2 19322.9 21545.0 22073.8
RoadRunner 200.0 6878.0 55381.7 55437.1 48526.7
Robotank 2.4 8.9 67.8 72.0 70.7
Seaquest 215.5 40425.8 2789.8 49230.8 91277.1
Skiing -15287.4 -3686.6 -10314.1 -10990.9 -11215.2
Solaris 2047.2 11032.6 1572.0 6497.6 5615.0
SpaceInvaders 182.6 1464.9 11580.8 19757.7 17086.2
StarGunner 697.0 9528.0 82076.7 87577.8 67768.6
Tennis -21.4 -6.7 7.5 0.2 0.0
TimePilot 3273.0 5650.0 12460.7 11941.4 11975.0
Tutankham 12.7 138.3 283.0 147.8 150.1
UpNDown 707.2 9896.1 34346.4 48118.3 65673.9
Venture 18.0 1039.0 9.6 382.9 197.1
VideoPinball 20452.0 15641.1 584388.2 632013.8 631348.0
WizardOfWor 804.0 4556.0 7115.1 12388.1 8551.7
YarsRevenge 1476.9 47135.2 29332.9 46319.6 44894.4
Zaxxon 475.0 8443.0 12488.4 14409.8 15028.3

Table 4: Raw Scores.

17

	Introduction
	Related Work
	Background
	Measuring Variance for Exploration
	Reinforcement Learning with Variance Estimation
	Variance Deep Q Networks (V-DQN)

	Results
	Cartpole
	Atari Games

	Conclusion
	Updating Formula in Variance Estimation
	An Empirical Analysis
	Hyperparameters
	Experimental Results on Atari Games

