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Abstract

Pan-sharpening aims to obtain high-resolution multi-

spectral (MS) images for remote sensing systems and deep

learning-based methods have achieved remarkable success.

However, most existing methods are designed in a black-

box principle, lacking sufficient interpretability. Addition-

ally, they ignore the different characteristics of each band

of MS images and directly concatenate them with panchro-

matic (PAN) images, leading to severe copy artifacts [9]. To

address the above issues, we propose an interpretable deep

neural network, namely Memory-augmented Deep Condi-

tional Unfolding Network with two specified core designs.

Firstly, considering the degradation process, it formulates

the Pan-sharpening problem as the minimization of a vari-

ational model with denoising-based prior and non-local

auto-regression prior which is capable of searching the

similarities between long-range patches, benefiting the tex-

ture enhancement. A novel iteration algorithm with built-

in CNNs is exploited for transparent model design. Sec-

ondly, to fully explore the potentials of different bands of

MS images, the PAN image is combined with each band of

MS images, selectively providing the high-frequency details

and alleviating the copy artifacts. Extensive experimental

results validate the superiority of the proposed algorithm

against other state-of-the-art methods.

1. Introduction

With the rapid development of remote sensors, increas-

ing satellite images are available for a wide range of ap-

plications such as mapping services, military systems, and

environmental monitoring. Satellites capture multispectral

(MS) and panchromatic (PAN) images simultaneously with

complementary information for each modality that PAN im-

ages have a high spatial solution and MS images contain

rich spectral information [15,36]. In order to obtain the im-
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Figure 1. Trade-off between parameters and model performance

for Pan-sharpening on WorldViewII dataset.

ages with both high spectral and spatial resolution, the Pan-

sharpening technique that aims to fuse the MS and PAN

images has attracted increasing attention.

The past decades have witnessed the explosive growth

of research works in the Pan-sharpening field, where the fo-

cuses include model-based and deep learning (DL)-based

methods. Due to the ill-posed property of Pan-sharpening,

the former usually requires hand-crafted priors to regularize

the solution space of the latent high-resolution (HR) MS im-

ages. However, the limited representation ability of hand-

crafted priors results in unsatisfactory performance when

processing complex scenes. Besides, the traditional meth-

ods are challenging in optimization, limiting their prac-

tical applications. Inspired by the success of deep neu-

ral networks, various DL-based Pan-sharpening algorithms

have been proposed. While they demonstrate superiority in

feature representation and model generalization, the long-

standing issue that existing DL-based Pan-sharpening meth-

ods suffer from is the lack of interpretability as most of them

are designed in a black-box principle without considering

the rationality of models. Integrating the domain knowledge

with interpretable DL-based models is therefore promising

for improving the Pan-sharpening performance. Addition-

ally, existing methods ignore the different characteristics of

each band of MS images and directly concatenate them with
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PAN images as input along channel dimension, which may

lead to the severe copy artifacts [9].

Very recently, a few models attempt to incorporate ad-

vantages of both model-based and DL-based methods in the

image processing community [11, 32, 60]. Inspired by such

designs, Xu et.al [52] propose the first deep unfolding net-

work for Pan-sharpening. It formulates Pan-sharpening as

two separate optimization problems regularized by a deep

prior for both PAN and low-resolution (LR) MS images.

Nevertheless, the designed implicit priors are still difficult

to investigate thoroughly their influence and the potential of

cross-stages has not been fully explored.

In summary, existing state-of-the-art (SOTA) methods

suffer from two-fold issues: 1) lacking sufficient inter-

pretability, and 2) ignoring the different characteristics of

each band of MS images. To this end, in this paper, we pro-

pose an interpretable deep unfolding network by combin-

ing advantages of both the model-based and data-driven DL

methods, namely Memory-augmented Deep Conditional

Unfolding Network (MDCUN). Considering the degrada-

tion process and observing that MS images often con-

tain repetitive structures, we formulate the Pan-sharpening

problem as the minimization of a variational model with

two newly-designed prior terms, including denoising-based

prior and non-local auto-regression prior. Specifically, the

former aims to reconstruct the latent MS images while the

latter learns the similarities between long-range patches,

benefiting the texture enhancement and reducing the alias-

ing artifacts. Then, a novel effective iteration algorithm

with built-in CNNs is exploited for transparent model de-

sign to further increase the model interpretability. More-

over, to fully explore the potentials of different bands of

MS images, we propose a band-aware PAN-guided high-

frequency information extraction module. To be specific,

the PAN image is combined with each band of MS image,

selectively providing the high-frequency details and allevi-

ating the copy artifacts. Additionally, the contextual mem-

ory mechanism is introduced to augment the capacity across

iterative stages, therefore facilitating the information inter-

action. The proposed method is assessed with extensive ex-

periments, and the results demonstrate its superiority qual-

itatively and quantitatively. The contributions of our work

are summarized as follows:

• We formulate the Pan-sharpening as the minimization

of a variational model and introduce the denoising-

based prior and non-local auto-regression prior to im-

prove the long-range coherence.

• We propose an interpretable deep network, namely

Memory-augmented Deep Conditional Unfolding Net-

work, which incorporates advantages of both the

model-based and data-driven DL methods.

• A band-aware PAN-guided high-frequency informa-

tion extraction module is devised to fully explore the

potentials of different bands of MS images. The con-

textual memory mechanism is additionally introduced

to augment the capacity across iterative stages, facili-

tating the information interaction.

• Extensive experiments over different satellite datasets

demonstrate that our method outperforms state-of-the-

art algorithms with fewer parameters.

2. Related work

2.1. Classic pan-sharpening methods

The classic pan-sharpening methods can be classified

into three broad categories, including Component Substitu-

tion (CS) [5, 16, 39], Multi-resolution Analysis (MRA) [37,

42], and Variational Optimization (VO) [8, 13, 41]. The

common CS methods [5, 16, 39] separate spatial and spec-

tral information from MS images by specific transforma-

tions, and then replace the separated spatial components

with PAN images. The typical MRA methods [34,38] com-

plement the high-frequency details extracted by the multi-

resolution decomposition techniques from PAN images to

the up-sampled MS images. The VO methods [2,6] are con-

cerned because of the fine fusion effects on Pan-sharpening.

They assume that there are certain constraints or prior con-

ditions between the HR MS and PAN images, and establish

specific optimization functions based on the proposed con-

ditions, so as to well balance spectral and spatial quality by

optimizing the above problems.

2.2. Deep learning based methods

With the highly nonlinear mapping capability of a con-

volutional neural network, PNN [35] utilizes three con-

volutional units to map the relationship between PAN,

LR MS, and HR MS images, which achieves a signif-

icant improvement compared with other classical meth-

ods. Inspired by PNN, a large number of DL-based Pan-

sharpening studies [4, 49] have emerged recently. For in-

stance, PANNet [53] adopts the residual learning module

as in ResNet [18], MSDCNN [54] adds multi-scale mod-

ules on the basis of residual connection, and SRPPNN [3]

refers to the design idea of SRCNN [10]. Observing that

the same object in MS and PAN is not always aligned, Li et

al. [24] design a SIPSA-Net [24] with a feature alignment

module which can align features from PAN and LR MS im-

ages. Wu et al. [47] utilize multiple parallel branches to

integrate features of different scales into the backbone net-

work to improve performance. Aiming at satellite image

analysis, Ma et al. [33] propose an unsupervised frame-

work based on generative confrontation networks. Addi-

tionally, some model-driven CNN models that are similar

to our works with clear physical meaning emerge, such as

MHNet [48] and GPPNN [52].
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Figure 2. The overall architecture of MDCUN.

2.3. Deep unfolding network

In recent years, many researchers [4,11,20,27,30,60] at-

tempt to combine domain knowledge with deep neural net-

works to propose deep unfolding networks which take ad-

vantages of the model-based methods’ interpretability and

learning-based methods’ strong mapping ability. Specifi-

cally, the deep unfolding network firstly unfolds certain op-

timization algorithms [1, 7, 14, 28, 29, 31, 32, 40, 50, 51, 58]

and utilizes deep neural network to parameterize the unfold-

ing model, then minimizes the loss function on a large train-

ing dataset and optimizes the parameters in an end-to-end

manner. For example, Zhang et al. [56] transform the iter-

ative shrinkage-thresholding algorithm into a deep network

form for image compressive sensing. To effectively solve

the JPEG compression artifacts removal problem, Fu et

al. [14] design an alternating minimization algorithm and

unfold it into the deep network architecture. Additionally,

deep unfolding networks are also proposed in image super-

resolution [59], image deblurring [22], snapshot compres-

sive sensing [57, 61] and image demosaicking [21].

3. Methods

3.1. Motivation

In this paper, we formulate the Pan-sharpening as a PAN-

guided MS super-resolution problem, in which the process

of Pan-sharpening can be denoted as L = DKH + eh,

where L denotes the LR MS image through performing the

blurring and down-sampling by K and D matrix over the

HR MS version H respectively, and eh denotes the noise.

Referring the above observation model, HR MS images can

be obtained by solving the minimization problem as:

argmin
H

1

2
||L − DKH||

2
2 + ηΩ(H,P ) (1)

where P indicates the PAN images and provides the sup-

plementary information for restoring the HR MS images H .

And η is the Lagrange multiplier and Ω(H,P ) describes the

regularization function.

Motivated by the observation that remote sensing im-

ages contain rich repetitive structures, we utilize a well-

established image prior (N prior) obtained from non-local

auto-regressive prior model (NARM) to constraint above
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optimization. Given the MS patches, NARM seeks its

sparse linear decomposition over a set of non-local (instead

of local) neighborhoods. The NARM can be represented as:

H = SH + es (2)

where the matrix S represents the autoregressive matrix of

NARM, es is the modeling error of NARM.

By introducing the above NARM, the observation model

is rewritten as:

L = DK(SH + es) = DKSH + n (3)

where n = DKes is a new modeling error. Therefore, the

minimization problem of Eq. 1 is reformulated with:

argmin
H

1

2
||L − DKH||

2
2 +

µ

2
||L − DKSH||

2
2

+ ηΩ1(H|P ) + λΩ2(SH|P ) (4)

where the last two terms correspond to the denoising prior

(D prior) and the N prior, respectively.

3.2. Optimization

Following the framework of half-quadratic splitting

(HQS) to introduce two auxiliary parameters U and V for

H and SH respectively, Eq. 4 can be formulated as a non-

constrained optimization problem:

argmin
H, U, V

1

2
||L−DKH||

2
2 +

µ

2
||L−DKSH||

2
2

+
η1

2
||U −H||

2
2 + η2Ω1(U |P )

+
λ1

2
||V − SH||

2
2 + λ2Ω2(V |P ) (5)

where η1, η2, λ1and λ2 are penalty parameters. To obtain an

unrolling inference, Eq. 5 can be divided into the following

three sub-problems and solved alternatively:

U (k) = argmin
U

η1

2

∣

∣

∣

∣

∣

∣
U −H(k)

∣

∣

∣

∣

∣

∣

2

2
+ η2Ω1(U |P ) (6)

V (k) = argmin
V

λ1

2

∣

∣

∣

∣

∣

∣
V − SH(k)

∣

∣

∣

∣

∣

∣

2

2
+ λ2Ω2(V |P ) (7)

H(k+1) = argmin
H

1

2
||L−DKH||

2
2

+
µ

2
||L−DKSH||

2
2

+
η1

2

∣

∣

∣

∣

∣

∣
U (k) −H

∣

∣

∣

∣

∣

∣

2

2
+

λ1

2

∣

∣

∣

∣

∣

∣
V (k) − SH

∣

∣

∣

∣

∣

∣

2

2
(8)

here, k denotes the HQS iteration index.

Moreover, we employ the proximal gradient projection

method to solve the above three sub-problems:

U (k) = proxΩ1
(U (k−1) − δ1∇f1(U

(k−1))) (9)

V (k) = proxΩ2
(V (k−1) − δ2∇f2(V

(k−1))) (10)

H(k+1) = H(k) − δ3∇f3(H
(k)) (11)

where proxΩ1
(·) and proxΩ2

(·) are proximal operators cor-

responding to penalty Ω1(·) and Ω2(·). And the gradient

related notations are detailed as:

∇f1(U
(k−1)) = η1(U

(k−1) − H(k)) (12)

∇f2(V
(k−1)) = λ1(V

(k−1) − SH(k)) (13)

∇f3(H
(k)) = (DK)

T
(DKH(k) − L)

+ µ(DK)
T
(DKSH(k) − L)

+ η1(H
(k) − U (k))

+ λ1(SH
(k) − V (k)) (14)

3.3. Deep unfolding network

Inspired by the principle of model-driven deep learning,

our deep unfolding network contains K stages, which are

intentionally designed to correspond to K iterations in the

optimization algorithm as shown in Figure 2. In each net-

work, two auxiliary variables (U and V ) are updated firstly,

and then the restored image is calculated to update the mem-

ory components (UMemory and VMemory). To con-

struct a step-by-step corresponding deep unfolding network

architecture, we generalize the above iterative step as spec-

ified network modules, containing PAN-guided conditional

band-aware MS denoise module, non-local auto-regressive

prior module, memory-augmented information module, and

reconstruction module.

In Figure 2, k-th iteration of HQS is cast to k-th stage of

the model, which includes denoise modules (DMs), NARM

module, and reconstruction module, as shown below:

U (k) =U (k−1) +DM(U (k−1), H(k)|P ) (15)

SH(k) =NARM(H(k)) (16)

V (k) =V (k−1) +DM(V (k−1), SH(k)|P ) (17)

H(k+1) =H(k) − δ[Up(Down(H(k))− L)

+ µUp(Down(SH(k))− L)

+ η1(H
(k) − U (k))

+ λ1(SH
(k) − V (k))] (18)

where Down and Up represent the down-sampling and up-

sampling functions in spatial resolution respectively. The

DM and NARM denoted the Denoise Module and Non-

local Auto-Regressive prior Module respectively. Besides,

it can be noted that each denoise stage involves the PAN

image while depending on previous states. Naturally, the

design of the denoise module needs to consider the memory

mechanism and condition-served PAN image.

To be specific, inspecting the k-th stage, the PAN-guided

module is responsible for updating the two auxiliary vari-

ables U (k) and V (k) while the non-local auto-regressive

1781

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 28,2023 at 13:11:16 UTC from IEEE Xplore.  Restrictions apply. 



(n,n,c)

Conv 3×3

Conv 3×3

Conv 3×3

Maxpool

Conv 3×3

Conv 3×3

Conv 3×3

Upsample

SH
so

ftm
ax

H

ɡ:
1×

1×
c

Ф
:1
×

1×
c

θ:
1×

1×
c

Re
sh

ap
e

Re
sh

ap
e

Re
sh

ap
e(n,n,c)

(1,c)

(c,n*n)

(n*n,c)

ω:
1×

1×
c

Matrix Multiplication Eelement-wise Addition

SH(k)/H(k)

PAN

High-pass

Max

Mean Co
nv

Co
nv

Max

Mean Co
nv

Co
nv

…

H_PAN

H_PAN

U(k)/V(k)

Eelement-wise Multiplication Eelement-wise Addition

(a) (b) (c) (d)

…

H_PAN

H_PAN

Figure 3. Architectures of MDCUN’s submodules. (a) The architecture of the non-local auto-regressive prior module (NARM), (b) The

inner structure of the PAN-guided conditional band-aware MS denoise module, (c) The inner structure of the down-sampling-blocks

(Down) in reconstruction module, and (d) The inner structure of the Up-sampling-blocks (Up) in reconstruction module.

prior module aims to calculate the NARM matrix S for up-

dating the corresponding SH(K). The memory-augmented

information module takes the outputs U (0), ..., U (k−1) and

V (0), ..., V (k−1) of denoise modules as input across long-

range stages to facilitate the information flow. The recon-

struction module corresponds to Eq. 18 to update the re-

stored H(k). The updated H(k) is fed into the next stage

and performs the repetitive operation until the stage num-

ber reaches K. We will elaborate each module next.

Non-local auto-regressive prior module

As we discussed in Sec. 3.1, NARM seeks sparse linear

decomposition over a set of non-local neighborhoods. Fol-

low [12], the pixel Hi can be approximately weighted by its

nonlocal neighbors (including itself):

Hi ≈
∑

j ω
j
iH

j
i (19)

where H
j
i represents the j-th nonlocal neighbor of Hi. And

w
j
i is solved by the following optimization problems:

∼

ωi = argmin
ωi

||Hi − Hωi||
2
2 + γ||ωi||

2
2 (20)

where H = [H1
i , H

2
i , ..., H

J
i ],ωi = [ω1

i ,ω
2
i , ...,ω

J
i ], and

J represents the first J most similar nonlocal neighbors to

Hi are chosen. γ represents the regularization parameter.

Based on determined coefficients ωi, the formula of

NARM matrix S in Eq. 2 is expressed by:

Si,j =

{

ω
j
i , Hj is a nonlocal neighbor of Hi

0, otherwise
(21)

Calculating similarity among the nonlocal neighbors in

Eq. 2 can be implemented by nonlocal networks [12, 45].

The output of NARM (SH) is expressed by:

SHi =

∑

∀j f(Hi, Hj)g(Hj)
∑

∀j f(Hi, Hj)
(22)

where similarity function f(·, ·) calculates the relationship

between Hi and Hj . And the architecture of NARM is

shown in Figure 3(a).

PAN-guided band-aware MS denoise module

As for the MS image enhancement problem, it is cru-

cial to effectively exploit the intrinsic relations between the

high-pass PAN images and all bands of the MS image with

different bands. As shown in Figure 3(b), we introduce a

high-pass modification block to learn the high-pass infor-

mation, which can be used to enhance the spatial informa-

tion of each band in MS, so as to achieve the purpose of

denoising.

With the output of k-th stage network H(k) and the out-

put of NARM SH(k), we consider the D prior and the

N prior and take PAN images as the condition in Eq. 4.

PAN-guided band-aware MS denoise module can be imple-

mented by the denoising module (DM) guided by Eq. 6 and

Eq. 7, where the output of DM (U (k−1) or V (k−1)) in the

previous stage, H(k) and condition P are used as the input

of k-th stage of MDCUN, as shown in Eq. 15 and Eq. 17.

Memory-augmented information module

In this paper, considering the memory information in

Eq. 15 and Eq. 17 and making full use of memory informa-

tion generated by the model, we introduce memory compo-

nents to store the memory information and keep the mem-

ory information updated. The memory components mainly

store memory information of two kinds of priors.

As shown in Figure 2, in the input of k-th stage of PAN-

guided band-aware MS denoise module, the outputs of DM

(U (k−1) and V (k−1)) in the previous stage will be replaced

by memory components (UMemory and VMemory), so

the inputs of DM are the memory components, H(k) and

condition P , so we have:

U (k) = DM(UMemory,H(k), P ) (23)

V (k) = DM(VMemory,H(k), P ) (24)

1782

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 28,2023 at 13:11:16 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. The four evaluation metrics on the test datasets. The best and the second best values are highlighted by bold and underline,

respectively. The up or down arrows indicate higher or lower values correspond to better results.

WorldView II WorldView III GaoFen2
Methods Params

PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
SFIM - 34.1297 0.8975 0.0439 2.3449 21.8212 0.5457 0.1208 8.973 36.906 0.8882 0.0318 1.7398

Brovey - 35.8646 0.9216 0.0403 1.8238 22.5060 0.5466 0.1159 8.2331 37.7974 0.9026 0.0218 1.372

GS - 35.6376 0.9176 0.0423 1.8774 22.5608 0.547 0.1217 8.2433 37.226 0.9034 0.0309 1.6736

IHS - 32.1601 0.9812 10.3010 26.40 22.5579 0.5354 0.1266 8.3616 38.1754 0.9100 0.0243 1.5336

GFPCA - 34.5581 0.9038 0.0488 2.1411 22.3344 0.4826 0.1294 8.3964 37.9443 0.9204 0.0314 1.5604

PNN 0.689 40.7550 0.9624 0.0259 1.0646 29.9418 0.9121 0.0824 3.3206 43.1208 0.9704 0.0172 0.8528

PANNET 0.688 40.8176 0.9626 0.0257 1.0557 29.6840 0.9072 0.0851 3.4263 43.0659 0.9685 0.0178 0.8577

MSDCNN 2.390 41.3355 0.9664 0.0242 0.994 30.3038 0.9184 0.0782 3.1884 45.6874 0.9827 0.0135 0.6389

SRPPNN 17.114 41.4538 0.9679 0.0233 0.9899 30.4346 0.9202 0.0770 3.1553 47.1998 0.9877 0.0106 0.5586

GPPNN 1.198 41.1622 0.9684 0.0244 1.0315 30.1785 0.9175 0.0776 3.2593 44.2145 0.9815 0.0137 0.7361

Ours 0.983 41.9269 0.9722 0.0215 0.9050 30.5668 0.9227 0.0744 3.0987 47.2023 0.9879 0.0105 0.5533

With the outputs U (k) and V (k) of PAN-guided band-

aware MS denoise module, we input them into two different

memory components respectively and complete the update

of memory information in the memory components. In k-th

stage, taking into account the two outputs U (k) and V (k) of

PAN-guided band-aware MS denoise module, the element

in UMemory is {U (0), U (1), ..., U (k)}, and the element

in VMemory is {V (0), V (1), ..., V (k)}.

Reconstruction module

With H(k), SHk, Uk and V k, we can iteratively recon-

struct the value of H(k+1) according to Eq. 11 and Eq. 14.

The operators (DK)T and DK are simulated using a

convolution network layer respectively. Specifically, DK is

simulated by a network call down-sampling-blocks (Down)

consisting of a convolutional layer with 3×3 kernels and 64

channels, a maxpool layer to decrease the spatial resolution

and two convolutional layers with 3 × 3 kernels for repro-

jection to the original dimension as shown in Figure 3(c).

Similarly, the (DK)T is simulated by a network call Up-

sampling-blocks (Up) consisting of a convolutional layer

with 3× 3 kernels and 64 channels, a upsample layer to in-

crease the spatial resolution, and two convolutional layers

with 3×3 kernels for reprojection to the original dimension

as shown in Figure 3(d).

4. Experiments

4.1. Datasets and evaluation metrics

In our experiments, remote sensing images obtained on

three satellites are used, including WorldViewII, World-

ViewIII, and GaoFen2. For each dataset, we have hundreds

of image pairs, and the MS images are cropped into patches

with the size of 32× 32, and the size of corresponding PAN

images is 128 × 128. For numerical stability, each patch

is normalized by dividing the maximum value to make the

pixels range from 0 to 1. Four widely used image quality

assessment metrics are used to evaluate the performance,

including the peak signal-to-noise ratio (PSNR) [19], Struc-

tural similarity (SSIM) [46], Erreur Relative Globale Adi-

mensionnelle de Synthese (ERGAS) [43], Spectral angle

mapper (SAM) [55], etc. The first three metrics measure

the spatial distortion and the fourth one measures the spec-

tral distortion. An image is better if its PSNR and SSIM are

higher, and SAM and ERGAS are lower.

4.2. Implementation details

MDCUN is supervised by the l1 loss between the out-

put H(K) of MDCUN and the ground truth H . As the

paired training samples are not available, we construct the

training datasets using the Wald protocol [44] to generate

paired images. Thanks to the parameter sharing across K

stages, the overall model can be trained in an end-to-end

manner. To further reduce the number of parameters and

avoid over-fitting, we enforce two PAN-guided band-aware

MS denoise modules to share the same parameters.

Training Setting: The implementation is based on Py-

torch framework. For optimization, we employ an ADAM

optimizer with β1 = 0.9, β2 = 0.999 to update the network

parameters for 1000 epochs with a batch size of 4. The ini-

tial learning rate is set to be 5e − 04 and decreases by half

for every 200 epochs.

Reproducibility: All experiments are conducted on a

TITAN RTX GPU with 24GB memory. And code is avail-

able in https://github.com/yggame/MDCUN .

4.3. Comparison with SOTA methods

We compare MDCUN with ten competitive meth-

ods, which include five classical methods (SFIM [26],

Brovey [16], GS [23], IHS [17], and GFPCA [25]) and

five DL-based methods (PNN [35], PANNET [53], MSD-

CNN [54], SRPPNN [3], and GPPNN [52]).

Quantitative results: The evaluation metrics on three

datasets of 10 benchmark methods are reported in Table 1

where the best and the second best values are highlighted

by bold and underline, respectively. It is clear to see that

our method achieves the best performance on three satel-

lites. This substantiates the effectiveness and flexibility of

our method with a certain degree of generalization.
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Figure 4. Qualitative comparison of all methods on WorldViewII. The last row visualizes the MSE residues between the Pan-sharpening

results and the ground truth.

Table 2. The results of different configurations on WorldViewII. The best and the second best values are highlighted by bold and underline,

respectively. The up or down arrows indicate higher or lower values correspond to better results. (PS: Parameters Sharing)

Configuration PS (inter stage) PS (intra stage) Memory D prior N prior PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓

I # # ! ! ! 41.9165 0.9719 0.0215 0.9062

II ! # ! ! ! 42.0412 0.9728 0.0212 0.8925

III # ! ! ! ! 41.8951 0.9722 0.0215 0.9082

IV ! ! # ! ! 41.8464 0.9716 0.0217 0.9127

V ! ! ! # # 36.2105 0.9056 0.0317 1.6121

VI ! ! ! ! # 41.8036 0.9717 0.0217 0.9187

VII ! ! ! # ! 41.8156 0.9721 0.0215 0.9050

MDCUN(Ours) ! ! ! ! ! 41.9269 0.9722 0.0215 0.9050

Qualitative results: The qualitative results are demon-

strated in Figure 4. It can be seen that our model recov-

ers the images with fewer visible artifacts. The quality im-

provement achieved by MDCUN may be due to the fully

usage of the feature maps from former stages to refine the

final results. Additionally, the intermediate visual results of

MDCUN with different stages are shown in Figure 5, from

which we can observe that more detailed information is re-

covered along with greater number of stages.

4.4. Ablation study

To further verify the performance of our proposed

method under different configurations, a series of ablation

studies are carried out, including 1) Effects of the number

of stages; 2) Reasonability of parameter sharing; 3) Effec-

tiveness of memory, and 4) Influence of different priors.

Effects of the number of stages: To explore the im-

pact of the number of unfolded stages on the performance,

we experiment with varying numbers of stages K. Table 3

shows the results of different K from 1 to 6. It can be

seen that the PSNR performance increases as the number of

stages increases. We choose K = 4 in our implementation

to balance the performance and computational complexity.

Reasonability of parameter sharing: We evaluate the

scenario where the parameters are not shared when K = 4.

In other words, MDCUN only contains a denoising module,

a NARM, and a reconstruction module. The reasonability

of parameter sharing is verified by the comparative experi-

ments of the following two cases: 1) Parameters sharing in

inter-stage; 2) Parameters sharing in intra-stage. As shown

in Table 2(I-III), disabling parameter sharing in intra-stage

improves performance to some extent, but parameter shar-
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Figure 5. Intermediate visual results of different stages of MDCUN on WorldViewII. The last row visualizes the MSE residues between

the Pan-sharpening results and the ground truth.

Table 3. The PSNR values of MDCUN with different number of

stages on WorldViewII. The best and the second best values are

highlighted by bold and underline, respectively. The up or down

arrows indicate higher or lower values correspond to better results.

Stages (K) PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
1 41.6093 0.9689 0.0229 0.9518

2 41.7395 0.9696 0.0225 0.9462

3 41.8234 0.9716 0.0217 0.9086

4 41.9269 0.9722 0.0215 0.9050

5 42.1424 0.9723 0.0213 0.9014

6 42.1512 0.9724 0.0214 0.9042

ing is a good strategy compared with the cost of more pa-

rameters. While disabling parameter sharing in inter-stage

will weaken our network’s performance.

Effectiveness of memory: We additionally perform a

comparative experiment to verify the effectiveness of mem-

ory components. In our ablation study, the input of the k-th

stage of DM is the DM output of the previous stage, rather

than being replaced by memory components. As shown in

Table 2(IV), the memory component is an effective strategy

for improving performance.

Influence of different priors: Two different pri-

ors, denoising-based prior (D prior) and non-local auto-

regression prior (N prior) are utilized in the proposed

model. We therefore conduct ablation studies to investi-

gate the influence of different priors. As demonstrated in

Table 2(V-VII), the best performance is achieved when uti-

lizing both two priors.

4.5. Cost-performance trade-off

To evaluate the trade-off between the cost (in terms of the

number of parameters) and the performance (represented

by PSNR), we compare the proposed method against five

deep learning methods in Figure 1. The results demonstrate

that our method can achieve better PSNR performance and

a good trade-off between cost and performance compared

to those of other deep learning-based methods.

4.6. Limitation

There are still several limitations. Due to the variability

of different satellites, our method may not completely guar-

antee the superior performance over other methods on all

datasets. Meanwhile, we need to train the model on each

dataset individually, without examining the generalization

ability when directly applying the trained model to another

dataset. Additionally, we choose the number of stages in

our model as 4. There is a large number of flops, which

increases with the increase of the number of stages.

5. Conclusion and future work

In this paper, we propose a Memory-augmented Deep

Conditional Unfolding Network that is both explainable and

efficient. We formulate the Pan-sharpening problem as the

minimization of a variational model with two beneficial pri-

ors. Extensive experiments demonstrate the superiority of

the proposed method against other state-of-the-art models

qualitatively and quantitatively. In future, we will apply our

framework to more image tasks and achieve the generaliza-

tion on more datasets.
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