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Abstract

Time Series Foundation Model (TSFM) learns appropriate embeddings from pre-
training data and uses them to embed the input time series for in-context learning
to produce forecast. TSFM requires rich pre-training dataset and large computa-
tional resources to learn effective embeddings. In contrast, traditional time series
modeling paradigm generates forecast for a given time series by fitting one of
many pre-determined models and using the best of them to produce a forecast.
Though resource efficient, it suffers from inability to utilize the pre-training data
along with the challenges involved in the best model selection. In this work, we
are motivated to bring the best of both worlds together to enable resource efficient
TSEM approach. Towards that, we introduce a novel embedding of time series of
any length and scale by mapping them to unit square (i.e [0, 1]?) or equivalently
a 2D image. To evaluate its efficacy compared to embedding from a TSFM, we
consider the task of model identification or classification for dataset where each
time series is generated from one of many pre-determined model class. We find that
the performance of the proposed embeddings is comparable to that of embeddings
from a pre-trained TSFM, but at a fraction of resource requirement. This suggests
an alternative architectural possibility for a compute efficient TSFM.
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1 Introduction

Time Series Foundation Model (TSFM). In the simplest terms, a TSFM is a universal forecaster:
when time series data of any length, with potentially missing values, is provided as an input, it can
generate prediction or forecast for the future time step(s). Loosely speaking, a TSFM achieves this
task by pre-training on a massive data repository and in the process, learning (encoding) and extracting
(decoding) patterns from the dataset. Operationally, learning and extracting pattern corresponds to
TSFM’s ability to embed any time series into appropriate embedding space. Indeed, in an encoder-
decoder model, for in-context learning, TSFM encoder embeds the input time series which in turn is
decoded to produce forecast. In that sense, it is this time series embedding (encoder) of the TSFM
that allows it to be an effective predictor or forecaster. Examples of TSFM include Timesfm [2],
Moirai [4]] and Chronos [[1]].

A Traditional Time Series Model. In the traditional paradigm, given an input time series, an
appropriate model class with associated parameter(s) is chosen from a collection of them. This
selection is typically done through an experimental framework where multiple models are trained
on the same time series and the best model is chosen based on their out-of-sample performance.
Such approaches are typically resource efficient, especially compared to TSFM. Examples of such an
approach includes Prophet [3].

Key Challenges. The TSFM comes with the challenge of (a) resource intensive training, inference,
(b) requirement of sufficiently rich pre-training dataset. The traditional approaches come with the
challenge of (c) experimentation being ineffective especially for short time series, (d) unable to
incorporate information available in the pre-training data.

Goal. Is it possible to overcome challenges (a)-(d) simultaneously? Specifically, it is possible to have
a resource efficiency of traditional approach while ability to incorporate information from pre-training
data for forecasting a given time series and avoid the need of experimentation.

1.1 Contributions. As the main contribution of this work, we introduce novel, universal time series
embedding. For any given time series of any length and scale along with potentially missing values,
it maps the time series to a unit square, viewed equivalently as mapping to a 2D image of fixed
size. A typical TSFM uses embeddings along with pre-learned model transformation in the training
phase to produce a forecast. In the traditional approach, the goal is to learn which is the best model
class amongst a collection of them. In effect, both approaches try to utilize the input time series to
determine what sorts of pattern it corresponds to. Therefore, to evaluate efficacy of the embedding
proposed in this work, we consider the following model identification problem: given a collection
of time series generated from one of the many model classes, identify the true generating model
class based on the obesrved time series only. For this model identification or classification problem,
we compare the performance of our proposed time series embedding and that of TimesFM [2].
Specifically, Table [I] provides a summary of our findings. As can be deduced from it, we find that
the performance of our embedding is nearly identical to that of embeddings of the TSFM; and our
embedding takes a fraction of computational resource compared to that of TSFM.

1.2 Organization. The rest of the manuscript is organized as follows. In Section 2] we introduce the
novel time series embeddings. In Section 3] we introduce the model classification task and evaluate
performance of the introduced embeddings. We compare its performance with that of embeddings
from a pre-trained TSFM. We provide brief conclusion in Section [}

2 Embeddings of Time Series

Let 1.7 = x1,...,27 € RU {x} denote a time series of length T'; x = missing observation.

2.1 Image-Based Embeddings of Time Series

We describe three embeddings that transform ;.7 into structured image-like representations along
the time axis. Each method partitions the time horizon into K intervals and optionally discretizes
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values into J bins. We first normalize the series to [0, 1]: y; = 7 o ’ with
—Lt=Tmin - otherwise,
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Table 1: Performances of Different Embeddings. p is the probability that a time point is NaN. We
report embedding dimension (Dim), CV accuracy/F1, strict Test accuracy (Overall/Pure/Mixed), and
Test Relaxed Overlap accuracy (Overall/Pure/Mixed). Best performing is bolded.

Dim CvV Test Strict Acq Test Overlap Agc
Acc/F1  Overall / Pure / Mixed Overall / Pure / Mixed

Missingness p = 0.0
RGBA (K=8) 32 .7457.741 - -
BW (J=40, K=64) 1280 .755/.749 - -
Heat (J=40, K=32, blur=1) 1280 .766/.761 7751 .807 1 .754 .988/.979/.994
TimesFM 1280 - 781/ .843/.740 997 /.995 /.998
Missingness p = 0.1
RGBA (K=8) 32 719/.712 - -
BW (J=40, K=32) 1280 .746/.740 - -
Heat (J=40, K=32, blur=1) 1280 .749/.743 759/ 811 /.725 .983/.969 /.993
TimesFM 1280 - 748 /.824 1 .697 996 /.991/.998
Missingness p = 0.2
RGBA (K=8) 32 707/ .698 - -
BW (J=40, K=32) 1280 .735/.727 - -
Heat (J=40, K=32, blur=1) 1280 .739/.732 738 /.800 / .696 .983/.968/.993
TimesFM 1280 - 721/ .805 / .665 992 /.989 /.994

A. Black-White Grid. This embedding aims to capture whether certain value ranges are ever
visited by the time series. Let b, = |(J — 1) y;| be the value bin index for y; # *, where y; is the
normalized series on [0, 1] and | -] denotes rounding to the nearest integer. We form a binary matrix

Be{0,1}/*K: B;, = 1{EIt ETp Yyt £ *Nby = j} where Z;, denotes the k-th interval of time.

Thus, B; ; = 1if bin j is hit during interval k, and 0 otherwise. This visualizes which amplitudes
appear in each time slice and yields a black-and-white bitmap of support of the time series.

B. Density Heatmap. To capture not just whether values occur but also their relative frequency, we
construct a density heatmap. This embedding retains information about concentration and shape of
the distribution over time. Using the same binning as Black-White Grid, we count the number of hits
in each bin: H; ;, = |{t ELr:ys A *xNby =7 }|, H e R%K. The result # is a vertical density
heatmap of size J x K. Optionally, a Gaussian blur can be applied for smoothing.

C. Segmented Quantile RGBA Embedding. In settings where robustness to outliers is beneficial,
quantiles often provide a compact and interpretable summary. For each interval Z;, we compute:
(1) Missingness fraction m;, = lle\ >ier, Hye = +}5 (2) Quantiles Q9%, Q)-5%, QR of the
non-missing values.

We then encode into a pixel (Ry, G, B, Ax) € [0,255]*:
Ry = 255-Q0%), Gr=255-Q0™), Bp=255-Q0™), Ax=255-(1—my)].

Stacking across k = 1,. .., K yields an array in [0, 255]% >4, This embedding forms a colored strip
encoding distributional shape and data presence per segment.

We have included the visualizations for these 3 different embeddings mentioned above in Fig. [T}

2.2 TimesFM Emebedding

In contrast to the image-based encodings above, we also evaluate a learned representation derived
from a TSFM TimesFM [2]. We instantiate the public google/timesfm-2.0-500m-pytorch
checkpoint, configured with 50 Transformer layers, and a context length of 2048. Given an input
series z1.7, the encoder produces a sequence of patch embeddings after which mean pooling is
applied across the patch dimension to obtain a single fixed—dimensional embedding vector for
each time series. The resulting embedding captures long—range temporal patterns and higher—order
dependencies learned during pretraining. In case there are NaN values, we first fill in the missing
values with linear interpolation before using the model to get embeddings.
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Figure 1: Visualizations of a time series and its corresponding three image-based embeddings.

3 Experiments, Evaluation

Setup. We construct a collection of synthetic time series from several classical models (SARIMA,
Linear, Bernoulli, Harmonic). To test the performance on compositional time series, we also generate
mixtures of two “pure” classes by combining them with random weights. The dataset is stratified
into 80/20 train—test splits across pure and mixed classes. We compare three proposed image-based
encodings (binary grid, heatmap, quantile RGBA) against the TimesFM embeddings. For each
image-based embedding, hyperparameters (e.g., temporal resolution, discretization, blur) are tuned
by cross-validation. To evaluate robustness, we further inject random missingness (p = 0.1, 0.2). All
embeddings are processed via a unified pipeline: standardization, PCA, and a random forest classifier.
On the test set, we report strict accuracy, macro-F1, and confusion matrices. Due to the inclusion of
mixture classes, we additionally compute a relaxed “overlap accuracy,” counting predictions correct
if at least one constituent class is recovered. Results are reported overall and separately for pure vs.
mixed classes. Full details of the experimental setup are deferred to the Appendix [A]

Results. Across all settings, the heatmap embedding with Gaussian blur (J=40, K=32, blur=1)
and TimesFM consistently emerged as the strongest performers. As shown in Table 1] both methods
maintain high discriminative power under increasing missingness. At p = 0, TimesFM achieves
the best strict accuracy (.781 overall, .843 for pure classes), slightly outperforming the heatmap
embedding (.775 overall). However, as missingness increases, the heatmap embedding achieves
better strict accuracy, with TimesFM slightly lower but higher on pure classes. TimesFM also retains
superior overlap accuracy across different levels of missingness. Comparing accuracies of pure and
mixed classes, pure classes remain stable (>~ .80), while mixed classes drop more sharply (from .754
to .696 for heatmaps; .740 to .665 for TimesFM).

4 Conclusion

We introduce a lightweight image-based embedding alternative to pre-trained foundation model
embeddings. Through a synthetic model identification benchmark, we show that these image-based
embeddings achieve performance comparable to TimesFM while requiring only a fraction of the
computational resources. Our empirical analysis demonstrates complementary strengths that heatmap
embeddings with Gaussian blur excel in strict classification under moderate missingness, whereas
TimesFM provides slightly better overlap accuracy, particularly for mixed classes. Both approaches
demonstrate robustness to data corruption up to 20%.

These findings suggest that simple, resource-efficient encoders can rival foundation models on
structured tasks, and may serve as building blocks for compute-efficient TSFMs. Future work includes
extending the evaluation to real-world datasets, exploring hybrid encoders that combine image-based
features with learned representations, and integrating the proposed image-based embeddings with
pre-trained vision transformers.



References

[1] Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham
Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola,
Andrew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
language of time series, 2024.

[2] Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model
for time-series forecasting, 2024.

[3] Sean J. Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37-
45, 2018.

[4] Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers, 2024.

A Details of Experimental Evaluations

Dataset. We begin with a library of simulated time series generated from several types of classical
time series models with randomly sampled parameters, including SARIMA, Linear, Bernoulli, and
Harmonic. These serve as “pure” classes in our synthetic data. To test whether representations
can capture compositional structure, we also created “mixed” classes by combining two pure series.
Given standardized sequences a and b, we draw r ~ 1/(0.3,0.7) and form the mixed sequence

y=+ra++v1—rb.

which preserves unit variance of the mixture by allocating “energy” in proportions r and 1 — 7, in
contrast to a convex combination ra + (1 — r)b that would systematically reduce variance. Repeating
this procedure produces 1000 mixtures per unordered class pair. The final corpus thus contains both
pure and mixed examples, labeled accordingly.

Train—test. The full dataset is split 80/20 into training and test partitions, stratified by label. This
ensures both pure and mixed categories are proportionally represented.

Encoding. Each series is transformed into one of the three image-based embeddings defined in
Section 2} the binary black—white grid (E1), density heatmap (E2), segmented quantile RGBA strip
(E3), or the foundation model TimesFM embeddings (E4). For each embedding we sweep natural
hyperparameters such as temporal resolution K, value discretization .J, and blur strength. Flattened
feature vectors are padded to a common length when necessary.

To assess robustness under incomplete data, we inject missing values at random (MCAR) with
probabilities p € {0.1,0.2}, replacing each time point independently with x. The encoders were
NaN-safe: RGBA explicitly encodes missingness in its alpha channel, while BW and Heatmap
embeddings ignore NaNs during binning. We repeated the same cross-validation and held-out test
evaluation protocol as in the complete-data setting.

Classification. All embeddings are processed through a unified supervised pipeline:

1. Standardization. Each feature dimension is centered and rescaled to unit variance.

2. Dimensionality reduction. Principal component analysis (PCA) is applied, retaining at most
128 components if original embedding is of a higher dimension.

3. Classifier. A random forest classifer with 200 decision trees is trained.

Model selection. For the image-based encodings, we evaluate candidate encoders and their hy-
perparameters using five-fold stratified cross-validation on the training set, scoring by accuracy
and macro-F1 (averaged harmonic mean of precision and recall). The configuration with the best
macro-F1 is retrained on the full training data. We also run the TimesFM embedding for comparison
against the best performing image-based embedding.



Evaluation metrics. On the held-out test set, we report (i) strict classification accuracy, (ii) F1, and
(iii) confusion matrices. Because mixed classes consist of two base labels, we additionally report
a relaxed “overlap accuracy” in which a prediction is considered correct if it recovers at least one
constituent class. Results are also broken out by pure and mixed subsets.
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