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ABSTRACT

Restricted Boltzmann Machines (RBMs) are powerful tools for modeling complex
systems and extracting insights from data, but their training is hindered by the slow
mixing of Markov Chain Monte Carlo (MCMC) processes, especially with highly
structured datasets. In this study, we build upon recent theoretical advancements
in RBM training, focusing on the gradual encoding of data patterns into singu-
lar vectors of the coupling matrix, to significantly reduce the computational cost
of training (in very clustered datasets) and evaluating and sampling in RBMs in
general. The learning process is analogous to thermodynamic continuous phase
transitions observed in ferromagnetic models, where new modes in the probability
measure emerge in a continuous manner. Such continuous transitions are associated
with the critical slowdown effect, which adversely affects the accuracy of gradient
estimates, particularly during the initial stages of training with clustered data. To
mitigate this issue, we propose a pre-training phase that encodes the principal
components into a low-rank RBM through a convex optimization process. This ap-
proach facilitates efficient static Monte Carlo sampling and accurate computation of
the partition function. Furthermore, we exploit the continuous and smooth nature of
the parameter annealing trajectory to achieve reliable and computationally efficient
log-likelihood estimations, enabling online assessment during the training process,
and proposing a novel sampling strategy termed parallel trajectory tempering that
outperforms previously optimized MCMC methods. Our results demonstrate that
this innovative training strategy enables RBMs to effectively address highly struc-
tured datasets that conventional methods struggle with. Additionally, we provide
evidence that our log-likelihood estimation is more accurate than traditional, more
computationally intensive approaches in controlled scenarios. Moreover, the par-
allel trajectory tempering algorithm significantly accelerates MCMC processes
compared to existing and conventional methods.

1 INTRODUCTION

Energy-based models (EBMs) are a long-established approach to generative modeling, with the
Boltzmann Machine (BM) (Hinton & Sejnowski, 1983) and Restricted Boltzmann Machine
(RBM) (Smolensky, 1986; Ackley et al., 1985) being among the earliest examples. They offer
a clear framework for capturing complex data interactions and, with simple energy functions, can
reveal underlying patterns, making them especially valuable for scientific applications. Pairwise-
interacting models (Nguyen et al., 2017) have been widely used for decades for inference applications
in fields like neuroscience (Hertz et al., 2011) and computational biology (Cocco et al., 2018).
More recent research has shown that RBMs can also be reinterpreted as many-body physical mod-
els (Decelle et al., 2024; Bulso & Roudi, 2021), analyzed to identify hierarchical relationships in the
data (Decelle et al., 2023), or used to uncover biologically relevant constituent features (Tubiana et al.,
2019; Fernandez-de Cossio-Diaz, 2025). In essence, RBMs present a great compromise between
expressibility and interpretability: they are universal approximators capable of modeling complex
datasets and simple enough to allow a direct extraction of insights from data. This interpretative task
is particularly challenging when dealing with more powerful models such as generative convolu-
tional networks EBMs (Xie et al., 2016; Song & Kingma, 2021) and other state-of-the-art models
in general. At this point, it is also important to stress that RBM are not only interpretable, but they
perform particularly well when dealing with tabular datasets with discrete variables, and where data
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is not abundant, which is often the case in genomics/proteomics or neural recording datasets. For
instance, RBMs have shown to be among the most reliable approaches to generate synthetic human
genomes (Yelmen et al., 2021; 2023) or to model inmunological response (Bravi et al., 2021a;b;
2023) or neural activity (van der Plas et al., 2023; Quiroz Monnens et al., 2024).

RBMs, like other EBMs, are challenging to train due to the difficulty of computing the log-likelihood
gradient, which requires ergodic exploration of a complex free energy landscape via Markov Chain
Monte Carlo (MCMC). Training with non-convergent MCMC introduces out-of-equilibrium memory
effects, as shown in recent studies (Nijkamp et al., 2019; 2020; Decelle et al., 2021), which can be
analytically explained using moment-matching arguments (Nijkamp et al., 2019; Agoritsas et al.,
2023). While these effects enable fast and accurate generative models for structured data (Carbone
et al., 2023) and high-quality images with RBMs (Liao et al., 2022), they create a sharp disconnect
between the model’s Gibbs-Boltzmann and dataset distributions, undermining parameter interpretabil-
ity (Agoritsas et al., 2023; Decelle et al., 2024). For meaningful insights, RBMs require proper chain
mixing during training, emphasizing the need for equilibrium models.

Working with equilibrium RBMs poses three primary challenges: training, evaluating model quality,
and sampling from the trained model. Both training and sampling rely on MCMC methods to
draw equilibrium samples, but their efficiency depends heavily on the dataset’s structure. While
RBMs can be effectively trained on image datasets like MNIST or CIFAR-10 with sufficient MCMC
steps, this approach falters for highly structured datasets (Béreux et al., 2023), such as genomics,
neural recordings, or low-temperature physical systems. These datasets often exhibit multimodal
distributions with distinct clusters, as revealed by PCA (Fig. 1), which hinder mixing. Clustering is
prominent in the first four datasets studied here, in contrast to the more compact PCA pattern seen in
CelebA or full MNIST. Dataset details are provided in Fig. 1. Multimodal distributions exacerbate
sampling challenges since mixing times depend on the MCMC chains’ ability to transition between
clusters. In RBMs, these distant modes emerge during training through continuous phase transitions
(e.g., second-order or critical transitions) that encode patterns (Decelle et al., 2017; 2018; Bachtis
et al., 2024). These transitions lead to critical slowdown (Hohenberg & Halperin, 1977), where mixing
times diverge with system size as the transition point nears. Critical slowdown along the training
trajectory was recently analyzed in (Bachtis et al., 2024). For a brief introduction to phase transitions
and associated dynamical effects, see Supplemental Information (SI) G. All this hampers both the
training process and the model’s ability to generate independent samples, as achieving adequate
mixing requires prohibitively long simulations. Model quality evaluation adds to the challenge,
particularly in unsupervised learning. A common qualitative approach compares equilibrium samples
to data via PCA projections. Quantitatively, moment comparisons between data and generated
distributions offer insights but fail to detect mode collapse. Log-likelihood computation provides a
single-score metric and tracks overfitting during training, but exact computation is infeasible due to
the intractable partition function. Instead, methods like Annealed Importance Sampling (AIS) (Neal,
2001) are used for estimation but become unreliable for highly multimodal distributions and are
computationally impractical for online evaluations (see Section 5.1).

In this paper, we build on recent advances in understanding the evolution of the free energy landscape
during the training of RBM models to propose three innovative approaches for tackling the challenges
of training, evaluating, and generating samples with RBMs trained on highly structured datasets:

1. We propose a novel pre-training strategy based on the theoretical low-rank RBM framework
of (Decelle & Furtlehner, 2021a). We adapt it to real-world datasets by extending constrained the
number of directions and adding a trainable bias, essential for image datasets. We also correct the
static Monte Carlo sampling method to efficiently generate equilibrium samples. For details, see
section 4 and SI A.

2. We propose a novel method for estimating log-likelihood (LL) by leveraging the softness of the
training trajectory. This approach enables efficient online LL computation during training at mini-
mal cost or offline reconstruction using trajectory annealing or parallel tempering. Moreover, we
demonstrate that this method is not only less computationally expensive than existing techniques
but also more accurate in controlled experiments where the exact LL is known. The method is
introduced in Sect. 5.1.

3. We propose a variation of the standard parallel tempering algorithm, where parameters from
different stages of the learning process are exchanged instead of temperatures. This new sampling
approach significantly outperforms previous optimized methods and is detailed in Section 5.2.
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Figure 1: Datasets. Panels A-E display 5 distinct datasets projected onto their first two PCA
components. In some instances, the dots are color-coded to indicate different labels. In A, the MNIST
01 dataset, featuring images of the digits 0 and 1 from the complete MNIST collection, along with
a few sample images. In B, the “Mickey” dataset, an artificial dataset whose PCA representation
forms the shape of Mickey Mouse’s face. In C, the Human Genome Dataset (HGD), which consists
of binary vectors representing mutations or non-mutations for individuals compared to a reference
genome across selected genes. In D, the Ising dataset, showcasing equilibrium configurations of the
2D ferromagnetic Ising model at an inverse temperature of β = 0.44. In E, the CelebA dataset in
black and white, resized to 32x32 pixels. For more details on these datasets, please refer to the SI.

We also provide an in-depth discussion in Sect. 2 on the physical reasons behind the failure of
previous algorithms when handling clustered datasets.

2 RELATED WORK

Training EBMs by maximizing log-likelihood has long been a challenge in the community (LeCun
et al., 2006; Song & Kingma, 2021). EBMs gained popularity with the introduction of the contrastive
divergence algorithm (Hinton, 2002), in which a set of parallel chains is initialized on independent
examples in the minibatch and the MCMC process iterates for a few steps. Despite its widespread
use, this algorithm yields models with poor equilibrium properties that are ineffective as generative
models (Salakhutdinov & Murray, 2008; Desjardins et al., 2010; Decelle et al., 2021). An improve-
ment is the persistent contrastive divergence (PCD) algorithm (Tieleman, 2008), which maintains a
permanent chain in which the last configurations used to estimate the previous gradient update are
reused. PCD acts like a slow annealing process improving gradient estimation quality. However, it
often fails on clustered data as the statistical properties of the permanent chain quickly move away
from the equilibrium measure and degrade the model (Béreux et al., 2023). This problem, which
is primarily related to phase coexistence, can be addressed with constrained MCMC methods if
appropriate order parameters are identified. For RBMs, these order parameters are related to the
singular value decomposition of the model coupling matrix, which enables efficient reconstruction
of multimodal distributions (Béreux et al., 2023). Although this method is effective for evaluating
model quality, it is too computationally intensive to be used in training, even if it leads to models
with good equilibrium properties.

The population annealing algorithm, which adjusts the statistical weights of parallel chains during
learning each time the parameters are updated, has been proposed as an alternative approach (Krause
et al., 2018). Reweighting chains using non-equilibrium physics concepts like the Jarzynski equation
has also been explored (Carbone et al., 2024). However, both methods struggle with highly structured
data, as frequent reweighting (which involves duplicating only a few samples) biases the equilibrium
measure due to an insufficient number of effective independent chains. To prevent chains from
becoming too correlated around transition regions during training, either more sampling steps or a
lower learning rate is required, which leads to very long training times to ensure equilibrium. In our
case, we tried to used both methods with our datasets but the training becomes too unstable or two
slow if learning rate and number of Gibbs steps are auto adjusted. Another approach uses EBMs as
corrections for flow-based models that are easier to sample (Nijkamp et al., 2022), simplifying learning
but sacrificing the interpretability of the energy function, a key goal of this work. Alternatively,
evolving flow models can serve as fast sampling proposers for the EBM (Grenioux et al., 2023), but
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this requires training two separate networks and the acceptance of the proposed moves is significantly
reduced as the EBM becomes more specialized.

The Parallel Tempering (PT) algorithm (Hukushima & Nemoto, 1996), in which the model is
simulated in parallel at different temperatures which are exchanged once in a while using the
Metropolis rule, has been proposed to both speed up the sampling and to improve the training
process (Salakhutdinov, 2009; Desjardins et al., 2010) showing important improvements in certain
datasets (Krause et al., 2020).

However, PT is expensive because it requires sampling at multiple temperatures while using samples
from only one model. It’s also often ineffective with highly clustered data due to first-order phase
transitions in EBMs, where modes disappear abruptly at certain temperatures, as discussed by
(Decelle & Furtlehner, 2021a). This leads to sharp drops in acceptance rates for exchanges between
temperatures near the transition. For this reason, first-order transitions typically hinder PT, as many
intermediate temperatures are needed to allow sufficient acceptance rates in the exchanges. In contrast,
continuous transitions, as seen during the training trajectory, cause modes to gradually separate as the
model parameters are changed.

A recent method for RBMs, called “Stacked Tempering” (Roussel et al., 2023), significantly acceler-
ates sampling by training smaller RBMs using latent variables from previous models. This allows for
fast updates through a PT-like algorithm, and the authors demonstrated that it is much faster than
standard PT. However, while this method is effective for sampling a trained model, it is not suitable
for learning, as it requires sequentially training multiple models stacked on top of each other. Also for
RBMs, it has recently been shown in a theoretical work that it should be possible to train a low-rank
RBM that accurately reproduces the statistics of the data projected along the d first data principal
directions through a convex and very fast optimization process (see (Decelle & Furtlehner, 2021a) and
the discussion below) using a mapping to another model, the so-called Restricted Coulomb Machine.
This low-rank model can be seen as a good approximation to the correct RBM needed to describe the
data, and has the nice property that it can be efficiently sampled via a static Monte Carlo process.
While this work showed the efficiency of this training process to describe simple synthetic datasets
embedded in only one or two dimensions, the use of this algorithm to obtain reliable low-rank RBMs
with real data requires further developments that will be discussed in this paper, in particular: (i)
the training of a bias, which is crucial to gain almost for free an additional dimension and to deal
with image datasets, and (ii) a tuning of the RBM fast sampling process, which was not properly
investigated in the original paper.

In this paper, we show how starting the RBM training with a low-rank RBM in very clustered datasets
can drastically improve the quality of the models by circumventing the initial dynamical arrest effects
that occur during the training process, at a very similar computational cost. We also show that the
training trajectory can be leveraged to estimate the log-likelihood at a very little computational effort,
so that both the training and test set log-likelihood can be easily and reliably computed online during
training. Furthermore, we propose an efficient sampling method, which we call Parallel Trajectory
Tempering (PTT). This method outperforms optimized MCMC methods such as the traditional
Parallel Tempering (PT) or the “Stacked Tempering” (Roussel et al., 2023) only requiring storing the
parameters of the model at a few stages during training. By combining these strategies, we are able to
train equilibrium models that accurately capture different modes in datasets prone to mode collapse
using standard methods, easily evaluate RBMs during the training process, and easily sample from
multimodal distribution.

3 THE RESTRICTED BOLTZMANN MACHINE

The RBM is composed by Nv visible nodes and Nh hidden nodes. In our study, we primarily use
binary variables {0, 1} or ±1 for both layers. The two layers (visible and hidden) interact via a
weight matrix W , with no direct couplings within a given layer. Variables are also adjusted by visible
and hidden local biases, θ and η, respectively. The Gibbs-Boltzmann distribution for this model is
expressed as

p(v,h) =
1

Z
exp [−H(v,h)] whereH(v,h) = −

∑
ia

viWiaha −
∑
i

θivi −
∑
a

ηaha, (1)
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where Z is the partition function of the system. As with other models containing hidden variables, the
training objective is to minimize the distance between the empirical distribution of the data, pD(v),
and the model’s marginal distribution over the visible variables, p(v) =

∑
h exp [−H(v,h)] /Z =

exp [−H(v)] /Z. Minimizing the Kullback-Leibler divergence is equivalent to maximizing the
likelihood of observing the training dataset in the model. Thus, the log-likelihood L = ⟨−H(v)⟩D −
logZ can be maximized using the classical stochastic gradient ascent. For a training dataset D =
{v(m)}m=1,...,M , the log-likelihood gradient is given by

∂L
∂Wia

= ⟨viha⟩D − ⟨viha⟩RBM,
∂L
∂θi

= ⟨vi⟩D − ⟨vi⟩RBM,
∂L
∂ηa

= ⟨ha⟩D − ⟨ha⟩RBM, (2)

where ⟨f(v,h)⟩D = M−1
∑

m

∑
{h} f(v

(m),h)p(h|v(m)) denotes the average with respect to the
entries in the dataset, and ⟨f(v,h)⟩RBM with respect to p(v,h).

Since Z is intractable, the model averages in the gradient are typically estimated using Ns independent
MCMC processes, and observable averages ⟨o(v,h)⟩RBM are replaced by

∑R
r=1 o(v

(r),h(r))/R,
with (v(r),h(r)) being the last configurations reached with each of the r = 1, . . . , R parallel chains.
To obtain reliable estimates, it should be ensured that each of the Markov chains mix well before
each parameter update. However, ensuring equilibrium at each update is impractical, slow and
tedious. The common use of non-convergent MCMC processes is the cause of most difficulties and
weird dynamical behaviors encountered in training RBMs as discussed in (Decelle et al., 2021). In
order to minimize out-of-equilibrium effects, it is often useful to keep R permanent (or persistent)
chains, which means that the last configurations reached with the MCMC process used to estimate
the gradient at a given parameter update t, Pt ≡ {(v(r)

t ,h
(r)
t )}Rr=1, are used to initialize the chains

of the subsequent update t+ 1. This algorithm is typically referred to as PCD. In this scheme, the
process of training can be mimicked as a slow cooling process, only that instead of varying a single
parameter, e.g. the temperature, a whole set of parameters Θt = (wt,θt,ηt) is updated at every step
to Θt+1 = Θt+γ∇Lt with ∇Lt being the gradient in equation 2 estimated using the configurations
in Pt, and γ being the learning rate.

Typical MCMC mixing times in RBMs are initially short but increase as training progresses (Decelle
et al., 2021). Studies reveal sharp mixing time peaks when the model encodes new modes (Bachtis
et al., 2024), a phenomenon known as critical slowing down Hohenberg & Halperin (1977), associated
with critical phase transitions. In RBMs, these transitions during maximum likelihood training
correspond to encoding the dataset’s principal components into the singular vectors of the weight
matrix W (Decelle et al., 2017; 2018; Decelle & Furtlehner, 2021b; Bachtis et al., 2024). Since these
directions can be identified via PCA before training, pre-training the RBM to encode them avoids
early phase transitions and gradient degradation associated to those transitions.

4 THE LOW-RANK RBM PRETRAINED

In (Decelle & Furtlehner, 2021a), it was shown that it is possible to train exactly an RBM containing
a reduced number of modes in the weight matrix W by exploiting a mapping between the RBM and
a Restricted Coulomb Machine and solving a convex optimization problem, see the SI A.2. In other
words, it is possible to train an RBM whose coupling matrix has this simplified form

W =
∑d

α=1 wαūαu
⊤
α , with (uα, ūα) ∈ RNv × RNh , (3)

where {wα} are the singular values of the coupling matrix and the right singular vectors {uα}dα=1
correspond exactly to the first d principal directions of the data set. Under this assumption, p(v) a
function of only d order parameters, given by the magnetizations along each of the uuuα components,
i.e. mα(v) = uα · v/

√
Nv. In particular,

H(v) = −∑d
α=0 θαmα −

∑
a log cosh

(√
Nv

∑d
α=1 ūαawαmα + ηa

)
= H(m(v)), (4)

where m = (m1, . . . ,mα) and θα is the projection of the visible bias onto the extended u matrix.
To initialize the visible bias as proposed in (Montavon & Müller, 2012), a direction u0 is introduced
for the magnetization m0, which only exists in the bias term. This is an improvement over (Decelle &
Furtlehner, 2021a) because it effectively adds an additional direction at minimal cost. We also found
that the addition of the bias term was crucial to obtain reliable low-rank RBMs for image data.
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The optimal parameters can be determined by solving a convex optimization problem, detailed in
SI A.2. Once the model is trained, we obtain a probability distribution p(m) in a much lower-
dimensional space than the original p(v), which can be easily sampled globally using the inverse
transform sampling method. However, since this approach requires discretizing the m-space for both
training and generation, it becomes impractical for intrinsic space dimensions d > 4 due to memory
constraints. These low-rank RBMs are trained to replicate the statistics of the dataset projected onto
its first d principal components. Despite their simplicity, the low-rank models can still generate
an approximate version of the dataset, as shown in Supplemental Figure 19 for the five datasets
previously presented.

In the initial stage of the standard RBM learning process, the model encodes the strongest PCA
components of the data through multiple critical transitions (Decelle et al., 2017; 2018; Bachtis
et al., 2024). Pre-training with the low-rank construction allows us to bypass these transitions and
avoid out-of-equilibrium effects caused by critical slowing down associated to these transitions,
which becomes prohibitive in the case of very clustered datasets. Once the main directions are
incorporated, mixing times stabilize at much lower values than those observed during transitions, as
barriers between clusters become finite once the modes are properly aligned, as shown in Béreux et al.
(2023). This makes it a much safer starting point for initializing standard PCD training. However,
mixing times tend to increase as training progresses, meaning that pretraining can only mitigate
issues caused by poor initialization of the primary directions. Challenges related to insufficient
MCMC steps are likely to persist later in the training process. Overcoming these transitions greatly
improves model quality and the accuracy with which they reproduce data statistics, particularly
for short training times. In Fig. 2, we compare equilibrium samples from two RBMs trained on
five datasets using identical settings: the same number of samples, minibatch size, k = 100 Gibbs
steps, and learning rate γ = 0.01, but different strategies. One RBM is trained from scratch with
standard PCD (Tieleman, 2008), while the other uses PCD following a low-rank RBM pre-training
phase. We also tested the Jarzynski reweighing method (Carbone et al., 2023) (see SI E for details),
but results were unstable on most datasets and are excluded here. Across all datasets, pre-training
significantly improves sample quality and test log-likelihood. The pre-trained+PCD RBM balances
the modes effectively, as shown by PCA projections (extending to other principal directions), and
consistently achieves higher log-likelihood values measured using annealed importance sampling
(Tr-AIS). Samples are drawn with the trajectory PT algorithm, both described in Section 5.1. Scatter
plots highlight that pre-training is critical to obtain properly balanced models on clustered datasets
and improves test log-likelihood. However, for less clustered datasets like CelebA and full MNIST,
pre-training offers limited benefits, as splitting distributions into isolated modes is unnecessary for
such data (see Fig. 20 in SI J).

5 TRAJECTORY ANNEALING PARADIGM

One major challenge with structured datasets is quantifying the model’s quality, since sampling the
equilibrium measure of a well-trained model is often too time-consuming. This affects the reliability of
generated samples and indirect measures as log-likelihood’s estimation through Annealing Importance
Sampling (AIS) (Krause et al., 2020), making them inaccurate and meaningless. The evolution of
parameters during training can be seen as a smoother annealing process compared to the standard
temperature annealing used in algorithms like annealing importance sampling (AIS) for log-likelihood
estimation or in sampling algorithms like simulated annealing or parallel tempering. This is because
it avoids the first-order transitions that typically occur with temperature in clustered datasets, see
SI H for more explanations about this phenomenon. However, these methods can still be applied to
trajectory annealing by using the parameters from different stages of training, rather than scaling the
model parameters by a common factor βi, as is done in temperature-based protocols.

5.1 TRAJECTORY ANNEALING IMPORTANCE SAMPLING

The standard method for computing the log-likelihood (LL) in the literature is Annealed Importance
Sampling (AIS) (Neal, 2001). For a detailed review of its application in RBMs, see (Krause et al.,
2020). In this approach, the partition function of a model with parameters Θ = {w,θ,η} is estimated
by gradually increasing the inverse temperature β from 0 to 1 over Nβ steps. At β = 0 (where
p0 = pref ), the partition function Z0 is tractable, enabling the estimation of Zi at neighboring βi

6
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Figure 2: We compare the equilibrium samples generated by RBMs trained on the MNIST01, Mickey,
HGD, Ising2D and CelebA datasets using two different training schemes: PCD, and PCD initialized
on low-rank RBMs. To assess the fitting of the modes, we show a scatter plot of the projections of
the samples in the first two principal directions of each dataset, together with the histograms along
each direction. Black dots and histograms refer to the original data distribution, while the red color is
used to represent the generated data. In D we show the evolution of the log-likelihood in time for the
two training methods computed with the online AIS trajectory. In continuous lines we show the train
and in dashed, the test. Results are obtained by averaging with respect to 10 trainings initialized at
the same low-rank RBM, and the standard deviation between all is shown in a shade around the line,
which is hardly seen due to the small variation from run to run.

values through path sampling methods. The reference configuration pref is commonly taken uniform,
but improvements have been reported in RBM when fixing it to the independent site distribution that
describes the empirical center of the dataset. For a detailed description of the algorithm, see SI D.

AIS is quite costly because it requires a large number of annealing steps Nβ for reliable estimations,
making it impractical to compute the log-likelihood online during training. As a result, it is often
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Figure 3: Comparison of the error in (LL) estimation (with respect to the exact value) using different
methods: AIS (left), AIS with a reference distribution (middle), and Tr-AIS (ours, right). For Tr-AIS,
we present three approaches to computing it: online during training, offline using the models saved
during training, and with PTT. The RBM was pretrained and trained with a total of 20 hidden nodes
(allowing for an exact computation of the LL) for 10,000 gradient steps. PTT uses a subset of saved
models such that the acceptance rate between two consecutive models is 0.25.

calculated offline using a set of models at different temperatures. However, since the training process
itself follows an annealing trajectory, it makes more sense to use the evolution of parameters during
training as annealing steps rather than relying on temperature. Additionally, at the start of training,
parameters are set to zero, making Z0 tractable, which also holds when initializing with a low-rank
RBM. Since updating the partition function only involves calculating the energy difference between
the new and old parameters, this can be efficiently computed online during each parameter update,
allowing for very small integration steps. We refer to this method as online Tr-AIS. Alternatively,
similar to standard AIS, multiple models can be saved during training for an offline Tr-AIS estimation.

To evaluate the reliability of our new approach, we trained several RBMs using datasets with a
maximum of 20 hidden nodes, allowing for the exact computation of the partition function through
direct enumeration. We then calculated the difference between the true partition function and the
estimations obtained from various methods. The results for the HGD dataset are presented in Fig. 3,
while similar qualitative results for the other datasets can be found in the SI, see Figs. 15, 16, 17
and 18. In Fig. 3, we display the estimation errors in the LL using three different methods: standard
temperature Annealed Importance Sampling (AIS) (panel A), AIS with a reference distribution (panel
B), and Tr-AIS (panel C). For the temperature AIS estimates, we show results for different values of
Nβ in distinct colors. In panel C, we compare the online estimation in black with the offline Tr-AIS
estimation, using the same models analyzed in panels A and B. Additionally, we present the error
in LL estimation using a few machines and the trajectory parallel tempering (PTT), which will be
detailed in the next section. Overall, the online Tr-AIS estimation consistently outperforms the other
methods, and only the PTT estimation yields similar results in offline analyses.

5.2 EXPLOITING THE TRAINING TRAJECTORY FOR SAMPLING

We observe that exploiting the trajectory annealing paradigm significantly accelerates the sampling
of equilibrium configurations, as shown in Fig. 4. Before presenting our parallel trajectory annealing
(PTT) algorithm, we first discuss the limitations of standard methods like Alternative Gibbs Sampling
(AGS) and introduce the standard parallel tempering (PT) algorithm.

Problems with the standard Alternate Gibbs sampling method– To illustrate this issue, consider
the MNIST01, HGD, and Ising 2D datasets. MNIST01 and Ising 2D exhibit strong bimodality in
their PCA representations, while HGD is trimodal, as shown in Fig. 1. Suppose we aim to sample
the equilibrium measure of RBMs trained using low-rank RBM pretraining. Typically, this involves
running MCMC processes from random initializations and iterating them until convergence. The
mixing time in such cases is determined by the jumping time between clusters. Accurate estimation
of the relative weights between modes requires the MCMC processes to be ergodic, necessitating
frequent back-and-forth jumps. However, as shown in the chains in Figs. 4–B1-3, Alternate Gibbs
Sampling (AGS) dynamics are exceedingly slow, rarely producing jumps even after 104 MCMC
steps. The red curves in Figs. 4–C1-3 illustrate the mean number of jumps over 1000 independent
chains as a function of MCMC steps, indicating that achieving proper equilibrium generation would
require at least 106-107 MCMC steps. To accelerate sampling, we explore optimized Monte Carlo
methods inspired by Parallel Tempering.
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A-1 B-1 C-1

A-2 B-2 C-2

A-3 B-3 C-3

Figure 4: Comparison of the performance of different MCMC sampling methods on RBMs trained
with the pretraining+PCD procedure on the MNIST01 (row-1), the HGD (row-2) and Ising 2D
datasets (row-3). In A and B columns, we show the trajectory of two independent Markov chains
(red and orange) iterated for 104 MCMC steps using either PTT or alternate Gibbs sampling (AGS),
projected onto the first two principal components of the dataset. The position of the chains is
plotted every 10 MCMC steps. The black contour represents the density profile of the dataset. In
column C, we show the averages number of jumps between the two regions separated by the dashed
grew line in the PCA plots using different MCMC methods: Alternative Gibbs Sampling (AGS),
Parallel Tempering (PT) (Hukushima & Nemoto, 1996), without or with reference configuration
(PTref) (Krause et al., 2020), the Stacked Tempering (Roussel et al., 2023), and the Trajectory Parallel
Tempering (PTT) proposed in this work. The average is calculated over a population of 1000 chains
and the shadow around the lines indicates the error of the mean.

Trajectory Parallel Tempering– Parallel tempering (PT) is commonly used to simulate multiple
systems in parallel at different inverse temperatures β (Hukushima & Nemoto, 1996; Marinari &
Parisi, 1992), with occasional temperature swaps between models based on the Metropolis rule.
Since this move satisfies detailed balance, the dynamics will converge to the Boltzmann distribution
pβ(x) ∝ exp(−βH(x)) at each β. However, a more general approach involves simulating multiple
systems, each with its own set of parameters. We can define a system as pΘt(x), where Θt denotes
the parameters of the model indexed by t. This includes the classic PT case, where temperature scaling
is applied, Θt

PT = β(t)Θ, with Θ being the parameters of the model to be sampled. The temperature
ladder is typically defined as β(t) = t/NT , where t = 0, . . . , NT − 1, and NT represents the number
of systems simulated in parallel. Alternatively, recent work (Roussel et al., 2023) introduced a variant
of this algorithm called Stacked Tempering. In this approach, a serie of nested RBMs are used, where
the hidden configurations of one machine are exchanged with the visible configurations of the next in
the stack, analogous to the mechanism in deep belief networks.

In this work, we propose a novel variant in which the model parameters stored in different phases of
training are exchanged. We use the learning trajectory to define the parameter set Θt, with t a specific
training step. We call this method Parallel Trajectory Tempering (PTT). The rule for exchanging
configurations x = (v,h) between neighboring machines indexed by t and t− 1 is defined as:

pacc(x
t ↔ xt−1) = min

(
1, exp

(
∆Ht(xt)−∆Ht(xt−1)

))
, (5)

where again the index t indicates that the Hamiltonian is evaluated using the parameters Θt. This
move satisfies detailed balance with our target equilibrium distribution p(x) = exp(−H(x))/Z,
ensuring that the moves lead to the same equilibrium measure. The reason for using the trajectory is
that PT-like algorithms work very well when a system undergoes a continuous phase transition. As
discussed in the appendix G, adjusting the inverse temperature can lead to discontinuous transitions
for which PT is not known to perform very well, while following the trajectory, the system undergoes
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several continuous transitions as discussed in (Decelle et al., 2018; Bachtis et al., 2024). The
pseudocodes for the standard PT and our new PTT algorithms are provided in SI B.1.

Figs. 4–A1-3 show the evolution of two independent Markov chains on the most trained model using
the PTT sampling, showing a significant increase in the number of jumps compared to Figs. 4–B1-3.
We also compare the number of mode jumps observed with PTT with those of other algorithms,
as a function of the total number of AGS steps performed. For the PT algorithm, we test different
values of NT and include the variant with a reference configuration (Krause et al., 2020). For Stacked
Tempering, we replicate the method of (Roussel et al., 2023). The total AGS steps are taken as the
product of the number of parallel models and the AGS steps per model, as shown in Fig. 4–C1-3.
PTT consistently outperforms all other algorithms in all datasets.

Our PTT approach leverages the ease of sampling configurations from an initial RBM. During
classical PCD training, early ”non-specialized” models thermalize quickly, behaving like Gaussian
distributions. For RCM+PCD, independent configurations are efficiently sampled from the low-rank
RBM using a static Monte Carlo algorithm (see SI A.1). The trajectory flow greatly accelerates
equilibrium convergence, particularly in multimodal structures. The time interval between successive
models is set to maintain an acceptance probability for exchanges (Eq. 5) around 0.25. Notably, the
total time required to thermalize a PTT chain (AGS steps × number of machines) is unaffected by
acceptance values within [0.2, 0.5] (see SI B.2 for details). In practice, effective models (i.e. the
parameters of the model) can be saved during training by monitoring the acceptance rate between
the last saved model and the current one. Pre-trained models require far fewer saved models, as
many are naturally positioned near major phase transitions. The number of models used for each
sampling process, along with a detailed description of the algorithm, is provided in the SI. PTT offers
the advantage of requiring no extra training (unlike Stacked Tempering) or unnecessary temperature
simulations and can be fully applied to other energy-based models. Instead, the equilibrium samples
obtained from different models during sampling can be used to compute the log-likelihood, similar
to the standard PT approach (Krause et al., 2020). In Fig. 3–right we show that the quality of this
estimation is comparable with the online trajectory AIS. Another desirable advantage of the PT
algorithms is that one can easily check the thermalisation of the MCMC process by investigating the
ergodicity of the random walk in models (Banos et al., 2010), as shown in SI B.2. In addition, we
evaluated other indicators of sample quality and potential overfitting. As detailed analysis is in Sect. I
of the SI. Our method consistently provides high-quality samples across all datasets and, thanks to
precise likelihood computation, can effectively detect overfitting.

6 CONCLUSIONS

In this work, we tackle the challenges of training high-quality equilibrium RBMs on highly structured
datasets. We focused on improving the sampling process and accurately evaluating test log-likelihood
throughout training. Our findings reveal that for datasets that are tightly clustered in their principal
component analysis representation, introducing a pre-training phase can enhance training quality.
This phase involves encoding the principal directions of the data into the model using a convex
optimization approach. However, this pre-training method, that is specific to RBMs, appears to have
limited benefits for less structured datasets or for long trainings, as chains get out of equilibrium, and
should be combined in the future with optimized MCMC methods to achieve its maximum capacity.

Furthermore, we developed a new approach that exploits the progressive learning of features during
RBM training to enhance evaluation and sampling. This approach enables online and precise
computation of log-likelihood and leads to an efficient sampling strategy akin to the standard
parallel tempering algorithm. Our results demonstrate that both our proposed methods outperform
traditional algorithms without the need for simulating models at unnecessary temperatures or training
additional models to facilitate sampling. Furthermore, both the trajectory AIS method for log-
likelihood estimation and the trajectory parallel tempering algorithm are highly versatile, making
them applicable to more complex energy-based models. Additionally, the low-rank RBM model can
serve as an effective pre-initialization step for deeper architectures, and the trajectory PT algorithm is
suitable for direct use in any EBM, regardless of complexity.
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7 CODE AVAILABILITY

The code and datasets are available at https://github.com/anonymousrbm/iclr-2025
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Elisabeth Agoritsas, Giovanni Catania, Aurélien Decelle, and Beatriz Seoane. Explaining the effects of
non-convergent sampling in the training of energy-based models. arXiv preprint arXiv:2301.09428,
2023.

Daniel J Amit and Victor Martin-Mayor. Field theory, the renormalization group, and critical
phenomena: graphs to computers. World Scientific Publishing Company, 2005.
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Supplemental Information
A DETAILS OF THE PRE-TRAINING OF A LOW RANK RBM

A.1 THE LOW-RANK RBM AND ITS SAMPLING PROCEDURE

Our goal is to pre-train an RBM to directly encode the first d principal modes of the dataset in the
model’s coupling matrix. This approach avoids the standard procedure of progressively encoding
these modes through a series of second-order phase transitions, which negatively impact the quality
of gradient estimates during standard training. It also helps prevent critical relaxation slowdown of
MCMC dynamics in the presence of many separated clusters.

Given a dataset, we want to find a good set of model parameters (w, θ and η) for which the statistics
of the generated samples exactly match the statistics of the data projected onto the first d directions
of the PCA decomposition of the training set. Let us call each of these α = 1, . . . , d projections
mα = uα · v/

√
Nv the magnetizations along the mode α, where uα is the α-th mode of the PCA

decomposition of the dataset. A simple way to encode these d-modes is to parameterize the w-matrix
as:

w =

d∑
α=1

wαūαu
⊤
α , with (uα, ūα) ∈ RNv × RNh , (6)

where u and û are respectively the right-hand and left-hand singular vectors of w, the former being
directly given by the PCA, while wα are the singular values of w. Using this decomposition, the
marginal energy on the visible variables,H(v) = log

∑
h expH(v,h) can be rewritten in terms of

these magnetizations m ≡ (m1, . . . ,md)

H(v) = −
∑
a

log cosh

(√
Nvūa

d∑
α=1

wαmα + ηa

)
= H(m(v)). (7)

Now, the goal of our pre-training is not to match the entire statistics of the data set, but only the
marginal probability of these magnetizations. In other words, we want to model the marginal
distribution

pemp(m) ≡
∑
v

pemp(v)

d∏
α=1

δ

(
mα −

1√
Nv

uT
αv

)
, (8)

where δ is the Dirac δ-distristribution. In this formulation, the distribution of the model over the
magnetization m can be easily characterized

p(m) =
1

Z

∑
v

e−H(v)
d∏

α=1

δ

(
mα −

1√
Nv

uT
αv

)
(9)

=
1

Z
N (m) exp

∑
a

log cosh

(
ūa

d∑
α=1

wαmα + ηa

)
(10)

=
1

Z
e−H(m)+Nvs(m) =

1

Z
e−Nvf(m) (11)

where N (m) =
∑

v

∏d
α=1 δ

(
mα − 1√

Nv
uT
αv
)

is the number of configurations with magnetiza-
tions m, and thus S(m) = logN(m)/Nv is the associated entropy. Now, for large Nv the entropic
term can be determined using large deviation theory, and in particular the Gärtner-Ellis theorem:

pprior(m) =
eNvs(m)

2Nv
≈ exp (−NvI(m)) , (12)

with the rate function

I(m) = sup
µ

[
mTµ− ϕ(µ)

]
= mTµ∗ − ϕ(µ∗), (13)
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and

ϕ(µ) = lim
Nv→∞

1

Nv
log
〈
eNvm

Tµ
〉
= lim

Nv→∞

1

Nv
log

1

2Nv

∑
v

e
√
Nv

∑d
α=1 µα

∑
i uα,ivi (14)

= lim
Nv→∞

1

Nv

Nv∑
i=1

log cosh

(√
Nv

d∑
α=1

µαuα,i

)
. (15)

Then, given a magnetization m, we can compute the minimizer µ∗(m) of ϕ(µ)−mTµ which is
convex, using e.g. Newton method which converge really fast since we are in small dimension. Note
that in practice we will obviously use finite estimates of ϕ, assuming Nv is large enough. As a result
we get µ∗(m) satisfying implicit equations given by the constraints given at given Nv:

mα =
1√
Nv

Nv∑
i=1

uα
i tanh

√Nv

d∑
β=1

uβ
i µ

∗
β

 . (16)

It is then straightforward to check that spins distributed as

pprior(v|m) ∝ eNvµ
∗Tm(v) (17)

fulfill well the requirement, as
〈
uT
αv/
√
Nv

〉
pprior

= mα. In other words, we can generate samples
having mean magnetization mα just by choosing vi as

pprior(vi = 1|m) = sigmoid

(
2
√
Nv

d∑
α=1

uα,iµ
∗
α(m)

)
(18)

The training can therefore be done directly in the subspace of dimension d. In Ref. (Decelle &
Furtlehner, 2021a), it has been shown that such RBM can be trained by mean of the Restricted
Coulomb Machine, where the gradient is actually convex in the parameter’s space. It is then possible
to do a mapping from the RCM to the RBM to recover the RBM’s parameters. In brief, the training
of the low-dimensional RBM is performed by the RCM, and then the parameters are obtrained via a
direct relation between the RCM and the RBM’s parameters. The detail of the definition and of the
training of the RCM is detailed in the appendix A.2.

A.2 THE RESTRICTED COULOMB MACHINE

As introduced in (Decelle & Furtlehner, 2021a), it is possible to exactly train a surrogate model for
the RBM, called the Restricted Coulomb Machine (RCM), on a low dimensional dataset without
explicitly sampling the machine allowing to learn even heavily clustered datasets.

The RCM is an approximation of the marginal distribution of the RBM with {−1, 1} binary variables:

H(v) = −
∑
i

viθi −
∑
a

log cosh

(∑
i

Wiavi + ηa

)
. (19)

We then project both the parameters and variables of the RBM on the first d principal components of
the dataset:

mα :=
1√
Nv

Nv∑
i=1

viuiα, wαa :=

Nv∑
i=1

Wiauiα, θα :=
1√
Nv

Nv∑
i=1

θiuiα (20)

with α ∈ {0, . . . , d} and u the projection matrix of the PCA. The projected distribution of the model
is then given by

pRBM(m) =
exp

(
Nv

[
S(m) +

∑d
α=1 θαmα + 1

Nv

∑Nh

a=1 log cosh
(√

Nv

∑d
α=1 mαwαa + ηa

)])
Z

(21)
where we ignore the fluctuations related to the transverse directions and S[m] accounts for the
non-uniform prior on m due to the projection of the uniform prior on s for the way to compute it.
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The RCM is then built by approximating

log cosh(x) ≃ |x| − log 2, (22)

which is valid for x large enough. The probability of the RCM is thus given by:

pRCM(m) =
exp

(
Nv

[
S(m) +

∑d
α=1 θαmα +

∑Nh

a=1 qa

∣∣∣∑d
α=1 nαmα + za

∣∣∣])
Z

(23)

where

qa =

√√√√Nv

d∑
α=1

w2
αa, na =

wαa√∑d
α=1 w

2
αa

, za =
ηa√

Nv

∑d
α=1 w

2
αa

. (24)

This can be easily inverted as

wαa =
1√
Nv

qana and ηa = qaza,

in order to obtain the RBM from the RCM. The model is then trained through log-likelihood
maximization over its parameters. However, this objective is non-convex if all the parameters are
trained through gradient ascent. To relax the problem, since we’re in low dimension, we can define a
family of hyperplanes (n, z) covering the space and let the model only learn the weights of each to the
hyperplane. We can then discard the ones with a weight low enough for the approximation equation 22
to be bad.

The gradients are given by

∂J(Θ)

∂qa
= Em∼pD(m)

[
|nT

am+ za|
]
− Em∼pRCM(m)

[
|nT

am+ za|
]
, (25)

∂J(Θ)

∂θα
= Em∼pD(m) [mα]− Em∼pRCM(m) [mα] . (26)

The positive term is straightforward to compute. For the negative term, we rely on a discretization of
the longitudinal space to estimate the probability density of the model and compute the averages.

A.3 LEARNING THE BIAS

To initialize the model with its bias set to the dataset’s mean, we define the 0-th direction of the
longitudinal space as the direction obtained by projecting the configuration space onto the normalized
mean vector of the dataset.

The RBM will only contribute to this direction through the visible bias:

H(m(v)) = −
Nv∑
α=0

θαmα −
1

Nv

∑
a

log cosh

(√
Nv

d∑
α=1

mαwαa + ηa

)
. (27)

This implies that this direction is independent of the others within the model. Consequently, we can
create an independent mesh for this direction to learn it. The rest of the training is performed using
the same procedure as before.

B SAMPLING VIA PARALLEL TEMPERING USING THE LEARNING TRAJECTORY

Assuming we have successfully trained a robust equilibrium model, there remains the challenge of
efficiently generating equilibrium configurations from this model. Although models trained at equi-
librium exhibit faster and more ergodic dynamics compared to poorly trained models, the sampling
time can still be excessively long when navigating a highly rugged data landscape. Consequently,
we devised a novel method for sampling equilibrium configurations that draws inspiration from
the well-established parallel tempering approach. In this traditional method, multiple simulations
are conducted in parallel at various temperatures, and configurations are exchanged among them
using the Metropolis rule. Unlike this conventional technique, our method involves simultaneously
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Initialization

Sampling

1 mcmc step

Swap

RCM sampling
(only pre-train+PCD)

1 mcmc step
(only JarRBM and PCD)

Figure 5: Scheme of PTT. We Initialize the chains of the models by starting from a configuration x
(0)
0

and passing it through the machines along the training trajectory, each time performing k̃ mcmc steps.
For pre-train+PCD, x(0)

0 is a sampling from the RCM, otherwise it is a uniform random initialization.
The sampling consists of alternating one mcmc step for each model with a swap attempt between
adjacent machines. For pre-train+PCD, at each step we sample a new independent configuration for
RBM0 using the RCM.

simulating different models that are selected from various points along the training trajectory. This
approach is motivated by the perspective that learning represents an annealing process for the model,
encountering second-order type phase transitions during training. In contrast, annealing related to
temperature changes involves first-order phase transitions, making traditional parallel tempering less
effective for sampling from clustered multimodal distributions.

A sketch of the Parallel Trajectory Tempering (PTT) is represented in fig. 5. Specifically, we save
tf models at checkpoints t = 1, . . . , tf along the training trajectory. We denote the Hamiltonian of
the model at checkpoint t asHt, and refer to the Hamiltonian of the RCM model asH0. We define
GibbsSampling(H,x, k) as the operation of performing k Gibbs sampling updates using the model
H starting from the state x. In all our sampling simulations we used k = 1.

The first step is to initialize the models’ configurations efficiently. This involves sampling N

chains from the RCM model, x(0)
0 ∼ RCMSampling(H0), and then passing the chains through

all the models from t = 1 to t = tf , performing k Gibbs steps at each stage: x
(0)
t ∼

GibbsSampling(Ht,x
(0)
t−1, k).

The sampling process proceeds in steps where we update the configuration of each model exceptH0

with k Gibbs steps, and sample a completely new configuration for the RCM modelH0. Following
this update step, we propose swapping chains between adjacent models with an acceptance probability
given by:

pacc(xt ↔ xt−1) = min (1, exp (∆Ht(xt)−∆Ht(xt−1))) , (28)

where ∆Ht(x) = Ht(x)−Ht−1(x).

We continue alternating between the update step and the swap step until a total of Nmcmc steps is
reached. The sampling procedure is illustrated in the following pseudo-code:

Input: Set of models {Ht}, t = 0, . . . , tf , Number of Gibbs steps k, Number of MCMC steps
Nmcmc

Output: Configurations xt for t = 1, . . . , tf
Initialize: Sample N chains from the RCM model x(0)

0 ∼ RCMSampling(H0)
for t = 1 to tf do

x
(0)
t ∼ GibbsSampling(Ht,x

(0)
t−1, k̃)

end for
for n = 1 to ⌊Nmcmc/k⌋ do

for t = 1 to tf do
x
(n)
t ∼ GibbsSampling(Ht,x

(n−1)
t , k)
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end for
Resample x

(n)
0 ∼ RCMSampling(H0)

for t = 1 to tf do
Compute acceptance probability

pacc(x
(n)
t ↔ x

(n)
t−1) = min

(
1, exp

(
∆Ht(x

(n)
t )−∆Ht(x

(n)
t−1)

))
Swap x

(n)
t and x

(n)
t−1 with probability pacc(x

(n)
t ↔ x

(n)
t−1)

end for
end for

A comparison of performances between PTT and standard Gibbs sampling is reported in Fig.4.

B.1 PSEUDO-CODE OF PTT VS PT

We provide here the pseudo code for both Parallel Tempering (Alg. 1) and Parallel Trajectory
Tempering (Alg. 2) sampling schemes. The difference between both algorithms lies in the way the
parallel models are selected. In the case of Parallel Tempering, an annealing on the temperature is
made, whereas for Parallel Trajectory Tempering several models are saved during training.

Algorithm 1 Parallel Tempering
Require: {βj}j={1,...,Nβ},Θ = {w,θ,η},Niter,Nincrement,Nsample

for j = 1, . . . , Nβ do
chains[j] = RandomBinaryChains(Nsample)

end for
for i = 1, . . . ,Niter do

for j = 1, . . . ,Nβ do
chains[j]← AlternateGibbsSampling(Nincrement, βjΘ,chains[j])

end for
for j = 1, . . . ,Nβ − 1 do

chains[j],chains[j+1]← SwapConfigurations(chains[j], βjΘ,chains[j+
1], βj+1Θ)

end for
end for

Algorithm 2 Parallel Trajectory Tempering
Require: {Θj = {wj ,θj ,ηj}}j={1,...,Nmodel},Niter,Nincrement,Nsample

for j = 1, . . . ,Nmodel do
chains[j] = RandomBinaryChains(Nsample)

end for
for i = 1, . . . ,Niter do

for j = 1, . . . ,Nmodel do
chains[j]← AlternateGibbsSampling(Nincrement,Θj ,chains[j])

end for
for j = 1, . . . ,Nmodel − 1 do

chains[j],chains[j+1]← SwapConfigurations(chains[j],Θj ,chains[j+
1],Θj+1)

end for
end for

B.2 CONTROLLING EQUILIBRATION TIMES WITH PTT

One of the advantages of PT-like approaches is that they allow easy control over thermalization times
by studying the random walk in temperatures (or models for the PTT) visited by each run over time,
as proposed in Ref. (Banos et al., 2010). From now on, we will refer only to the number of models
used in the PTT sampling, denoted as Nm. In an ergodic sampling process, each run should spend
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dataset τexp τint
MNIST01 258(29) 9.0(15)

HGD 48(10) 3.8(7)
Mickey 2(0) 1(0)

Ising 18(3) 2.4(5)

Table 1: Autocorrelation times associated to the random walk dynamics between models in the PTT
sampling obtained with the models trained with pre-training+PCD on different datasets. Models used
in the PTT are all chosen with the a = 0.25 criterion.

roughly the same amount of time at each of the Nm different model indices, as all models have the
same probability.

The mean temperature/model index is known to be ⟨n⟩ = (Nm − 1)/2 (assuming the model indices
run from 0 to Nm − 1). This simplifies the computation of the time-autocorrelation function of the
model indices ni(t) visited by each sample i at time t:

C(t) =
(ni(t+ t0)− ⟨n⟩)(ni(t0)− ⟨n⟩)

(ni(t0)− ⟨n⟩)2

Here, the symbol (· · · ) refers to the average over all samples i and initial times t0 obtained from our
PTT runs. This allows us to compute the exponential autocorrelation time, τexp, from a fit to

C(t) ∼ Ae−t/τexp for large t,

as well as the integrated autocorrelation time, τint, using the self-consistent equation (Sokal, 1997;
Amit & Martin-Mayor, 2005):

τint =
1

2
+

6τint∑
t=0

C(t).

These two times provide different insights: τexp gives insight into the time needed to thermalize the
simulations (setting the length of the runs to at least 20τexp is generally a safe (and very conserva-
tive) choice to ensure thermalization (Sokal, 1997)), while τint gives the time needed to generate
independent samples. To keep track of the fluctuations, we compute a different Cm(t) for each
m = 1, . . . , Nm system index simulated in parallel in the PTT, where each Cm(t) is averaged over
1000 independent realizations (with all runs initialized to the same model index). We then compute
the average over all parallel runs C(t) = Cm(t) and use this curve to extract τexp and τint. The errors
in C and the times are then extracted from the error of the mean of the values extracted with each of
the Cm(t) curves.

For example, in Fig. 6 (left), we show the averaged curves C(t) obtained with the PTT sampling of the
machines discussed in the main text in the MNIST01 (top) and HGD (bottom) datasets. The extracted
times are τexp = 258(29) and τint = 9.0(1.5) for MNIST01, and τexp = 48(10) and τint = 3.8(7)
for HGD. These numbers guarantee us that the 104 steps used to generate the scatterplots in Fig. 2
were long enough to ensure equilibration in this dataset, but also in the others, as shown in Table 1.

With these measures, we can try to optimize the number of models that we use for the PTT and that
are automatically selected during training. The criterion here is that the acceptance of PTT exchanges
between neighboring models must not go below a target acceptance a. In the figures shown so
far, a = 0.25. Let us justify this choice. The total physical time we need to simulate Nm models
grows proportionally with Nm (unless one manages to properly parallelize the sampling, which is
feasible but we did not do it), while the time needed to flow between very well trained and poorly
trained models controlling the mixing time scales as

√
Nm/a, where a is the average acceptance

of the exchanges between the models. Since Nm grows with a in practice (as shown in the inset of
Fig. 6–right), it is expected that the total time can be optimized for a given value of a. In Fig. 6–right
we show τexp in blue (and τexpNm in orange) as a function of a for the data sets MNIST01 (top)
and HGD (bottom). These figures show that the choice of a is not particularly crucial as long as it is
between 0.2 and 0.5.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 6: (Left) We show the autocorrelation function C(t) obtained as in Eq. equation B.2 when we
analyze the random walk in the model indices during PTT sampling with the same RBMs analyzed
in the main text (trained with pretraining+PCD) for the MNIST01 (top) and HGD (bottom) datasets.
Both curves were obtained with a PTT run of 5 · 104 MCMC steps, where the models used were
automatically selected during training using the PTT moves acceptance criterion of 0.25. (Right)
In blue we show the τexp as a function of the target acceptance rate for MNIST01 (top) and HGD
(bottom). The error bar results from the error of the mean of the values extracted from the different
Cm(t) and the shading marks the range between the largest and the smallest value of the Nm curves.
In orange, we show the total simulation costs (τexp multiplied by the number of models to be
simulated in parallel) as a function of the target acceptance rate. This number of models saved, as a
function of the acceptance rate, is shown in green in the inset.

C TRAINING DETAILS

We describe in Tables 2 and 3 the datasets and hyperparameters used during training. The test set was
used to evaluate the metrics.

Table 2: Details of the datasets used during training.
Name #Samples #Dimensions Train size Test size

CelebA 30 000 1024 60% 40%
Human Genome Dataset (HGD) 4500 805 60% 40%
Ising 20 000 64 60% 40%
Mickey 16 000 1000 60% 40%
MNIST-01 10 610 784 60% 40%
MNIST 50 000 784 60% 40%

All experiments were run on a RTX 4090 with an AMD Ryzen 9 5950X.
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Table 3: Hyperparameters used for the training of RBMs.
Name Batch size #Chains #Epochs Learning rate #MCMC steps #Hidden nodes

CelebA

PCD 2000 2000 10 000 0.01 100 500
Pre-train+PCD 2000 2000 10 000 0.01 100 500

HGD

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

Ising

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

Mickey

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

MNIST-01

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

MNIST

PCD 2000 2000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

D COMPUTATION OF THE LIKELIHOOD USING AIS

To compute the likelihood of the RBMs we used the Annealed Importance Sampling method intro-
duced by (Neal, 2001) and recently studied in the case of the RBM (Krause et al., 2020).

D.1 OFFLINE AIS

We follow the method described in (Krause et al., 2020). The AIS estimate is based on creating a
sequence of machines, at one end a machine from which we can compute the partition function and
at the other end the machine from which we want to compute the partition function. Let’s consider
that we have i = 0, . . . , Nrbm machines described by

pi(x) =
e−Hi(x)

Z
=

p∗i (x)

Z
,

where p0 = pref denote the RBM from which we can compute the partition function (typically a
RBM where the weight matrix is zero) and pNrbm

= ptarget the machine from which we want to
estimate the partition function. For each machine, we denote its set of parameters Θi = {wi,θi,ηi}.
Following (Krause et al., 2020), defining a transition rule Ti(xi−1 → xi) in order to pass from a
configuration xi−1 of the system i− 1 to xi of the system i, that we have the following identity

ZNrbm

Z0
=

〈
exp

(
−

Nrbm∑
i=1

Hi+1(xi)−Hi(xi)

)〉
ForwardPath

. (29)

There, if one can compute Z0, the estimate of ZNrbm
is obtained by averaging the r.h.s. of Eq. 29

over the forward trajectory starting from a configuration x0 using the operators Ti. While the method
is exact, the variance of the estimation relies on on close are two successive distribution pi, pi+1.

Temperature AIS: a commonly used implementation of AIS, is to multiply the Hamiltonian of
the system by a temperature, and to the different systems indexed by i, by a set of βi where β0 = 0,
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Table 4: Training time of the RBMs
Name Training time (s)

CelebA

PCD 119.2± 0.8
Pre-train+PCD 3134.0± 0.6

HGD

PCD 106.2± 0.3
Pre-train+PCD 266± 3

Ising

PCD 62± 1
Pre-train+PCD 104± 2

Mickey

PCD 118.3± 3
Pre-train+PCD 246.0± 0.7

MNIST-01

PCD 100.6± 0.3
Pre-train+PCD 258.0± 0.9

MNIST

PCD 105.7± 0.2
Pre-train+PCD 233.9± 0.2

Table 5: RCM Hyperparameters
Dataset name # Dimensions # Hidden nodes Training time (s)

CelebA 4 100 3006

HGD 3 100 150

Ising 3 100 32

Mickey 2 100 118

MNIST-01 3 100 148

MNIST 3 100 119

βi < βi+1 and βNrbm
= 1. Therefore, it is equivalent to choosing Θi = βi{w,θ,η}. Another

version of Temperature AIS consist in choosing a slightly different reference distribution p0 that take
into account the bias of the model. In this setting, the intermediate distribution are taken as

pi(x) =
p
(1−βi)
ref e−βiH(x)

Zi
.

The main difference is that a prior distribution is used as reference p0 = pref and the temperatures
interpolate between this prior and the target distribution. It is quite common to take

pref(x) =
exp (

∑
i θivi +

∑
a ηaha)∏

i 2 cosh(θi)
∏

a 2 cosh(ηa)
.

Trajectory AIS: the general derivation of AIS allow in principle to choose the set forward proba-
bility and/or intermediate system as one sees fit. Since again, a change of temperature in the system
can induce discontinuous transition for which, successive distribution will be far away. While, when
considering system that are neighbors in the learning trajectory, the system should pass through
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continuous transition which do not suffer this problem. Hence, we consider a set of RBMs along the
learning trajectory. The RBMs are chosen following the prescription that the exchange rate between
configuration (see Eq. 5) is about ∼ 0.3). Then the formula Eq. 29 is used to estimate the partition
function.

D.2 ONLINE AIS

The online AIS (Annealed Importance Sampling) is the trajectory AIS evaluated at every gradient
update during training. A set of permanent chains is initialized at the beginning of the training process.
Every time the parameters are updated, a step is performed on these chains before using them to
compute the current importance weights. This approach is computationally efficient relative to the
cost of sampling (1 step vs. 100 steps) and allows for a very precise estimation.

E TRAINING OF THE RBM USING THE JARZYNSKI EQUATION

In this section, we describe the procedure introduced in (Carbone et al., 2024) for training energy-
based models by leveraging the Jarzynki equation, and we adapt it to the specific case of the RBM.
At variance with (Carbone et al., 2024), we introduce an additional assumption on the transition
probability of the parameters that will lead us to the the reweighting implemented in population
annealing methods (Weigel et al., 2021).

In one of its formulations, the Jarzynski equation states that we can relate the ensemble average of an
observable O with the average obtained through many repetitions of an out-of-equilibrium dynamical
process. Let us consider a path yyy = {(xxx0, θθθ0), (xxx1, θθθ1), . . . , (xxxt, θθθt)}, where xi = (vi,ht) refers to
the model variables and θi = (wi, ηi, θi), the model parameters, both at time i.

If we consider the training trajectory of an RBM, p0 → p1 → · · · → pt−1 → pt, we can write the
average of an observable O over the last model of the trajectory pt as

⟨O⟩t =

〈
O e−W t

〉
traj

⟨e−W t⟩traj
=

∑R
r=1O(yyyr) e−W t

r∑R
r=1 e

−W t
r

, (30)

where W t is a trajectory-dependent importance factor and the averages on the rhs are taken across
many different trajectory realizations. In particular, Wt is given by the recursive formula:

W t(y) = Ht(xt)−H0(x0)−
t∑

i=1

log T̃ i(yi → yi−1) +

t∑
i=1

log T i(yi−1 → yi) (31)

= W t−1(y) +Ht(xt)−Ht−1(xt−1)− log
T̃ t(yt → yt−1)

T t(yt−1 → yt)
(32)

Where T and T̃ are, respectively, the forward and backward transition probabilities.

The transition matrix between two states yt−1 → yt is factorized into two different subsequent
movements:

1. Update the variables xt−1 → xt on the fixed model θt−1,

2. Update the parameters θt−1 → θt on fixed variables xt.

In other words,
T (yt−1 → yt) = wθt−1(xt−1 → xt)txt(θt−1 → θt), (33)

and
T̃ (yt → yt−1) = txt(θt → θt−1)wθt−1(xt → xt−1), (34)

so that

log
T̃ t(yt → yt−1)

T t(yt−1 → yt)
= log

wθt−1(xt → xt−1)

wθt−1(xt−1 → xt)
+ log

txt(θt → θt−1)

txt(θt−1 → θt)
. (35)
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We know the ratio between the transition probabilities between xt−1 → xt, because evolution of the
variables during the simulation is performed using MCMC simulations that satisfy detailed balance.
This means that:

log
wθt−1(xt → xt−1)

wθt−1(xt−1 → xt)
= Ht−1(xt)−Ht−1(xt−1), (36)

and we are left with

W t(y) = W t−1(x) +Ht(xt)−Ht−1(xt)− log
txt(θt → θt−1)

txt(θt−1 → θt)
. (37)

The standard formula that we use in the paper assumes that the changes in θ are so small that we can
consider the transition probabilities to be symmetrical and the last term in the rhs cancels out. In that
case, we recover the known expressions of the population annealing.

Notice that, since Eq. equation 30 is an exact result, the importance weights should, in principle,
eliminate the bias brought by the non-convergent chains used for approximating the log-likelihood
gradient in the classical PCD scheme. However, after many updates of the importance weights, one
finds that only a few chains carry almost all the importance mass. In other words, the vast majority of
the chains we are simulating are statistically irrelevant, and we expect to get large fluctuations in the
estimate of the gradient because of the small effective number of chains contributing to the statistical
average. A good observable for monitoring this effect is the Effective Sample Size (ESS), defined as
(Carbone et al., 2024)

ESS =

(
R−1

∑R
r=1 e

−W (r)
)2

R−1
∑R

r=1 e
−2W (r)

∈ [0, 1], (38)

which measures the relative dispersion of the weights distribution. Then, a way of circumventing the
weight concentration on a few chains is to resample the chain population according to the importance
weights every time the ESS drops below a certain threshold, for instance 0.5. After this resampling,
all the chain weights have to be set to 1 (W (r) = 0 ∀r = 1, . . . , R).

F TUNING OF THE HYPERPARAMETERS

In order to justify our choice of hyperparameters in the main text, we illustrate on Fig. 7 the value of
the log-likelihood as a function of the number of hidden nodes and of the learning of the machine.
In order to be fair, the comparison is done at a constant number of gradient updates of 10000. In
this regime, the machines that perform the best have a learning rate of γ ∼ 0.1, 0.005 and about
Nh = 500, 1000 hidden nodes. We can expect that smaller learning rates reach the same value of
the log-likelihood but for a much longer training. We clearly see the benefit of the RCM, where the
log-likelihood achieves much higher values in general.

G CONTINUOUS PHASE TRANSITION

In statistical physics, and more precisely in mean-field model, a model described by the Gibbs-
Boltzmann distribution is studied in the infinite size limit, N →∞, and characterize the state of the
system by investigating the free energy of the system, defined by minus the log partition function

F [θ] = − log(Z[θ])

One of the goals is thus to determine the typical configurations that should be expected given a set of
model parameters. In the case of the RBM, the question is what are the typical visible (and/or hidden)
variables that one expects to observe. For example, one may ask what typical energies one expects to
observe for the parameters θ. For this purpose, let us rewrite the partition function as a sum over all
possible values of the energy

Z =
∑
E

e−Eg(E) =
∑
E

e−E+S(E) =
∑
E

e−F (E) =
∑
E

e−Nf(E)

where g(E) the number of states with a given energy E, and thus S(E) = log g(E) is the entropy.
Finally, the free energy is defined as F (E) = E − S(E) and f(E) = F (E)/N is the free energy
per variable. All Z, E and F depend on the model parameters. N refers to the number of variables.
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Figure 7: Comparison of the end log-likelihood reached by the RBM using different pairs of values
for the learning rate and the hidden layer dimension on MNIST-01. The left panel shows these result
when performing PCD training and the right one the results when pre-training the RBM before PCD.

For N →∞, the sum in Z is then dominated by the states with minimum free energy. A “first order”,
or discontinuous transition, occurs in the parameters if the first derivative of f(E) is discontinuous
with respect to the parameters (in physics, the parameter is typically the temperature). A “second
order”, or continuous transition, occurs when the first derivative is continuous, but the second
derivative is discontinuous.

In the case of the RBM, the first learning transition can be mapped to a very simple model, the
so-called Curie-Weiss model, as recently described in Ref. (Bachtis et al., 2024). The Curie-Weiss
model is fully solvable, and for this reason the meaning of a continuous transition is perhaps easier to
understand there. Let’s give it a try. The Curie-Weiss model consists in a set of N discrete variables
si = ±1. We define the (exponential) distribution over these variables as

p(s) =
1

Z
exp(

β

N

∑
i<j

sisj + βH
∑
i

si)

where β and H are parameters of the model and Z the normalization constant also called partition
function. The question is to understand the “structure” of the distribution as a function of β.

Case H = 0: we expect that for β small each spin behaves as an isolated Rademacher random
variables (each spin being ±1 with probability one-half), while for large value of β, the distribution
of the system is dominated by configurations where the variables have (almost) all the same signs.
The key mathematical aspect is to study the system in the limit where N →∞. A way to study this
distribution is to investigate the moment generating function. It is possible to show (rigorously in this
precise model), that the probability of m = N−1

∑
i si, also called the magnetization of the system,

is given by p(m) ∝ exp(−NΩ(m)) (in the large N limit) where Ω(m) is a large deviation function.
In the CW model, it is given by

Ω(m) =
βm2

2
− log [2 cosh(βm)] .

The structure of Ω(m) is such that for β < βc = 1, it is a convex function with only one minimum
in m = 0, while for β > βc it has two symmetric minima m = ±m(β) ̸= 0 with Ω(m(β)) =
Ω(−m(β)) (the two minimum are equally probable). The values (in function of β) of the m are
continuous: m = 0 for β ∈ [0, 1], and then positive until it saturates to 1 as β →∞. In practice, it
means that the distribution p(m) pass from an unimodal distribution to a bimodal one as β increases.
The point where it happens is at βc = 1 and is called a second order (continuous) phase transition
because de value of m changes continuously from zero to non-zero values. A particular interesting
properties is that at βc, the function Ω(m) develops a non-analyticity in its second-order derivative,
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Figure 8: Left: The case H = 0 for various temperature. We illustrate the symmetric shape of the
large deviation function and how the two minima emerges from the centers. The minima of m go
continuously from zero to non-zero values. In the inset we also illustrate the shape of the probability
distribution for moderately large size N = 500. For N →∞ they converge toward a δ distribution.
Right: The case H ̸= 0. In this example, we illustrate what happen where the bias parameter H is
changed at a fix temperature β = 1.15 > 1. We see that for small values of H , Ω has two minima,
yet the dominant one suppresses exponentially the other one for large system size. For larger values
of the bias the metastable minimum disappears. We show how the place of the minimum jump when
the bias goes from negative to positive values.

that can be linked with long-range fluctuations. For a recent review (Kochmański et al., 2013), and
for more rigorous results (Sinai, 2014).

Case H ̸= 0: in this case we expect that the system will always be biased toward configurations
where the spins have the same direction(sign) as the bias (or field) H . Yet, for small value of β, the
bias will be quite small, hence the magnetization will be small but not zero, m ∼ βH . When β
is large, the system will now have a stronger and strong magnetization toward the magnetic field
m ∼ sign(H). Now we can again compute the large deviation function of the system

Ω(m) =
βm2

2
− log [2 cosh(βm)] +Hm.

Again, it is possible to analyze the function Ω as a function of β and H . For β < 1 the function
is convex and there is only one minimum located at m > 0. When β > 1 two situations can be
distinguished. First, let’s denote

Hsp(β) =

√
β − 1

β
− atanh

(
β − 1

β

)
.

If H > Hsp(β), then the large deviation function has only one minimum for positive m. Now if
H < Hsp(β), then Ω will present two minima. A first one for positive m and a second one for
negative m. The reason is that the pairwise interactions “manage” to create a metastable state for
negative magnetization even in the presence of a positive field or bias. It is clear that this state will be
unstable w.r.t. the one with positive magnetization which traduces in a minimum of higher value in the
large deviation function. By changing the value of H from large positive values toward large negative
ones, we then pass from a system with only one state, then two states with one being subdominant,
and finally back to one state but where the magnetization has changed its sign. In the infinite size
limit, the system will always dominated by the state where Ω is at its lowest value. However, if one
prepares a system close to a metastable state, the system will remain trapped there until it disappears.

How is this related to the training of the RBM ? First, it has been shown in previous works (De-
celle et al., 2018; Bachtis et al., 2024) that the RBM’s training undergoes a set of continuous
transitions, at least at the beginning of the learning. Hence, changing the parameters of the RBM
following the learning trajectories, the transitions are continuous. Then in (Decelle & Furtlehner,
2021a) it is shown that the relaxed version of the RBM, namely the RCM undergoes a first-order
transition when changing the temperature. Schematically to understand that, it is enough to see how
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the parameters β acts on the system. In the case of the RCM, the energy term behaves in the standard
way, i.e. linearly with the inverse temperature β and the free energy takes the ordinary form

log(Z) = −βF = −βE + S.

Therefore β act as a trade-off parameters between the energy E and the entropy S. By varying β, we
change the contribution of the energy while keeping the entropy fixed. Hence, when the corresponding
large deviation function of the RCM has reached a point having many minima with the same value of
the free energy up to O(1/N) corrections, all these minima realize in principle different trade-off
between energy and entropy. As a result a slight change in β will offset this sensible balance and
the respective free energies will acquire differences of order O(N) leading to favor dramatically one
state against the others, i.e. the one having originally the lowest [resp. the largest] energy when β is
increased. It is very likely that by changing β a discontinuous transition is encountered, where the
minima of Ω vanishes far away from each other rather than a continuous one. Concerning the RBM
the argument for the occurence of such a phase transition, is only slightly more involved than for
Coulomb machine because for RBM the energy (obtained after summing over latent variables) has
a non-linear behavior w.r.t. β. A formal argument would go schematically as follows: just writing
the local minima of the free energy (function of magnetization in the reduced intrinsic space) and
looking at how the equilibrium is displaced with temperature shows that their energy vary indeed in a
non-linear way with temperature and non-uniformly regarding their position on the magnetization
manifold, while the entropy contribution again do not change. This again necessarily implies that
changing even slightly the temperature will break the highly sensitive equilibrium obtained between
these state corresponding to the multimodal distribution and will again typically favor one state
among all. This scenario is expected to occur as soon as the data are located on low dimensional space
(d = O(1) ) compared to a large embedding space (d = O(N), N ≫ 1) which is quite common in
our point of view, at least for the type of data we are interested in.

To conclude, moving the parameters along the learning trajectory, leads the system to undergo
continuous transition where pΘ(t)(s) is very close to pΘ(t+δt)(s). Changing the temperature tends
to produces discontinuous transition where pβ(t)Θ(s) can happen to be very far from pβ(t+δt)Θ(s).

H FIRST ORDER TRANSITIONS IN RBMS

In this section, we examine the appearance of first-order transitions when adjusting the temperature of
a well-trained RBM on clustered datasets—a phenomenon that significantly hinders the performance
of thermal sampling algorithms. We first illustrate this issue using an analytically tractable toy model,
followed by an analysis of the first-order temperature transition observed in the RBM trained on the
HGD dataset, as discussed in the main text.

H.1 THEORETICAL ANALYSIS IN A SIMPLE MODEL

We propose a simple model of dataset on which we will show that the learned RBM is having a first
order transition in temperature. We first consider an artificial dataset using a Curie-Weiss model. We
defined the following Hamiltonian on the variables si = ±1

H = − 1

2Nv

(∑
i

si

)2

, p(s) =
1

Z
exp(−βTH).

When the inverse temperature βT is below one, the distribution in the Nv →∞ limit is unimodal,
with the Boltzmann average of the variables s being ⟨s⟩ = 0. For βT > 1, the system becomes
bimodal, with ⟨si⟩ = m, where m satisfies the self-consistent equation m = tanh(βTm). We
propose to model this dataset using a Bernoulli-Gauss RBM with one hidden node. The visible
nodes, σ = {0, 1}, follow a Bernoulli distribution, while the hidden node, τ , follows a Gaussian
distribution with zero mean and variance 1/Nv, combined with a local visible bias. When the inverse
temperature βT is below one, the distribution in the Nv → ∞ limit is unimodal and the average
w.r.t. the Boltzmann distribution of the values of the variables s’s is ⟨s⟩ = 0. When βT is above
one, the system becomes bimodal with ⟨|si|⟩ = m when m is defined by the self-consistent equation
m = tanh(βTm). We now propose to learn this dataset using a Bernoulli-Gauss RBM with one
hidden node, where the visible nodes are σ = {0, 1}, and the hidden one τ is Gaussian distribution
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Figure 9: Free energy −βf(mτ ) for β ∈ [0.8, 1.05] for the optimal RBM’s parameters learned on
a CW model with βT = 1.4. At β = 1.0 the two minima are perfectly adjusted. As we change the
temperature of the RBM, they get destabilized showing the presence of a first order transition.

of zero mean and variance 1/Nv, and a local visible bias. The Hamiltonian is then

H = −
∑
i

σiWiτ −
∑
i

ηiσi,

where Wi is the weight matrix and ηi the biases. The leaning then consist in converting the binary
variable of the Curie-Weiss model into {0, 1} and to learn the coresponding dataset. By a rapid
inspection (in the infinite size limit), we can easily show that the optimal learned parameters for the
RBM are

wi = 2
√
βT and ηi = −2βT .

Now, thanks to the simplicity of the model, we can actually compute the free energy of the model
where the Hamiltonian has been rescaled by an annealing temperature β, we obtain

−f(mT ) =
m2

τ

2
−N−1

∑
i

log [1 + exp(βwimτ + βηi)]

where mτ =
1

N

∑
i

βwisigm [1 + exp(βwimτ + βηi]

In Fig. 9, we plot−βf(mT ) for ten different values of β within the range [0.8, 1.05]. It is evident that
β = 1 represents the coexistence point, indicating a first-order transition in temperature. Note that
the probability p(m) ≈ e−Nβf(mT ) for large N , implying that for β > 1, the typical configuration
corresponds to m > 1, whereas for β < 1, it corresponds to m < 1. This clearly shows that even on
simple case we observe such transition when doing annealing.

H.2 FIRST ORDER PHASE TRANSITION IN TEMPERATURE ON A TRAINED RBM ON A REAL
DATASET

We now consider the RBM trained on the HGD dataset using the pretraining and 50 000 updates of
PCD training. As we vary the temperature, we recover the probability p(m) learned by the model
using the TMC method (Béreux et al., 2023), projected along the second principal component in Fig.
11 and on both first and second principal components in Fig. 10. While β < 1.0, the probability
distribution is dominated by the central mode, equilibrating between all modes β = 1.0. As β goes
above 1.0, the distribution becomes dominated by the two external clusters.

The effect is clearly visible when sampling the model using the PT algorithm (Fig. 12). The
sampling was performed with 200 temperatures with a minimum acceptance rate of 0.78 between two
temperatures. We see a dataset cluster being ignored with only a few samples in it. However, when
resampling sampling the model for 106 AGS steps starting from the samples obtained through PT, we
see a clear change in the distribution, equilibrating with the missing cluster. In contrast, performing
the same experiment with PTT instead of PT, we observe no shift in the empirical distribution of the
samples after 106 AGS, as the upper cluster is already sampled.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.00

0.25
P

C
1

β = 0.6 β = 0.8 β = 0.9 β = 1.0 β = 1.1

−0.25 0.00 0.25
PC0

0.00

0.25

P
C

1

−0.25 0.00 0.25
PC0

−0.25 0.00 0.25
PC0

−0.25 0.00 0.25
PC0

−0.250.000.25
PC0

−8
0
8
16
24
32
40 −

log
p(m

)

0
80
160
240
320
400

p(m
)

Figure 10: Projection of the negative log probability (top) and probability (bottom) learned by the
model, constrained to visible magnetizations m0 and m1, for various values of β. The red dots
represent the training data projected onto the first two principal components.
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Figure 11: Negative log probability (left) and probability (right) learned by the model constrained to
have a given m1 for several values of β. The equilibrium distribution of the model is displayed as the
black dotted line (β = 1).

I OVERFITTING AND PRIVACY LOSS AS QUALITY INDICATORS

In this section, we examine the quality of the samples generated, regarding overfitting and privacy
criteria which have been defined for genomic data in particular. We look at this on the models trained
with PCD with and without pre-training. We focus on the human genome dataset, as shown in
Fig. 1–C, to evaluate the ability of various state-of-the-art generative models to generate realistic
fake genomes while minimizing privacy concerns (i.e., reducing overfitting). Recent studies (Yelmen
et al., 2021; 2023) have thoroughly investigated this for a variety of generative models. Both studies
concluded that the RBM was the most accurate method for generating high-quality and private
synthetic genomes. The comparison between models relies primarily on the Nearest Neighbor
Adversarial Accuracy (AATS) and privacy loss indicators, introduced in Ref. (Yale et al., 2020),
which quantify the similarity and the level of ”privacy” of the data generated by a model w.r.t. the
training set. We have AATS = 1

2

(
AATrue + AASynth

)
where AATrue [resp. AASynth] are two

quantities in [0, 1] obtained by merging two sets of real and synthetic data of equal size Ns and
measuring respectively the frequency that a real [rep. synthetic] has a synthetic [resp. real] as
nearest neighbor. If the generated samples are statistically indistinguishable from real samples, both
frequencies AATrue and AASynth should converge to 0.5 at large Ns. AATS can be evaluated both
with train or test samples and the privacy loss indicator is defined as Privacy loss = AAtest

TS −AAtrain
TS

and is expected to be strictly positive. Fig. 14 shows the comparison of AATS and privacy loss
values obtained with our two models, demonstrating that the pre-trained RBM clearly outperforms the
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Figure 12: Comparison of the sampling results of PT (left) and PTT (right). The top row corresponds
to sample generated with each methods compared with the dataset distribution. The bottom row
compares samples obtained by performing 106 AGS starting from the PT and PTT samples with their
starting position.
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Figure 13: Evolution of the AATS (first row) and privacy loss (second row) indicator during the
training of pretrained RBMs. The online estimation of the train and test LL is given at the third row.
The overfitting is clearly detected in the HGD and MICKEY dataset and the divergence between the
train and test LL coincides with a sharp rise in the privacy loss.

other model, and even achieves better results (AATS values much closer to 0.5) than those discussed
in (Yelmen et al., 2021; 2023).
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Figure 14: Comparison of the evolution of overfitting metrics along the log-likelihood between a
RBM trained from scratch using PCD (A) and a pretrained RBM (B). (C) shows the comparison
between the AASyn and AATruth between the two machines. The machines were selected in order to
have a comparable privacy loss (D), right before starting to overfit.
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Figure 15: Comparison of log-likelihood estimation w.r.t. the exact ll on the MNIST-01 dataset.
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Figure 16: Comparison of log-likelihood estimation w.r.t. the exact ll on the MNIST dataset.
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Figure 17: Comparison of log-likelihood estimation w.r.t. the exact ll on the Ising dataset.
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Figure 18: Comparison of log-likelihood estimation w.r.t. the exact ll on the MICKEY dataset.
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Figure 19: Samples generated with the low-rank RBM trained with 3 directions plus a bias. We
show the samples generated by the pre-trained machined for the 5 datasets discussed in the paper and
projected on the PCA of the dataset. For the image datasets, we also show the images generated.
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Figure 20: We show the evolution of the tr-AIS log-likelihood in the training of the entire MNIST
dataset (containing digits from 0 to 9) with and without the pre-training. The pre-training does not
suppose a particular advantage but neither is a disadvantage.
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