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Abstract001

Grounded text generation models often pro-002
duce content that deviates from their source003
materials, requiring user verification to ensure004
accuracy. Existing attribution methods asso-005
ciate entire sentences with source documents,006
which can be overwhelming for users seeking007
to fact-check specific claims. In contrast, ex-008
isting sub-sentence attribution methods may009
be more precise but fail to align with users’010
interests. In light of these limitations, we intro-011
duce Localized Attribution Queries (LAQuer),012
a new task that localizes specific spans of gener-013
ated output to their corresponding source spans,014
enabling fine-grained and user-directed attribu-015
tion. We introduce new methods for the LA-016
Quer task, including prompting large language017
models (LLMs) and leveraging LLM represen-018
tations. We then explore a modeling frame-019
work that extends existing attributed text gen-020
eration methods to LAQuer. We evaluate this021
framework across two grounded text generation022
tasks: Multi-document Summarization (MDS)023
and Long-form Question Answering (LFQA).024
Our findings show that to achieve high-quality025
LAQuer attribution, a strong sentence-level at-026
tribution method is needed. Our contributions027
include: (1) proposing the LAQuer task to en-028
hance attribution usability, (2) suggesting a029
modeling framework and benchmarking mul-030
tiple baselines, and (3) proposing a new eval-031
uation setting to promote future research on032
localized attribution in content-grounded gen-033
eration.1034

“ChatGPT can make mistakes. Check important035

information.” – ChatGPT interface036

1 Introduction037

Grounded text generation aims to produce content038

based on specific sources, whether retrieved—such039

as in retrieval-augmented generation (RAG) (Lewis040

et al., 2020; Ram et al., 2023)—or user-provided.041

1We will release the evaluation framework on publication.

     [nbcnews.com] Organic food companies want labeling to provoke 
safety concerns that drive consumers toward their ‘natural’ products. … 
They have a right to know what is in their food. Think about the words that 
go onto food products now that have nothing to do with safety, …

Yes, GMO food should be labeled to provide 
transparency and inform consumers. They deserve to 
know what they are eating, and mandatory labeling could 
alleviate confusion and distrust around genetically 
modified foods. … 

Retrieved docs:Q: Should GMO food be labeled?

     [statnews.com] The conversation around genetic engineering and food 
is undermined by a lack of information that breeds confusion and distrust. 
Consumers feel misled. … Not labeling products made with GMOs only 
stoked the concern it was intended to minimize. Perversely, the only 
products that bear transparent GMO labels are those that do not contain …

LAQuer:  They deserve to know what they are eating
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Figure 1: Top: example RAG scenario. Bottom: our
Localized Attribution Queries (LAQuer), where the at-
tribution is constructed per user query, highlighted in
yellow. Existing sentence-level attribution methods, un-
derlined in green, can often be disorienting and lengthy.

Yet, model outputs frequently diverge from these 042

sources, resulting in factual inaccuracies, or ‘hal- 043

lucinations’ (Mishra et al., 2024). To address this, 044

users often need to manually review retrieved doc- 045

uments to ensure the accuracy of generated claims. 046

This in turn has driven a growing interest in at- 047

tributed text generation (Thoppilan et al., 2022; 048

Menick et al., 2022; Bohnet et al., 2023), which 049

incorporates supporting evidence or citations into 050

the output, thereby enhancing model reliability and 051

helping mitigate potential factuality errors. 052

While attributed text generation enhances trans- 053

parency by providing citations, its effectiveness 054

depends on how easily users can interpret these 055

attributions, as shown in Fig. 1. Most existing 056

attribution methods associate each generated sen- 057

tence with its corresponding attributions (Gao et al., 058

2023b; Slobodkin et al., 2024). For example, the 059

output sentence underlined green is attributed to 060

many spans in the source document, also under- 061



lined green. Yet, in practice, users often seek to062

fact-check specific details rather than an entire sen-063

tence (e.g., the highlighted fact in Fig. 1). As sen-064

tences typically contain multiple facts (Min et al.,065

2023), sentence-level attribution requires readers066

to examine both the full sentence and its sources067

before assessing factual accuracy of a single fact.068

For instance, in Fig. 1, the highlighted fact is at-069

tributed by the first source, while another within070

the same sentence is linked to the second source.071

As a result, users must review the entire sentence072

and all cited sources to verify this single fact.073

In this work, we introduce a more precise at-074

tributed generation task, which we call Localized075

Attribution Queries (LAQuer), that links specific076

spans in generated text to their corresponding077

source spans. Each query consists of pre-selected078

output spans, or ‘highlights’ (e.g., the highlighted079

span in the top part of Fig. 1), while the response080

identifies the relevant source spans (e.g., the high-081

lighted spans in the bottom part of Fig. 1)). Since082

queries can vary from single words to full sen-083

tences, this approach generalizes existing attribu-084

tion methods while enabling targeted attribution.085

We model the LAQuer setting as a framework086

consisting of two processing stages, illustrated in087

Fig. 2. First, a source-grounded generation sys-088

tem produces text expected to be supported by089

identified source texts. Some generation methods090

may include attribution metadata, mapping output091

segments to supporting source spans. For exam-092

ple, in Fig. 1, a sentence-level attribution method093

can attribute the second sentence to the texts un-094

derlined green. In our experiments (Section 5),095

we benchmark LAQuer using three generation ap-096

proaches: one without attribution and two contem-097

porary attributed-generation methods. In the sec-098

ond stage, users request localized attribution by099

highlighting spans that correspond to a fact of in-100

terest. The LAQuer task then identifies the exact101

supporting source spans for the given highlight.102

This second stage is composed of two steps: (A)103

decontextualization of the user’s query, and (B)104

query-focused attribution. The decontextualization105

step converts the highlighted fact to a stand-alone106

decontextualized statement, for which source attri-107

bution can be more easily sought in an unambigu-108

ous matter. For example, “They” in Fig. 1 refers to109

“consumers”. In such cases, attributions should110

account for the decontextualized meaning, e.g.,111

that “They” is correctly attributed to “consumers”112

The query-focused attribution step searches for the113

supporting source spans for the decontextualized 114

statement. For the query-focused attribution, we 115

compare two approaches: one that prompts a large 116

language model (LLM) to produce the alignment 117

and another that uses the internal representations 118

of the model to align phrases (Phukan et al., 2024). 119

If attribution metadata from the generation step is 120

available, it is leveraged to narrow the search space. 121

For example, instead of scanning the entire source 122

document in the figure, our approach can focus on 123

the spans underlined green. 124

For evaluation, to simulate user interaction in 125

this process, our methodology involves decompos- 126

ing the generated output into atomic facts using 127

LLMs (Min et al., 2023), which are subsequently 128

aligned with output spans. The LAQuer task can 129

then be applied to any type of generation, unlike 130

previous work which focuses on datasets annotated 131

with sub-sentence alignments (Phukan et al., 2024; 132

Qi et al., 2024; Cohen-Wang et al., 2024). Our ex- 133

perimental setup includes two grounded generation 134

tasks, Multi-document Summarization (MDS) and 135

Long-form Question Answering (LFQA). A key 136

finding is that achieving good LAQuer attribution 137

requires starting with a strong sentence-level attri- 138

bution method. Overall, LAQuer remains a chal- 139

lenging task, particularly in ensuring high-quality 140

attribution. In total, our contribution in this work 141

is enumerated as follows: 142

1. We propose Localized Attribution Queries 143

(LAQuer) as a task to improve the accessi- 144

bility of attributions for users. 145

2. We introduce a novel modeling framework for 146

the LAQuer setting and benchmark various 147

baselines. We demonstrate their potential to 148

reduce cognitive effort in fact-checking while 149

maintaining accuracy, and find that combining 150

sentence-level attribution is necessary to get 151

good results. 152

3. We establish a new evaluation setting that en- 153

courages future research on localized attribu- 154

tion in content-grounded generation. 155

2 Background 156

Hallucinations produced by LLMs have attracted 157

increasing interest in generating attributed text. 158

The task of attributed text generation requires mod- 159

els to generate summaries or answers that cite spe- 160

cific evidence for their claims (Gao et al., 2023b; 161

Thoppilan et al., 2022; Menick et al., 2022; Bohnet 162
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et al., 2023). When considering the granularity of163

the attribution, there are two key factors: the gran-164

ularity of the summary or answer (i.e., the output)165

and the granularity of the source text (i.e., the in-166

put). The standard level of output granularity is167

sentence-level (Gao et al., 2023b; Slobodkin et al.,168

2024). Some work focuses on sub-sentence attri-169

bution, based on the internal representations of a170

model (Phukan et al., 2024; Qi et al., 2024; Ding171

et al., 2024) or manipulation to the input (Cohen-172

Wang et al., 2024). Similarly, input granularity173

can vary between pointing to the entire response174

(Thoppilan et al., 2022), documents (Gao et al.,175

2023b), snippets (Menick et al., 2022), paragraphs176

or sentences (Buchmann et al., 2024), and spans177

(Schuster et al., 2024; Phukan et al., 2024; Qi et al.,178

2024; Ding et al., 2024; Cohen-Wang et al., 2024).179

The above methods provide fixed pre-180

determined attributions, that often do not181

correspond most effectively to the specific scope of182

output information for which attribution is sought.183

Some systems provide attributions for longer out-184

put spans, requiring the user to examine irrelevant185

source segments (Gao et al., 2023b; Slobodkin186

et al., 2024), while others provide only partial187

attributions, for narrow output spans, requiring the188

user to look around the attributed source spans189

for the complete supporting information (Phukan190

et al., 2024). Our work is the first to explore191

user-initiated attribution queries across variable192

scales, introducing a novel evaluation methodology193

to assess their effectiveness.194

3 Localized Attribution Queries195

The LAQuer task assumes as input a generation o196

grounded in source documents D. For instance, in197

Fig. 1, the answer to the question “Should GMO198

food be labeled?” is generated based on two source199

documents. A key aspect of this task is the inclu-200

sion of ‘highlights’, which are specific parts of201

the generated output that are marked by the user.202

These highlights indicate a fact that the user wants203

to verify or examine within the source. The user204

conveys the fact of interest by selecting the spans205

in the output that best express it. For example, in206

the figure the highlighted span is: “They deserve to207

know what they are eating.” Importantly, the user208

may not care about other claims made in the same209

sentence, such as “labeling could alleviate confu-210

sion and distrust.” Formally, we are given a set211

of highlighted output spans o1, . . . , on where each212

span may range in length from a single word to the 213

entire generated output. The goal of the LAQuer 214

task is then to provide the highlighted source spans 215

s1, . . . , sm that support the fact expressed in these 216

highlights. 217

Within this setting, we aim that our LAQuer task 218

definition would capture the following desiderata: 219

1) User-initiated Attribution Queries. Most at- 220

tribution methods provide ‘fixed’, pre-determined 221

attributions, meaning that attribution is generated 222

alongside the output, only allowing users to ex- 223

plore it afterward (Gao et al., 2023b; Slobodkin 224

et al., 2024; Phukan et al., 2024). However, we 225

point out that users are often interested in checking 226

the attribution only for a limited subset of facts 227

within the generated output, and it is not possible 228

to predict a user’s specific interests in advance. As 229

shown in Fig. 1, existing sentence-level attribu- 230

tion methods often provide excessive attribution, 231

while sub-sentence attribution may offer too little. 232

LAQuer requires developing methods that can dy- 233

namically provide attribution for any arbitrary fact 234

of interest, which the user highlights in the output. 235

2) Source and Output Localization. Slobodkin 236

et al. (2024) introduce the Locally Attributable Text 237

Generation task, where the goal is to provide the 238

user with concise source spans necessary to verify 239

a complete output sentence; in other words, the 240

goal is to find localized, precise input spans. In 241

this work, we also consider localization for the 242

other side of the attribution, which is the output 243

localization. Formally, the concatenation of the 244

source spans should contain only the necessary 245

content to support the information conveyed by the 246

output spans. 247

3) Output Decontextualization. Given a con- 248

textualized claim c extracted from some text r, 249

Choi et al. (2021) define a decontextualized claim 250

m as one that uniquely specify entities, events, 251

and other context such that the claim c is now 252

interpretable. In our setting, it is likely that the 253

highlights provided by the user are contextual- 254

ized. For example, the output spans in Fig. 1 255

mention “They,” which refers to the consumers 256

mentioned in the input. However, the user did 257

not highlight “consumers,” because it is redundant 258

and can be inferred from “They.” Accordingly, 259

source spans should correspond to a decontextual- 260

ized version of the output. For example, in Fig. 1, 261

the source from nbcnews.com must explicitly in- 262
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LAQuer method

Consumers deserve to know what they are eating.

Source-grounded
Generation[statnews.com]: …Source

texts

[nbcnews.com] Organic 
food companies want 
labeling to provoke 
safety concerns that 
drive consumers … 
They have a right to 
know what is in their 
food.

Attributed source spans

Generated output

Yes, GMO food should be labeled to provide 
transparency and inform consumers. They 
deserve to know what they are eating, and 
mandatory labeling could alleviate confusion and 
distrust around genetically modified foods.  …

Yes, GMO food 
should be labeled to 
provide transparency 
and inform 
consumers. … They 
deserve to know what 
they are eating, and 
mandatory labeling 
could alleviate …

(optional)
Attribution
metadata

Highlighted output spans

Q: Should GMO food be labeled?

Decontextualize

(2) (3)(1)

(4)

(Stage 1) Generation

(Stage 2) LAQuer

(B)

Yes, GMO food should be labeled to provide 
transparency and inform consumers.

(A) 

Decontextualized 
fact

Additional 
output spans

Query-focused 
Attribution

Figure 2: Overview of our LAQuer framework. The top section illustrates the generation of an output based on
identified source texts, either provided as input or retrieved. The bottom section represents the LAQuer task, where
output spans are attributed back to their source texts, enabling users to verify the provenance of individual pieces of
information. The inputs to our proposed LAQuer approach are labeled (1) to (4). In Step (A), the highlighted span
is transformed into a decontextualized fact along with its corresponding output spans. In Step (B), the user’s query
is attributed to relevant source documents, enabling precise fact verification.

clude “consumers” to avoid ambiguity. Including263

“they” in the source spans would be problematic,264

as it lacks a clear referent and could lead to mis-265

interpretation or false attributions. Formally, we266

denote the decontextualized meaning of the out-267

put spans in the context of the complete output as268

I(o1, . . . , on|o). The source spans should express269

the decontextualized meaning of the output spans,270

concat(s1, . . . , sm) |= I(o1, . . . , on|o).271

4 LAQuer Modeling Framework272

The LAQuer setting, as defined above, inherently273

involves two processing stages, illustrated in Fig. 2.274

In the first stage, a source-grounded generation sys-275

tem generates a user-requested text, such as a sum-276

mary or a long-form answer to a question, based277

on provided documents. This system may also278

include attribution metadata, mapping output seg-279

ments to supporting source segments. For example,280

in Fig. 1, the generation system could output the281

sentence-level attribution underlined green. In our282

experiments (Section 5), we evaluate LAQuer using283

three generation methods: one without attributions284

and two recent attributed-generation approaches.285

In the second stage, users reading the generated286

text can request localized attribution for specific287

facts by highlighting relevant spans. The LAQuer288

task then identifies the exact supporting source 289

spans for the highlighted facts. Specifically, during 290

stage 2, the LAQuer input consists of the follow- 291

ing: (1) the source documents, based on which the 292

output text was generated; (2) the generated output 293

text; (3) the attribution metadata (if available); (4) 294

the output spans highlighted by the user, which are 295

assumed to correspond to a particular fact in the 296

output text, for which attribution is sought. 297

Given these inputs, the LAQuer method first per- 298

forms a decontextualization step (A), which con- 299

verts the input highlights into a coherent sentence. 300

Next, in the attribution step (B), we search for the 301

supporting source spans that provide evidence for 302

the decontextualized statement, where we explore 303

two alternative methods for this step (prompt- and 304

internals-based). This step leverages the attribu- 305

tion metadata from the generation step, if available, 306

while also incorporating the extended highlights. 307

These two steps are described in detail below. 308

4.1 Generating a Decontextualized Output 309

Statement 310

As described in Section 3, a user’s query consists of 311

contextualized spans extracted from the output that 312

depend on surrounding text for full comprehension 313

(e.g., the word “consumers” in Fig. 1). Step (A) 314
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Highlighted output sentence Decontexutalized Fact

The Los Angeles County Fire Department responded to multiple 911 calls
around 4:30 p.m. at Penn Park, where the tree had toppled, trapping up to 20
people beneath its branches.

The 911 calls were made around 4:30.

The confirmation hearings for Supreme Court nominee Brett Kavanaugh . . . Key
issues included his views on presidential power, abortion rights, and potential
conflicts of interest regarding the Russia investigation.

Key issues included Brett Kavanaugh’s
views on presidential power.

Table 1: Examples illustrating our decontextualization step, drawn from Gunjal and Durrett (2024). Initially,
LAQuer highlights (bold) are reformulated into decontextualized facts (→). These facts are subsequently aligned
with revised highlights (←, underlined) to allow sentence-level attribution to incorporate additional context when
needed. For example, in the second row, the mention of “Brett Kavanaugh” originates from a separate sentence,
requiring the inclusion of additional source text to ensure accurate attribution.

of our method reformulates the selected spans into315

a self-contained decontextualized sentence, using316

the approach from Gunjal and Durrett (2024), as317

exemplified in Table 1. This sentence expresses the318

highlighted fact as a stand-alone decontextualized319

statement, for which source attribution can be more320

easily sought in an unambiguous manner.321

This process may incorporate in the decontextu-322

alized statement additional phrases from the gen-323

erated output text, beyond the user’s initial high-324

lights. For example, replacing the ambiguous “they”325

pronoun with the explicit “consumers” mention in326

Fig. 2, highlighted orange. Consequently, the ob-327

tained decontextualized statement includes all the328

information for which attribution should be identi-329

fied within the source texts. If the query remains330

contextualized, this key information may be omit-331

ted, resulting in inaccurate attribution. By includ-332

ing the additional output span, the attribution used333

for the first sentence would be included, ensuring334

comprehensive coverage of the relevant content.335

For more details, see Appendix D.336

4.2 Query-focused Attribution337

Step (B) of our LAQuer method attributes the de-338

contextualized sentence to the source texts, ensur-339

ing factual consistency while minimizing the re-340

trieval of irrelevant spans. The effectiveness of341

this step depends on the generation method, par-342

ticularly whether attribution metadata is available.343

Sentence-level attribution approaches, which pro-344

vide fixed links between source and output spans,345

significantly reduce the search space, facilitating346

the localization of supporting evidence. In con-347

trast, for non-attributed generation, the system must348

search the entire source document, increasing com-349

putational complexity.350

For this step, we explore two approaches: one351

uses an LLM prompt while the other leverages the 352

model’s internal representations to identify align- 353

ments based on hidden state similarities (Phukan 354

et al., 2024). 355

LLM-based Prompt Alignments. Leveraging 356

the strong few-shot learning and reasoning capa- 357

bilities of LLMs, we prompt an LLM to directly 358

output the aligned spans. The prompt is listed in 359

Fig. 3. Output spans are separated by a semicolon 360

(;). If a span does not match the source text, we 361

apply a fuzzy search.2 If the fuzzy search fails, we 362

retry the prompt up to five times. If that also fails, 363

we fall back to the original attribution provided by 364

the attribution metadata, if available. Otherwise, 365

we use the entire source document for attribution. 366

LLM-based Internals Alignments. Another 367

strategy for achieving granular attribution involves 368

computing the cosine similarity between the con- 369

textual hidden state representations of the source 370

tokens and the output tokens (Dou and Neubig, 371

2021; Phukan et al., 2024). Phukan et al. (2024) 372

has been shown to surpass GPT-4-based prompting 373

methods in terms of accuracy, but was only eval- 374

uated in paragraph-level citations. In this work, 375

we investigate its usefulness in LAQuer settings.3 376

Compared to the previous LLM prompt-based ap- 377

proach, this method requires direct access to the 378

model’s weights, necessitating the use of open mod- 379

els.4 380

5 Experimental Setup 381

We evaluate the efficacy of our proposed framework 382

in Section 4 by benchmarking multiple baseline 383

2https://github.com/google/diff-match-patch
3We re-implemented Phukan et al. (2024), as no source

code was available.
4For more details on both approaches, see Appendix A.
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Output sentence Example decomposed fact

Exposing students to texts from different religions can be beneficial for their
learning, as it helps them understand the development and advancement of
societies, promoting understanding, respect, and fellowship.

Exposing students to texts from different
religions promotes understanding.

Guns are rarely used in self-defense, are frequently stolen and used by criminals,
and their presence makes conflicts more likely to become violent; armed
civilians are unlikely to stop crimes and may make situations more deadly.

The presence of gun make conflict more
likely to become violent.

Table 2: Example synthesized LAQuer inputs, simulating a user highlighting the output. First, output sentences are
decomposed into atomic facts (→). Then, these facts are aligned back to highlights (←), denoted in bold.

methods for each stage in the process. We design384

an experimental setup that assesses both the quality385

of generated outputs and the accuracy of their at-386

tributions. Our evaluation consists of automatic as-387

sessments across two key content-grounded genera-388

tion tasks: Multi-Document Summarization (MDS)389

and Long-Form Question Answering (LFQA).390

This section provides the foundation for bench-391

marking LAQuer and examining its effectiveness392

in reducing cognitive load while preserving fac-393

tual consistency. We first describe the methodol-394

ogy for synthesizing attribution queries to simulate395

user fact-checking behavior (Section 5.1). Then,396

we introduce the datasets used in our experiments397

(Section 5.1) and outline our evaluation framework398

(Section 5.3), which measures attribution quality399

under both contextualized and decontextualized400

conditions.401

5.1 Datasets402

Our benchmark includes both a multi-document403

summarization setting (MDS), as well as a long-404

form QA setting (LFQA). Both are content-405

grounded settings such that the source texts are406

used to generate an ouput. Specifically, we use407

SPARK (Ernst et al., 2024) for MDS,5 and the408

RAG-based dataset curated by Liu et al. (2023) for409

LFQA. Statistics and more details is provided in410

Appendix C.411

Synthesizing LAQuer Highlights for a Given412

Output. The datasets contain source documents413

used to generate an output, as described in Sec-414

tion 5.2. Given these source texts and their cor-415

responding output, we synthesize LAQuer inputs416

by simulating the user’s process of highlighting417

relevant spans.418

Our approach for generating highlights involves419

first decomposing each output sentence into atomic420

facts and then aligning these facts back to the out-421

5SPARK is a subset of Multi-News (Fabbri et al., 2019)

put sentence. This process naturally produces con- 422

textualized facts. To ensure our decomposition 423

method closely mimics how users select contextu- 424

alized atomic spans, we adopt the contextualized 425

decomposition approach from FActScore, which 426

was specifically designed to break down long-form 427

generations into atomic facts (Min et al., 2023). 428

We use GPT-4o (OpenAI, 2024) for the decompo- 429

sition. In order to localize the output facts within 430

the output, we use a naive lexical-based algorithm, 431

described in Appendix D. For evaluation, ten facts 432

are sampled from each output generation. 433

5.2 Generation Baselines 434

Following our suggested framework in Section 4, 435

we benchmark three baseline methods for the first 436

generation stage (Section 5.2), from methods that 437

provide no attribution to those that provide fine- 438

grained attribution. Full details for the following 439

methods are provided in Appendix B. 440

Vanilla. We include a naive baseline that gener- 441

ates text without attribution, as this represents a 442

common approach in many real-world applications 443

where attribution is not explicitly modeled. Evalu- 444

ating this baseline allows us to measure the extent 445

to which LAQuer methods can provide correct at- 446

tribution on the entire source documents. 447

ALCE. Gao et al. (2023b) is a prominent attribu- 448

tion method that prompts the LLM to add citations 449

at the end of each output sentence, in the form of 450

square bracket, such as “. . . [1].” This method pro- 451

vides a fairly coarse-grained attribution, as citations 452

point to an entire source document. 453

Attr. First. Slobodkin et al. (2024) divide the 454

generation process into multiple explicit steps, al- 455

lowing the attribution to be traced back to source 456

spans. The first step, content selection, involves 457

highlighting relevant source spans. The generation 458

is then constrained to these selected spans, allow- 459
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ing the output to be tied back to the source. Unlike460

ALCE, which attributes at the document level, this461

approach attributes source spans, significantly re-462

ducing the costs associated with LAQuer while463

increasing the number of tokens required for gener-464

ating the initial output. We analyze this trade-off465

in Section 6.2.466

5.3 Evaluation467

Our evaluation is comprised of different metrics468

for the quality of the output, following standard469

practices of each task, as well as the quality of the470

citations, adapted to the LAQuer setting. More471

details are provided in Appendix C.2.472

To evaluate the quality of the output we follow473

Slobodkin et al. (2024) and calculate Rouge-L (Lin,474

2004) and BertScore (Zhang* et al., 2020) com-475

pared to the reference. In addition, we include a476

fluency metric based on MAUVE (Pillutla et al.,477

2021) which compares the distribution of the out-478

put to that of the reference texts.479

To evaluate LAQuer citations, we calculate Au-480

toAIS (Gao et al., 2023a), which is an entailment481

metric commonly used for evaluating attribution.482

The metric outputs binary classification of whether483

an attributed source text supports an output sen-484

tence, which is then averaged across all output sen-485

tences to calculate the final score. Following (Gao486

et al., 2023a), we make the distinction between487

evaluating entailment with the contextualized fact488

and the decontextualized fact.We source the con-489

textualized facts from the process described in Sec-490

tion 5.1, and the decontextualized facts from the491

process described in Section 4.2.492

Additionally, we measure the attributed text493

length in content words6 to confirm that our method494

significantly reduces unnecessary reading. Lastly,495

we report the percent of non-attributed facts.496

6 Results and Analyses497

6.1 Main Results498

The output quality metrics are reported in Ta-499

ble 3. All methods perform similarly in terms of500

BERTSCORE, with ATTR. FIRST outperforming501

other methods in terms of ROUGE-L and MAUVE.502

The citations quality metrics are reported in Ta-503

ble 4. We make the following observations.504

LAQuer methods significantly reduce the length505

of attributed text. Across all methods, LAQuer506

6Excluding stop-words https://nltk.org

Method R-L ↑ BERTSCORE ↑ MAUVE ↑

M
D

S VANILLA 19.2 ±0.6 86.4 ±0.2 59.8
ALCE 19.4 ±0.6 86.1 ±0.2 63.7
ATTR. FIRST 21.1 ±0.7 86.6 ±0.2 84.9

L
FQ

A VANILLA 37.2 ±3.2 90.7 ±0.6 81.5
ALCE 34.4 ±2.7 90.1 ±0.5 90.6
ATTR. FIRST 38.2 ±2.7 90.6 ±0.6 96.7

Table 3: Output quality results, averages include stan-
dard error of the mean.

reduces attribution length by two orders of magni- 507

tude for Vanilla and ALCE, and by an average of 508

59% for ATTR. FIRST. 509

The LLM prompt is the best-performing LA- 510

Quer method. In all generation methods, we find 511

that the LLM prompt performs the best in terms of 512

AutoAIS, significantly surpassing the LLM inter- 513

nals method. This is true for both MDS and LFQA 514

settings. The LLM internals method has low per- 515

formance across all generation methods. The best 516

results for the LLM internals are achieved when the 517

source is localized with ATTR. FIRST, suggesting 518

that it struggles with localization of document-level 519

texts. In addition, when the LLM internals method 520

is applied on top of source-localized attribution 521

methods, ALCE and ATTR. FIRST, we observe 522

that many output words are not attributed. 523

Sentence-level attribution is necessary to achieve 524

good LAQuer results. In LFQA, ATTR. FIRST 525

consistently achieves the best localized results in 526

terms of AutoAIS. This is also evident in terms of 527

length, where ATTR. FIRST reduces the attributed 528

text to about half of that in Vanilla generation. 529

The same trend is observed in the contextualized 530

MDS setting. In the decontextualized MDS setting, 531

ATTR. FIRST exhibits a low AutoAIS score, which 532

hinders its effectiveness within LAQuer methods. 533

Despite that, when examining the average gap be- 534

tween Vanilla and Vanilla with LLM prompt, there 535

is a reduction of 32.7%, compared to only 19% 536

for ATTR. FIRST. A similar trend is observed in 537

ALCE, where the gap is 29%. Overall, these obser- 538

vations suggest that increased localization of the 539

source text at the sentence level improves LAQuer 540

attribution results. 541

LAQuer attribution is challenging. Although 542

we successfully reduce the length of the attributed 543

text, this reduction comes at the expense of attri- 544

bution quality. This trade-off is particularly evi- 545

dent in the evaluation of decontextualized output, 546
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M
D

S

Method AUTOAIS CON. ↑ AUTOAIS DECON. ↑ LENGTH ↓ NON ATT. (%) ↓

VANILLA 82.2 ±1.6 84.5 ±2.0 1681.6 ±205.5 0.0
LLM Prompt 62.5 ±2.0 49.7 ±2.5 32.0 ±1.8 0.0
LLM Internals 18.0 ±1.7 13.1 ±1.5 28.1 ±0.9 0.0

ALCE 67.4 ±2.3 74.8 ±2.3 979.1 ±117.8 5.2 ±0.8

LLM Prompt 55.8 ±2.2 44.3 ±2.4 41.6 ±3.4 5.2 ±1.0

LLM Internals 15.5 ±1.6 10.2 ±1.5 29.9 ±8.2 8.2 ±1.2

ATTR. FIRST 80.3 ±2.2 58.0 ±2.8 33.0 ±2.4 0.4 ±0.2

LLM Prompt 71.5 ±2.3 42.4 ±2.4 14.6 ±0.5 0.4 ±0.2

LLM Internals 28.6 ±2.4 13.2 ±1.7 12.2 ±0.4 21.4 ±0.9

L
FQ

A

VANILLA 69.5 ±4.6 71.0 ±4.5 4636.8 ±488.3 0.0
LLM Prompt 65.1 ±3.8 65.4 ±4.3 38.1 ±2.6 0.0
LLM Internals 19.0 ±2.8 18.0 ±2.4 24.9 ±1.5 0.0

ALCE 50.8 ±4.8 55.6 ±5.1 2346.0 ±300.2 13.8 ±4.2

LLM Prompt 56.8 ±4.0 52.8 ±3.9 42.0 ±10.9 13.8 ±3.0

LLM Internals 13.0 ±2.4 12.8 ±2.4 26.6 ±1.5 17.1 ±3.0

ATTR. FIRST 88.0 ±3.4 83.9 ±3.3 43.3 ±2.4 0.0
LLM Prompt 83.0 ±3.1 69.6 ±4.3 17.3 ±0.8 0.0
LLM Internals 46.6 ±4.0 37.8 ±4.4 14.3 ±0.7 7.0 ±1.7

Table 4: LAQuer citation results, averages include standard error of the mean. We separately calculate AutoAIS for
contextualizd (Con.) and decontextualized (Decon.) output facts. indicates LAQuer methods and yellow indicates
the best LAQuer method.

where LAQuer methods show a significant gap in547

AutoAIS scores compared to their less-localized548

counterparts.549

6.2 Cost Analysis550

We provide the average size of prompts in Table 6.551

We note that attribution queries in ATTR. FIRST are552

an order of magnitude smaller than in Vanilla gen-553

eration. However, Slobodkin et al. (2024) reports554

90% increase in token usage with ATTR. FIRST555

compared to Vanilla generation. These results sug-556

gest that increased computational cost during gener-557

ation can lead to more efficient attribution, trading558

human effort for computational cost.559

6.3 Estimate for LAQuer Localization560

To better understand the potential benefits of our561

LAQuer task, we aim to estimate the average562

amount of attributed text per output fact compared563

to the amount of attributed text per output sen-564

tence. The SPARK (Ernst et al., 2024) dataset used565

in our study already include fine-grained human-566

annotated attribution, enabling such analysis.567

Our analysis, summarized in Table 5, presents568

the average number of characters required to read569

under different attribution granularities. The gran-570

ularity of LAQuer is both source and output facts,571

resulting in an average of 128 characters to read.572

ATTR. FIRST is output sentence-level with source573

spans, resulting in 278.5 characters to read on aver-574

Source granularity Output facts Output sentences

Spans 128.0 231.4
Sentence 278.5 485.1
Document 4679.5 7226.6

Table 5: Analysis of attribution lengths with varying
granularities, based on the SPARK dataset (Ernst et al.,
2024).

age. This finding underscores the potential benefits 575

of localizing attribution per output fact, reducing 576

the volume of text users need to by 54%. 577

7 Conclusion 578

In this work, we introduce a novel motivation for 579

post-hoc attributed text generation, enabling users 580

to create localized attribution queries, LAQuer. We 581

introduce a challenging benchmark, which sub- 582

sumes existing attribution methods by considering 583

both the generation and post-hoc steps. Our results 584

show that LAQuer methods can preserve good at- 585

tribution quality while significantly reducing cita- 586

tion length to a third of its original size. However, 587

LAQuer attribution remains a challenging task, par- 588

ticularly in ensuring attribution. This is associated 589

with a high cost of LLM calls, suggesting future 590

research should focus on creating more efficient 591

frameworks. In addition, there is still a significant 592

gap between different generation methods. 593
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Limitations594

Addressing attribution queries increases computa-595

tional cost and is slower than fixed sentence-level or596

token-level attribution. In Section 6.2, we discuss597

the trade-off between computational cost during598

generation and that during attribution.599

While our work is focused on content-grounded600

generation, LAQuer could be applied to outputs601

generated by the model’s parametric knowledge,602

by retrieving the documents after the generation603

rather than before.604

AutoAIS is used as a key metric for evaluat-605

ing attribution quality. While its correlation with606

human judgments was extensively analyzed in pre-607

vious works (Gao et al., 2023a; Slobodkin et al.,608

2024), further human evaluations may be necessary609

to fully assess whether the attribution results aligns610

with user expectations.611

Ethical Considerations612

The ability to attribute outputs of LLMs to specific613

sources is crucial for transparency, accountability,614

and trust in AI-generated content. Our work con-615

tributes to this goal by simplifying the attribution616

process for users and making it more localized.617

However, errors in attribution–such as partial, miss-618

ing, or incorrect attributions–can mislead users into619

assuming a stronger or weaker connection between620

the generated content and its source than what ac-621

tually exists.622

We utilized AI-assisted writing tools during the623

preparation of this paper to improve clarity and624

coherence. However, all content was carefully re-625

viewed and edited by the authors to ensure accu-626

racy.627
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Method Input Length Output Length
M

D
S VANILLA 25674.7 ±396.7 227.7 ±6.6

ALCE 22239.6 ±279.5 214.5 ±6.8

ATTR. FIRST 2843.0 ±7.3 89.3 ±2.0

L
FQ

A VANILLA 58299.8 ±1031.1 232.4 ±8.0

ALCE 45104.4 ±826.6 200.9 ±8.1

ATTR. FIRST 3025.4 ±7.7 107.2 ±3.4

Table 6: Average number of characters in the LLM
prompt LAQuer method, including standard error of the
mean.

Method Avg. time (sec.)

M
D

S VANILLA 0.6 ±0.0
ALCE 4.2 ±0.2
ATTR. FIRST 8.6 ±0.6

L
FQ

A VANILLA 0.7 ±0.0
ALCE 20.1 ±2.1
ATTR. FIRST 54.1 ±4.0

Table 7: Average time of the LLM internals LAQuer
method, including standard error of the mean.

A LAQuer Methods Details812

In this section, we provide a full description of the813

LAQuer methods used, described in Section 4.814

A.1 LLM Prompt815

The prompt is provided in Fig. 3. The average size816

of prompts is reported in Table 6. We use GPT-4o817

(OpenAI, 2024). In our experiments, we include818

three in-context examples sourced from the dev819

split of the corresponding datasets. We manually820

optimized the prompt instructions and few-shot821

examples based on iterations on the development822

set.823

A.2 LLM Internals824

Our LLM-based internals method is based on the825

method by Phukan et al. (2024). Since this method826

requires access to the weights of the model, we827

run LLAMA-3.1-8B-INSTRUCT on a single A100-828

80GB GPU for approximately 8 hours. More run-829

ning time details are available in Table 7.830

We now provide a short description of this work,831

and the adaptation we made to support the LAQuer832

setting. The method proposed by Phukan et al.833

(2024) is based on the idea that LLMs have inher-834

ent awareness of the document parts they use while835

generating answers. They claim that it is likely836

captured by the hidden states of the LLM. Accord-837

ingly, their method includes creating a prompt that838

concatenates the query q, the documents D, and the839

You are provided with an output sentence and
the source texts from which it was generated.
You need to identify spans in the source
from which the output sentence was generated.
Copy verbatim the attributing source spans,
and use a semicolon (;) as a delimiter
between each consecutive span. The output
sentence should be fully supported by the
concatenation of the attributed source spans.
IMPORTANT: Each span must be verbatim copied
from the corresponding sources. Do not make
any changes or paraphrases to the source spans.
If necessary, you may copy multiple spans
from the same or source, but avoid adding
un-necessary spans and keep each span as short
as possible.

Input:
Source 1: Voters in 11 states will pick their
governors tonight Republicans appear on track
to increase their numbers by at least one,
and with the potential to extend their hold
to more than two-thirds of the nation’s top
state offices
...

Output: There is a race for the governor’s
mansion in 11 states today.

Attribution: Voters in 11 states will pick
their governors tonight

Figure 3: Example prompt for LLM-based post-hoc
alignment. The instructions are depicted in green, input
to the model in black, and model’s output in red. This
example is one of three few-shot examples. The source
texts of the few-shot examples are adapated based on
the generation method: Vanilla includes all documents,
ALCE includes relevant documents, and ATTR. FIRST
includes relevant source spans.

output o, and then feeds this to a LLM in a single 840

forward pass. This creates the hidden representa- 841

tions of the text. 842

Formally, the prompt is denoted P , such that 843

P = q + D + o, where ‘+’ denotes concatena- 844

tion. Also, the hidden layer representation of token 845

ti ∈ P for layer l of the model is denoted hli. The 846

attribution process is then composed of two sub- 847

tasks: 848

Sub-Task 1: Identification of extractive answer 849

tokens An important claim made in their paper 850

is that not all tokens should be attributed, because 851

some tokens are ‘glue’ tokens created by the LLM. 852

This task involves identifying extractive tokens, 853

which are tokens that originate from the source 854

documents, usually verbatim. 855

Formally, a token oi ∈ o is an extractive token 856

if there exists a token dj ∈ D such that the co- 857
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sine similarity between hli and hlj is greater than a858

threshold θ.859

In our work, we use the threshold θ = 0.7 and860

layer l = 5, which achieves the highest F1 scores861

based on their paper. In addition, as formalized in862

Section 3, we only look at output spans o1, . . . , on863

provided as input, and not the entire output o.864

Sub-Task 2: Attribution of extractive answer
span S Given an output span S with tokens
o1, . . . , om ⊆ o, compute the average hidden layer
representation hS for each token oi ∈ S as:

hs =
1

n

n∑
i=1

hli

Next, hs is used to identify anchor tokens in D.865

Anchor tokens, denoted DT , are the tokens most866

similar to the output span S. This is calculated867

for each document token dj ∈ D as the cosine868

similarity between hS and hlj . For each anchor869

token da ∈ DT , a window of tokens around da is870

explored, up to a length L. For each window, an871

average representation is calculated and the highest872

ranked window is considered the attribution for S.873

In our work, we use L = 30.874

B Generation Methods Details875

In this section, we provide a full description of the876

generation methods used, described in Section 4.877

As as a pre-processing step, we first decontex-878

tualize the output spans. We use the decontextual-879

ization prompt from MolecularFacts (Gunjal and880

Durrett, 2024), which takes the concatenated out-881

put spans as input, together with the entire output882

as context, and outputs decontextualized facts. We883

used the original MolecularFacts prompt and ran it884

with GPT-4o. The resultant decontextualized fact885

is then mapped back to the output, as described in886

Appendix D.887

B.1 ALCE888

Gao et al. (2023b) introduced the idea of allowing889

LLMs to generate citations together with the output.890

We use the same prompt as the original paper with891

two few-shot examples and T = 0.5, following892

Slobodkin et al. (2024).893

B.2 Attr. First894

Slobodkin et al. (2024) decompose the generation895

process into multiple explicit steps, allowing for896

precise attribution tracing. The first step, content se-897

lection, involves highlighting relevant source spans.898

The second step, sentence planning, consists of 899

clustering spans for each sentence, followed by 900

sentence generation based on the clustered infor- 901

mation. Each new sentence is generated with condi- 902

tioning on the previously generated sentences. We 903

adopt the same prompt and few-shot demonstration 904

examples as used in the original paper. Among 905

the multiple variants of ATTR. FIRST, we select 906

ATTR. FIRSTCoT , which the paper identifies as the 907

best-performing variant. 908

C Experimental Setup Details 909

C.1 Datasets 910

Our benchmark includes both a multi-document 911

summarization setting (MDS), as well as a long- 912

form QA setting (LFQA). Both are content- 913

grounded settings such that the source texts are 914

used to generate an ouput. Specifically, we use 915

SPARK (Ernst et al., 2024) for MDS, and the RAG- 916

based dataset curated by Liu et al. (2023) for LFQA. 917

We used the same split of the datasets created by 918

Slobodkin et al. (2024). The datasets sizes are 919

provided in Table 8. Both datasets are in English. 920

The licenses for the datasets are following: Ernst 921

et al. (2024) CC BY-SA 4.0, Liu et al. (2023) MIT 922

license. 923

C.1.1 Synthesizing Attribution Queries 924

Following Section 5.1, we provide more details 925

about the decomposition of an output text to out- 926

put facts. We first split the output into sentences.7 927

For each output sentence, we then run a prompt de- 928

composing the output into atomic facts. FActScore 929

(Min et al., 2023) is an LLM-based method used 930

to breakdown a sentence into atomic facts. It is a 931

prompt comprised of instructions and multiple few- 932

shot examples. We used the original FActScore 933

prompt and run it with GPT-4o. The resultant fact 934

is then mapped back to the output, as described in 935

Appendix D. 936

C.2 Evaluation 937

For calculating AutoAIS, we use the model 938

GOOGLE/T5_XXL_TRUE_NLI_MIXTURE (Hon- 939

ovich et al., 2022), which is trained on NLI datasets 940

and has been used in previous work to analyze attri- 941

bution (Gao et al., 2023a; Slobodkin et al., 2024). It 942

correlates well with AIS scores (Gao et al., 2023a). 943

7using spaCy https://spacy.io/
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Task Dataset Dev Test

MDS SPARK (ERNST ET AL., 2024) 45 65

LFQA EVALUATING (LIU ET AL., 2023) 44 45

Table 8: Datasets sizes used in our benchmark for devel-
opment and evaluation.

D Alignment of Facts to Spans944

Throughout our work, we extracted facts from the945

output text and later needed to map them back to946

their corresponding spans. In this section, we de-947

scribe the algorithm used to align extracted facts948

with the original output text.949

The first application of this alignment process is950

in our evaluation methodology, where we decom-951

pose each output sentence into atomic facts using952

an LLM, as detailed in Section 5.1. For instance,953

consider the sentence “Exposing students to texts954

from different religions promotes understanding”955

from Table 2. To simulate a user’s highlight, we956

need to align these atomic facts with spans in the957

output, providing the necessary spans for the LA-958

Quer method. In this example, the aligned highlight959

would be “exposing students to texts from different960

religions . . . promoting understanding.”961

The second application is in our proposed962

method, where we decontextualize queries. For963

example, in Table 1, we need to align the fact “The964

911 calls were made around 4:30” with the output965

text “The . . . 911 calls around 4:30 p.m.” This966

alignment is crucial to ensure proper attribution,967

such as correctly highlighting the word “911.”968

To achieve this alignment, we implement a naive969

lexical alignment algorithm. This approach is ex-970

pected to perform well since each output fact is971

extracted from a single output sentence, and the972

generated fact does not contain any paraphrases.973

Formally, given an output o and a fact f ex-974

pressed by o, we wish to find spans o1, . . . , on ⊆ o975

such that f |= concat(o1, . . . , on).976

Alignment algorithm977

1. Tokenization & Lemmatization: We first978

split the output o into words o1, . . . , on, and979

the fact f into words f1, . . . , fm. Each word980

is lemmatized.8981

2. Edit Script Calculation: We compute the982

edit script9 between the output words and the983

8using spaCy https://spacy.io/
9Using Levenshtein distance https://nltk.org/

fact words. The edit script represents the min- 984

imal set of operations (insertions, deletions, 985

and substitutions) required to transform one 986

sequence into the other. Each word in the 987

output is assigned an edit operation. 988

3. Word Alignment Based on Edit Operations: 989

Any output word oi classified as unchanged is 990

considered aligned to the corresponding fact 991

word fj . 992

The advantage of using an edit script is that it 993

considers the order in which the words appeared. 994

However, sometimes the fact transposes informa- 995

tion from the output sentence. For example, in 996

the second row of Table 2, the fact mentions “pub- 997

lic school” after the mention of “the First Amend- 998

ment”, but in the output sentence the order is re- 999

versed. The algorithm will then not be able to align 1000

“public school”. To support such transpositions, we 1001

generate a new fact f ′ with non-aligned words from 1002

f . We then run this algorithm recursively with f ′. 1003

Overall, in 88% of the examples we are able to 1004

align all content words,10 and in 99% we are able 1005

to align all content words but one. 1006

10Excluding stop-words https://nltk.org

13

https://spacy.io/
https://nltk.org/
https://nltk.org


Example

Output sentence The confirmation hearings for Brett Kavanaugh were marked by controversy over the withholding
of documents, with Democrats repeatedly complaining that Republicans and the White House were
keeping important records from the public and the committee.

LLM Prompt Such theatrics have characterized Kavanaugh’s hearings, in which Democrats have repeatedly
complained that Republicans have withheld documents from the committee and the public
that shed important light on Kavanaugh’s past. . . . Democrats have repeatedly complained that
the White House is withholding tens of thousands of documents relevant to the nomination and
wants many more that have been provided released to the public.

LLM Internals Such theatrics have characterized Kavanaugh’s hearings, in which Democrats have repeatedly
complained that Republicans have withheld documents from the committee and the public
that shed important light on Kavanaugh’s past.

Table 9: Example MDS result. Top: one example output sentence from the ATTR. FIRST baseline with synthesized
LAQuer highlights. Bottom: the predicted attributions, with correct attribution in bold.

Example

Output sentence The upcoming Supreme Court term is poised to address several con-
tentious issues that could significantly impact American society and
politics.

LLM prompt After a year in which liberals scored impressive, high-profile Supreme
Court victories, conservatives could be in line for wins on some of this
term’s most contentious issues, as the justices consider cases that could
gut public sector labor unions and roll back affirmative action at state
universities. . . . A potential body blow to labor Public-employee unions
and politicians of both parties are keenly focused on a California dispute
about whether states can compel government employees to pay union
dues. . . . Higher ed affirmative action back in the crosshairs . . . The
meaning of "one person, one vote’ . . . Testing when abortion clinic
regulations go too far . . . The death penalty is shaping up to be a big
issue for the Supreme Court as it begins a new term

LLM internals However, as the court’s new term kicks off Monday, uncertainty sur-
rounds several other politically potent cases that could wind up on the
court’s agenda. Litigation over state efforts to limit abortion by regulating
clinics and doctors is making its way to the high court. Lois Lerner should
have been gone shortly after the scandal first unraveled.

Table 10: Example MDS result. Top: one example output sentence from the Vanilla baseline with synthesized
LAQuer highlights. Bottom: the predicted attribution, with correct attribution in bold.
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