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Abstract

The development of new treatments often requires clinical trials with translational ani-
mal models using (pre)-clinical imaging to characterize inter-species pathological processes.
Deep Learning (DL) models are commonly used to automate retrieving relevant information
from the images. Nevertheless, they typically suffer from low generability and explainabil-
ity as a product of their entangled design, resulting in a specific DL model per animal
model. Consequently, it is not possible to take advantage of the high capacity of DL to
discover statistical relationships from inter-species images.
To alleviate this problem, in this work, we present a model capable of extracting disentan-
gled information from images of different animal models and the mechanisms that generate
the images. Our method is located at the intersection between deep generative models,
disentanglement and causal representation learning. It is optimized from images of patho-
logical lung infected by Tuberculosis and is able: a) from an input slice, infer its position
in a volume, the animal model to which it belongs, the damage present and even more,
generate a mask covering the whole lung (similar overlap measures to the nnU-Net), b)
generate realistic lung images by setting the above variables and c) generate counterfactual
images, namely, healthy versions of a damaged input slice.

Keywords: Representation learning, disentanglement, translational models, lung, CT.

1. Introduction

The longitudinal characterization of animal models is crucial during (pre-)clinical drug
trials. To characterize disease progression meaningfully, we need to have the capacity to
extract comparable biomarkers in similar phases of the disease progression. Besides, we
need to prove the existence of similar pathophysiological mechanisms modulating common
causal factors that give rise to the variability of trial outcomes.
In this context, medical imaging techniques enable the extraction of indicators (imaging
biomarkers) from in vivo studies (Willmann et al., 2008). For example, the number of
Mycobacterium tuberculosis (Mtb.) colonies present in a subject can be inferred from the
damaged lung volume in an image of a human, primate, or mouse (Yang et al., 2021).
The images contain meaningful information to interpret the mentioned physiological process.
However, their manual analysis is tedious, and automation is advantageous to process the
vast amount of data produced during the trials. Thus, developing Artificial Intelligence (AI)
systems that can not only automate the extraction of particular markers for each animal
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model (e.g., the damaged lung volume) but are also capable of inferring the common agents
of such particular indicators (e.g., bacterial burden) is essential.

Although AI, especially Deep Learning (DL), has eased the process (Zhou et al., 2021;
Hinton, 2018), some design premises has lessened its inference capabilities. In particu-
lar, DL models excel at extracting the statistical dependence between input-output pairs,
i.e.,(xi, yi) ∈ X ,Y, from assumed independent and identically distributed (i.i.d.) observa-
tional data (Peters et al., 2017).

Such success has leaned the model designs towards an insufficient representation learning
strategy (Bengio et al., 2013). Namely, discovering statistical dependence between specific
data pair samples is prioritized rather than understanding the physical model generating
the whole data population (e.g., physiological mechanisms).

Since the i.i.d. assumption is fragile, well-known distribution shifts (Castro et al., 2020)
between data employed at training, validation and test phases, and real-world data are
usual. Under this scenario, the models tend to learn correlated representations that only
hold for specific environments or domains, namely spurious correlations (Arjovsky et al.,
2020). Since (as a mantra) correlation does not imply causation, such flaws cause ruinous
effects (DeGrave et al., 2021; Roberts et al., 2021) for generalisation, transferability and
explainability purposes (Scholkopf et al., 2021).

More formally, naive DL models maximize a joint distribution, p(X,Y ) or p(X) (self-
supervision), characterized by an entangled representation of the input. Namely, if X and Y
correlate during training without necessarily deriving from a causal representation (X → Y ),
p(X,Y ) can adopt numerous factorization forms that are domain-specific (Goyal and Bengio,
2021). Thus, forcing to implement independent models even for related domains (in our
case, lung CT images of TB animal models). Such models are put in common through
posthoc analysis, losing possible data synergies.

In general, learning strategies mitigate this issue by shrinking the p(X,Y ) solutions
space. To this aim, models are enriched injecting inductive biases (e.g., CNNs assume spatial
correlation (Dumoulin and Visin, 2018)), to facilitate the discovery of more meaningful and
disentangled representations (Liu et al., 2021). These strategies resemble human cognition.
Since, humans arrange the proper biases to extract a limited number of relevant factors
transferable among different environments (Pearl, 2011).

AI systems design can follow a similar causal perspective. Namely, specific biases can
be introduced to shrink the solution space. Thus, in this work, we consider the bias: a) the
strongly hierarchical nature of the human visual system and b) the data generation process.
Such an approach intends to mimic the radiologists’ tasks, who take into account specific
patient factors (i.e., clinical history, sex, age) beyond the image per se. This approach yields
more effective disentangled representations of the input (Scholkopf et al., 2021).

In particular, we intend to identify the unique mechanisms that govern the generation of
translational imaging of lung Computed Tomography (CT) images and their corresponding
segmentation masks (Figure 1(a)). We employ three different animal models (mouse, pri-
mate and human) infected by Mtb. (Pai et al., 2016). From a simplified radiological point of
view, mammals’ lungs share texture and shape features. We model these shared attributes
as an effect of the same causative factors, e.g., bacterial load (see Appendix A).
To prove the benefits of our strategy, we show how after optimizing the model employing a
small limited number of volumes, our design can:
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• Produce a very accurate reconstruction of the input images and generate suitable
segmentation masks (Figure 4, Table 2).

• Generate new realistic images of the three different animal models controlling the
lung damage on each, which implies the proper characterization of the disentangled
variables (Figure 2).

• Generate counterfactual images of damaged lungs (Schutte et al., 2021; Cohen et al.,
2021). Namely, the model can capture the meaningful representations of an input
image and convert it into a healthy version by intervening on the damage variable.

2. Methods

We define a generative model in which the high dimensional texture and shape features that
can be extracted from lung CT images and their corresponding segmentation masks are a
result of the causal Direct Acyclic Graph (DAG) presented in Figure 1(a).

(a) Direct Acyclic Graph (DAG) (b) Summarized Architecture

Fig. 1: (a) Direct Acyclic Graph (DAG) representing the generation of pathological lung CT images
x, and their segmentation masks y. Both generated from a latent variables hierarchy at
different resolutions scales, K, governed by three factors, i.e., animal model, A, the relative
position of the axial slice, S, and the estimated lung damage caused by Mtb., D. (b)
Summarized architecture: Blue and pink represent the image and mask generation branches,⊕

features concatenation and
⊗

pθ, qϕ parameters combination in training. The encoder
is not present for image generation (Section 3.3). Counterfactual images arise inferring and
setting some values at the deeper representation level z0 (Section 3.4).

The proposed DAG simplify the physical image generation for obvious reasons. All
the possible elementary causative factors (e.g., specific scanner, comorbidities, subject age,
sex) are reduced to three: the animal model, A, the observed lung axial slice, S, and the
lung damage, D. The causative factors are modelled as three groups of independent vari-
ables, z0, under the noise term, ϵ{A,S,D}, which comprises noise and unconsidered variables.
The primary variables govern the generative process, which follows a part-whole hierarchy
(Hinton, 2021) from low-level representations of the texture and shape features, z1, to high
dimensional ones, zk, the observed image, x and the segmentation mask, y. This part-whole
hierarchy resembles brain columns functioning (Locatello et al., 2020; Devlin et al., 2018).
Variable superscripts, zk, symbolize hierarchy levels at the DAG.
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The plate notation at the DAG represents such upsampling generation. The DAG imple-
ments two paths diverging at the first hierarchy level (shared representation path), z1. The
division forces, during optimization, to generate a disentangled representation of shape, zL
and texture, zR. CT images depend on shape and texture variables (blue path), while the
segmentation masks only depend on shape variables (pink path). Then, assuming the inde-
pendence of the noise terms, the independent causal mechanism (ICM) principle is fulfilled
(Scholkopf et al., 2021) and the following disentangled factorization arise:

p(x,y, z) = p(x |zKR )p(y |zKL )p(zkR, )p(z
k
L)p(z

2
R|z1R, z1L)p(z1R, z1L|z0)p(z0), (1)

p(zkR) =

K∏
k=3

p(zkR|zk−1
R ); p(zkL) =

K∏
k=2

p(zkL|zk−1
L ); p(z0) = p(z0A)p(z

0
S)p(z

0
D) (2)

2.1. Model optimization

For the above equations, each conditional distribution is parametrized by depthwise convo-
lutional decoders. The parameters θ, leverages a high capacity model (Figure 1(b) allowing
to characterize the unobservable causes of variation (ϵ) consistent with the available data
(in our case, lung CT images) (Peters et al., 2017; Pawlowski et al., 2020). Once the model
is optimized, it is possible to modify the disentangled variables to obtain new generated
(3.3) and counterfactual images (Cohen et al., 2021; Schutte et al., 2021)(Section 3.4).

The computation of the parameters requires optimization through training of the poste-
rior probability, pθ(z |x,y), which is intractable. To tackle this issue, we adapt the partic-
ular factorization in Equation (1). We employ deep Variational Autoencoders (deep VAEs)
with a bigger expressiveness than traditional VAEs (Kingma et al., 2016; Child, 2020).
Thus, we can generate more detailed images and implement our hierarchical model.
In this way, we obtain the best approximate amortized posterior distribution, qϕ(z|x), be-
ing ϕ the parameters of the encoder. Notice that the distribution is amortized just from
x (not from y), so we force the model to extract the meaningful mechanism to generate
the segmentation masks just from the self-supervisory signal of the image (LeCun and Mis-
ram Ishan, 2021). Indeed, we add a segmentation branch in the architecture (Figure 1(b)),
dependent on the main branch.

Namely, we adopt the Noveau VAE (NVAE) (Vahdat and Kautz, 2020). This archi-
tecture is carefully designed for hierarchical models. Moreover, it has proven efficacy in
approximating posteriors by introducing an inductive bias in the image generating process
in a deeply hierarchical architecture.

To this aim, the set of z variables at each representation level k is divided into smaller
sets, mk, to get a total of M groups of latent variables. Thus, a hierarchical structure is
established within each resolution too, being z the set:

z =
{
{(zA, zS , zD)0, z1, z2 ..., zmk=0

}0, {(zL, zK)m+1, ..., zmk=1

}1
, ..., {zm+1, ..., zmk

}k, {zm+1, ..., zM}K
}

(3)

Its prior and approximate posterior probability are given by:

pθ(z) =
∏
m

pθ(zm|zm−1) qϕ(z |x) =
∏
m

qϕ(zm|zm−1,x). (4)
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Following this formulation, from marginalization of the log Equation (1) and rearranging
terms, we obtain the variational lower bound to optimize (subscripts colors denote each
optimization branch):

L(x,y) = Eqϕ(z|x)
[
logpθ(x |z)

]
−KL(qϕ(z0|x)||pθ(z0))+Eqϕ(z|x)

[
logpθ(y |z)

]
−Ez

[
KLz

]
−Ez

[
KLz

]
(5)

KL being the Kullback–Leibler divergence and

Ez

[
KLz

]
=

M∑
m

Eqϕ(zm−1|x)
[
KL(qϕ(zm|zm−1,x)||pθ(zm|zm−1))

]
, (6)

being qϕ(zm−1|x) the approximate posterior through the hierarchy of mk−1 group.
Since NVAE convergence depends on the reasonable approximation of KL terms (see (Vah-
dat and Kautz, 2020)), to this aim, all priors and posterior probabilities are approximated
as Normal distributions. Thus, we can write:

p(z0A) ∼ N (µ(a), σ(a)); p(z0S) ∼ N (µ(s), σ(s)); p(z0D) ∼ N (µ(d), σ(d)); (7)

3. Experiments and Results

3.1. Datasets description

The model is optimized employing small datasets: ten lung CT volumes per animal model
(∼ 2000 slices). The data used for training are axial slices from three Mtb. lung models
identified as follows.

The dataset names identify: the animal model, A, the data source and the phase as
follows Asource

phase ). Namely, the human volumes, HCLE
tr , corresponds to the validation data

of the 2019 ImageClefMed TB task (Dicente Cid et al., 2019). The mice images, MGSK
tr ,

are provided from GlaxoSmithKline plc. (GSK) within the context of the ERA4TB project
(ERA4TB consotium, 2021), similarly to the primate ones, PPHE

tr , from the Public Health
of England (PHE) (Gordaliza et al., 2018, 2019). For testing (twenty volumes per model),
PPHE
ts and MGSK

ts , are selected from different cohorts of PPHE
tr and PGSK

tr , while the human
dataset, HCLE

ts is a partition of the mentioned data. The remaining sets are included to
evaluate the model generalisation and transferability capabilities. MEXM

ts belongs to a
public dataset from the Institute for Experimental Molecular Imaging (ExMI) (Rosenhain
et al., 2018) which contains healthy subjects at low resolution. Finally, the human dataset,
HRAD

ts , presents subjects with lung damage caused by COVID-19 (Cohen et al., 2020).
Note that all datasets include segmentation masks delineated by trained experts.
A detailed description of the different datasets is presented in Table 1.

Table 1: Datasets description
Dataset ID Phase Animal Model Source # Slices Voxel Spacing [mm] Resolution

MGSK
tr Training 2002

MGSK
ts

GSK
3987

0.087× 0.087 500× 500

MEXM
ts

Test
Mouse

ExMI 3785 0.282× 0.282 144× 100

PPHE
tr Training 2012

PPHE
ts Test

Primate PHE
4021

0.235× 0.235 512× 512

HCLE
tr Training 1617

HCLE
ts

ImageClef
3578

0.60-0.75× 0.60-0.75 512× 512

HRAD
ts

Test
Human

Radiopedia 4034 0.68-0.75× 0.68-0.75 512-630× 430-630

5



Gordaliza Vaquero Muñoz-Barrutia

3.2. Implementation details

The model is optimized employing six scales, K = 6, with 18 latent variables per scale,
partitioned each in mk groups as follows, mk = [2, 2, 2, 3, 6, 9]. The three µA, µS and µD

are known during training (µA = [−1, 0, 1], µD = (0, 1), µS = (0, 1)), fix at image gener-
ation and inferred for image reconstruction and segmentation mask generation employing
KL

(
qϕ(z

0)||N (0, 1)
)
. During optimization µD is given by the the healthy lung relative

volume (extracted by simple thresholding) with respect to the ground truth mask volume.

3.3. Pathological Lungs Generation

After optimization, the model can generate realistic images, such as those shown in Figure 2,
by choosing the mean values of z0A, z

0
S , z

0
D factors. To illustrate this capacity in Figure 2,

we set a relative slice position of 0.5, the animal model is fixed for each row and, the effect
of the lung damage variable is modulated from lower to higher in each column.

Fig. 2: Synthetic lung CT images generated by our model. Images are generated with a fixed slice
relative position (µS). For each row, the animal model µA is fixed to −1, 0, 1, respectively,
while for each column, the damage µD is increased [0-1].

3.4. Counterfactual Images

The first column of each row in Figure 3 shows an actual image of a damaged lung corre-
sponding to a given animal model. When no actions are performed, the model infers the
disentangled image representation of the causative variables (z0A, z

0
S , z

0
D) through the en-

coder. Subsequently, the image is reconstructed, and a segmentation mask (third column)
is generated employing the optimized decoder (Figure 1(b)). The second column shows a
healthy counterfactual of the input images, which is generated setting to zero the mean
value of the inferred damage variable, z0D. The decoder is fed with the zero-mean z0D and
the rest (unaltered) inferred causal variables to generate the counterfactual version of the
slice and its respective mask (fourth column).
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Fig. 3: The encoder infers the real image (axial slice) disentangled representation, z0A, z
0
S ,

z0D. By setting the damage variable z0D to 0 the decoder generates the healthy
counterfactual (counterfactual slice) and its respective mask (counterfactual mask).

3.5. Segmentation employing counterfactual images

Pathological lung segmentation is an important task to solve in drug development studies.
Unfortunately, it is a complex task due to the difficulty of discrimination between lesions
and other neighborhood tissues. Needless to say that the diversity of the biological data
supposes an added difficulty(Hofmanninger et al., 2020). In this experiment, we retrain
the optimized model with counterfactual images to generate the segmentation masks from
the test datasets (Section 3.1). We use the approach described previously to generate the
counterfactual images (Section 3.4). To learn about the strengths and weaknesses of this
generative approach, we compare the results obtained, ourc, with the segmentation masks
calculated by our original method, ournc, and the state-of-the-art fully supervised method,
nnU-Nnet (Isensee et al., 2021).

Table 2: Mean and standard deviation (SD) of the Dice Similarity Coefficient (DSC) and Hausdorff
Distance (HD) between the ground truth masks and mask obtained from the methods
indicated at rows (nnU-Nnet, proposed method before employing counterfactual images
(ournc), and after (ourc)) for each test dataset (columns).

DSC ± SD HD ± SD [mm]

MGSK
ts MEXT

ts PPHE
ts HCLE

ts HCOV
ts MGSK

ts MEXM
ts PPHE

ts HCLE
ts HCOV

ts

nnU-Net 0.845± 0.10 0.851± 0.11 0.957± 0.06 0.978± 0.04 0.973± 0.03 1.737± 1.01 1.90± 1.52 3.30± 3.96 9.37± 15.14 8.31± 10.71

ournc 0.849± 0.10 0.843± 0.12 0.949± 0.06 0.963± 0.06 0.963± 0.06 1.948± 1.11 2.06± 1.82 3.81± 4.10 10.12± 18.32 10.56± 10.77

ourc 0.877± 0.08 0.859± 0.11 0.955± 0.06 0.977± 0.06 0.968± 0.04 1.519± 0.89 1.88± 1.53 2.95± 3.54 8.78± 16.11 9.48± 9.89

Table 2 shows the mean and standard deviation for Dice Similarity Coefficient (DSC)
and Hausdorff Distance (HD) between each segmentation method and the ground truth
masks for each test dataset. The results present an improvement for all measures and
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datasets when employing counterfactual images, yielding similar results to the nnU-Nnet.
The differences are due to subtle changes in most of the cases or even small imperfections
in the ground truth masks as it is shown in Figure 4.

Fig. 4: Comparison of methods. Each row contains axial slices and segmentation masks of each
test dataset. Columns show the original image, ground truth mask (green), nnU-Net mask
(blue), overlay of nnU-Net and ground truth (cyan), the mask with our method employing
counterfactual images during training (yellow) and the overlay with the ground truth (lime).
Red and green circles show inaccuracies and precise segmentation cases, respectively.

4. Conclusions

The methodology proposed in this work yields promising results obtaining the factors char-
acterizing the pathophysiological processes shared between animal models. Although the
approach indeed suffers from several limitations: the use of isolated axial slices instead of
the more informative whole three-dimensional images and the characterization of disease
affectation based simply on the damaged lung volume and not on the specific manifestations
of the disease for each animal model. These limitations will be the object of future work.

To sum up, our model is capable of inferring meaningful disentangled representations.
Namely, it generates synthetic slices by setting the values of the modelled factors. Even
more relevant, it produces counterfactual versions of existing slices by testing the effective
disentanglement. In the future, we explore strategies to exploit the approach to increase the
diversity of existing data, essential for automatic segmentation, or to provide the damage
variable as a possible (to be validated) inter-species biomarker.
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Prosch, and Georg Langs. Automatic lung segmentation in routine imaging
is primarily a data diversity problem, not a methodology problem. Euro-
pean Radiology Experimental, 4(1), 12 2020. ISSN 25099280. doi: 10.1186/
s41747-020-00173-2. URL /pmc/articles/PMC7438418/?report=abstracthttps://

www.ncbi.nlm.nih.gov/pmc/articles/PMC7438418/.

10

https://arxiv.org/abs/1810.04805v2
http://ceur-ws.org/Vol-2380/paper_138.pdf
https://arxiv.org/abs/1603.07285v2 http://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285v2 http://arxiv.org/abs/1603.07285
https://era4tb.org/the-project/
https://www.nature.com/articles/nri3259
https://www.nature.com/articles/nri3259
http://www.nature.com/articles/s41598-018-28100-x
http://www.nature.com/articles/s41598-018-28100-x
http://arxiv.org/abs/1907.12331
http://arxiv.org/abs/2011.15091
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2018.11100
http://arxiv.org/abs/2102.12627
/pmc/articles/PMC7438418/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438418/
/pmc/articles/PMC7438418/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438418/


Lung Imaging & Disentangled Representations

Fabian Isensee, Paul F. Jaeger, Simon A.A. Kohl, Jens Petersen, and Klaus H. Maier-
Hein. nnU-Net: a self-configuring method for deep learning-based biomedical image
segmentation. Nature Methods, 18(2):203–211, 2 2021. ISSN 15487105. doi: 10.1038/
s41592-020-01008-z. URL https://www.nature.com/articles/s41592-020-01008-z.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improving Variational Inference with Inverse Autoregressive Flow. (Nips), 2016.
ISSN 10495258. URL http://arxiv.org/abs/1606.04934.

Yann LeCun and Misram Ishan. Self-supervised learning: The dark mat-
ter of intelligence, 3 2021. URL https://ai.facebook.com/blog/

self-supervised-learning-the-dark-matter-of-intelligence/.

Xiao Liu, Pedro Sanchez, Spyridon Thermos, Alison Q. O’Neil, and Sotirios A. Tsaftaris.
A Tutorial on Learning Disentangled Representations in the Imaging Domain. 8 2021.
URL https://arxiv.org/abs/2108.12043v1.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning
with Slot Attention. Advances in Neural Information Processing Systems, 2020-December,
6 2020. ISSN 10495258. URL https://arxiv.org/abs/2006.15055v2.

Madhukar Pai, Marcel A. Behr, David Dowdy, Keertan Dheda, Maziar Divangahi, Catha-
rina C. Boehme, Ann Ginsberg, Soumya Swaminathan, Melvin Spigelman, Haileye-
sus Getahun, Dick Menzies, and Mario Raviglione. Tuberculosis. Nature Reviews
Disease Primers, 2:1–23, 2016. ISSN 2056676X. doi: 10.1038/nrdp.2016.76. URL
http://dx.doi.org/10.1038/nrdp.2016.76.

Nick Pawlowski, Daniel C. Castro, and Ben Glocker. Deep Structural Causal Models for
Tractable Counterfactual Inference. In Neural Information Processing Systems (NIPS),
6 2020. URL http://arxiv.org/abs/2006.06485.

Judea Pearl. Causality: Models, reasoning, and inference, second edition. 2011. ISBN
9780511803161. doi: 10.1017/CBO9780511803161.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference:
Foundations and Learning Algorithms. The MIT Press, London, England, 2017. ISBN
9780262037310. URL http://web.math.ku.dk/~peters/.

Michael Roberts, Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan
Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer,
Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, Alessandro Rug-
giero, Anna Korhonen, Emily Jefferson, Emmanuel Ako, Georg Langs, Ghassem Goza-
liasl, Guang Yang, Helmut Prosch, Jacobus Preller, Jan Stanczuk, Jing Tang, Johannes
Hofmanninger, Judith Babar, Lorena Escudero Sánchez, Muhunthan Thillai, Paula Mar-
tin Gonzalez, Philip Teare, Xiaoxiang Zhu, Mishal Patel, Conor Cafolla, Hojjat Azad-
bakht, Joseph Jacob, Josh Lowe, Kang Zhang, Kyle Bradley, Marcel Wassin, Markus
Holzer, Kangyu Ji, Maria Delgado Ortet, Tao Ai, Nicholas Walton, Pietro Lio, Samuel

11

https://www.nature.com/articles/s41592-020-01008-z
http://arxiv.org/abs/1606.04934
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://arxiv.org/abs/2108.12043v1
https://arxiv.org/abs/2006.15055v2
http://dx.doi.org/10.1038/nrdp.2016.76
http://arxiv.org/abs/2006.06485
http://web.math.ku.dk/~peters/


Gordaliza Vaquero Muñoz-Barrutia
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Appendix A. Life cycle of Tuberculosis infection

Fig. 5: Life cycle of Mtb. (Arroyo-Ornelas et al., 2012; Ernst, 2012) and main tests to
characterise the entire disease spectrum. The inner cycle names the traditional
categorical clinical stages of the continuous spectrum of TB immunological life cycle.
Each outer circle represent each TB assessment tests capability. Blank spaces for
lack of sensibility, bicolour ones represent the binary character of the test, while
gradient representation represents the ability to provide a continuous value.

Appendix B. Extra Experiments Setup details

The following list offers further details about the context of the experiments.

• System setup: All experiments were performed in a machine with an Intel Xeon
8153 CPU, 64-GB RAM and two 12-GB Titan V GPUs. We created a specific Docker
image based on Ubuntu 20.04 with Python 3.6.9 and torch 1.6.0 to run our code.

• Preprocessing: To reduce the size of the chest CT images, we crop the images and
their respective segmentation masks to the body region. We employ thresholding from
−1024 to 600 over the Hounsfield Units (HU) followed by morphological operations to
eliminate small isolated blobs. Finally, we select the one corresponding to the whole
body region.

Since nnU-Net automatically estimates the rest of preprocessing operations, these
cropped volumes feed the nnU-Net preprocessing pipelines. The details about nnU-
Net experiments are given below in the list.
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In the case of our model, we rescale the cropped images resolution to 256 x 256 pixels
and normalize the intensity (0-1).

During training, our model needs an estimation of healthy lung volume per CT (Sec-
tions 2 and 3.2). To this aim, over the cropped image, we apply a threshold to recover
just the healthy tissue inside the whole lung mask. Following the experts’ recommen-
dations, we set this threshold from −900 to −200 HUs for the human training dataset
(HCLE

tr ), -1000 to -200 HUs for the macaque dataset (PPHE
tr ), and from -800 to -300

HUs for the mouse model (MGSK
tr ). The healthy volume extracted is divided by the

total mask volume to obtain the relative value employed during training.

• Selection of each dataset sample: We use 30 CT volumes per dataset employed
during training and testing and 20 when the datasets are employed just during the
test phase, as described in Section 3.1.

Except for the MGSK and HRAD datasets, the rest of the original datasets contain
more than 30/20 volumes.

To define our specific trimmed samples, we employ the relative healthy volume to
classify each CT as low damage (relative healthy volume ≥ 0.85), medium damage
(0.85 > relative healthy volume > 0.4) and high damage (relative healthy volume
≤ 0.4). Subsequently, we randomly select the same number of subjects per interval.

• Training details: We employ the two Titan V GPUs during 900 epochs with a total
batch size of 8 using the Adamax optimizer with an initial learning rate of 0.01 and
Cosine Annealing scheduler (minimal learning rate: 1e − 4). We apply online data
augmentation to the normalized images by employing random affine transformations
(10º rotation) and adding Gaussian noise (µ = 0, σ = 0.05).

For the nnU-Net (Isensee et al., 2021), we use a single Titan V GPU, following the
nnU-Net authors’ (recommendations). After adapting the cropped image name for-
mats to the nnU-Net requirements, we run the nnUNet plan and preprocess function
to allow the pipeline to estimate the network configuration and training parameters.
The complete list can be found in the following link. Subsequently, we train a 2D
configuration in a 5-fold cross-validation during 1000 epochs per fold, employing a
batch size of 14, data augmenting (see linked file for details), the SGD optimizer and
a learning rate of 0.01

• Image Generation speed: After loading the trained model (∼ 20s), it is possible
to generate a 16 batch size of 256× 256 images in approximately 0.25s.
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Appendix C. Pathological Lungs Generation: Varying the slice position

This appendix shows generated slices instances fixing the damage and varying the relative
slice position. This experiment extends Section 3.3, in which axial slices belong to a fixed
relative slice position.

Since our chest CT volumes orientation is cephalic to caudal, the model generates axial
images of the upper airways (trachea) and the corresponding per animal model surrounding
tissues at the lowest slice position, as shown in the first column of the Figure 6. This way,
the second column shows the corresponding generated anatomy for the superior lungs, while
the third and fourth columns accordingly show the middle and inferior regions. Finally, the
fifth column depicts the generated version at the beginning of the abdominal anatomy.

Fig. 6: Synthetic lung CT images generated by our model. Images are generated with a fix
relative damage, µD = 0.5. For each row, the animal model µA is fixed to −1, 0, 1,
respectively, while for each column, the relative slice position µS is increased between
0 and 1.
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Appendix D. Counterfactual Images: Extended Assessment

This appendix extends the qualitative results presented in Section 3.4. The former section
shows the model capacity generating counterfactual images and their respective segmenta-
tion masks.

Here, we evaluate how realistic are the generated images. For that, we compare the
Hounsfield Units (HU) of real CT slices with two cases: a) the reconstructed slice from the
variable inferred by the encoder without modification of any of these values, and b) the
counterfactual image, namely, after intervening on the inferred damage value. We compute
the voxel-wise Root Mean Square Error (RMSE) for the reconstructed images per test
dataset. Table 3 shows these results with an average RMSE = 18.73± 2.16.

Voxel-wise evaluation is not suitable for counterfactual images. Previous manual delim-
itation of comparable regions is needed, which is a priority for our future work.

To illustrate similarities and differences in the HU scale, in Figure 7, we plot the HU
profile belonging to the damaged regions shown in Figure 3. Respectively, the first three
rows contain 1) the original axial slice from the different test datasets (the image is generated
from the µa, µs and µd inferred by our model), with the profile horizontal line in green, 2)
the reconstructed slice (the image is generated maintaining µa, µs inferred by our model
and correcting µd), with profile line in yellow and 3) the counterfactual after modifying the
inferred expected damage, with the profile line in blue.

The last row shows the HU plot for each profile-specific colour. HU values are similar
for the three slices except for those regions where the slice counterfactual version replaces
the damage with healthy tissue-like. We highlight such changes framing them in vertical
dashed red lines.

Besides, it is important to note that the original and reconstructed images present more
noisy patterns than the counterfactual version, as was expected from its blurrier appearance
and the thickening of the soft tissue for the mice dataset.

Table 3: Root Mean Square Error (RMSE) between the real images and the image recon-
structed from the µa, µs and µd inferred by our model for the test datasets

RMSE[HU]

MGSK
ts MEXT

ts PPHE
ts HCLE

ts HCOV
ts

21.26 18.75 20.12 17.89 15.63
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Fig. 7: Hounsfield Units (HU) plots for profiles at regions damaged in original test axial
slices. Each column contains instances of each dataset, previously employed in
Section 3.4. The first rows depict the original, reconstructed and counterfactual
slices with the profile line green, yellow and blue, respectively. The last row draws
the HU profiles per voxel. Vertical dashed lines highlight big differences between
real/reconstructed and counterfactual slices.
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