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Abstract

In this paper, we demonstrate a surprising capability of large language models (LLMs):
given only input feature names and a description of a prediction task, they are capable of
selecting the most predictive features, with performance rivaling the standard tools of data
science. Remarkably, these models exhibit this capacity across various query mechanisms.
For example, we zero-shot prompt an LLM to output a numerical importance score for a
feature (e.g., “blood pressure”) in predicting an outcome of interest (e.g., “heart failure”),
with no additional context. In particular, we find that the latest models, such as GPT-4,
can consistently identify the most predictive features regardless of the query mechanism and
across various prompting strategies. We illustrate these findings through extensive exper-
iments on real-world data, where we show that LLM-based feature selection consistently
achieves strong performance competitive with data-driven methods such as the LASSO,
despite never having looked at the downstream training data. Our findings suggest that
LLMs may be useful not only for selecting the best features for training but also for deciding
which features to collect in the first place. This could benefit practitioners in domains like
healthcare and the social sciences, where collecting high-quality data comes at a high cost.

1 Introduction

Transformer-based large language models (LLMs) pretrained on massive text corpora for next-word predic-
tion exhibit the remarkable capability to generalize to unseen tasks, simply by conditioning on an input
prompt that contains task-relevant instructions and a small number of examples (Vaswani et al., 2017; Rad-
ford et al., 2019; Brown et al., 2020). With sufficient model scale and an appropriate prompting strategy,
these models demonstrate strong performance on various commonsense, symbolic, and arithmetic reasoning
tasks (Lewkowycz et al., 2022; Wei et al., 2022b; Kojima et al., 2022; Suzgun et al., 2023; Anil et al., 2023)
and complex question-answering and prediction tasks that require real-world knowledge (Petroni et al., 2019;
Liévin et al., 2022; Singhal et al., 2023; Manikandan et al., 2023). Such findings suggest that by pretraining
on vast amounts of text from various domains, LLMs encode rich knowledge about real-world relationships,
which they can leverage for performing various downstream tasks (Choi et al., 2022; Moor et al., 2023).

In this paper, we demonstrate that LLMs are capable of performing feature selection for supervised learning
tasks. Given that we are often aware of the real-world semantics associated with the input features (e.g.,
“blood pressure”) and the target outcome (e.g., “heart failure”) in a downstream training dataset, we investi-
gate effective ways of prompting an LLM to identify the most informative features for predicting the outcome
(Figure 1(a)). For example, we prompt the LLM with “Rank the following features by their importance for
predicting the incidence of heart failure: blood pressure, . . ., creatinine.”1, and select the top-ranked features

1We note that the examples here are simplifications of the exact prompts used in our study. See Appendices C–E for details.
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Figure 1: Selecting features by zero-shot prompting an LLM leads to strong downstream predictive perfor-
mance, competitive with data-driven feature selection methods. (a) Overview of our proposed LLM-Score,
LLM-Rank, and LLM-Seq methods (Section 3). (b) Average test AUROC (higher is better) on classifica-
tion datasets when selecting the top 30% of features according to the best-performing data-driven baseline
on each dataset (in red), LLM-Score based on GPT-4 (in blue), and a random feature selection baseline
(in black). Error bars indicate standard error across datasets in each group.

to train a downstream prediction model. Alternatively, for each candidate feature, we prompt the LLM with
“Provide a feature importance score between 0 and 1 for ⟨candidate feature⟩ for predicting the incidence of
heart failure.”, and select the features with the highest LLM-generated scores for training.

Surprisingly, we find that even without looking at the training data, these models are capable of identifying
the most predictive features, with performance rivaling those of data-driven feature selection methods such
as the LASSO (Tibshirani, 1996) (Figure 1(b)). Such a result is counterintuitive; given that datasets with
identical input feature names can correspond to arbitrarily different data distributions, due to factors such
as selection bias and confounding, it is not a priori obvious that selecting features only based on their names
will be effective. Remarkably, we find that for the latest models such as GPT-4, even zero-shot prompting
the LLM to generate a numerical feature importance score one-feature-at-a-time can lead to strong feature
selection performance. Moreover, we find that such LLM-generated feature importance scores are correlated
with several commonly used feature importance metrics (e.g., Fisher score (Gu et al., 2011), SHAP (Lundberg
& Lee, 2017)), suggesting that LLMs are capable of distilling the real-world relationships encoded in their
parameters into statistically meaningful scores. We demonstrate these findings by stress-testing our LLM-
based feature selection methods against traditional data-driven methods on real-world datasets from diverse
domains (e.g., finance, healthcare, criminal justice), using both closed-source (GPT-4 (OpenAI, 2023), GPT-
3.5 (Brown et al., 2020)) and open-source LLMs (Llama-2 (Touvron et al., 2023)) of various sizes.

Our main contributions can be summarized as follows:

1. We propose three approaches to prompting an LLM for feature selection: (i) selecting features with
the highest LLM-generated feature importance scores (LLM-Score); (ii) selecting features based
on an LLM-generated ranking (LLM-Rank); and (iii) sequentially selecting features in a dialogue
with an LLM (LLM-Seq) (Section 3).

2. We show that even without access to the downstream training data, LLMs of sufficient scale achieve
strong feature selection performance on real-world datasets, often competitive with traditional data-
driven feature selection methods such as the LASSO (Result 1–2, Section 4.1; Section 4.2).

3. We comprehensively assess the sensitivity of LLM-based feature selection methods to various prompt-
ing strategies and demonstrate that even zero-shot prompting the LLM with no additional context
about the downstream data can elicit strong feature selection performance (Result 3, Section 4.1).

4. We show that as model scale increases, LLM-generated importance scores generally exhibit higher
rank correlation with commonly used feature importance metrics (Result 4, Section 4.1).

Our findings suggest that LLMs may be useful not only for selecting the most predictive features after data
collection, but also for deciding what features to collect in the first place. This could benefit
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practitioners in domains like healthcare and the social sciences, where obtaining high-quality data (e.g.,
running medical tests for patients, designing survey questions) can be expensive and time-consuming.

2 Related Work

2.1 Prompting LLMs

Prompting is an effective method for adapting off-the-shelf LLMs to perform new tasks unseen during
training, without explicit gradient updates to the model parameters (Radford et al., 2019; Liu et al., 2023).
In a standard prompting setup, an output is autoregressively sampled from an LLM conditional on text
descriptions of a desired task and optionally a set of in-context input-output examples (Brown et al., 2020)
and used as a solution for the given task. Even without task-specific fine-tuning, such a zero-shot or few-shot
in-context learning approach can be surprisingly effective for adapting pretrained LLMs towards a wide range
of natural-language tasks (Hendrycks et al., 2021; Lin et al., 2022; Patel & Pavlick, 2022; Srivastava et al.,
2023), given a language model of sufficient scale (Wei et al., 2022a).

Meanwhile, several works show that LLM outputs can be highly sensitive to the specifics of the input prompt
and choice of decoding strategy (Jiang et al., 2020; Zhao et al., 2021; Sclar et al., 2024; Jeong et al., 2024a;b).
As such, choosing an appropriate prompting strategy is crucial, especially for challenging reasoning tasks.
In our experiments, we mainly consider two prompting techniques—chain-of-thought prompting (CoT; Wei
et al., 2022b) and self-consistency decoding (Wang et al., 2023). We focus on these methods as they often
dramatically boost performance on tasks that require multi-step reasoning (Kojima et al., 2022; Lewkowycz
et al., 2022; Chen et al., 2023), which we hypothesized to be important for feature selection.

Chain-of-thought prompting (CoT). CoT prompting (Wei et al., 2022b) is a few-shot prompting
method that augments each input-output example with a chain-of-thought—a coherent series of natural-
language reasoning steps leading to the correct answer. Wang et al. (2023) show that given a large-enough
model and an appropriately designed input prompt, CoT prompting can elicit logically consistent step-by-
step solutions from the LLM and substantially boost performance on complex tasks such as solving math
problems (Lewkowycz et al., 2022; Imani et al., 2023) and answering commonsense (Suzgun et al., 2023;
Anil et al., 2023) and knowledge-intensive reasoning questions (Liévin et al., 2022; Singhal et al., 2023).

Self-consistency decoding. A common sampling strategy used for LLMs is greedy decoding (Radford
et al., 2019; Brown et al., 2020; Chowdhery et al., 2022), where at each token-generation step, the token with
the highest probability is taken as the output. In self-consistency decoding (Wang et al., 2023) on the other
hand, multiple outputs are randomly sampled from the LLM (via e.g., temperature sampling (Ackley et al.,
1985)) and marginalized to generate the final prediction. Prior works suggest that for CoT prompting, self-
consistency decoding can significantly boost performance and that it is especially beneficial when a diverse
set of reasoning paths are possible for solving a given task (Wang et al., 2023; Lewkowycz et al., 2022).

Extensions of CoT prompting. More recently, tree-of-thoughts (ToT; Yao et al., 2023) and graph-of-
thoughts (GoT; Besta et al., 2024) prompting have been proposed as generalizations of CoT prompting
(with self-consistency decoding) to further enhance the exploration and evaluation of multiple reasoning
paths. ToT prompting formulates reasoning as a traversal over a tree of plausible partial solutions, allowing
for explicit branching and backtracking of diverse reasoning paths in a hierarchical manner. GoT prompting
further generalizes ToT prompting by formulating reasoning via a graph, additionally allowing for exploration
and dependencies across different reasoning paths. In our paper, we focus on standard CoT prompting (Wei
et al., 2022b) for an initial investigation on LLM-based feature selection in the simplest setting. We leave
an in-depth investigation of whether extensions such as ToT and GoT prompting can improve LLM-based
feature selection performance as future work.

2.2 Feature Selection

Feature selection is a classical machine learning problem, where given a set of candidate features, the goal is
to select the most informative feature subset that is predictive of an outcome of interest (Blum & Langley,
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1997; Guyon & Elisseeff, 2003; Chandrashekar & Sahin, 2014; Li et al., 2017). Feature selection methods can
generally be grouped into three categories: filter, wrapper, and embedded methods. Filter methods (Lazar
et al., 2012) select features by ranking them according to a statistical or information-theoretic criterion—
e.g., mutual information (Lewis, 1992; Ding & Peng, 2005; Bennasar et al., 2015), Fisher score (Duda
et al., 2001; Gu et al., 2011), maximum mean discrepancy (Song et al., 2012)—and choosing the top ranked
features, independent of the downstream learning algorithm. Wrapper methods identify a locally optimal
feature subset that maximizes the performance of the downstream prediction model (Kohavi & John, 1997;
Yamada et al., 2014; Chen et al., 2017; Climente-González et al., 2019), often by employing a heuristic search
strategy (e.g., sequential selection (Ferri et al., 1994; Luo & Chen, 2014; Yasuda et al., 2023), recursive feature
elimination (RFE; Guyon et al., 2002)). Embedded methods select features as part of the model learning
process, most commonly based on regularization techniques that encourage feature sparsity (Tibshirani,
1996; Yuan & Lin, 2006; Feng & Simon, 2017; Lemhadri et al., 2021), and others based on specialized neural
network architectures (Lu et al., 2018; Balın et al., 2019; Yamada et al., 2020). In our experiments, we
compare our methods against traditional feature selection baselines from all three categories.

LLMs for feature selection. In a prior work most similar to ours, Choi et al. (2022) propose the LMPriors
framework, where they prompt the davinci-instruct-beta variant of GPT-3 (Brown et al., 2020) to answer
whether each candidate feature should be used to predict the target outcome, and select features whose
difference in log-probabilities for generating a “Y” (Yes) or “N” (No) token crosses a predefined threshold.
Our work differs from theirs in two key aspects. First, we propose three different feature selection methods
which all directly use the generated text output and not the associated token probabilities, which are often not
directly accessible in closed-source, proprietary LLMs. Second, we provide a more comprehensive evaluation
across various model scales and prompting strategies on a larger collection of datasets and derive practical
insights. Our proposed feature selection methods perform as strongly as theirs even without the same level
of access into the LLM (Appendix A.3.3).

3 Selecting Features with LLMs

We address the standard supervised learning setup where, given labeled data D = {(x(i), y(i))}n
i=1 with

x(i) ∈ Rd and y(i) ∈ Y, our goal is to learn a prediction model f̂ ∈ F such that f̂ = arg minf∈F ED[L(f,D)]
for some model class F and loss function L. We assume access to concepts c = [c1, . . . , cd] for the input
features and cy for the prediction target, which are text descriptions that capture their real-world semantics.
For example, when predicting heart failure (1 if positive, 0 otherwise) given a patient’s blood pressure
and weight measurements, c = [“blood pressure”, “weight”], cy = “heart failure”, and x = [x1, x2] denotes
the numerical measurements used to learn f̂ . Concept annotations are widely available in many practical
settings, e.g., as column names in tabular datasets or via datasheets that contain auxiliary metadata. For
feature selection, our goal is to find a subset S ⊆ {1, . . . , d} of size k ≪ d such that a model f̂S trained on
DS = {(x(i)

S , y(i))}n
i=1, where x

(i)
S = [x(i)

S1
, . . . , x

(i)
Sk

], achieves strong performance under a budget on k.

3.1 Feature Selection with LLMs

To leverage a pretrained LLM M for feature selection, we prompt M with the input concepts c and target
concept cy, and select features based on the generated output. We consider the following three approaches:
(i) selecting features based on LLM-generated feature importance scores; (ii) selecting features based on
an LLM-generated ranking; and (iii) sequentially selecting features in a dialogue with an LLM. We design
separate prompt templates for each approach and denote them by promptscore, promptrank, and promptseq,
respectively. Each prompt template can be viewed as a function of the input and target concepts which out-
puts a set of natural-language instructions tailored to the corresponding selection strategy. While generally,
text outputs generated from an LLM need to be processed further to extract the relevant information, we
omit such steps in the notation below for simplicity.

Selection based on LLM-generated feature importance scores (LLM-Score). In this approach,
we promptM for a set of numerical feature importance scores s = [s1, . . . , sd] with sj ∈ [0, 1] ∀j ∈ {1, . . . , d},
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where a high sj indicates that an input concept cj is closely related to cy. Formally, we can represent this as

sj =M(promptscore(cj , cy)), ∀j ∈ {1, . . . , d}. (1)

We then define S to be the set of indices of the top-k concepts with the highest importance scores and use
DS to learn a downstream prediction model f̂S . Given that the LLM is only given a single input concept cj

and the target concept cy each time it is prompted, we hypothesize that sj captures the marginal importance
of each feature for predicting the target, as informed by the knowledge encoded in M. We note that the
feature importance scores s are directly parsed from the text output and do not correspond to the token
probabilities associated with generating the text output. We also note that the score range of [0, 1] is an
arbitrary choice and therefore evaluate the sensitivity of LLM-Score to different choices in Appendix A.3.4.

Selection based on an LLM-generated feature ranking (LLM-Rank). In this approach, we prompt
M for a ranking r = [c1′ , . . . , cd′ ] of all input concepts, where the input concepts c are ordered by their
conceptual relevance to cy. Formally, we can represent this as

r =M(promptrank(c, cy)). (2)

We define S to be the set of indices of the top-k highest ranked concepts and use DS to learn a downstream
prediction model f̂S . We hypothesize that the rank of each input concept reflects its relative importance for
predicting the target, with respect to all of the other input concepts in c.

Sequential selection in a dialogue with an LLM (LLM-Seq). In this approach, we consider a selection
strategy analogous to sequential selection methods. We start with an empty set of concepts and iteratively
add a new concept by prompting the LLM to select a candidate concept that would maximally improve
the cross-validation performance of a downstream prediction model. Formally, assuming that our goal is to
select k concepts, at each iteration t = 1, . . . , k, we have

c(t) =M(promptseq(cSt−1 , cy)), (3)

where c(t) denotes the t-th selected input concept, St ⊆ {1, . . . , d} denotes the subset of concept indices
selected up to the t-th iteration, and S0 = ∅. We then use DSt

to train a downstream prediction model f̂St
,

where we tune the hyperparameters via 5-fold cross-validation. The cross-validation performance of f̂St
on

DSt
is then appended to the prompt used for the next iteration (Appendix E). For the initialization of the

feature subset, we also consider starting with S1 = {arg maxj sj} containing the concept with the highest
score from Equation (1) and iterating over t = 2, . . . , k. However, we focus on the former approach in the main
text, as it empirically performs better than the latter (we compare the two approaches in Appendix A.3.5).
We hypothesize that this approach encourages the LLM to select a feature that is maximally informative
with respect to the feature subset already selected, at each iteration of the algorithm. Meanwhile, we note
that since LLM-Seq is a greedy sequential selection approach, the resulting top-k feature subset S is not
guaranteed to be globally optimal. This limitation arises as at each iteration t, the next feature to add is
determined with respect to St−1, which precludes an exploration all possible subsets of k.

For instantiating each method, we use LLMs that have been fine-tuned via instruction tuning and reinforce-
ment learning from human feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2022; Ouyang et al.,
2022), which are generally better at following instructions and capable of handling conversational contexts.
However, we emphasize that the LLMs are not fine-tuned in any way on the downstream dataset D.

4 Experiments

In this section, we demonstrate the effectiveness of the three LLM-based feature selection methods introduced
in Section 3 on various real-world prediction tasks. For all of our experiments, we use the following LLMs:

1. GPT-4 (OpenAI, 2023): ∼1.7T parameters,
2. GPT-3.5 (Brown et al., 2020): ∼175B parameters,
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3. Llama-2 (Touvron et al., 2023): 70B parameters,
4. Llama-2 (Touvron et al., 2023): 13B parameters,
5. Llama-2 (Touvron et al., 2023): 7B parameters.

For GPT-4 and GPT-3.5, we use the gpt-4-0613 and gpt-3.5-turbo models available via the OpenAI
API. We clarify that for both models, the official parameter counts have not been disclosed by OpenAI, and
that the approximate (∼) number of parameters listed here are rumored estimates. For Llama-2, we use the
HuggingFace checkpoints llama-2-70b-chat-hf, llama-2-13b-chat-hf, and llama-2-7b-chat-hf and use
the vLLM framework (Kwon et al., 2023) to increase throughput and speed up output generation.

Prompt design. We provide all of the prompt templates used in our experiments in Appendices C–E.
The prompt templates were carefully constructed to reliably elicit the desired response in the correct format
from each LLM. In the default template, we only include (i) the main system prompt (e.g., “Your task is to
provide a feature importance score between 0 and 1 for predicting ⟨target concept⟩ and a reasoning behind
how the importance score was assigned.”), (ii) output format instructions (e.g., “Output your answer in a
JSON format.”), and (iii) the main user prompt (e.g., “Provide a score and reasoning for ⟨concept⟩.”). We
emphasize that the default prompts are not “fine-tuned” on each dataset in any way, as they only embed
the input and target concepts and no other dataset-specific information. Meanwhile, we examine how the
following changes to the input prompt affect feature selection performance:

1. Adding dataset-specific context: When prompting the LLM to select features for dataset D,
we investigate whether adding auxiliary information about D (e.g., data collection process, cohort)
helps better contextualize the importance of each feature and improve feature selection performance.

2. Adding few-shot examples: We investigate whether adding few-shot examples improves LLM-
based feature selection performance via in-context learning. For instance, when generating feature
importance scores (as in Equation (1)), we include example concepts from c along with their human-
annotated feature importance scores (e.g., [“blood pressure”, 0.9]) in promptscore.

3. Adding CoT explanations: Given the empirical success of CoT prompting (Wei et al., 2022b)
in improving the reasoning capabilities of LLMs in few-shot settings, we investigate whether adding
CoT reasoning into the few-shot examples (e.g., [“blood pressure”, “Blood pressure is important
for. . . Thus, the score is 0.9.”, 0.9]) improves the performance of LLM-based feature selection.

For all three changes, we manually construct the relevant inputs via human annotation. For dataset-specific
context, we manually summarize the metadata associated with each dataset (e.g., sourced from the “Data
Card” of a Kaggle dataset). For selecting the few-shot examples and generating their CoT explanations,
we prioritize features whose semantic relevance to the target is unambiguous and least open to subjective
interpretation, based on common sense and relevant domain knowledge. For a given dataset, the few-shot
examples and CoT explanations provided to the LLMs remain fixed across all queries. See Appendix C for
full details on the examples and CoT explanations for each dataset considered in Sections 4.1–4.2.

Concretely, we consider the following six variations of the prompt template in our experiments:

1. Default (No change),
2. Default + Examples,
3. Default + Examples with CoT,
4. Default + Context,
5. Default + Context + Examples,
6. Default + Context + Examples with CoT.

For LLM-Rank and LLM-Seq, these variations are less straightforward to implement, due to e.g., limited
context windows or ambiguity in constructing a valid example. For example, for LLM-Rank, the full list
of concepts must be added, along with the main system prompt and output format instructions. We thus
focus on LLM-Score for exploring how these variations impact feature selection performance.
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Decoding. By default, we use greedy decoding (i.e., sampling with temperature T = 0), given its straight-
forward and deterministic behavior. For GPT-4 and GPT-3.5, we account for their inherent non-determinism
at the time of writing by sampling 5 responses with T = 0 and averaging the feature importance scores
parsed from the text generations. Meanwhile, as there is no clear notion of ground truth when assigning
feature importance (e.g., what is the ground-truth importance score for “blood pressure” when predicting
“heart failure”?) and multiple reasoning paths are possible for determining importance, we also consider
self-consistency decoding (Wang et al., 2023). For the latter, we set T = 0.5 and average across 5 samples.

Source code. To ensure the reproducibility of our results, we open-source the source code used for all of
our evaluations detailed below via our GitHub repository2.

4.1 Evaluation on Small-Scale Datasets

We compare LLM-Score, LLM-Rank, and LLM-Seq against several feature selection methods using
small-scale, low-dimensional datasets from various domains (e.g., healthcare, criminal justice), each with
∼10–70 features after preprocessing. Here, we focus on the small-scale setting to stress-test the LLM-
based feature selection methods in various ways and to allow comparison with methods that are less
scalable to high-dimensional settings (e.g., sequential selection baselines). We use seven binary classifi-
cation datasets (Credit-G, Bank, Give Me Some Credit, COMPAS Recidivism, Pima Indians Diabetes,
AUS Cars*, YouTube*) and seven regression datasets (CA Housing, Diabetes Progression, Wine Quality,
Miami Housing, Used Cars, NBA*, NYC Rideshare*), where those marked with an asterisk (*) are datasets
published after the pretraining data cutoff dates of all of the LLMs we evaluate3. We include
these datasets to ensure that our findings generalize to datasets that the LLMs have not been trained on.
We provide the remaining details on all datasets in Appendix A.1.

We evaluate each feature selection method by measuring how the test performance of a downstream prediction
model changes as we vary the proportion of features selected from 10% to 100%, in approximately 10%
increments. On each dataset and at each proportion, we measure the test performance of an L2-penalized
logistic/linear regression model trained using the selected features. For each training run, we perform model
selection via grid search with 5-fold cross-validation. We use the area under the ROC curve (AUROC) and
mean absolute error (MAE) to measure performance on classification and regression tasks, respectively. For
LLM-based feature selection, we select the concepts c in 10% increments, which may each correspond to more
than one feature after preprocessing if the concept is categorical (e.g., one-hot encoding for “ethnicity”).

Baselines. We compare the LLM-based feature selection methods against the following baselines:

1. LassoNet (Lemhadri et al., 2021),
2. the LASSO (Tibshirani, 1996),
3. forward sequential selection,
4. backward sequential selection,
5. recursive feature elimination (RFE; Guyon et al., 2002),
6. minimum redundancy maximum relevance (MRMR; Ding & Peng, 2005),
7. filtering by mutual information (MI; Lewis, 1992),
8. HSIC-Lasso (Yamada et al., 2014),
9. Concrete Autoencoder (CAE; Balın et al., 2019),

10. Sequential Attention (SA; Yasuda et al., 2023),
11. random feature selection.

2https://github.com/taekb/llm-select
3For GPT-4 and GPT-3.5, the cutoff date is Sep., 2021 at the time of writing (reference). For Llama-2, the cutoff date is

Sep., 2022 (reference). As LLMs are regularly updated, the knowledge cutoff dates may be different in more recent versions.
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Figure 2: LLM-Score shows competitive feature selection performance against data-driven baselines, given
an LLM of sufficient scale. (a) Average AUROC (left; higher is better) and ranking by MAE (right; lower
is better) across all datasets when selecting the top 30% of features. (b) Feature selection paths for LLM-
Score (GPT-4), the best-performing baseline, and random selection on datasets published after the LLM
cutoff dates. (c) Feature selection paths for LLM-Score on the same datasets, with varying LLM scale.

For LassoNet and the LASSO, we first compute the regularization paths with warm starts (Friedman et al.,
2010) to identify the regularization coefficients corresponding to each feature proportion, and then train a
separate downstream model as described above. We take this two-step approach to decouple the effects of
feature selection and regularization on the downstream test performance. For forward/backward sequen-
tial selection, we greedily add/remove a new feature at each iteration based on the 5-fold cross-validation
performance resulting from adding/removing each candidate feature. For RFE, we recursively eliminate
features with the smallest weights in a logistic/linear regression model selected via a grid search with 5-fold
cross-validation using all features. For MI, we select features with the highest marginal mutual information
with the target variable based on the training data. When continuous features and/or labels are present,
we use the nearest-neighbor approximations (Kraskov et al., 2004; Ross, 2014) available in scikit-learn
to estimate the empirical mutual information. For HSIC-Lasso, we compute the full kernel matrix if the
number of training examples is less than 1000, but otherwise use the block-wise approximation method by
Climente-González et al. (2019), using the recommended block size B = 20 and number of permutations
M = 3. For CAE, we use a multi-layer perceptron (MLP) decoder4 with hidden layers of width 256 and
train the model for a maximum of 1000 epochs with a supervised learning objective (as in Appendix F of
Balın et al. (2019)). For SA, we use an MLP with 1 hidden layer of width 67 and ReLU activation, following
Yasuda et al. (2023). For all experiments, we repeat and average the results over 5 random seeds, which
control the train-validation splits used for cross-validation and the behavior of random feature selection, to
ensure the robustness of results. We include the remaining details in Appendix A.2.

Result 1: LLM-based feature selection methods achieve strong performance competitive with
data-driven baselines, with sufficient LLM scale (Figure 2). Figure 2(a) shows the downstream test
performance, averaged over all of the classification (left) and regression (right) datasets, when selecting the
top 30% of features according to each baseline and LLM-Score based on GPT-4, GPT-3.5 and Llama-2.

4We use the architecture in the official repository for CAE: https://github.com/mfbalin/Concrete-Autoencoders.
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Figure 3: Feature selection paths for LLM-Score, LLM-Rank, and LLM-Seq based on (a) GPT-4 and
(b) GPT-3.5 on all classification and regression datasets. Within each panel, the top row shows the results
on the classification datasets, and the bottom row shows the results on the regression datasets. GPT-4-
based methods all show consistently strong performance across datasets, showing substantial overlap in their
corresponding feature selection paths. GPT-3.5-based methods also show similar trends, which are albeit
less pronounced. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.

For the regression datasets, we report the average ranking based on test MAE to account for differences
in the scale of MAE values across datasets. For the larger models, notably GPT-4 (in blue) and GPT-
3.5 (in green), selecting features based on LLM-generated importance scores leads to strong downstream
performance on average, competitive with the data-driven baselines. We observe similar results for LLM-
Rank and LLM-Seq (Figure A1). As an example, in Figure 2(b), we show the feature selection paths (i.e.,
“test performance vs. fraction of features selected” curves) for the best-performing baseline on each dataset,
LLM-Score based on GPT-4, and random selection on the YouTube* and NBA* datasets published after
the LLM cutoff dates. Here, GPT-4-based LLM-Score outperforms the best baseline (LASSO) on the
YouTube* dataset, achieving higher AUROC overall, and performs as strongly as that (HSIC-Lasso) on the
NBA* dataset. Meanwhile, performance is less consistent with smaller LLMs (Figure 2(c)). For example,
LLM-Score based on Llama-2 (7B) (in yellow) performs well on the YouTube* dataset but close to random
on the NBA* dataset. These results demonstrate that using LLMs for feature selection can be effective, but
suggest that a sufficiently large model may be required for reliable performance. We include the full results
on comparing LLM-Score, LLM-Rank, and LLM-Seq to the data-driven baselines in Appendix A.3.1.

Result 2: All three LLM-based feature selection methods achieve similarly strong performance
(Figure 3). The feature selection paths for LLM-Score, LLM-Rank, and LLM-Seq based on GPT-
4 overlap significantly on all datasets except Diabetes Progression and NYC Rideshare* (Figure 3(a)).
Figures 2 and 3(a) together illustrate that GPT-4 achieves consistently strong feature selection performance
regardless of the selection mechanism. Notably, even the simple strategy of querying for an importance score
one-feature-at-a-time can be just as effective as those that account for the other features. We overall observe
a similar trend in the feature selection paths for GPT-3.5 (Figure 3(b)), which is albeit less pronounced.
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Figure 4: Changes in average improvement (%) in LLM-Score feature selection performance as we vary the
decoding strategy (T = 0: greedy, T = 0.5: self-consistency) and prompt design (in parentheses), compared
to the performance achieved under the default prompting setup (in bold; see Section 4). Error bars indicate
standard error across datasets. On average, no approach substantially improves over the default setting.

Meanwhile, for the smaller Llama-2 models, the performances of LLM-Score, LLM-Rank, and LLM-Seq
are less consistent across datasets (Figures A3–A5), and no single method necessarily outperforms the others.
These results suggest that while all three LLM-based feature selection methods can be similarly effective,
their effectiveness varies more significantly across datasets as the model size decreases.

Result 3: Zero-shot prompting with no dataset-specific context and greedy decoding results in
strong feature selection performance (Figure 4). To assess the sensitivity of LLM-Score to prompt
design and decoding strategy variations, we evaluate the downstream test performance across six prompt
designs (“prompt design” in Section 4) and two decoding strategies (greedy/self-consistency). We use the
change in the area under the feature selection paths to measure the impact of each variation. For classifi-
cation tasks, an increase in the area indicates improved performance, as it suggests that fewer features are
needed to achieve high AUROC. Conversely, for regression tasks, a decrease in the area indicates improve-
ment. Thus, we quantify improvement in feature selection performance by computing the % increase for the
classification tasks and the % decrease for the regression tasks. Figure 4 shows the average improvement for
each (prompt design, decoding strategy) pair—with respect to that achieved with the default prompt and
greedy decoding (T = 0). For the settings where we add examples, we only consider a one-shot setting given
the relatively small number of features in the datasets. We find that no prompting strategy consistently im-
proves feature selection performance across all LLMs, sometimes even degrading it (e.g., GPT-3.5, Llama-2
(13B)). Meanwhile, we find that the largest and most capable GPT-4 is substantially less sensitive to the
prompting strategy and generally benefits from additional context, albeit to a limited extent. These obser-
vations suggest that zero-shot prompting without dataset-specific context, combined with greedy decoding,
is a strong baseline prompting strategy for LLM-based feature selection.

Result 4: LLM-Score exhibits higher correlation with widely used feature importance metrics
as model scale increases (Figure 5). To probe the semantics of LLM feature importance metrics, we
measure the alignment between LLM-Score and the following feature importance metrics:

1. SHAP (Lundberg & Lee, 2017),
2. Fisher score (Duda et al., 2001),
3. mutual information,
4. Pearson correlation,
5. Spearman correlation,
6. permutation importance (Breiman, 2001).

We compute the Kendall’s τ coefficient ∈ [−1, 1] (Kendall, 1938) to quantify the agreement in pairwise
orderings, where +1/-1 indicates perfect agreement/disagreement. For SHAP, we compute the mean absolute
Shapley value for each feature using all test samples, after training an XGBoost model (Chen & Guestrin,
2016). For permutation importance, we measure the average drop in test performance of an L2-penalized
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Figure 5: Average rank correlation (Kendall’s τ) between each feature importance metric and LLM-Score
based on GPT-4, GPT-3.5, and Llama-2. Error bars indicate standard error across datasets. LLM-Score
generally exhibits higher rank correlation with standard feature importance metrics as model scale increases,
but does not uniquely align to a specific notion of feature importance.

logistic/linear regression model when randomly shuffling the values of each feature 30 times. In Figure 5, we
observe that there is no specific notion of importance that LLM-Score consistently aligns to. Meanwhile,
as model scale increases, the LLM-generated scores generally exhibit higher correlation with the importance
metrics considered (e.g., SHAP, Spearman). An interesting future research direction may be to investigate
prompting strategies that increase the alignment of LLM-Score to desired notions of importance. We
include additional results on investigating the semantics of LLM-Score in Appendix A.3.7.

4.2 Evaluation on Large-Scale Datasets

We show that LLM-based feature selection also achieves strong performance on the more complex large-scale,
higher dimensional datasets, each with ∼3000 features after preprocessing. Here, we focus on GPT-4-based
LLM-Score with the default prompting setup, given its consistently strong performance on small-scale
datasets and scalability to a large number of features. We construct supersets of the Income, Employment,
Public Coverage, and Mobility datasets from folktables (Ding et al., 2021) by extracting all features
available from the 2018 American Community Survey data for California while removing features that lead
to label leakage. We also manually extract three datasets from the MIMIC-IV database (Johnson et al.,
2023) for classifying whether an ICU patient was diagnosed with chronic kidney disease (CKD), chronic
obstructive pulmonary disease (COPD), and heart failure (HF). Importantly, we note that MIMIC-IV is not
publicly available (access requires special credentials via PhysioNet (Goldberger et al., 2000)) and that the
datasets we manually derived are not based on existing data preprocessing pipelines (e.g., MIMIC-Extract
(Wang et al., 2020), FIDDLE (Tang et al., 2020)). As such, these exact datasets were not part of the LLM
pretraining corpora. We provide the remaining dataset details in Appendix B.1.

We evaluate each feature selection method by measuring how the test performance of a downstream prediction
model changes when we select the top 10%, 30%, 50%, 70% or 100% of all input concepts. We train the
following models for downstream prediction: LightGBM (Ke et al., 2017), MLP, and L2-penalized logistic
regression. For each feature selection method and dataset, we perform model selection via a random search
with 40 hyperparameter samples. We average the test AUROC over 5 random seeds, which control the
train-validation splits, the hyperparameter samples, and the initialization of model parameters.

Baselines. We compare LLM-Score based on GPT-4 against the following feature selection baselines:

1. LassoNet (Lemhadri et al., 2021),
2. the LASSO (Tibshirani, 1996),
3. minimum redundancy maximum relevance (MRMR; Ding & Peng, 2005),
4. HSIC-Lasso (Yamada et al., 2014),
5. Concrete Autoencoder (CAE; Balın et al., 2019),
6. random feature selection.
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Figure 6: LLM-Score based on GPT-4 shows competitive feature selection performance against data-driven
baselines on the larger folktables and MIMIC-IV datasets, each with ∼3000 features. For all plots, we show
the results with LightGBM as the prediction model. (a) Average AUROC across all folktables (left)
and MIMIC-IV (right) datasets and downstream prediction models when selecting the top 30% of features.
Error bars indicate the standard error across datasets. (b) Feature selection paths for LLM-Score, the
best-performing baseline, and random selection on the Income and Employment datasets (folktables). (c)
Feature selection paths for the same feature selection methods on the CKD and COPD datasets (MIMIC-IV).

Unlike for the small-scale dataset experiments, we exclude forward sequential selection, backward sequential
selection, recursive feature elimination (Guyon et al., 2002), and Sequential Attention (Yasuda et al., 2023),
given the high computational cost of training O(kd) separate models when selecting k out of d candidate fea-
tures. For LassoNet, the LASSO, and the random feature selection baseline, we set up each method to select
features at the concept level (e.g., “ethnicity” instead of the one-hot encoded features “ethnicity_Asian” or
“ethnicity_Hispanic”) to match the behavior of LLM-Score (e.g., via group-wise feature sparsity (Yuan &
Lin, 2006)). For LassoNet and the LASSO, we compute the regularization paths with warm starts (Friedman
et al., 2010) (Figure B1) and use the regularization coefficient that selects about the same number of features
as LLM-Score in each evaluation setting. For MRMR, HSIC-Lasso, and CAE, we select exactly the same
number of features as LLM-Score in each setting. We use the same setup for HSIC-Lasso as in Section
4.1 and additionally subsample down to 60000 training examples if the training set size exceeds it to avoid
out-of-memory errors (Employment and Public Coverage; Appendix B.1). For CAE, we adopt the setup
in Section 4.1 but increase the hidden layer widths for the MLP decoder from 256 to 512. We provide the
remaining details in Appendix B.2.

Result. Figure 6(a) shows the downstream test AUROC, averaged over all of the folktables (left) and
MIMIC-IV (right) datasets, when (i) selecting the top 30% of features according to each baseline and LLM-
Score based on GPT-4 and (ii) using LightGBM as the downstream prediction model. Here, we show the
performance when selecting the top 30% of features, as the test performance roughly saturates to that of
using all features when selecting more than 30% of features for all feature selection methods (Figure B2(a)).
We observe that GPT-4-based LLM-Score overall performs the best on the folktables datasets, and
performs on par with HSIC-Lasso and significantly better than LassoNet and the random feature selection
baseline on the MIMIC-IV datasets. In Figures 6(b–c), we show the full feature selection paths for the best-
performing baseline (MRMR), LLM-Score, and random feature selection on the Income and Employment
datasets from folktables and the CKD and COPD datasets from MIMIC-IV. We observe that for most of
these datasets, only a small subset of features are highly predictive of the target outcome, as indicated
by the high test AUROC of the best-performing baseline and the low test AUROC of the random feature
selection baseline at the 10% and 30% marks. We find that LLM-Score is effective at selecting these
highly predictive features, with performance rivaling that of the best-performing data-driven baseline and
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substantially better than random when selecting the top 10% and 30% of features. Notably, the strong
performance on the MIMIC-IV datasets suggests that LLM-Score can be effective even in highly specialized
domains like healthcare where, without access to sufficient training data, substantial domain knowledge would
be required for feature selection (Section B.1.2). We include the full results for all downstream prediction
models on all datasets in Figure B2 in Appendix B.3.

5 Discussion and Conclusion

In this work, we demonstrated that LLMs are capable of performing feature selection for supervised learn-
ing tasks, even without access to the downstream training data. We proposed three different approaches to
prompting LLMs for feature selection—LLM-Score, LLM-Rank, and LLM-Seq (Section 3). We found
that with sufficient LLM scale, even zero-shot prompting an LLM to select features can result in strong
downstream predictive performance, often competitive with data-driven methods such as the LASSO (Tib-
shirani, 1996) (Results 1 & 3, Section 4.1). For the latest models such as GPT-4, we found that all three
LLM-driven methods achieve similarly strong performance and that even the simple strategy of querying
for an importance score one-feature-at-a-time (LLM-Score) can be as effective as those that account for
other available features (Result 2, Section 4.1; Section 4.2). In particular, while the LLM-generated scores
do not necessarily align to a specific notion of feature importance (e.g., Fisher score, mutual information),
we found that their rank correlations tend to be higher as model scale increases (Result 4, Section 4.1),
suggesting that the most capable LLMs are able to translate the real-world relationships encoded in their
parameters into statistically meaningful scores. Our findings suggest that LLMs may be useful not only for
selecting the best features post data collection, but also for deciding what features to collect in the
first place. This could potentially benefit practitioners in domains like healthcare and the social sciences,
where collecting high-quality data can be expensive and time-consuming.

Limitations. First, while we have demonstrated the effectiveness of LLM-based feature selection methods
in various domains (e.g., finance, healthcare, criminal justice), it is possible that they show limited per-
formance in extremely specialized or rare domains. Second, as LLM-based feature selection methods rely
on textual semantics (e.g., column names in tabular datasets) to identify predictive features, they may not
be effective on (i) datasets without sufficient text annotations (Appendix A.3.6) or (ii) datasets where the
statistical relationships between features and targets do not align with the semantic associations inferred
by the LLM (due to e.g., selection bias). Third, LLMs may exhibit undesirable biases inherited from their
pretraining data (Gallegos et al., 2024), which can result in downstream performance disparities across data
subpopulations. In the data-driven setting, it is possible to mitigate such issues by selecting features for each
subpopulation independently or modifying the training objective to account for group fairness (Zemel et al.,
2013; Sagawa et al., 2020; Izmailov et al., 2022). However, it is not immediately obvious how to incorpo-
rate similar notions of group fairness into LLM-based feature selection methods, especially for closed-source
LLMs which can only be accessed via prompting. As such, combining LLM-driven feature selection with
data-driven methods or using it in a human-in-the-loop setup may be a more reliable approach for mitigat-
ing bias concerns, especially in safety-critical domains. We leave an in-depth investigation of methods for
incorporating group fairness to LLM-based feature selection for future work.
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A Additional Details on Small-Scale Dataset Experiments

Here, we provide additional details and results for the small-scale dataset experiments in Section 4.1.

A.1 Datasets

For all datasets, we report both the total number of features after preprocessing and the total number of
concepts (i.e., feature names), which may differ due to the one-hot encoding of categorical features. For
example, the Credit-G dataset contains 61 features after one-hot encoding the categorical features and only
20 concepts. In this case, when feature selection is performed at the concept level, we select k of the 20
concepts; when feature selection is performed at the feature level, we select k of the 61 preprocessed features.

For each dataset, we randomly shuffle and take a 80–20 train–test split. We then take a 5-fold split of the
training set for cross-validation, where the 5-fold splits vary across the random seeds (=[1,2,3,4,5]) used
throughout the experiments. The test set remains fixed and does not vary with the random seed used. For
classification datasets, we always take a stratified split to preserve the label proportions across the train,
validation, and test sets. We standardize all of the numerical features to have zero mean and unit variance,
and one-hot encode all categorical features. Below, we provide the remaining details for each dataset.

Classification Datasets:

• Credit-G (Hofmann, 1994) is a UCI dataset5, where the goal is to predict whether a client at a bank
carries high credit risk, given a set of attributes about the client (e.g., credit history, savings account
status). The dataset contains 1000 samples and 61 features after preprocessing (20 concepts), with
700 positive samples and 300 negative samples.

• Bank (Moro et al., 2012) is a UCI dataset6, where the goal is to predict whether a client at a bank
will subscribe to a term deposit, given data collected from a telemarketing campaign at a Portuguese
banking institution from 2008 to 2013. The dataset contains 45211 samples and 51 features after
preprocessing (16 concepts), with 5289 positive samples and 39922 negative samples.

• Give Me Some Credit is a Kaggle dataset7, where the goal is to predict whether an individual
is likely to experience significant financial distress/delinquency within the next two years, given
information about the individual’s financial status (e.g., debt ratio, monthly income). The dataset
contains 120269 samples and 10 features after preprocessing (10 concepts), with 8357 positive samples
and 111912 negative samples.

• COMPAS Recidivism is a dataset collected from a 2016 study8 on the racial biases present in the
Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) algorithm (Lar-
son et al., 2016). The goal is to predict whether a criminal defendant carries high risk of recidivism,
given their criminal history and demographic attributes. The dataset contains 6172 samples and 23
features after preprocessing (14 concepts), with 2751 positive samples and 3421 negative samples.

• Pima Indians Diabetes (Smith et al., 1988) is a Kaggle dataset9, where the goal is to predict
whether a female adult patient of Pima Indian heritage has diabetes, given a set of clinical measure-
ments and demographics. The dataset contains 768 samples and 8 features after preprocessing (8
concepts), with 268 positive samples and 500 negative samples.

• AUS Cars* is a Kaggle dataset10 published in 2023, where the goal is to predict whether the price of
a car in Australia is above $30000, given a set of attributes about the car (e.g., year of manufacture,
number of doors in the car, fuel consumption rate). The dataset contains 14283 samples and 33
features after preprocessing (11 concepts), with 6396 positive samples and 7887 negative samples.

5https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
6https://archive.ics.uci.edu/dataset/222/bank+marketing
7https://www.kaggle.com/c/GiveMeSomeCredit
8https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
9https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

10https://www.kaggle.com/datasets/nelgiriyewithana/australian-vehicle-prices
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• YouTube* is a Kaggle dataset11 published in 2023, where the goal is to predict whether YouTube
channel has more than 20 million subscribers, given a set of attributes about the channel (e.g.,
total number of videos uploaded on the channel, date when the channel was created). The dataset
contains 588 samples and 72 features after preprocessing (22 concepts), with 268 positive samples
and 320 negative samples.

Regression Datasets:

• CA Housing (Pace & Barry, 1997) is a StatLib dataset12, where the goal is to predict the median
housing price of a US Census block group in California, given data collected from the 1990 US
Census. A block group, typically a population of 600 to 3000 people, is the smallest geographical
unit for which the US Census Bureau publishes sample data. The dataset contains 20640 samples
and 8 features after preprocessing (8 concepts).

• Diabetes Progression is a dataset13 used in a study by Efron et al. (2004), where the goal is to
predict the disease progression level in diabetic patients, given their baseline blood serum measure-
ments from the previous year and demographic information. The dataset contains 442 samples and
10 features after preprocessing (10 concepts).

• Wine Quality (Cortez et al., 2009) is a UCI dataset14 collected from red and white vinho verde wine
samples from northern Portugal, where the goal is to predict whether a wine is high or low quality,
given its various physicochemical measurements (e.g., acidity, density). The dataset contains 6497
samples and 11 features after preprocessing (11 concepts).

• Miami Housing (Grinsztajn et al., 2022) is an OpenML dataset15, where the goal is to predict
the selling price of a house in Miami in 2016, given structural (e.g., area, structure quality) and
geographic (e.g., longitude, latitude) information about each house. The dataset contains 13932
samples and 15 features after preprocessing (15 concepts).

• Used Cars is a Kaggle dataset16, where the goal is to predict the selling price of a used car, given
a set of attributes about each car (e.g., age, fuel type, number of previous owners). The dataset
contains 301 samples and 11 features after preprocessing (7 concepts).

• NBA* is a Kaggle dataset17 published in 2023, where the goal is to predict the number of points
per game for an NBA basketball player, given a set of attributes and statistics (from the 2023–2024
NBA season) about the player (e.g., blocks per game, position, team). The dataset contains 388
samples and 61 features after preprocessing (27 concepts).

• NYC Rideshare* is a Kaggle dataset18 published in 2023, where the goal is to predict the total
pay given to a rideshare-app driver in NYC after a trip, given information about the trip (e.g.,
time elapsed from ride request to dropoff, total distance of the trip). The original dataset on Kaggle
contains some data from 2022, so we only extract the data rideshare data from 2023 for preprocessing
and evaluation. The dataset contains 5000 samples and 19 features after preprocessing (15 concepts).

A.2 Feature Selection, Model Training, and Hyperparameter Optimization

As described in Section 4.1 of the main text, we evaluate the effectiveness of each feature selection method
by measuring how the test performance of a downstream L2-penalized logistic regression (for classification
tasks) or linear regression (for regression tasks) model changes as we vary the proportion of features selected
from 10% to 100%, in approximately 10% increments. For logistic regression, we minimize the negative
log-likelihood using the L-BFGS optimizer (Zhu et al., 1997) and use importance weighting to balance the

11https://www.kaggle.com/datasets/nelgiriyewithana/global-youtube-statistics-2023
12https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
13https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
14https://archive.ics.uci.edu/dataset/186/wine+quality
15https://www.openml.org/search?type=data&sort=runs&id=43093&status=active
16https://www.kaggle.com/datasets/vijayaadithyanvg/car-price-predictionused-cars
17https://www.kaggle.com/datasets/bryanchungweather/nba-player-stats-dataset-for-the-2023-2024
18https://www.kaggle.com/datasets/aaronweymouth/nyc-rideshare-raw-data
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weights of the positive and negative samples, as some of the datasets exhibit label imbalance. For linear
regression, we minimize the mean squared error (MSE) using the L-BFGS optimizer. For all experiments,
we aggregate the results over 5 random seeds (=[1,2,3,4,5]), which control the train-validation splits and the
behavior of random feature selection, in order to ensure the robustness of results.

A.2.1 Additional Details on Feature Selection Methods

LassoNet. For feature selection with LassoNet (Lemhadri et al., 2021), we use a multi-layer perceptron
(MLP) with 1 hidden layer and 100 hidden units for all datasets and fix the hierarchy coefficient M to the
recommended value of 10. For a given dataset, we take a 80-20 split of the training set (split controlled
by the random seed = [1, 2, 3, 4, 5]), using the latter 20% split for validation. For classification tasks, we
minimize the binary cross-entropy loss using the Adam optimizer (Kingma & Ba, 2015) with the default
learning rate of 10−3 and the default momentum hyperparameters of β1 = 0.9, β2 = 0.999, and ϵ = 10−8.
For regression tasks, we minimize the MSE using the Adam optimizer with the same configuration used for
classification tasks. Following Lemhadri et al. (2021), we compute the dense-to-sparse regularization paths
with warm starts (Friedman et al., 2010). We first train an unregularized MLP for 10 epochs, using the
validation split for early stopping with a patience of 3 epochs. We then increase the regularization coefficient
starting from λ = 10−6, iteratively multiplying powers of 1.02 until all of features become inactive (i.e.,
λ = 10−6, 1.02 · 10−6, 1.022 · 10−6, . . .), where for each value of λ, we further train the model for 3 epochs.
After computing the full regularization path, we identify the regularization strengths that select 10% to
100% of all features in approximately 10% increments.

LASSO. For feature selection with the LASSO (Tibshirani, 1996) on each dataset, we first train an L1-
penalized logistic regression model with inverse regularization coefficient C = 10−4 (for classification tasks)
or an L1-penalized linear regression model with regularization coefficient λ = 104 (for regression tasks)19.
To compute the sparse-to-dense regularization paths with warm starts (Friedman et al., 2010), we then
gradually increase C by iteratively multiplying powers of 1.02 (i.e., C = 10−4, 1.02 · 10−4, 1.022 · 10−4, . . .)
and gradually decrease λ by iteratively multiplying powers of 1

1.02 (i.e., λ = 104, 1.02−1 ·104, 1.02−2 ·104, . . .)
until all features become active. For logistic regression, we train each model by minimizing the negative
log-likelihood using the SAGA optimizer (Defazio et al., 2014). For linear regression, we train each model by
minimizing the MSE using the SAGA optimizer. After computing the full regularization path, we identify
the regularization strengths that select 10% to 100% of all features in approximately 10% increments.

Forward/backward sequential selection. For forward or backward sequential selection, we first run a
grid search with 5-fold cross-validation to select the best hyperparameter to use for training an L2-penalized
logistic/linear regression model for sequential selection. For classification tasks, we sweep through the inverse
regularization coefficients C = [0.1, 0.5, 1, 5, 10, 50, 100] and select the value of C that leads to the highest
cross-validation area under the ROC curve (AUROC). For regression tasks, we sweep through the regular-
ization coefficients λ = [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] and select the value of λ that leads to the
lowest cross-validation mean absolute error (MAE). We use the selected hyperparameter value for training
a model at each iteration of forward or backward sequential selection. For forward sequential selection, we
start with an empty feature subset and iteratively add a new feature which maximizes the cross-validation
performance when included in the feature subset. For backward sequential selection, we start with all fea-
tures and iteratively remove a feature such that the cross-validation performance degrades minimally when
excluding it from the feature subset.

Random feature selection. For random feature selection, we randomly select the input concepts in
approximately 10% increments, as in LLM-based feature selection. For example, on the Credit-G dataset,
which contains a total of 20 concepts (61 features after preprocessing), selecting 10% via random feature
selection is equivalent to selecting 2 out of the 20 concepts, which may correspond to more than 6 ≈
61 · 0.1 features. The randomness in the feature subset is controlled by the random seeds (=[1,2,3,4,5]) used
throughout the experiments.

19For logistic regression, we configure the inverse regularization coefficient C instead of the regularization coefficient λ, as
the scikit-learn implementation of logistic regression uses the former.
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Figure A1: LLM-Rank and LLM-Seq achieve strong feature selection performance competitive with data-
driven baselines, given an LLM of sufficient scale. (a) Average AUROC (left; higher is better) and ranking
by MAE (right; lower is better) across all datasets when selecting the top 30% of features with LLM-Rank.
(b) Average AUROC (left; higher is better) and ranking by MAE (right; lower is better) across all datasets
when selecting the top 30% of features with LLM-Seq.

A.2.2 Downstream Model Training and Hyperparameter Optimization

For each dataset and at each proportion of features selected by each method, we run a grid search
with 5-fold cross-validation to select the best hyperparameter to use for training and evaluation of
the downstream prediction model. For classification tasks, we sweep through the inverse regulariza-
tion coefficients C = [0.1, 0.5, 1, 5, 10, 50, 100] and select the hyperparameter value that leads to the
highest cross-validation AUROC. For regression tasks, we sweep through the regularization coefficients
λ = [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] and select the hyperparameter value that leads to the lowest
cross-validation MAE. We then train a final logistic/linear regression model with the selected regularization
strength using the full training set, and measure the performance of the final model on the test set. We
repeat this process 5 times with different random seeds (=[1,2,3,4,5]) and average the results.

A.3 Additional Experimental Results

A.3.1 Comparison of LLM-Score, LLM-Rank, and LLM-Seq to Baselines

In this section, we include additional experimental results that compare the performances of LLM-Score,
LLM-Rank, and LLM-Seq against those of the baselines described in Section 4.1 of the main text. We
note that all of the results shown in this section are based on the LLM outputs generated from the default
prompt, which does not include any dataset-specific context or few-shot examples, and with greedy decoding.
For LLM-Seq, we present the results for the setup where we start with an empty feature subset. As described
in Section 4.1 of the main text, we evaluate the effectiveness of each feature selection method by measuring
how the test performance of a downstream model changes as we vary the proportion of features selected from
10% to 100%, in approximately 10% increments. Intuitively, an effective feature selection method should be
able to identify a highly informative subset of features and enable strong downstream predictive performance,
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Figure A2: Feature selection paths for all baselines and the (a) LLM-Score, (b) LLM-Rank, and (c)
LLM-Seq methods (ours, in solid lines) based on GPT-4, GPT-3.5, and the Llama-2 models. In each panel,
the top row shows the test AUROC (higher is better) on the classification datasets and the bottom row
shows the test MAE (lower is better) on the regression datasets. Datasets marked with an asterisk (*)
were published after the LLM cutoff dates. On most datasets, LLM-based feature selection methods show
strong performance comparable to the baselines. Larger models, especially GPT-4, show consistently strong
performance across all datasets.

even when the number of selected features is relatively small. For all experiments, the results are averaged
over 5 random seeds (=[1,2,3,4,5]), which control the train-validation splits and random feature selection.
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Figure A1 shows the downstream test performance, averaged over all of the classification (left) and regression
(right) datasets, when selecting the top 30% of features according to each baseline, and (a) LLM-Rank and
(b) LLM-Seq, based on GPT-4, GPT-3.5, and Llama-2. For the regression datasets, we report the average
ranking based on test MAE to account for differences in the scale of MAE values across datasets. We observe
that LLM-Rank and LLM-Seq both show strong feature selection performance on average, competitive
with the data-driven baselines.

Figure A2 shows the feature selection paths for the baselines and for LLM-Score, LLM-Rank, and LLM-
Seq based on GPT-4, GPT-3.5, and the Llama-2 models. Table A1 shows the area under the feature
selection paths in Figure A2 for the baselines and for LLM-Score, LLM-Rank, and LLM-Seq based on
GPT-4, GPT-3.5, and the Llama-2 models. As discussed in Result 3, Section 4.1 of the main text, the area
under each feature selection path serves as a quantitative summary of feature selection performance, where
a higher area is desirable for classification tasks and a lower area is desirable for regression tasks. For each
dataset, we highlight in bold the area of the best-performing baseline and the area of the best-performing
LLM-based feature selection method for each LLM.

In Figure A2, we observe that LLM-Score, LLM-Rank, and LLM-Seq all achieve strong feature selection
performance competitive with the data-driven baselines. For the larger models, notably GPT-4 (in blue) and
GPT-3.5 (in green), we consistently observe such strong performance across many datasets. For the smaller
models, notably the Llama-2 models (in orange, pink, and yellow), we observe that feature selection perfor-
mance is generally more sensitive to the choice of selection strategy (i.e., LLM-Rank or LLM-Seq), but
that performance can be strong when an adequate selection strategy is used. For example, on the Credit-G
and COMPAS Recidivism datasets, we see that using LLM-Rank significantly improves the performances
of GPT-3.5 and the Llama-2 models over that achieved with LLM-Score (shown in Figure 2)—from being
close to the average performance of random feature selection (in black) to being on par or better than those
of the best-performing baselines. For LLM-Seq, we observe a similar improvement on the Pima Indians
Diabetes and COMPAS Recidivism datasets.

Table A1 further illustrates these findings from Figure A2. We see that for the larger GPT-4 and GPT-3.5
models, the area of the best-performing LLM-based feature selection method is often on par with the area of
the best-performing baseline, across most datasets. For example, on the Credit-G dataset, we see that the
best-performing baseline (MRMR) achieves an area of 0.7496, while the best-performing selection strategy
for GPT-4 (LLM-Seq) outperforms it with an area of 0.7710, and the best-performing selection strategy
for GPT-3.5 (LLM-Rank) performs as well with an area of 0.7495. We observe that these models achieve
strong performance on the other datasets as well (e.g., COMPAS Recidivism, Pima Indians Diabetes, Wine
Quality). Meanwhile, for the smaller Llama-2 models, we see that the area of the best-performing selection
strategy can be on par with that of the best-performing baseline but that feature selection performance more
sensitive to the choice of selection strategy. For example, on the Pima Indians Diabetes dataset, we see
that the areas of the best-performing selection strategies for the three Llama-2 models are 0.7728 (70B),
0.7744 (13B), and 0.7709 (7B), respectively, which are on par with the area of 0.7855 for the best-performing
baseline (RFE). However, as noted in Result 1, Section 4.1 of the main text, the performance of the smaller
models are less consistent across datasets and the three LLM-based feature selection methods.

The above results demonstrate that all three LLM-based feature selection methods can be competitive with
traditional baselines but that a sufficiently large model may be required to ensure reliable performance.

A.3.2 Comparison of LLM-Score, LLM-Rank, and LLM-Seq Across LLMs of Varying Scale

In this section, we include additional results that compare the feature selection behaviors and performances
of LLM-Score, LLM-Rank, and LLM-Seq across LLMs of varying scale. We note that all of the results
shown in this section are based on the LLM outputs generated from the default prompt, which does not
include any dataset-specific context or few-shot examples, and with greedy decoding. As done for GPT-4
and GPT-3.5 in Result 2, Section 4.1 of the main text (Figure 3), we show the changes in average test
performance for LLM-Score, LLM-Seq, and LLM-Rank for GPT-3.5 and the Llama-2 models in Figures
A3–A5. In Figure A6, we also show the average rank correlation (Kendall’s τ) between (i) LLM-Score and
LLM-Rank (left) and that between (ii) LLM-Score and LLM-Seq (right) to show how well the orderings
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Table A1: Area under the feature selection paths for the baselines and our LLM-Score, LLM-Rank, and
LLM-Seq methods based on GPT-4, GPT-3.5, and the Llama-2 models. For classification datasets, higher is
better (↑). For regression datasets, lower is better (↓). Give Me Credit and Pima Diabetes are shorthands
for the Give Me Some Credit and Pima Indians Diabetes datasets, respectively. For each dataset, we
boldface the area of the best-performing baseline and that of the best-performing LLM-based method for
each LLM. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.

Classification Datasets ↑ Regression Datasets ↓
Give Me COMPAS Pima CA Diabetes Wine Miami NYC

Credit-G Bank Credit Recidivism Diabetes AUS Cars* YouTube* Housing Progression Quality Housing Used Cars NBA* Rideshare*

LassoNet 0.7253 0.7915 0.7889 0.7504 0.7564 0.7818 0.6905 0.5721 44.6832 0.5775 0.2288 1.8574 2.5073 3.7539
LASSO 0.7304 0.8819 0.7783 0.8069 0.7829 0.9144 0.8264 0.5726 45.0356 0.5727 0.2308 0.8533 0.0625 1.6211
Forward 0.7355 0.8847 0.7884 0.8287 0.7842 0.9204 0.8181 0.5711 44.5965 0.5771 0.2273 1.3148 0.0610 1.5367
Backward 0.7201 0.7592 0.7463 0.7722 0.7188 0.8939 0.6634 0.7274 45.4677 0.6053 0.2965 2.0984 0.1074 3.6240
MRMR 0.7496 0.8815 0.7883 0.8199 0.7850 0.8751 0.7997 0.5935 45.2207 0.5821 0.2297 1.3287 0.0645 1.7508
MI 0.7421 0.8767 0.7882 0.8207 0.7798 0.9119 0.8230 0.6221 45.0259 0.5899 0.2429 1.3927 0.0654 1.6746
RFE 0.6817 0.7986 0.7762 0.7568 0.7855 0.8111 0.7884 0.6342 44.7423 0.5780 0.2282 2.3120 1.2952 3.4855
HSIC-Lasso 0.7436 0.8712 0.7882 0.8288 0.7826 0.9169 0.7974 0.6005 44.1273 0.5800 0.2348 1.3956 0.0571 1.9681
CAE 0.7357 0.8739 0.7790 0.8241 0.7766 0.9150 0.8215 0.5854 45.2773 0.5825 0.2337 1.7302 0.2000 1.9896
SA 0.7152 0.7821 0.7465 0.7759 0.7120 0.8480 0.7358 0.7590 47.5920 0.6129 0.2905 2.0027 1.0580 3.5182
Random 0.6965 0.7408 0.7038 0.7686 0.7265 0.7861 0.6948 0.7555 50.2139 0.6152 0.2780 2.4022 1.1800 3.1562
GPT-4 (LLM-Score) 0.7556 0.8686 0.7504 0.8192 0.7813 0.8874 0.8474 0.5930 45.9081 0.5804 0.2353 1.4363 0.1576 1.9757
GPT-4 (LLM-Rank) 0.7570 0.8687 0.7717 0.8132 0.7821 0.9001 0.8547 0.5948 48.9612 0.5795 0.2365 1.4251 0.1209 2.0982
GPT-4 (LLM-Seq) 0.7710 0.8641 0.7417 0.8231 0.7794 0.9022 0.8452 0.5834 45.3283 0.5800 0.2382 1.4234 0.0600 1.7038
GPT-3.5 (LLM-Score) 0.7158 0.8562 0.7481 0.8133 0.7693 0.8562 0.7709 0.6682 49.6221 0.5859 0.2806 1.8029 0.5328 1.9832
GPT-3.5 (LLM-Rank) 0.7495 0.8730 0.7719 0.8243 0.7813 0.8924 0.8508 0.5943 49.2408 0.5802 0.2510 1.3739 0.3101 2.3767
GPT-3.5 (LLM-Seq) 0.6952 0.8543 0.7838 0.7970 0.7776 0.8334 0.8290 0.6432 44.7747 0.5909 0.3014 2.0378 0.1828 2.7214
Llama-2-70B (LLM-Score) 0.7258 0.7797 0.7259 0.7946 0.6934 0.8760 0.8268 0.7512 49.6221 0.6074 0.2634 1.7945 0.5208 1.7974
Llama-2-70B (LLM-Rank) 0.7618 0.7158 0.7706 0.8004 0.7728 0.9016 0.8506 0.5941 48.1246 0.5972 0.3377 1.4991 0.3164 1.5433
Llama-2-70B (LLM-Seq) 0.7263 0.7436 0.7217 0.8138 0.7587 0.8742 0.6865 0.6858 48.3056 0.6312 0.2649 1.8600 0.2952 2.3938
Llama-2-13B (LLM-Score) 0.7092 0.8279 0.7284 0.7953 0.7300 0.8557 0.8297 0.6823 50.3093 0.6036 0.2676 1.8727 0.4452 3.0830
Llama-2-13B (LLM-Rank) 0.6631 0.6636 0.7603 0.7695 0.7744 0.8936 0.8444 0.5925 47.5913 0.6248 0.3038 1.6483 1.0380 1.5407
Llama-2-13B (LLM-Seq) 0.6688 0.8470 0.7746 0.7974 0.7744 0.7425 0.7840 0.6374 44.9351 0.6167 0.3207 1.9734 0.2974 3.5624
Llama-2-7B (LLM-Score) 0.7331 0.7033 0.7358 0.7917 0.7132 0.8527 0.8107 0.5952 50.9002 0.6061 0.2833 2.2908 1.0696 1.6089
Llama-2-7B (LLM-Rank) 0.7671 0.8676 0.7615 0.8115 0.7661 0.8924 0.8185 0.5925 47.6220 0.6117 0.3006 2.8661 0.7897 1.7905
Llama-2-7B (LLM-Seq) 0.7102 0.7484 0.7434 0.8205 0.7709 0.8691 0.8216 0.6888 44.5974 0.6219 0.2726 1.8047 0.2413 2.9630

of the features by their relevance to the prediction target agree between each pair selection strategies being
compared. As described in Result 4, Section 4.1 of the main text, the Kendall’s τ coefficient ∈ [−1, 1]
quantifies the agreement in pairwise orderings, where +1/-1 indicates perfect agreement/disagreement.

Together with Figure 3 discussed in Result 2, Section 4.1 of the main text, Figures A3–A5 show that the
feature selection paths of LLM-Score, LLM-Rank, and LLM-Seq are generally more consistent with
one another (i.e., exhibits less variability) with increasing model scale, with GPT-4 showing almost perfect
alignment on all datasets except Diabetes Progression. Figure A6 also shows that the average rank
correlation between LLM-Score and LLM-Rank and that between LLM-Score and LLM-Seq both
tend to increase with increasing model scale. Table A1 further illustrates this finding, where we see that
with increasing model scale, the areas under the feature selection paths for LLM-Score, LLM-Rank, and
LLM-Seq tend to be more similar.

The above results suggest that the assignment of feature importance tends to be more consistent across
LLM-Score, LLM-Rank, and LLM-Seq for the larger models. Meanwhile, for the smaller models, we
see that choosing a different selection strategy leads to qualitatively distinct results, translating to increased
variability in the average test performance of the downstream prediction model.

A.3.3 Comparison of LLM-Score, LLM-Rank, and LLM-Seq to LMPriors (Choi et al., 2022)

In this section, we include additional results that compare the average feature selection performance of LLM-
Score, LLM-Rank, and LLM-Seq to that of the LMPriors framework (Choi et al., 2022). As discussed in
Section 2.2, our methods are more broadly applicable than the LMPriors framework, which requires access to
the token probabilities often not provided in state-of-the-art proprietary LLMs such as GPT-4 and GPT-3.5.
Meanwhile, the original implementation of LMPriors uses the davinci-instruct-beta variant of GPT-3
(Brown et al., 2020), which is no longer serviced by OpenAI. We therefore replicate their setup using the
open-source Llama-2 models (Touvron et al., 2023), where we do have full access to the token probabilities.
We note that all of the results shown in this section are based on the LLM outputs generated from the
default prompt, which does not include any dataset-specific context or few-shot examples, and with greedy
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Figure A3: Feature selection paths for LLM-Score, LLM-Seq, and LLM-Rank based on Llama-2 with
70B parameters. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.
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Figure A4: Feature selection paths for LLM-Score, LLM-Seq, and LLM-Rank based on Llama-2 with
13B parameters. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.
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Figure A5: Feature selection paths for LLM-Score, LLM-Seq, and LLM-Rank based on Llama-2 with
7B parameters. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.

decoding. Table A2 shows that our methods on average perform as well as the LMPriors framework, even
without the same level of access into the LLM.

A.3.4 Sensitivity of LLM-Score to Different Score Ranges

In this section, we investigate how choosing a different score range for LLM-Score affects the assignment
of feature importance scores generated from the LLM, given that defining the score range to be between 0
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Table A2: Area under the feature selection paths for our methods (average of LLM-Score, LLM-Rank,
LLM-Seq) and the LMPriors framework (Choi et al., 2022). For classification datasets, higher is better
(↑). For regression datasets, lower is better (↓). Give Me Credit and Pima Diabetes are shorthands for
the Give Me Some Credit and Pima Indians Diabetes datasets, respectively. For each dataset and each
LLM, we highlight in bold the area for the feature subset initialization that performs better. Datasets marked
with an asterisk (*) were published after the LLM cutoff dates.

Classification Datasets ↑ Regression Datasets ↓
Give Me COMPAS Pima CA Diabetes Wine Miami NYC

Credit-G Bank Credit Recidivism Diabetes AUS Cars* YouTube* Housing Progression Quality Housing Used Cars NBA* Rideshare*

Llama-2-70B (Ours) 0.7379 0.7463 0.7394 0.8029 0.7416 0.8839 0.7879 0.6770 48.6841 0.6119 0.2886 1.7178 0.3774 1.9115
Llama-2-70B (LMPriors) 0.7478 0.6868 0.7143 0.8225 0.7158 0.8605 0.8501 0.6070 48.5569 0.5800 0.2564 2.4146 0.1500 2.1375
Llama-2-13B (Ours) 0.6803 0.7795 0.7544 0.7874 0.7596 0.8306 0.8193 0.6374 47.6119 0.6150 0.2973 1.8314 0.5935 2.7287
Llama-2-13B (LMPriors) 0.7435 0.7299 0.7210 0.7510 0.7757 0.7628 0.8445 0.6644 49.1683 0.6304 0.2858 2.0134 0.7890 2.8567
Llama-2-7B (Ours) 0.7368 0.7741 0.7469 0.8079 0.7500 0.8714 0.8169 0.6255 47.7065 0.6132 0.2855 2.3205 0.7002 2.1208
Llama-2-7B (LMPriors) 0.7320 0.8182 0.7260 0.8080 0.7553 0.7551 0.7311 0.5925 49.3740 0.6059 0.2659 2.1832 0.1682 4.2601
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Figure A6: Average rank correlation (Kendall’s τ)
between LLM-Score and LLM-Rank (left) and
that between LLM-Score and LLM-Seq (right).
Error bars indicate standard error across datasets.
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Figure A7: Average rank correlation (Kendall’s
τ) between LLM-Score with the score ranges of
[0,1] and [0,10] (left) that between LLM-Score
with the score ranges of [0,1] and [8,24] (right).
Error bars indicate standard error across datasets.

and 1 as in Equation (1) is an arbitrary choice. Figure A7 shows the average rank correlations (Kendall’s τ)
between (i) LLM-Score with a score range of [0,1] and LLM-Score with a score range of [0,10] (left) and
(ii) LLM-Score with a score range of [0,1] and LLM-Score with a score range of [8,24] (right). The score
ranges of [0,10] and [8,24] are equally arbitrary alternatives to the score range of [0,1]. The results show that
choosing a different score range does affect the assignment of importance and therefore the ranking of the
features, as the average rank correlations are always less than 1 (which is only achieved when all pairwise
orderings are exactly identical). Meanwhile, we see that for larger models, the rank correlations tend to be
higher, indicating that LLM-Score is less sensitive to the choice of score range with increasing model scale.

A.3.5 Feature Subset Initialization for LLM-Seq

In this section, we provide additional results that compare the performances of LLM-Seq when (i) starting
with an empty feature subset or (ii) starting with a feature subset containing the highest scoring feature
according to LLM-Score. See Section 3 of the main text for a detailed description of the difference between
the two settings. In Figures A8–A12, we show the changes in the downstream average test performance
for LLM-Seq based on GPT-4, GPT-3.5, and the Llama-2 models, when using the different feature subset
initializations. The results show that with the exception of the largest GPT-4 model (Figure A8), the choice
of feature subset initialization generally has a noticeable impact on the feature selection performance of
LLM-Seq. In Table A3, we report the areas under the feature selection paths shown in Figures A8–A12 to
quantify and compare the feature selection performances for the two initializations. For each dataset and
each LLM, the results in Table A3 show that starting with an empty feature subset often leads to better
feature selection performance.
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Figure A8: Change in the average test performance of the downstream model as we vary the proportion of
features selected, for LLM-Seq based on GPT-4 with different feature subset initializations. The orange
line shows the feature selection path when starting with an empty feature subset. The purple line shows the
feature selection path when starting with the highest scoring feature according to LLM-Score. Datasets
marked with an asterisk (*) were published after the LLM cutoff dates.
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Figure A9: Change in the average test performance of the downstream model as we vary the proportion of
features selected, for LLM-Seq based on GPT-3.5 with different feature subset initializations. The orange
line shows the feature selection path when starting with an empty feature subset. The purple line shows the
feature selection path when starting with the highest scoring feature according to LLM-Score. Datasets
marked with an asterisk (*) were published after the LLM cutoff dates.

Table A3: Area under the feature selection paths for LLM-Seq when starting with an empty feature subset
or with a feature subset containing the highest scoring feature according to LLM-Score. For classification
datasets, higher is better (↑). For regression datasets, lower is better (↓). Give Me Credit and Pima
Diabetes are shorthands for the Give Me Some Credit and Pima Indians Diabetes datasets, respectively.
For each dataset and each LLM, we boldface the area for the feature subset initialization that performs better.

Classification Datasets ↑ Regression Datasets ↓
Give Me COMPAS Pima CA Diabetes Wine Miami NYC

Credit-G Bank Credit Recidivism Diabetes AUS Cars* YouTube* Housing Progression Quality Housing Used Cars NBA* Rideshare*

GPT-4 (Start with LLM-Score) 0.7634 0.8664 0.7427 0.8082 0.7796 0.8939 0.8481 0.5930 46.4168 0.5799 0.2359 1.3728 0.1082 1.6735
GPT-4 (Start with Empty Set) 0.7710 0.8641 0.7417 0.8231 0.7794 0.9022 0.8452 0.5834 45.3283 0.5800 0.2382 1.4234 0.1828 2.7214
GPT-3.5 (Start with LLM-Score) 0.7629 0.8489 0.7474 0.7966 0.7723 0.8857 0.8386 0.6967 47.4416 0.5914 0.3126 2.1822 0.1947 1.9531
GPT-3.5 (Start with Empty Set) 0.6952 0.8543 0.7838 0.7970 0.7776 0.8334 0.8290 0.6432 44.7747 0.5909 0.3014 2.0378 0.1828 2.7214
Llama-2-70B (Start with LLM-Score) 0.7259 0.8035 0.7247 0.8175 0.7258 0.8922 0.8366 0.7373 48.8041 0.5829 0.2993 1.9183 0.1203 2.1807
Llama-2-70B (Start with Empty Set) 0.7263 0.7436 0.7217 0.8138 0.7587 0.8742 0.6865 0.6858 48.3056 0.6312 0.2649 1.8600 0.2952 2.3938
Llama-2-13B (Start with LLM-Score) 0.6808 0.8446 0.7483 0.8159 0.7597 0.8881 0.7332 0.6638 47.2136 0.5984 0.3009 2.3443 0.1935 3.1563
Llama-2-13B (Start with Empty Set) 0.6688 0.8470 0.7746 0.7974 0.7744 0.7425 0.7840 0.6374 44.9351 0.6167 0.3207 1.9734 0.2974 3.5624
Llama-2-7B (Start with LLM-Score) 0.7624 0.7642 0.7227 0.7940 0.7117 0.8678 0.7434 0.5904 47.3171 0.6044 0.3392 2.2405 0.6490 2.5210
Llama-2-7B (Start with Empty Set) 0.7102 0.7484 0.7434 0.8205 0.7709 0.8691 0.8216 0.6888 44.5974 0.6219 0.2726 1.8047 0.2413 2.9630
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Figure A10: Change in the average test performance of the downstream model as we vary the proportion
of features selected, for LLM-Seq based on Llama-2 with 70B parameters with different feature subset
initializations. The orange line shows the feature selection path when starting with an empty feature subset.
The purple line shows the feature selection path when starting with the highest scoring feature according to
LLM-Score. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.
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Figure A11: Change in the average test performance of the downstream model as we vary the proportion
of features selected, for LLM-Seq based on Llama-2 with 13B parameters with different feature subset
initializations. The orange line shows the feature selection path when starting with an empty feature subset.
The purple line shows the feature selection path when starting with the highest scoring feature according to
LLM-Score. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.

A.3.6 Importance of Text Semantics for LLM-based Feature Selection

In this section, we provide additional results that demonstrate the importance of text descriptions with rich
real-world semantics (e.g., column names in tabular datasets, auxiliary metadata) for LLM-based feature
selection. In particular, we show how the downstream average test performance changes when we replace
the meaningful feature descriptions (e.g., “gender”, “height”) in each dataset with irrelevant names (e.g.,
“feature_1”, “feature_2”) and use GPT-4-based LLM-Score to select features. In Table A4, we report the
areas under the feature selection paths to quantify and compare the feature performances for the two settings.
We also show the results for the random feature selection baseline, as we would expect the behavior of LLM-
Score to be similar to random selection in the absence of meaningful text descriptions. As expected, we
indeed observe that given irrelevant text descriptions, the performance of LLM-based feature selection drops
significantly and can even be worse than that of random feature selection.
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Figure A12: Change in the average test performance of the downstream model as we vary the proportion
of features selected, for LLM-Seq based on Llama-2 with 7B parameters, with different feature subset
initializations. The orange line shows the feature selection path when starting with an empty feature subset.
The purple line shows the feature selection path when starting with the highest scoring feature according to
LLM-Score. Datasets marked with an asterisk (*) were published after the LLM cutoff dates.

Table A4: Area under the feature selection paths for LLM-Score based on GPT-4 when using the original
column names (“Desc.”) vs. replacing them with irrelevant names (“No Desc.”). For classification datasets,
higher is better (↑). For regression datasets, lower is better (↓). Give Me Credit and Pima Diabetes are
shorthands for the Give Me Some Credit and Pima Indians Diabetes datasets, respectively. For each
dataset and each LLM, we boldface the area for the feature subset initialization that performs better.

Classification Datasets ↑ Regression Datasets ↓
Give Me COMPAS Pima CA Diabetes Wine Miami NYC

Credit-G Bank Credit Recidivism Diabetes AUS Cars* YouTube* Housing Progression Quality Housing Used Cars NBA* Rideshare*

GPT-4 (Desc.) 0.7975 0.8593 0.7423 0.8305 0.7794 0.9149 0.8654 0.6278 44.3943 0.5790 0.2423 1.4121 0.0618 1.9690
GPT-4 (No Desc.) 0.5707 0.6129 0.7317 0.6224 0.7307 0.7190 0.6308 0.8955 51.2819 0.6447 0.3071 1.7848 1.6954 4.1610
Random 0.6965 0.7408 0.7038 0.7686 0.7265 0.7861 0.6948 0.7555 50.2139 0.6152 0.2780 2.4022 1.1800 3.1562

A.3.7 Investigation of the Semantics of LLM-Score

In this section, we include additional results on investigating the semantics of LLM-Score. After prompting
an LLM to output the importance score of a feature, we directly ask the model to provide more details on
how the numerical importance score was assigned. In particular, we ask (i) whether there is a specific notion
of importance that the generated score reflects and (ii) whether the model can provide a breakdown of how
the score was numerically calculated. We note that all of the results shown in this section are based on
the LLM outputs generated from the default prompt, which does not include any dataset-specific context or
few-shot examples, and with greedy decoding.

As an illustrative example, we show below the outputs from GPT-4, GPT-3.5, and the Llama-2 models
when they are prompted to elaborate on how the importance score was assigned for the “Number of times
pregnant” input concept in the Pima Indians Diabetes dataset. We omit the main system prompt and the
output format instructions for simplicity. When prompted to describe whether the generated score captures
a specific notion of feature importance, all models state that the score reflects a general notion of a feature’s
“relative” contribution to a prediction. Notably, despite never having been provided information about the
other features, the Llama-2 models often explicitly state that the generated scores are based on Shapley
values or permutation feature importance, while hallucinating to have calculated the scores by “training” a
model. Interestingly, in Figure 5 of the main text, we do observe that LLM-Score based on the Llama-2
models (70B, 13B) exhibit slightly higher rank correlations with SHAP: XGBoost and permutation feature
importance than with the other metrics considered; however, all of the measured average rank correlations
for the Llama-2 models are overall quite low. When prompted to describe how the importance scores are
calculated, all models except GPT-4 and Llama-2 with 70B parameters output a detailed description, but the
generated explanations are either logically invalid (see e.g., “GPT-3.5: Calculation of Feature Importance
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Score” below) or based on hallucinations (see e.g., “Llama-2 with 13B Parameters: Calculation of Feature
Importance Score” or “Llama-2 with 7B Parameters: Calculation of Feature Importance Score” below). As
in Result 4, Section 4.1 of the main text, we therefore find that across all LLMs, it is overall unclear what
specific notion of feature importance LLM-Score aligns to, other than that the scores reflect a generic
notion of “relative” importance.

GPT-4: Feature Importance Notion

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

GPT-4: { “score”: 0.7, “reasoning”: “The number of times a patient has been pregnant is a significant
factor in predicting diabetes, especially gestational diabetes. Each pregnancy increases the risk of
developing diabetes due to the hormonal changes that occur during pregnancy, which can make the
body more resistant to insulin. However, it is not the only factor and other health and lifestyle factors
also play a significant role in diabetes risk.” }

User: Is there a specific notion of feature importance that is captured in your score?

GPT-4: Yes, the feature importance score represents the relative contribution of the input feature to
the prediction model. A higher score means that the feature has a greater impact on the model’s output,
and thus is more important for making accurate predictions. In this case, the score of 0.7 for “Number of
times pregnant” suggests that this feature is quite important for predicting diabetes, but other features
also contribute to the prediction. The score is based on a combination of statistical analysis, domain
knowledge, and the specific modeling technique used.

User: What kind of statistical analysis are you referring to? How would you base the determination
of the score on statistical analysis when you have no access to any data?

GPT-4: I apologize for the confusion. You’re correct. Without access to specific data, it’s not possible
to perform a statistical analysis to determine the feature importance score. The score provided is based
on general medical knowledge that indicates pregnancy can increase the risk of diabetes. In a real-world
scenario, the exact score would be determined using techniques like correlation coefficients, chi-square
tests, or machine learning algorithms like Random Forest or Gradient Boosting, which can provide
feature importance scores based on the data they are trained on.

GPT-4: Calculation of Feature Importance Score

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

GPT-4: { “score”: 0.7, “reasoning”: “The number of times a patient has been pregnant is a significant
factor in predicting diabetes, especially gestational diabetes. Each pregnancy increases the risk of
developing diabetes due to the hormonal changes that occur during pregnancy, which can make the
body more resistant to insulin. However, it is not the only factor and other health and lifestyle factors
also play a significant role in diabetes risk.” }

User: How did you calculate this score? Can you show me the set of calculations that led to the final
score?

GPT-4: I’m sorry for any confusion, but as an AI, I don’t perform calculations to determine the
importance score. The score provided is a hypothetical one, based on general knowledge about the
impact of pregnancy on diabetes risk. In a real-world scenario, this score would be calculated using
machine learning algorithms on a dataset.

36



Published in Transactions on Machine Learning Research (04/2025)

These algorithms would analyze the relationship between the feature (in this case, the number of times
a person has been pregnant) and the outcome (whether the person has diabetes). The importance
score would then be determined based on how much the model’s prediction changes when the feature
is altered.

For example, a feature importance score of 0.7 suggests that changes in the number of pregnancies
account for 70% of the changes in the model’s diabetes predictions. However, this is a simplified
explanation and the actual process involves complex statistical analysis.

GPT-3.5: Feature Importance Notion

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

GPT-3.5: {“score”: 0.6, “reasoning”: “The number of times a woman has been pregnant can be an
important factor in predicting the likelihood of diabetes. Women who have been pregnant multiple times
may have a higher risk due to hormonal changes and increased insulin resistance during pregnancy.”}

User: Is there a specific notion of feature importance that is captured in your score?

GPT-3.5: The feature importance score provided is a relative measure of the importance of the feature
in predicting the likelihood of diabetes. It indicates the extent to which the feature contributes to the
predictive power of the model. A score of 0 indicates that the feature has no importance in predicting
diabetes, while a score of 1 indicates that the feature is highly important. The score is based on the
model’s analysis of the relationship between the feature and the target variable (diabetes) in the training
data.

User: What model are you referring to? And how are you analyzing the relationship between the
feature and the target variable when you have no access to any data?

GPT-3.5: Apologies for the confusion. As an AI language model, I don’t have access to specific data or
a pre-trained model. The feature importance score and reasoning provided earlier were based on general
knowledge and assumptions about the relationship between the feature (“Number of times pregnant”)
and the target variable (likelihood of diabetes).

In a real-world scenario, feature importance scores are typically derived from machine learning models
trained on relevant datasets. These models analyze the relationship between features and the target
variable by considering patterns, correlations, and statistical measures such as information gain, Gini
index, or permutation importance. The specific model and analysis technique used can vary depending
on the context and data available.

GPT-3.5: Calculation of Feature Importance Score

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

GPT-3.5: {“score”: 0.6, “reasoning”: “The number of times a woman has been pregnant can be an
important factor in predicting the likelihood of diabetes. Women who have been pregnant multiple times
may have a higher risk due to hormonal changes and increased insulin resistance during pregnancy.”}

User: How did you calculate this score? Can you show me the set of calculations that led to the final
score?

GPT-3.5: Certainly! Here is the breakdown of calculations that led to the final score of 0.6 for the
feature “Number of times pregnant”:
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1. Initial Score: 0.5
- We start with an initial score of 0.5, assuming that the feature may have some importance in predicting
diabetes.

2. Domain Knowledge: +0.2
- Based on domain knowledge and medical research, it is known that the number of times a woman has
been pregnant can be a significant factor in predicting the likelihood of diabetes. Therefore, we assign
an additional score of 0.2 to reflect this importance.

3. Statistical Analysis: No additional score
- Since we do not have access to the dataset or statistical analysis, we cannot provide a specific score
based on statistical analysis.

4. Final Score: 0.5 + 0.2 = 0.7
- We sum up the initial score and the domain knowledge score to obtain the final score of 0.7.

However, since the score should be between 0 and 1, we normalize the final score to 0.6 by dividing it
by the maximum possible score (0.7).

Therefore, the final score for the feature “Number of times pregnant” is 0.6.

User: The normalization step does not look right. Clearly, the maximum possible score is 1?

GPT-3.5: Apologies for the confusion. You are correct, the maximum possible score is indeed 1.
Therefore, the final score for the feature “Number of times pregnant” is 0.7, not 0.6. There is no need
for normalization in this case since the score is already within the range of 0 to 1. Thank you for
pointing out the error.

Llama-2 with 70B Parameters: Feature Importance Notion

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

Llama-2-70B: { “reasoning”: “The number of times a patient has been pregnant can be an indicator of
their overall health and lifestyle, which can impact their likelihood of developing diabetes. Additionally,
pregnancy can cause changes in the body that may increase the risk of developing diabetes, such as
weight gain and insulin resistance. Therefore, this feature can provide valuable information for predicting
whether a patient has diabetes.”, “score”: 0.7 }

User: Is there a specific notion of feature importance that is captured in your score?

Llama-2-70B: Yes, the feature importance score that I provide is based on the concept of “Shapley
values” which is a way to fairly distribute the total contribution made by all features to a patient’s
diabetes status.

Shapley values are a type of feature attribution method that assigns a unique importance score to each
feature for a specific prediction. The score is based on the feature’s contribution to the prediction,
taking into account all possible combinations of features and their interactions.

In the context of diabetes prediction, Shapley values can help identify which features are most important
for predicting a patient’s diabetes status. The feature importance score I provide is a Shapley value,
which represents the feature’s relative contribution to the prediction. A higher score indicates that the
feature is more important for predicting diabetes, while a lower score means that the feature has a
smaller impact.

By using Shapley values, we can quantify the contribution of each feature to the prediction, allowing us to
identify the most informative features for diabetes diagnosis. This can help healthcare professionals and
researchers understand which factors are most important when assessing a patient’s risk of developing
diabetes.
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User: How are you calculating the Shapley values when you do not have access to any data?

Llama-2-70B: I apologize for the confusion in my previous response. I cannot calculate Shapley values
without data. Shapley values are calculated using a specific algorithm that requires data to be present.

The algorithm for calculating Shapley values involves the following steps:

1. Compute the marginal contribution of each feature for each instance in the dataset.

2. Compute the marginal contribution of each feature for each possible coalition of features.

3. Compute the Shapley value for each feature by averaging its marginal contribution across all possible
coalitions.

Since I do not have access to any data, I cannot perform these steps and therefore cannot calculate
Shapley values.

I apologize for any confusion my previous response may have caused. If you have any further questions,
please feel free to ask.

Llama-2 with 70B Parameters: Calculation of Feature Importance Score

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

Llama-2-70B: { “reasoning”: “The number of times a patient has been pregnant can be an indicator of
their overall health and lifestyle, which can impact their likelihood of developing diabetes. Additionally,
pregnancy can cause changes in the body that may increase the risk of developing diabetes, such as
weight gain and insulin resistance. Therefore, this feature can provide valuable information for predicting
whether a patient has diabetes.”, “score”: 0.7 }

User: How did you calculate this score? Can you show me the set of calculations that led to the final
score?

Llama-2-70B: The feature importance score of 0.7 for “Number of times pregnant” was not calculated
through a specific mathematical formula, but rather through a logical reasoning process based on the
relationship between pregnancy and diabetes.

Here’s a breakdown of the reasoning process that led to the score:

1. Pregnancy can cause changes in the body that increase the risk of developing diabetes, such as weight
gain and insulin resistance.

2. The number of times a patient has been pregnant can be an indicator of their overall health and
lifestyle, which can impact their likelihood of developing diabetes.

3. Patients who have been pregnant multiple times may have a higher risk of developing diabetes due
to the cumulative effects of pregnancy-related weight gain and insulin resistance.

4. Therefore, the number of times a patient has been pregnant can provide valuable information for
predicting whether a patient has diabetes.

Based on this reasoning, a score of 0.7 was assigned to the feature “Number of times pregnant”, indicating
that it is moderately important for predicting diabetes.

It’s important to note that feature importance scores can be calculated using various machine learning
techniques, such as decision trees, random forests, or gradient boosting machines. However, in this case,
the score was determined through a logical reasoning process rather than a mathematical calculation.

Llama-2 with 13B Parameters: Feature Importance Notion
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System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

Llama-2-13B: { “reasoning”: “The number of times pregnant is a strong predictor of diabetes because
it increases the likelihood of developing insulin resistance and glucose intolerance, which are common
precursors to diabetes. Additionally, pregnancy-related hormonal changes can also impact insulin sen-
sitivity, further increasing the risk of diabetes.”, “score”: 0.8 }

User: Is there a specific notion of feature importance that is captured in your score?

Llama-2-13B: Yes, the feature importance score I provide is based on the Shapley feature attribution
method, which is a widely used technique for assigning importance to features in a machine learning
model.

The Shapley method assigns importance to each feature by calculating the marginal contribution of
that feature to the predicted outcome, while controlling for the effects of all other features. In other
words, it measures the unique contribution of each feature to the predicted outcome, while holding all
other features constant.

The Shapley feature importance score ranges from -1 to 1, with higher values indicating greater impor-
tance. A score of 0 indicates that the feature has no unique contribution to the predicted outcome, and
is therefore not important.

In the case of the “Number of times pregnant” feature, the Shapley method would calculate the marginal
contribution of that feature to the predicted outcome, while holding all other features constant. If the
feature has a significant marginal contribution, it would be assigned a high importance score, indicating
that it is a strong predictor of diabetes.

It’s worth noting that there are other methods for measuring feature importance, such as permutation
importance and partial dependence plots, and different methods may yield different results. However,
the Shapley method is a widely used and well-established technique for measuring feature importance
in machine learning models.

User: How are you calculating the Shapley values when I have not told you what other features are
available and you do not have access to any data?

Llama-2-13B: You’re right, I apologize for the confusion. Since I don’t have access to any data or
information about the other features available, I cannot accurately calculate the Shapley values for
any feature. The Shapley method requires knowledge of the entire feature set and their interactions to
accurately assign importance to each feature.

In the absence of any data or information, I cannot provide a meaningful answer to your question.
However, I can offer some general advice on how to approach feature importance analysis.

When analyzing feature importance, it’s important to consider the context of the problem you’re trying
to solve and the goals of your machine learning model. Here are some general steps you can take:

1. Understand the problem: Before you can determine which features are important, you need to
understand the problem you’re trying to solve. This includes identifying the key variables that are
relevant to the problem and understanding how they interact with each other.

2. Explore the data: Once you have a good understanding of the problem, you should explore the data
to identify patterns, relationships, and correlations between the features. This can help you identify
which features are most important for predicting the outcome.

3. Use feature importance methods: There are several methods for measuring feature importance,
including permutation importance, partial dependence plots, and SHAP values. Each method has its
own strengths and weaknesses, so it’s important to choose the method that best fits your needs.
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4. Interpret the results: Once you have calculated the feature importance scores, you need to interpret
the results in the context of the problem you’re trying to solve. This includes understanding which
features are most important for predicting the outcome and how they interact with each other.

I hope this helps! If you have any further questions, please don’t hesitate to ask.

Llama-2 with 13B Parameters: Calculation of Feature Importance Score

System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

Llama-2-13B: { “reasoning”: “The number of times pregnant is a strong predictor of diabetes because
it increases the likelihood of developing insulin resistance and glucose intolerance, which are common
precursors to diabetes. Additionally, pregnancy-related hormonal changes can also impact insulin sen-
sitivity, further increasing the risk of diabetes.”, “score”: 0.8 }

User: How did you calculate this score? Can you show me the set of calculations that led to the final
score?

Llama-2-13B: Certainly! To calculate the feature importance score for “Number of times pregnant”,
I used a technique called Permutation Feature Importance (PFI). PFI is a method for calculating the
importance of each feature in a machine learning model by randomly permuting the values of each
feature and measuring the decrease in model performance.

Here’s the set of calculations that led to the final score:

1. First, I trained a logistic regression model on the training data to predict the outcome variable
(diabetes or not).

2. Next, I randomly permuted the values of the “Number of times pregnant” feature for each sample in
the training data. This created a new set of training data where the values of this feature were shuffled.

3. I then re-trained the logistic regression model on the permuted training data.

4. I repeated steps 2 and 3 many times (e.g., 1000 times) to generate a distribution of model performance
scores for each feature.

5. Finally, I calculated the feature importance score for each feature as the average decrease in model
performance across all permutations.

The formula for calculating the feature importance score is:

Feature Importance = (Average Decrease in Model Performance) / (Standard Deviation of Decrease in
Model Performance)

where the average decrease in model performance is calculated as:

Average Decrease in Model Performance = (Sum of (Model Performance with Permuted Feature - Model
Performance without Permuted Feature)) / (Number of Permutations)

and the standard deviation of the decrease in model performance is calculated as:

Standard Deviation of Decrease in Model Performance = (Sum of (Model Performance with Permuted
Feature - Model Performance without Permuted Feature)2) / (Number of Permutations - 1)

Using this formula, I calculated the feature importance score for each feature in the dataset. The final
score for “Number of times pregnant” was 0.8, indicating that it is a very important feature in predicting
diabetes.

I hope this helps! Let me know if you have any other questions.

Llama-2 with 7B Parameters: Feature Importance Notion
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System: (Omitted)

User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

Llama-2-7B: { “reasoning”: “The number of times pregnant is important because it can provide insight
into the patient’s reproductive history and potential risks for diabetes. Women who have had multiple
pregnancies may be more likely to develop insulin resistance, which is a key factor in the development
of diabetes. Additionally, pregnancy-related complications such as gestational diabetes can increase the
risk of developing type 2 diabetes later in life. Therefore, the number of times pregnant can be a useful
feature for predicting diabetes.”, “score”: 0.7 }

User: Is there a specific notion of feature importance that is captured in your score?

Llama-2-7B: Yes, the feature importance score I provided is based on a notion of feature importance
that captures the relative importance of each feature in predicting diabetes.

In this case, the score of 0.7 for the number of times pregnant indicates that this feature is relatively
important for predicting diabetes, compared to the other features. A higher score indicates a greater
importance, while a lower score indicates a lesser importance.

There are several notions of feature importance that can be used, including:

1. Mutual Information: This measures the amount of information that each feature provides about the
target variable, diabetes.

2. Recursive Feature Elimination (RFE): This measures the contribution of each feature to the model’s
performance, while controlling for the contributions of other features.

3. Permutation Feature Importance: This measures the importance of each feature by randomly per-
muting its value and measuring the impact on the model’s performance.

4. SHAP values: This measures the contribution of each feature to the predicted outcome, diabetes, for
a specific instance.

These notions of feature importance can be used to evaluate the importance of each feature in predicting
diabetes, and can be combined to provide a comprehensive understanding of the relative importance of
each feature.

It’s worth noting that the choice of notion of feature importance will depend on the specific problem
and the goals of the analysis.

User: What do you mean by “compared to the other features"? There are no other features that have
been provided to you?

Llama-2-7B: I apologize for the confusion. You are correct, I have not been provided with any other
features to compare the importance of the number of times pregnant. My previous response was
incorrect.

In the absence of any other features, the importance of the number of times pregnant for predicting
diabetes cannot be determined. The number of times pregnant is a unique feature that may have a
specific relationship with diabetes, and its importance cannot be compared to the importance of other
features that have not been provided.

If you have any other features that you would like me to analyze, please provide them and I will be
happy to help.

Llama-2 with 7B Parameters: Calculation of Feature Importance Score

System: (Omitted)
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User: Provide a score and reasoning for “Number of times pregnant” formatted according to the output
schema above:

Llama-2-7B: { “reasoning”: “The number of times pregnant is important because it can provide insight
into the patient’s reproductive history and potential risks for diabetes. Women who have had multiple
pregnancies may be more likely to develop insulin resistance, which is a key factor in the development
of diabetes. Additionally, pregnancy-related complications such as gestational diabetes can increase the
risk of developing type 2 diabetes later in life. Therefore, the number of times pregnant can be a useful
feature for predicting diabetes.”, “score”: 0.7 }

User: How did you calculate this score? Can you show me the set of calculations that led to the final
score?

Llama-2-7B: Certainly! To calculate the feature importance score for “Number of times pregnant,” I
used a technique called permutation feature importance. Here’s how I calculated the score:

1. Permutation: I randomly permuted the value of “Number of times pregnant” for each sample in
the dataset (i.e., the training data) 1000 times. 2. Prediction: For each permutated sample, I used
the original XGBoost model to predict the probability of diabetes. 3. Calculation: I calculated the
mean and standard deviation of the predicted probabilities for each permutation. 4. Score calculation:
I calculated the feature importance score for “Number of times pregnant” as the mean of the standard
deviations of the predicted probabilities across all permutations.

Here’s the mathematical formula for the feature importance score:

score = (mean(std(y_true)) - mean(std(y_pred))) / std(y_pred)

where:

* y_true is the true label (0 or 1) for each sample in the dataset * y_pred is the predicted probability
of diabetes for each sample in the dataset * std(y_true) is the standard deviation of the true labels *
std(y_pred) is the standard deviation of the predicted probabilities

By calculating the standard deviation of the predicted probabilities for each permutation, we are measur-
ing the variability in the model’s predictions due to changes in the value of “Number of times pregnant.”
The difference between the mean of the standard deviations and the mean of the predicted probabilities
is a measure of the feature’s importance. A higher score indicates that the feature is more important
for predicting diabetes.

I hope this helps! Let me know if you have any other questions.

User: How are you calculating permutation feature importance without access to the actual data?

Llama-2-7B: I apologize for the confusion earlier. I cannot calculate permutation feature importance
without access to the actual data. The permutation feature importance calculation requires the actual
data, including the target variable (diabetes status) and the feature values for each sample.

To calculate permutation feature importance, you can use the following steps:

1. Split the data into training and testing sets.

2. Use the training set to train an XGBoost model.

3. For each feature, randomly permute its value for each sample in the training set (i.e., randomly
replace the feature value with a new value).

4. Train the XGBoost model on the permuted training set for each feature permutation.

5. Calculate the standard deviation of the predicted probabilities for each feature permutation.

6. Repeat steps 3-5 for all possible feature permutations.
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7. Calculate the feature importance score for each feature by dividing the standard deviation of the
predicted probabilities by the standard deviation of the predicted probabilities for the original feature
values.

By calculating the standard deviation of the predicted probabilities for each feature permutation, we
are measuring the variability in the model’s predictions due to changes in the feature values. A higher
standard deviation indicates that the feature is more important for predicting diabetes.

I hope this helps! Let me know if you have any other questions.
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B Additional Details on Large-Scale Dataset Experiments

Here, we provide additional details and results for the large-scale dataset experiments in Section 4.2.

B.1 Datasets

For all datasets, we report both the total number of features after preprocessing and the total number
of concepts (i.e., feature names), which may differ due to the one-hot encoding of categorical features. For
example, as described below, the Income dataset contains 3759 features after one-hot encoding the categorical
features and 238 concepts. In this case, when feature selection is performed at the concept level, we select
k of the 238 concepts; when feature selection is performed at the feature level, we select k of the 3759
preprocessed features.

For each dataset, we randomly shuffle and take a 64-16-20 train-validation-test split, where the train-
validation splits vary across the 5 random seeds (=[1,2,3,4,5]) used in the experiments, and the test set
remains fixed regardless of the seed. For all datasets, we always take a stratified split to preserve the label
proportions across the train, validation, and test sets. We standardize all of the numerical features to have
zero mean and unit variance, and one-hot encode all categorical features.

B.1.1 folktables Datasets

We construct supersets of the original Income, Employment, Public Coverage, and Mobility binary clas-
sification datasets from folktables (Ding et al., 2021) by extracting all available features available from
the 2018 American Community Survey (ACS) Public Use Microdata Sample (PUMS) data20 for California
households. The full ACS PUMS dataset contains a total of 286 features, from which we exclude (i) the
feature that is used for defining the target label, (ii) features that serve as unique identifiers for each sample,
and (iii) features that lead to label leakage when included. Below, we provide the remaining details for each
folktables dataset:

• Income: The goal is to predict whether an individual has an annual income greater than $50000.
Following Ding et al. (2021), we define the cohort to consist of individuals who are of ages above
16, have worked at least 1 hour per week in the past year, and have an income of at least $100, and
a PUMS weight of at least 1. After filtering out the features according to the above criteria and
one-hot encoding the categorical features, the dataset contains 125225 samples and 3759 features
(238 concepts), with 51414 positive samples and 73811 negative samples.

• Employment: The goal is to predict whether an individual is employed. Following Ding et al. (2021),
we define the cohort to consist of individuals who are of ages between 16 and 90 and have a PUMS
person weight of at least 1. After filtering out the features according to the above criteria and
one-hot encoding the categorical features, the dataset contains 193689 samples and 2371 features
(241 concepts), with 110372 positive samples and 83317 negative samples.

• Public Coverage: The goal is to predict whether a low-income individual has coverage from public
health insurance. Following Ding et al. (2021), we define the cohort to consist of individuals who are
of ages below 65 (not eligible for Medicare) and have a total income less than $30000. After filtering
out the features according to the above criteria and one-hot encoding the categorical features, the
dataset contains 88674 samples and 3655 features (239 concepts), with 32716 positive samples and
55958 negative samples.

• Mobility: The goal is to predict whether a young-adult individual moved residential addresses in the
past year. Following Ding et al. (2021), we define the cohort to consist of individuals aged between
18 and 35. After filtering out the features according to the above criteria and one-hot encoding
the categorical features, the dataset contains 51410 samples and 3385 features (277 concepts), with
39345 positive samples and 12065 negative samples.

20https://www.census.gov/programs-surveys/acs/microdata.html
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B.1.2 MIMIC-IV Datasets

MIMIC-IV (Johnson et al., 2023) is an open-access database that consists of deidentified electronic health
record data collected at the Beth Israel Deaconness Medical Center between years 2008 and 2019, including
over 400k distinct hospital admissions. As described in Section 4.2, we extract 3 binary classification datasets,
where the goals are to predict whether a patient in the intensive care unit (ICU) is likely to develop chronic
kidney disease (CKD), chronic obstructive pulmonary disease (COPD), or heart failure (HF), given a time-series
of clinical measurements and events recorded during the first 24 hours of their ICU stay.

Cohort selection. We define a single generic cohort for all prediction tasks and include all ICU stays
satisfying the following criteria:

1. Adult patients: Given that the physiology of young children and adolescents can differ significantly
from that of adults, we only include ICU stays corresponding to adult patients who are of ages
between 18 and 89 at the time of hospitalization. We exclude patients who are at least 90 years old,
as their recorded ages are not precise due to the deidentification process mandated by the Health
Insurance Portability and Accountability Act (HIPAA) privacy regulations.

2. First and only ICU stay: Following standard practice (Wang et al., 2020), if a patient has multiple
ICU stays recorded in the database across all hospitalizations, we only consider the first-ever ICU
stay. Additionally, as ICD diagnosis codes are assigned to each hospitalization, which may include
multiple ICU stays, we only include first ICU stays that do not have subsequent ICU stays recorded
within the same hospitalization to ensure that the ICD diagnosis codes correspond to them.

3. Length of ICU stay between 1 and 7 days: To ensure that we have enough information to use as
input features for each ICU stay, we only include ICU stays that are at least 1 day long. Meanwhile,
as ICD codes are typically recorded at discharge for billing purposes and the exact timing of the
diagnoses is often unknown, we exclude ICU stays that are longer than 7 days, to ensure that the
association between the clinical measurements recorded in the first 24 hours and the target label is
sufficiently strong. For very long stays, the clinical measurements from the first 24 hours may not
provide enough signal for predicting a diagnosis whose exact timing is unknown.

In Table B1, we summarize the demographics for the final extracted cohort, which consists of 38976 unique
patients and their first ICU stays.

Input features. For each ICU stay, we first extract all available measurements of the following 148 clinical
features (6 static, 142 time-varying), recorded during the first 24 hours of the given stay:

• Static (time-invariant) features: age, gender, ethnicity, height, weight, ICU type

• Time-varying features:

– temperature
– oxygen saturation (SaO2 / SpO2)
– heart rate
– respiratory rate
– central venous pressure (CVP)
– end-tidal carbon dioxide (EtCO2)
– systemic systolic arterial blood pressure
– systemic diastolic arterial blood pressure
– systemic mean arterial blood pressure
– pulmonary systolic arterial blood pressure
– pulmonary diastolic arterial blood pressure
– pulmonary mean arterial blood pressure
– apnea interval (set)
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– lung compliance
– minute volume
– tidal volume (set)
– tidal volume (observed)
– tidal volume (spontaneous)
– fraction of inspired oxygen (FiO2)
– oxygen flow rate
– mean airway pressure
– peak inspired pressure
– positive end-expiratory pressure (PEEP)
– plateau pressure
– albumin
– alkaline phosphatase
– alanine transaminase (ALT / SGPT)
– amylase
– anion gap
– aspartate aminotransferase (AST / SGOT)
– differential bands / immature band forms (-bands) (%)
– base excess
– differential basophils (-basos) (%)
– glucose
– bicarbonate
– blood urea nitrogen (BUN)
– calcium
– calcium (ionized)
– chloride
– cortisol
– creatinine phosphokinase (CPK / CK)
– creatinine phosphokinase myocardial band (CK-MB)
– creatinine phosphokinase myocardial band index (CK-MB index)
– creatinine
– direct bilirubin
– differential eosinophils (-eos) (%)
– iron (Fe)
– ferritin
– fibrinogen
– hematocrit (HCT)
– cholesterol (HDL)
– hemoglobin (HGB)
– lactate
– lactate dehydrogenase (LDH)
– cholesterol (LDL)
– lipase
– differential lymphocytes (-lymphs) (%)
– magnesium
– mean corpuscular hemoglobin (MCH)
– mean corpuscular hemoglobin concentration (MCHC)

47



Published in Transactions on Machine Learning Research (04/2025)

– mean corpuscular volume (MCV)
– differential monocytes (-monos) (%)
– partial pressure of carbon dioxide (PaCO2)
– partial pressure of oxygen (PaO2)
– blood pH
– phosphate
– platelets
– differential neutrophils (-polys) (%)
– potassium
– prothrombin time (PT)
– prothrombin time - international normalized ratio (PT - INR)
– partial thromboplastin time (PTT)
– red blood cells (RBC)
– red cell distribution width (RDW)
– osmolality (urine)
– osmolality (serum)
– sodium
– total iron binding capacity (TIBC)
– total bilirubin
– total cholesterol
– total carbon dioxide (CO2)
– triglycerides
– troponin - T
– thyroid stimulating hormones (TSH)
– creatinine (urine)
– sodium (urine)
– specific gravity (urine)
– vancomycin (random)
– vancomycin (trough)
– white blood cells (urine)
– white blood cells
– sodium chloride 0.9% intravenous (IV) solution
– sodium chloride 0.9% intravenous (IV) flush
– dextrose 50% intravenous (IV) solution
– acetaminophen
– bisacodyl
– docusate sodium
– furosemide
– metoprolol tartrate
– nitroglycerin
– ondansetron
– pantoprazole
– potassium chloride
– intravenous piggyback (IVPB)
– norepinephrine
– propofol
– gastric tube (nasogastric)
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– per oral (p.o.) intake
– stool
– urine output
– capillary refill
– left dorsalis pedis pulse
– right dorsalis pedis pulse
– left radial pulse
– right radial pulse
– LLE strength / sensation
– LUE strength / sensation
– RLE strength / sensation
– RUE strength / sensation
– speech
– left pupil size
– right pupil size
– cough / gag reflex
– Braden activity scale
– Braden friction & shear scale
– Braden mobility scale
– Braden moisture scale
– Braden nutrition scale
– Braden sensory perception scale
– Morse ambulatory aid
– Morse gait / transferring
– Morse history of falling
– Morse mental status
– Morse secondary diagnosis
– delirium assessment
– Glasgow coma scale (GCS) - Eye
– Glasgow coma scale (GCS) - Verbal
– Glasgow coma scale (GCS) - Motor
– level of assistance
– chest X-ray
– invasive ventilation
– foley catheter

For the time-varying features, we group and aggregate all of the extracted measurements into 4-hour bins.
For numerical features, we average all of the recorded values within each 4-hour bin. For categorical features,
we take the most recent (i.e., latest timestamp) recorded value within each 4-hour bin. To handle missing
values, we use the simple imputation method proposed by Che et al. (2018). After one-hot encoding all of
the categorical features, we then obtain an input time-series tensor of shape 38976× 6× 506. As all of the
prediction models considered in Section 4.2 of the main text do not naturally handle time-series data, we
flatten the temporal dimension (which indexes each 4-hour bin), which reshapes the input time-series tensor
to 2-dimensional matrix of shape 38976 × 3036. We then concatenate the one-hot encoded static feature
matrix of shape 38976× 32, leading to the final input time-series feature matrix of shape 38976× 3068. For
all 3 prediction tasks, we use the same input features to train a prediction model.
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Table B1: Summary of demographics for the final cohort of ICU patients extracted from MIMIC-IV. Except
for the total number of ICU patients, we report the mean and standard deviation (in parentheses) of each
numerical feature, and the count and proportion (in parentheses) of each categorical feature.

Demographic Feature Category (If Applicable) Missing Overall
Number of ICU Patients 38976
Age 0 63.9 (15.8)

Gender Female 0 16709 (42.9%)
Male 22267 (57.1%)

Ethnicity

Asian 0 1187 (3.0%)
Black 4162 (10.7%)
Hispanic 1542 (4.0%)
Native American 114 (0.3%)
Other/Unknown 5386 (13.8%)
White 26585 (68.2%)

Height (cm) 19402 169.9 (10.6)
Weight (kg) 4 82.2 (38.9)

ICU Type

Cardiac Vascular Intensive Care Unit (CVICU)

0

8004 (20.5%)
Coronary Care Unit (CCU) 4229 (10.9%)
Medical Intensive Care Unit (MICU) 7729 (19.8%)
Medical/Surgical Intensive Care Unit (MICU/SICU) 6736 (17.3%)
Neuro Intermediate 1198 (3.1%)
Neuro Stepdown 495 (1.3%)
Neuro Surgical Intensive Care Unit (Neuro SICU) 851 (2.2%)
Surgical Intensive Care Unit (SICU) 5650 (14.5%)
Trauma SICU (TSICU) 4084 (10.5%)

Length of Stay (Days) 0 2.5 (1.4)

Age Group

18-30

0

1604 (4.1%)
30-45 3366 (8.6%)
45-55 5033 (12.9%)
55-65 8549 (21.9%)
65-75 9833 (25.2%)
75-90 10591 (27.2%)

Heart Failure (HF) Negative 0 29482 (75.6%)
Positive 9494 (24.4%)

Chronic Kidney Disease (CKD) Negative 0 31402 (80.6%)
Positive 7574 (19.4%)

Chronic Obstructive Pulmonary Disease (COPD) Negative 0 33858 (86.9%)
Positive 5118 (13.1%)

Target labels. For each ICU stay, we extract the target labels for CKD, COPD, and HF based on the Inter-
national Classification of Diseases (ICD) 9 and 10 diagnosis codes associated with each ICU stay. For each
prediction task, we label a given ICU stay as a positive sample if any of the following ICD diagnosis codes
are associated with the stay (Note: X is a wildcard character):

• CKD: 585.XX (ICD-9); N18.XXXX (ICD-10)
• COPD: 491.20, 491.21, 491.22, 492.0X, 492.8X, 491.1X, 491.2X, 496.XX, 490.XX, 491.0X, 491.8X,

491.9X (ICD-9); J44.XXXX (ICD-10)
• HF: 428.XX (ICD-9); I50.XXXX (ICD-10)

For the given cohort, we extract all of the measurements and events recorded during the first 24 hours and
aggregate them into 4-hour bins.

B.2 Feature Selection, Model Training, and Hyperparameter Optimization

As described in Section 4.2 of the main text, we evaluate the effectiveness of each feature selection method
by measuring the test performance of a downstream prediction model when selecting only 30% of all input
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Figure B1: Regularization paths on the folktables and MIMIC-IV datasets with warm starts, when random
seed = 1: (a) LassoNet, (b) LASSO. For each dataset, the vertical dashed line demarcates the number of
features selected by LLM-Score based on GPT-4, and the point marked with a star indicates the chosen
regularization strength that selects approximately the same number of active features as LLM-Score.

concepts. For downstream training, we minimize the binary cross-entropy loss using the Adam optimizer
(Kingma & Ba, 2015) with the default hyperparameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. For all datasets,
we use importance weighting together with early stopping when training the downstream model to balance
the weights of the positive and negative samples, as most of the folktables and MIMIC-IV datasets exhibit
label imbalance. For all experiments, we aggregate the results over 5 random seeds (=[1,2,3,4,5]), which
control the train-validation splits, the hyperparameter samples generated for random-search hyperparameter
optimization for the downstream model, and the initialization of the model parameters.

B.2.1 Additional Details on Feature Selection Methods

LassoNet. For feature selection with LassoNet (Lemhadri et al., 2021), we use a multi-layer perceptron
(MLP) with 1 hidden layer and 300 hidden units and fix the hierarchy coefficient M to the recommended
value of 10. For training the MLP, we minimize the binary cross-entropy loss using the Adam optimizer
(Kingma & Ba, 2015) with the default learning rate of 10−3 and the default momentum hyperparameters
of β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Following Lemhadri et al. (2021), we compute the dense-to-sparse
regularization paths with warm starts (Friedman et al., 2010). We first train an unregularized MLP for 10
epochs, using the validation set for early stopping with a patience of 3. We then gradually increase the
regularization coefficient as λ = [10, 100, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000,
6500, 6600, 6700, 6800, 6900, 7000, 7100, 7200, 7300, 7400, 7500, 8000, 8500, 9000, 9500, 10000, 10500,
11000, 11500, 12000, 12500, 13000, 13500, 14000, 14500, 15000], where for each value of λ, we further train
the model for 5 epochs. We sweep through this fixed set of regularization strengths instead of using the
exhaustive approach in Appendix A.2.1 for computational efficiency. After computing the regularization
path, we identify the regularization strength that selects approximately the same number of features as
LLM-Score on each dataset, and use the active features with nonzero weights for training the downstream
prediction model. Figure B1(a) shows the LassoNet regularization paths computed for all of the datasets,
along with the regularization strength used for feature selection (marked with a star).

LASSO. For feature selection with the LASSO (Tibshirani, 1996) with group-wise feature sparsity (Yuan
& Lin, 2006), we first train an unregularized logistic regression model on each dataset. To compute the
sparse-to-dense regularization paths with warm starts (Friedman et al., 2010), we then gradually increase
the regularization coefficient as λ = [0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5], where for each value of λ, we train a new model initialized with the
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previously learned model parameters. After computing the regularization path, we identify the regularization
strength that selects approximately the same number of features as LLM-Score on each dataset, and use
the active features with nonzero weights for training the downstream prediction model. Figure B1(b) shows
the LASSO regularization paths computed for all of the datasets, along with the regularization strength used
for feature selection (marked with a star).

B.2.2 Downstream Model Training and Hyperparameter Optimization

After selecting the features to use for training according to each feature selection method, we run a random
search with asynchronous successive halving (Li et al., 2020) to select the best hyperparameter configuration
to use for training and evaluation of each downstream prediction model. For each downstream prediction
model, we randomly sample 40 different hyperparameter configurations, and select the configuration that
maximizes the validation AUROC. We then measure the performance of the selected model on the test set.
We repeat this process 5 times with different random seeds (=[1,2,3,4,5]) and average the results. Below, we
provide the hyperparameter search space used for each model. For any hyperparameter that is not explicitly
listed below for LightGBM (Ke et al., 2017), we use the default value used in the corresponding API21.

Hyperparameter Search Space for LightGBM:

• Weak Learner: Gradient-Boosted Decision Tree,
• Maximum Number of Weak Learners: 50,
• Maximum Number of Leaves ∼ Discrete({20, 21, . . . , 60}),
• Boosting Learning Rate ∼ Uniform(10−2, 0.5),
• Subsampling Ratio ∼ Uniform(0.5, 1),
• Minimum Sum Hessian in Leaf ∼ LogUniform(10−3, 1).

Hyperparameter Search Space for MLP:

• Number of Hidden Units ∼ Discrete({200, 201, . . . , 500}),
• Number of Hidden Layers ∼ Discrete({2, 3, 4}),
• Dropout Probability ∼ Uniform(0, 0.5),
• Batch Size ∼ Discrete({256, 512, 1024}),
• Learning Rate ∼ LogUniform(10−4, 10−2),
• Maximum Number of Epochs: 15.

Hyperparameter Search Space for Logistic Regression:

• Learning Rate ∼ LogUniform(10−4, 10−2),
• Batch Size ∼ Discrete({256, 512, 1024}),
• L2 Regularization ∼ LogUniform(10−4, 10−2),
• Maximum Number of Epochs: 15.

B.3 Additional Experimental Results

In this section, we provide the full results for the large-scale dataset experiments in Section 4.2. In Figure B2,
we show the feature selection paths for GPT-4-based LLM-Score and all of the data-driven baselines, when
using (a) LightGBM, (b) MLP, and (c) L2-penalized logistic regression for downstream prediction. Overall,
we find that LLM-Score performs as strongly as the best-performing baselines on the folktables datasets
across all downstream prediction models, and significantly better than LassoNet and the random selection
baseline on the MIMIC-IV datasets.

21https://lightgbm.readthedocs.io/en/stable/Parameters.html
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Figure B2: Feature selection paths for all baselines and GPT-4-based LLM-Score (ours, in solid lines) on
the folktables and MIMIC-IV datasets when using (a) LightGBM, (b) MLP, and (c) L2-penalized logistic
regression for downstream prediction. Test performance is measured by AUROC (higher is better), as all
datasets correspond to binary classification tasks. On most datasets, LLM-Score shows strong performance
comparable to those of the best-performing data-driven baselines.
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C Prompting for Feature Importance Scores

In this section, we provide all of the prompt templates used for LLM-Score in Appendix C.1–C.21. In the
default prompt template, we only include the (i) main system prompt, (ii) the output format instructions,
and (iii) the main user prompt. We optionally add dataset-specific context and/or few-shot examples (with or
without chain-of-thought (CoT)) to the default prompt template to investigate the impact of their inclusion
on the feature selection performance of LLM-Score, as discussed in Section 4 of the main text. In each
prompt template, we mark the default components with red tags (e.g., /* Main System Prompt */) and all
of the optionally added components with blue tags (/* Few-shot Examples */). We clarify that the tags are
not part of the actual input prompt provided to the LLMs. Any text enclosed in angled brackets ⟨·⟩ serves
as a placeholder for a value to be specified by the user. For example, “⟨concept⟩” is a placeholder for the
input concept for which we wish to obtain an LLM-generated importance score.

Output format instructions. In practice, we found that choosing the right output format for a given
LLM is also important to consistently obtain a well-structured (i.e., easy to parse and extract the relevant
information) and adequate response for the LLM, especially for smaller models like Llama-2 with 7B pa-
rameters. We only consider the output formats available off-the-shelf from the LangChain API22, which we
used to implement most of our LLM prompting methods. Below, we provide the output format instructions
used for the different LLMs:

- Output format instructions for GPT-4 and GPT-3.5:

The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema “properties”: “foo”: “title”: “Foo”, “description”: “a list of strings”,
“type”: “array”, “items”: “type”: “string”, “required”: [“foo”] the object “foo”: [“bar”, “baz”] is a well-
formatted instance of the schema. The object “properties”: “foo”: [“bar”, “baz”] is not well-formatted.

Here is the output schema:
```
{“description”: “Langchain Pydantic output parsing structure.”, “properties”: {“reasoning”: {“title”:
“Reasoning”, “description”: “Logical reasoning behind feature importance score”, “type”: “string”},
“score”: {“title”: “Score”, “description”: “Feature importance score”, “type”: “number”}}, “required”:
[“score”]}
```

- Output format instructions for the Llama-2 models:

The output should be a markdown code snippet formatted in the following schema, including the leading
and trailing “```json” and “```”:

```json {
“reasoning”: str // Logical reasoning behind feature importance score
“score”: float // Feature importance score
} ```

Given that we use different output formats for different LLMs, we omit the output format instructions in
Appendix C.1–C.21 for simplicity.

C.1 LLM-Score Template for Credit-G

/* Dataset-specific Context */
Context: Using data collected at a German bank, we wish to build a machine learning model that can
accurately predict whether a client carries high or low credit risk (target variable). The dataset contains
a total of 20 features (e.g., credit history, savings account status). Prior to training the model, we first

22https://github.com/langchain-ai/langchain
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want to identify a subset of the 20 features that are most important for reliable prediction of the target
variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether an
individual carries high credit risk and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-Shot Examples */
Here is an example output:

- Variable: Installment rate in percentage of disposable income
{ “reasoning”: “The installment rate as a percentage of disposable income provides insight into a
person’s financial responsibility and capability. This percentage can be seen as a measure of how much
of a person’s available income is committed to repaying their debts. If this rate is high, it might indicate
that the person is taking more debt than they can comfortably repay and may hint at a lack of financial
responsibility, implying higher credit risk. If this rate is low, it likely indicates that the person can
manage their current financial obligations comfortably, implying lower credit risk. Thus, the score is
0.9.”, ← /* CoT */
“score”: 0.9 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.2 LLM-Score Template for Bank

/* Dataset-specific Context */
Context: Using data collected via a telemarketing campaign at a Portuguese banking institution from
2008 to 2013, we wish to build a machine learning model that can predict whether a client will subscribe
to a term deposit (target variable). The dataset contains a total of 16 features (e.g., age, marital status,
whether the client has a housing loan). Prior to training the model, we first want to identify a subset
of the 16 features that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether an
individual will subscribe to a term deposit and a reasoning behind how the importance score was as-
signed.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Has Credit in Default
{ “reasoning”: “Clients with credits in default might be more hesitant to open new financial products
due to their current financial situation and may be deemed a higher risk by the bank. Therefore, the
score is 0.9.”, ← /* CoT */
“score”: 0.9 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.3 LLM-Score Template for Give Me Some Credit
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/* Dataset-specific Context */
Context: We wish to build a machine learning model that can accurately predict whether an individual
is likely to experience serioues financial distress in the next two years (target variable). The dataset
contains a total of 10 features (e.g., debt ratio, monthly income). Prior to training the model, we first
want to identify a subset of the 10 features that are most important for reliable prediction of the target
variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether an
individual is likely to experience serious financial distress in the next two years and a reasoning behind
how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Monthly income
{ “reasoning”: “Monthly income is a crucial factor in determining an individual’s financial stability. A
higher monthly income indicates a higher ability to meet financial obligations and reduces the likelihood
of experiencing serious financial distress. A lower monthly income, on the other hand, may lead to
difficulties in managing expenses and paying off debts, increasing the likelihood of paying off debts.
Thus, the score is 0.8.”, ← /* CoT */
“score”: 0.8 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.4 LLM-Score Template for COMPAS Recidivism

/* Dataset-specific Context */
Context: Using data from a 2016 study on the use of the Correctional Offender Management Profiling
for Alternative Sanctions (COMPAS) algorithm, we wish to build a machine learning model that can
accurately predict whether a criminal defendant carries high risk for recidivism (target variable). The
individuals in the study cohort are from Broward County, Florida and were assigned COMPAS risk
scores in 2013 and 2014. The dataset contains a total of 13 features, including criminal history and
demographics. Prior to training the model, we first want to identify a subset of the 13 features that are
most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether a
criminal defendant carries high risk of recidivism and a reasoning behind how the importance score was
assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Year of Birth
{ “reasoning”: “The year in which a defendant was born is not directly relevant to the likelihood
of recidivism, and incorporating such information for model training may introduce unwanted biases.
Therefore, the score is 0.1.”, ← /* CoT */
“score”: 0.1 }
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/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.5 LLM-Score Template for Pima Indians Diabetes

/* Dataset-specific Context */
Context: We wish to build a machine learning model that can accurately predict whether a patient
has diabetes (target variable), given several diagnostic measurements. The selected individuals in the
cohort are female patients of Pima Indian heritage who are at least 21 years old. We measured a total of
8 clinical features (e.g., blood pressure, insulin). Prior to training the model, we first want to identify a
subset of the 8 features that are most clinically important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether a
patient has diabetes and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Year of Birth
{ “reasoning”: “The year in which a defendant was born is not directly relevant to the likelihood
of recidivism, and incorporating such information for model training may introduce unwanted biases.
Therefore, the score is 0.1.”, ← /* CoT */
“score”: 0.1 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩" formatted according to the output schema above:

C.6 LLM-Score Template for AUS Cars*

/* Dataset-specific Context */
Context: Using information about car prices in Australia during the year 2023, we wish to build a
machine learning model that can predict the selling price of a car in Australia (target variable). The
dataset contains a total of 7 features (e.g., fuel type, age). Prior to training the model, we first want to
identify a subset of the 7 features that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting predicting the
selling price of car in Australia and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Number of doors in the car
{ “reasoning”: “The number of doors is not a reliable predictor for the selling price of a car, as both
cheap and expensive cars can have a similar number of doors (typically two or four). Therefore, the
score is 0.1.”, ← /* CoT */
“score”: 0.1 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩" formatted according to the output schema above:
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C.7 LLM-Score Template for YouTube*

/* Dataset-specific Context */
Context: Using various statistics about some of the most popular YouTube channels from 2023, we wish
to build a machine learning model that can accurately predict whether a YouTube channel has more
than 20 million subscribers (target variable). The dataset contains a total of 22 features (e.g., total
number of views, channel category). Prior to training the model, we first want to identify a subset of
the 22 features that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether a
YouTube channel has more than 20 million subscribers and a reasoning behind how the importance
score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Month when the YouTube channel was created
{ “reasoning”: “The month when the YouTube channel was created does not directly affect how many
subscribers the channel has. Thus, the score is 0.1.”, ← /* CoT */
“score”: 0.1 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩" formatted according to the output schema above:

C.8 LLM-Score Template for CA Housing

/* Dataset-specific Context */
Context: Using 1990 U.S. Census data, we wish to build a machine learning model that can predict the
median housing price for each block group in the census (target variable). A block group, typically with
a population of 600 to 3,000 people, is the smallest geographical unit for which the U.S. Census Bureau
publishes sample data. The dataset contains a total of 8 numerical features (e.g., average number of
rooms for houses in the block group, latitude and longitude of the block group), and each sample in the
dataset corresponds to a block group. Prior to training the model, we first want to identify a subset of
the 8 features that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting the median
housing price of a U.S. census block group and a reasoning behind how the importance score was
assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Median Income in U.S. Census Block Group
{ “reasoning”: “Median income is often directly correlated with the standard of living in an area, which
can be correlated with housing prices. Areas with higher median incomes might have more expensive
houses because the residents can afford to pay more for housing, either because of better infrastructure,
schools, or other amenities. Additionally, homeowners in areas with higher median incomes may invest
more on home improvement, which could raise the median housing price. Thus, the score is 0.9.”, ←
/* CoT */
“score”: 0.9 }
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/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.9 LLM-Score Template for Diabetes Progression

/* Dataset-specific Context */
Context: We wish to build a machine learning model that can accurately predict disease progression
in diabetic patients (target variable), given their baseline blood serum measurements from the previous
year and demographics. We measured a total of 10 clinical features (e.g., blood sugar level, cholesterol
level, age, sex). Prior to training the model, we first want to identify a subset of the 10 features that
are most clinically important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting the disease
progression status in diabetes patients and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Body Mass Index (BMI)
{ “reasoning”: “BMI is a widely used measure to classify individuals based on their weight relative to
their height. It is a proxy for body fatness and can give insights into whether a person has a healthy
weight, is underweight, overweight, or obese. Obesity is a significant risk factor for type 2 diabetes, as
higher amounts of body fat can lead to insulin resistance and thereby increase the risk of developing
diabetes. Thus, while BMI should be considered in conjunction with other clinical measurements (e.g.,
blood sugar levels, blood pressure) for a comprehensive assessment of diabetic risk, the score is 0.8,
given its strong association.”, ← /* CoT */
“score”: 0.8 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩" formatted according to the output schema above:

C.10 LLM-Score Template for Miami Housing

/* Dataset-specific Context */
Context: Using data collected on 13,932 single-family homes sold in Miami in 2016, we wish to build a
machine learning model that can predict the selling price of each house (target variable). The dataset
contains a total of 15 features, which include structural (e.g., area, structure quality) and geographic
(e.g., longitude, latitude) information about each house. Prior to training the model, we first want to
identify a subset of the 15 features that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting the selling
price of homes in Miami and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: sale month in 2016 (1 = january)
{ “reasoning”: “While the real estate market may be subject to seasonal fluctuations, the month during
which a house was sold is not directly indicative of its selling price. Thus, the score is 0.25.”, ← /*
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CoT */
“score”: 0.25 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.11 LLM-Score Template for Wine Quality

/* Dataset-specific Context */
Context: Using various physicochemical measurements made on red and white vinho verde wine samples
from northern Portugal, we wish to build a machine learning model that can accurately predict whether
a wine is high or low quality (target variable). The dataset contains a total of 11 features (e.g., acidity,
density, sugar content). Prior to training the model, we first want to identify a subset of the 11 features
that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether a
wine is high or low quality and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Fixed acidity (g(tartaric acid)/dm3)
{ “reasoning”: “Fixed acidity refers to the concentration of non-volatile acids present in the wine,
primarily tartaric acid. Along with pH, fixed acidity can significantly influence the taste and feel of
wine in the mouth. A wine that is too acidic will taste sour and sharp, while a wine with low acidity
can taste flat and lifeless. Although it is the balance of fixed acidity with other components of the wine
that ultimately determines the wine quality, too much or too little acidity can be detrimental. Thus,
the score is 0.8.”, ← /* CoT */
“score”: 0.8 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩" formatted according to the output schema above:

C.12 LLM-Score Template for Used Cars

/* Dataset-specific Context */
Context: We wish to build a machine learning model that can accurately predict the selling price of a
used car (target variable). We recorded a total of 7 features (e.g., age, number of previous owners, fuel
type). Prior to training the model, we first want to identify a subset of the 7 features that are most
important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting the selling
price of a used car and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Selling type (dealer/individual)
{ “reasoning”: “The selling type can have an impact on the price of a used car, as dealers often
have overhead costs and can offer warranties or other serivces that can increase the price. However,
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factors such as the age of the car or the mileage are generally more influential in determining the price.
Therefore, the score is 0.2.”, ← /* CoT */
“score”: 0.2 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.13 LLM-Score Template for NBA*

/* Dataset-specific Context */
Context: Using various in-game statistics measured for an NBA basketball player during the 2023–2024
season, we wish to build a machine learning model that can accurately predict the player’s number of
points per game (target variable). The dataset contains a total of 27 features (e.g., steals per game,
assists per game). Prior to training the model, we first want to identify a subset of the 27 features that
are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting the number
of points per game of an NBA basketball player and a reasoning behind how the importance score was
assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Position
{ “reasoning”: “The position of a basketball player is not a reliable predictor of the average number of
points per game, as there are players who average a high number of points per game across all positions.
Thus, the score is 0.2.”, ← /* CoT */
“score”: 0.2 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.14 LLM-Score Template for NYC Rideshare*

/* Dataset-specific Context */
Context: Using various details from a rideshare trip, we wish to build a machine learning model that
can accurately predict the total pay given to the rideshare driver from that trip (target variable). The
dataset contains a total of 15 features (e.g., time of day, trip duration). Prior to training the model, we
first want to identify a subset of the 15 features that are most important for reliable prediction of the
target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting the total pay
given to a rideshare driver from a trip and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here is an example output:

- Variable: Vehicle-for-hire company operating the ride (Uber/Lyft)
{ “reasoning”: “The particular company that a rideshare driver is hired by may affect the total pay
given to the driver, but the difference in pay across different companies is likely to be negligible. It is
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therefore not a strong predictor in and of itself. Thus, the score is 0.2.”, ← /* CoT */
“score”: 0.2 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.15 LLM-Score Template for Income

/* Dataset-specific Context */
Context: Using the American Community Survey (ACS) Public Use Microdata Sample (PUMS) data
collected by the U.S. Census Bureau, we wish to build a machine learning model that can accurately
predict whether an individual has an income greater than $50,000 (target variable). The individuals in
the selected cohort are of ages above 16, have worked at least 1 hour per week in the past year, have
an income of at least $100, and a PUMS person weight of at least 1. The dataset contains a total of
281 features (e.g., age, workclass, health insurance plan). Prior to training the model, we first want
to identify a subset of the 281 features that are most important for reliable prediction of the target
variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether an
individual’s income is greater than $50,000 and a reasoning behind how the importance score was
assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Class of worker (COW)
{ “reasoning”: “The type or class of work (e.g., government employee, self-employed, unemployed, for-
profit company employee) that an individual is engaged in can be directly linked to their income. For
instance, an individual who is unemployed will have close to no income earned, significantly decreasing
the likelihood that an individual earns more than $50,000 in income. On the other hand, an individual
who is employed at a for-profit company in the technology industry will be more likely to make more than
$50,000 in income than an unemployed individual. Thus, while it should be considered in conjunction
with other features to avoid any unfair and biased predictions, the score is 0.9.”, ← /* CoT */
“score”: 0.9 }

- Variable: Person’s Weight replicate 78 (PWGTP78)
{ “reasoning”: “PWGTP78 refers to the 78th replicate PUMS weight for an individual, used in accu-
rately calculating the variance in ACS PUMS estimates. These weights are not directly related to an
individual’s income or socioeconomic standing, and are more about ensuring the reliability and robust-
ness of estimates derived from the survey sample. Thus, it is unlikely that this feature has a direct or
meaningful influence on predicting whether an individual earns more than $50,000. The score is 0.1.”,
← /* CoT */

“score”: 0.1 }

- Variable: Income-to-poverty ratio recode (POVPIP)
{ “reasoning”: “The income-to-poverty ratio is a measure that compares an individual’s or household’s
income to the poverty threshold set for their respective size and composition. This ratio offers a
straightforward understanding of a person’s financial situation relative to the poverty line. An individual
with a ratio significantly above 1 has an income that surpasses the poverty threshold by a considerable
margin, which can indicate a higher likelihood of having an income above $50,000. Conversely, an
individual with a ratio close to or below 1 is near or below the poverty level, making it less probable for
them to earn more than $50,000. Given its direct correlation to income levels, the income-to-poverty
ratio recode is a strong predictor of whether an individual earns more than $50,000. Thus, the score is
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0.95.”, ← /* CoT */
“score”: 0.95 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.16 LLM-Score Template for Employment

/* Dataset-specific Context */
Context: Using the American Community Survey (ACS) Public Use Microdata Sample (PUMS) data
collected by the U.S. Census Bureau, we wish to build a machine learning model that can accurately
predict whether an individual is employed (target variable). The individuals in the selected cohort are
of ages between 16 and 90 and have a PUMS person weight of at least 1. The dataset contains a total of
281 features (e.g., age, workclass, health insurance plan). As an initial step prior to training the model,
we first want to identify a subset of the 281 features that are most important for reliable prediction of
the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting employment
status and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Marital Status (MAR)
{ “reasoning”: “Marital status can have some indirect implications for employment status. For instance,
in households with a single income earner, one partner might choose not to work. However, marital
status on its own is not a strong predictor of employment. Numerous unmarried individuals work, and
many married individuals might be unemployed. Thus, while there is mild correlation, marital status
is not a direct indicator of employment status. Hence, the score is 0.3.”, ← /* CoT */
“score”: 0.3 }

- Variable: Person’s Weight replicate 78 (PWGTP78)
{ “reasoning”: “PWGTP78 refers to the 78th replicate PUMS weight for an individual, used in accu-
rately calculating the variance in the ACS PUMS estimates. These replicate weights do not inherently
contain information about an individual’s employment status, and their primary role is to help ensure
the reliability and robustness of estimates derived from the survey sample. Therefore, the score is 0.1.”,
← /* CoT */

“score”: 0.1 }

- Variable: Income-to-poverty ratio recode (POVPIP)
{ “reasoning”: “The income-to-poverty ratio is a measure that compares an individual’s or household’s
income to the poverty threshold set for their respective size and composition. This ratio offers a
straightforward understanding of a person’s financial situation relative to the poverty line. An individual
with a ratio significantly above 1 has an income that surpasses the poverty threshold by a considerable
margin, which can potentially hint at employment or other sources of income. Conversely, an individual
with a low ratio may be strugging from financial difficulties, possibly due to unemployment. However,
there are exceptions. For example, an individual may have a low income-to-poverty ratio but still
be employed. Thus, while the ratio may have strong correlation with employment status, it is not a
definitive predictor of employment status. So the score is 0.7.”, ← /* CoT */
“score”: 0.7 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:
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C.17 LLM-Score Template for Public Coverage

/* Dataset-specific Context */
Context: Using the American Community Survey (ACS) Public Use Microdata Sample (PUMS) data
collected by the U.S. Census Bureau, we wish to build a machine learning model that can accurately
predict whether a low-income individual has coverage from public health insurance (target variable).
The individuals in the selected cohort are of ages below 65 (not eligible for Medicare) and have a total
income less than $30,000. The dataset contains a total of 281 features (e.g., age, workclass, employment
status). Prior to training the model, we first want to identify a subset of the 281 features that are most
important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) for predicting whether a low-
income individual has coverage from public health insurance and a reasoning behind how the importance
score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Marital Status (MAR)
{ “reasoning”: “Marital status can be associated with various socioeconomic factors, including the
likelihood of having access to health insurance. For example, individuals who are married might have
access to health insurance through their spouse’s employer. Furthermore, certain public health insurance
programs might consider household size and income, which can be indirectly related to martial status.
Thus, marital status might carry some information about an individual’s likelihood of having public
health insurance coverage. Therefore, the score is 0.65.”, ← /* CoT */
“score”: 0.65 }

- Variable: Person’s Weight replicate 78 (PWGTP78)
{ “reasoning”: “PWGTP78 refers to the 78th replicate PUMS weight for an individual, used in calcu-
lating accurate variance estimates for ACS PUMS estimates. These replicate weights do not inherently
contain information about an individual’s health insurance status, and their primary role is to help
ensure the reliability and robustness of estimates derived from the survey sample. Therefore, the score
is 0.1.”, ← /* CoT */
“score”: 0.1 }

- Variable: Income-to-poverty ratio recode (POVPIP)
{ “reasoning”: “The income-to-poverty ratio is a measure that compares an individual’s or household’s
income to the poverty threshold set for their respective size and composition. This ratio offers a
straightforward understanding of a person’s financial situation relative to the poverty line. An individual
with a ratio close to or below 1 has an income that is near the poverty threshold, which can directly
affect his/her eligibility for public health insurance programs. Therefore, the income-to-poverty ratio
recode is a strong predictor of whether a low-income individual below the age of 65 may have public
health insurance. So, the score is 0.9.”, ← /* CoT */
“score”: 0.9 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.18 LLM-Score Template for Mobility

/* Dataset-specific Context */
Context: Using the American Community Survey (ACS) Public Use Microdata Sample (PUMS) data
collected by the U.S. Census Bureau, we wish to build a machine learning model that can accurately
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predict whether a young-adult individual moved residential addresses in the past year. The individuals
in the selected cohort are of ages between 18 and 35. The dataset contains a total of 281 features (e.g.,
age, workclass, health insurance plan). Prior to training the model, we first want to identify a subset
of the 281 features that are most important for reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) predicting whether a young-
adult individual moved residential addresses in the past year and a reasoning behind how the importance
score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Marital Status (MAR)
{ “reasoning”: “Marital status can be an indicator of stability and lifestyle changes, which may be
associated with mobility patterns. For instance, individuals who get married might be more inclined to
move to a new residence (e.g., buying a house together). Conversely, those who experience a divorce or
separation might also decide to move. Hence, marital status can be conceptually relevant in predicting
whether a young adult moved in the last year. However, being married or not may not necessarily
indicate that the individual moved addresses precisely during the past 12 months. Thus, the score is
0.4, accounting for the moderate association between marital status and mobility status.”, ← /* CoT
*/
“score”: 0.4 }

- Variable: Person’s Weight replicate 78 (PWGTP78)
{ “reasoning”: “PWGTP78 refers to the 78th replicate PUMS weight for an individual, used in calcu-
lating accurate variance estimates for ACS PUMS estimates. These replicate weights do not inherently
contain information about an individual’s mobility status, and their primary role is to help ensure the
reliability and robustness of estimates derived from the survey sample. Therefore, the score is 0.1.”, ←
/* CoT */
“score”: 0.1 }

- Variable: Divorced in the past 12 months (MARHD)
{ “reasoning”: “Being divorced in the past 12 months can have a significant impact on an individual’s
living situation and mobility status. A recent divorce can necessitate a change in residence for one
or both parties, due to the division of assets, emotional reasons, or seeking a fresh start. Given the
life-changing nature of a divorce and its potential implications on housing needs and preferences, this
variable can be considered directly relevant in predicting whether a young adult has moved in the last
year. Therefore, the score is 0.9.”, ← /* CoT */
“score”: 0.9 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.19 LLM-Score Template for CKD

/* Dataset-specific Context */
Context: Using retrospective electronic health record time-series data, we wish to build a machine learn-
ing model that can accurately predict whether a patient in the intensive care unit (ICU) will develop
chronic kidney disease (CKD) (target variable). We extracted a total of 148 clinical features, which
include lab test results (e.g., creatinine, lactate levels in the blood), bedside physiological measurements
(e.g., heart rate, arterial blood pressure), nurse assessments (e.g., Braden scale, pain assessment), pa-
tient medication information (e.g., vasopressor administration), and demographics (e.g., ethnicity, sex),
recorded during the first 24 hours of each patient’s stay in the ICU. Prior to training the model, we first
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want to identify a subset of the 148 features that are most clinically important for reliable prediction
of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) predicting the risk of an
ICU patient developing chronic kidney disease (CKD) and a reasoning behind how the importance
score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Glasgow Coma Scale (GCS) - Verbal
{ “reasoning”: “The verbal component of the Glasgow coma scale (GCS) is used to assess the extent
of a patient’s impaired consciousness based on the verbal responses of the patient. Patients with low
GCS verbal scores often suffer from significant neurological dysfunction or impairment, which can be
indicative of severe injury to the brain. While a significantly low GCS verbal score may indicate that
a patient is more critically ill, potentially at risk for multi-organ dysfunction, the verbal component
of the GCS is not directly related to a patient’s risk of developing CKD. Therefore, the score is 0.2,
reflecting a slight relevance due to its indirect ability to gauge overall patient severity but not being
directly relevant to CKD.”, ← /* CoT */
“score”: 0.2 }

- Variable: Admission Height
{ “reasoning”: “Admission height refers to the height of a patient measured upon admission to the
ICU. As a patient’s height is not directly indicative of the nature and severity of a patient’s medical
condition, it is irrelevant to a patient’s risk of developing CKD during their stay in the ICU. Therefore,
the score is 0.1.”, ← /* CoT */
“score”: 0.1 }

- Variable: Epinephrine
{ “reasoning”: “Epinephrine is a vasopressor, which is a drug that induces vasoconstriction to elevate
a patient’s blood pressure when it is so low that not enough blood is being delivered to the patient’s
organs. It is often used in critical care settings to manage severe cases such as septic shock, cardiac
arrest, and refractory hypotension. The constriction of the blood vessels can temporarily reduce blood
flow to the kidney, and reduced kidney perfusion, especially if prolonged, can contribute to kidney
injury, which, in turn, can predispose a patient’s risk of developing CKD. However, the administration
of epinephrine in and of itself is not directly related to a patient’s risk for CKD, and other measurements
such as creatinine levels in the blood are more directly relevant. Therefore, the score is 0.55, indicating
moderate relevance.”, ← /* CoT */
“score”: 0.55 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.20 LLM-Score Template for COPD

/* Dataset-specific Context */
Context: Using retrospective electronic health record time-series data, we wish to build a machine
learning model that can accurately predict whether a patient in the intensive care unit (ICU) will develop
chronic obstructive pulmonary disease (COPD) (target variable). We extracted a total of 148 clinical
features, which include lab test results (e.g., creatinine, lactate levels in the blood), bedside physiological
measurements (e.g., heart rate, arterial blood pressure), nurse assessments (e.g., Braden scale, pain
assessment), patient medication information (e.g., vasopressor administration), and demographics (e.g.,
ethnicity, sex), recorded during the first 24 hours of each patient’s stay in the ICU. Prior to training
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the model, we first want to identify a subset of the 148 features that are most clinically important for
reliable prediction of the target variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) predicting the risk of an
ICU patient developing chronic obstructive pulmonary disease (COPD) and a reasoning behind how the
importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Glasgow Coma Scale (GCS) - Verbal
{ “reasoning”: “The verbal component of the Glasgow coma scale (GCS) is used to assess the extent
of a patient’s impaired consciousness based on the verbal responses of the patient. Patients with low
GCS verbal scores often suffer from significant neurological dysfunction or impairment, which can be
indicative of severe injury to the brain. While a significantly low GCS verbal score may indicate that
a patient is more critically ill, potentially at risk for multi-organ dysfunction, the verbal component of
the GCS is not directly related to the health of the respiratory system and a patient’s risk of developing
COPD. Therefore, the score is 0.2, reflecting a slight relevance due to its indirect ability to gauge overall
patient severity but not being directly relevant to COPD.”, ← /* CoT */
“score”: 0.2 }

- Variable: Admission Height
{ “reasoning”: “Admission height refers to the height of a patient measured upon admission to the ICU.
As a patient’s height is not directly indicative of the nature and severity of a patient’s medical condition,
it is irrelevant to a patient’s risk of developing COPD during their stay in the ICU. Therefore, the score
is 0.1.”, ← /* CoT */
“score”: 0.1 }

- Variable: Lung Compliance
{ “reasoning”: “Lung compliance is a quantitative measure of lung expandability. Patients with COPD
suffer from a loss of elastic recoil in the lungs, which leads to an increase in lung compliance and manifests
in symptoms such as shortness of breath due to an inability to expell air effectively. Therefore, lung
compliance can be highly indicative of a patient’s risk for COPD, and the score is 0.9.”, ← /* CoT */
“score”: 0.9 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:

C.21 LLM-Score Template for HF

/* Dataset-specific Context */
Context: Using retrospective electronic health record time-series data, we wish to build a machine
learning model that can accurately predict whether a patient in the intensive care unit (ICU) will develop
heart failure (HF) (target variable). We extracted a total of 148 clinical features, which include lab
test results (e.g., creatinine, lactate levels in the blood), bedside physiological measurements (e.g., heart
rate, arterial blood pressure), nurse assessments (e.g., Braden scale, pain assessment), patient medication
information (e.g., vasopressor administration), and demographics (e.g., ethnicity, sex), recorded during
the first 24 hours of each patient’s stay in the ICU. Prior to training the model, we first want to identify
a subset of the 148 features that are most clinically important for reliable prediction of the target
variable.

/* Main System Prompt */
For each feature input by the user, your task is to provide a feature importance score (between
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⟨min_score⟩ and ⟨max_score⟩; larger value indicates greater importance) predicting the risk of an ICU
patient developing heart failure (HF) and a reasoning behind how the importance score was assigned.

/* Output Format Instructions */ (Omitted; refer to beginning of Appendix C)

/* Few-shot Examples */
Here are some example outputs:

- Variable: Glasgow Coma Scale (GCS) - Verbal
{ “reasoning”: “The verbal component of the Glasgow coma scale (GCS) is used to assess the extent
of a patient’s impaired consciousness based on the verbal responses of the patient. Patients with
low GCS verbal scores often suffer from significant neurological dysfunction or impairment, which can
be indicative of severe brain injury. While lower GCS verbal scores may not be directly correlated
with a higher risk of developing heart failure, heart failure may occur as a secondary event due to
significant neurological injury or physiological stress induced by brain injury. Thus, given that the
verbal component of the GCS is not a primary indicator of cardiovascular health but may have indirect
relevance, the score is 0.4.”, ← /* CoT */
“score”: 0.4 }

- Variable: Admission Height
{ “reasoning”: “Admission height refers to the height of a patient measured upon admission to the
ICU. As a patient’s height is not directly indicative of the nature and severity of a patient’s medical
condition, it is irrelevant to a patient’s risk of heart failure during their stay in the ICU. Therefore, the
score is 0.1.”, ← /* CoT */
“score”: 0.1 }

- Variable: Epinephrine
{ “reasoning”: “Epinephrine is a vasopressor, which is a drug that induces vasoconstriction to elevate
a patient’s blood pressure when it is so low that not enough blood is being delivered to the patient’s
organs. It is often used in critical care settings to manage severe cases such as septic shock, cardiac
arrest, and refractory hypotension. Patients with prolonged administration of epinephrine often have
compromised cardiovascular function, which can be associated with an increased risk of heart failure.
Therefore, the score is 0.9.”, ← /* CoT */
“score”: 0.9 }

/* Main User Prompt */
Provide a score and reasoning for “⟨concept⟩” formatted according to the output schema above:
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D Prompting for Feature Rankings

In this section, we provide all of the prompt templates used for LLM-Rank in Appendix D.1–D.14. For
LLM-Rank, we only use the prompt template that contains (i) main system prompt, (ii) the output format
instructions, and (iii) the main user prompt, as discussed at the beginning of Section 4 of the main text. In
each prompt template, we mark each of the 3 components with a red tag (e.g., /* Main System Prompt */).
We clarify that the tags are not part of the actual input prompt provided to the LLMs. Any text enclosed in
angled brackets ⟨·⟩ serves as a placeholder for a value to be specified by the user. For example, “⟨concepts⟩”
is a placeholder for the list of all input concepts for which we wish to obtain an LLM-generated ranking.

Output format instructions. For LLM-Rank, we include the output format instructions directly in the
prompt templates, as we use the same instructions for all LLMs (unlike LLM-Score).

D.1 LLM-Rank Template for Credit-G

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether an individual
carries high credit risk. The ranking should be in descending order, starting with the most important
feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.2 LLM-Rank Template for Bank

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether an individual
will subscribe to a term deposit. The ranking should be in descending order, starting with the most
important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.3 LLM-Rank Template for Give Me Some Credit

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether an individual is
likely to experience serious financial distress in the next two years. The ranking should be in descending
order, starting with the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz
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Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.4 LLM-Rank Template for COMPAS Recidivism

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether a criminal
defendant carries high risk of recidivism. The ranking should be in descending order, starting with the
most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.5 LLM-Rank Template for Pima Indians Diabetes

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether a patient has
diabetes. The ranking should be in descending order, starting with the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.6 LLM-Rank Template for AUS Cars*

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the selling price of a
car in Australia. The ranking should be in descending order, starting with the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.7 LLM-Rank Template for YouTube*
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/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether a YouTube
channel has more than 20 million subscribers. The ranking should be in descending order, starting with
the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.8 LLM-Rank Template for CA Housing

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the median housing
price of a U.S. census block group. The ranking should be in descending order, starting with the most
important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.9 LLM-Rank Template for Diabetes Progression

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the disease progression
status in diabetes patients. The ranking should be in descending order, starting with the most important
feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.10 LLM-Rank Template for Wine Quality

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting whether a wine is high
or low quality. The ranking should be in descending order, starting with the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz
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Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.11 LLM-Rank Template for Miami Housing

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the selling price of
homes in Miami. The ranking should be in descending order, starting with the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.12 LLM-Rank Template for Used Cars

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the selling price of a
used car. The ranking should be in descending order, starting with the most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.13 LLM-Rank Template for NBA*

/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the number of points
per game of an NBA basketball player. The ranking should be in descending order, starting with the
most important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

D.14 LLM-Rank Template for NYC Rideshare*
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/* Main System Prompt */
Given a list of features, rank them according to their importances in predicting the total pay given
to a rideshare driver from a trip. The ranking should be in descending order, starting with the most
important feature.

/* Output Format Instructions */
Your response should be a numbered list with each item on a new line. For example: 1. foo 2. bar 3.
baz

Only output the ranking. Do not output dialogue or explanations for the ranking. Do not exclude any
features in the ranking.

/* Main User Prompt */
Rank all ⟨number of concepts⟩ features in the following list: “⟨concepts⟩”.

73



Published in Transactions on Machine Learning Research (04/2025)

E Prompting for Sequential Feature Selection

In this section, we provide all of the prompt templates used for LLM-Seq in Appendix E.1–E.14. For
LLM-Seq, we only use the prompt template that contains (i) main system prompt and (ii) the main user
prompt. Unlike for LLM-Score and LLM-Rank, we do not add any specialized output format instructions
for LLM-Seq, as we prompt the LLM to directly output only the selected feature name/concept in text. In
each prompt template, we mark each of the two components with a red tag (e.g., /* Main System Prompt
*/). We clarify that the tags are not part of the actual input prompt provided to the LLMs. Any text
enclosed in angled brackets ⟨·⟩ serves as a placeholder for a value to be specified by the user. For example,
“⟨candidate concepts⟩” is a placeholder for the list of all candidate concepts for which we wish to obtain an
LLM-generated ranking.

Prompting in a dialogue. One important difference between LLM-Seq and the other LLM-based feature
selection methods is that we engage in a dialogue with an LLM, which takes place over multiple iterations.
In such a conversational setup, the default approach is to provide as input the full conversation history to the
LLM at each iteration. Here is an example of what the input prompt would look like at the t-th iteration:

System: Given a list of features already selected and a list of candidate features available, your task is
to output the next feature that should be included to maximally improve the performance in predicting
⟨target outcome⟩.

User: I used the features [], and the trained model achieved a test AUROC of N/A. What feature
should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no other
text).

LLM: ⟨Concept 1⟩
...

User: I used the features [⟨Concept 1⟩,. . . ,⟨Concept t − 1⟩], and the trained model achieved a test
AUROC of ⟨value⟩. What feature should I add next from: ⟨candidate concepts⟩? Give me just the
name of the feature to add (no other text).

Handling high-dimensional settings. In practice, when a dataset contains a relatively large number
of features, providing the entire conversation history as input can quickly become infeasible for LLMs with
limited context window sizes. We address such cases with a “buffering” approach, where we only include
the most recent interactions, instead of all t− 1 previous interactions. Here is an example of what the input
prompt would look like at the t-th iteration when using buffer of size 1, i.e., only including the interaction
immediately before:

System: Given a list of features already selected and a list of candidate features available, your task is
to output the next feature that should be included to maximally improve the performance in predicting
⟨target outcome⟩.

User: I used the features [⟨Concept 1⟩,. . . ,⟨Concept t − 2⟩], and the trained model achieved a test
AUROC of ⟨value⟩. What feature should I add next from: ⟨candidate concepts⟩? Give me just the
name of the feature to add (no other text).

LLM: ⟨Concept t− 1⟩

User: I used the features [⟨Concept 1⟩,. . . ,⟨Concept t − 1⟩], and the trained model achieved a test
AUROC of ⟨value⟩. What feature should I add next from: ⟨candidate concepts⟩? Give me just the
name of the feature to add (no other text).

E.1 LLM-Seq Template for Credit-G
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/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting whether
an individual carries high credit risk.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.2 LLM-Seq Template for Bank

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting whether
an individual will subscribe to a term deposit.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.3 LLM-Seq Template for Give Me Some Credit

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting whether
an individual is likely to experience serious financial distress in the next two years.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.4 LLM-Seq Template for COMPAS Recidivism

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting whether
a criminal defendant carries high risk of recidivism.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.5 LLM-Seq Template for Pima Indians Diabetes

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting whether
a patient has diabetes.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
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feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.6 LLM-Seq Template for AUS Cars*

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the selling
price of a car in Australia.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.7 LLM-Seq Template for YouTube*

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting whether
a YouTube channel has more than 20 million subscribers.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.8 LLM-Seq Template for CA Housing

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the median
housing price of a U.S. census block group.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.9 LLM-Seq Template for Diabetes Progression

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the disease
progression status in diabetes patients.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.10 LLM-Seq Template for Wine Quality

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
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the next feature that should be included to maximally improve the performance in predicting whether
a wine is high or low quality.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.11 LLM-Seq Template for Miami Housing

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the selling
price of homes in Miami.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.12 LLM-Seq Template for Used Cars

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the selling
price of a used car.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.13 LLM-Seq Template for NBA*

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the number
of points per game of an NBA basketball player.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).

E.14 LLM-Seq Template for NYC Rideshare*

/* Main System Prompt */
Given a list of features already selected and a list of candidate features available, your task is to output
the next feature that should be included to maximally improve the performance in predicting the total
pay given to a rideshare driver from a trip.

/* Main User Prompt */
I used the features ⟨selected concepts⟩, and the trained model achieved a test ⟨metric⟩ of ⟨value⟩. What
feature should I add next from: ⟨candidate concepts⟩? Give me just the name of the feature to add (no
other text).
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